
An exponential lower bound for

a constraint propagation proof system

based on ordered binary decision diagrams

Jan Kraj́ıček∗†

Academy of Sciences and Charles University, Prague

Abstract

We prove an exponential lower bound on the size of proofs in the
proof system operating with ordered binary decision diagrams intro-
duced by Atserias, Kolaitis and Vardi [2]. In fact, the lower bound
applies to semantic derivations operating with sets defined by OBDDs.
We do not assume any particular format of proofs or ordering of vari-
ables, the hard formulas are in CNF. We utilize (somewhat indirectly)
feasible interpolation.

We define a proof system combining resolution and the OBDD
proof system.

Atserias, Kolaitis and Vardi [2] generalized refutation proof systems from
Boolean logic to the realm of Constraint Satisfaction Problems (CSP), view-
ing it as a special case of constraint propagation. This brings constraint
propagation within the reach of proof complexity methods and, on the other
hand, introduces a new class of propositional proof systems (pps) in the sense
of Cook and Reckhow [6].

In the Boolean case Atserias et.al. [2] introduced and studied a par-
ticular pps operating with ordered binary decision diagrams (OBDD), and
they obtained a number of proof complexity results about it. In particular,

∗Keywords: proof complexity, OBDD, constraint propagation, feasible interpolation.
†Supported in part by grants A1019401, AV0Z10190503, MSM0021620839,

201/05/0124, and LC505.

1



they compared the pps with several well-known pps’, including resolution,
constant-depth Frege systems and small-coefficients cutting planes.

A problem left open in Atserias et.al.[2] is to prove a lower bound for
this new pps, although they have obtained an interesting partial result: a
feasible interpolation theorem (also monotone, and hence a lower bound too)
for refutations using OBDDs with certain specific orders of variables ([2,
Thm.9]). In this paper we prove an exponential lower bound without any
restrictions. We deduce first, as a corollary of the feasible interpolation
theorem for semantic derivations from Kraj́ıček [11], a feasible interpolation
theorem for refutations with OBDDs for special orders of variables. Then we
show how to deduce even from such a restricted interpolation a lower bound
for OBDD refutations satisfying no apriori restrictions1.

The paper is organized as follows. The OBDDs and the new proof system
of Atserias et.a.[2] are recalled in Section 1. Section 2 recalls the feasible
interpolation theorem for semantic derivations of Kraj́ıček [11]. The lower
bound is proved in Section 3.

We do not review basics of proof complexity or constraint propagation.
The reader my consult [10, 11, 14] for the former and [2, 7] for the latter.

1 The OBDD proof system

Proofs in a lot of usual pps’ are organized into proof lines, the lines being
syntactic objects representing Boolean functions. For example, in resolution
the lines are clauses, in cutting planes these are integer inequalities, and in
Frege systems these are arbitrary propositional formulas.

The lines in the proof system of Atserias et.al.[2] are OBDDs. OBDDs are
particular branching programs (BP). A BP is a directed acyclic graph with
one root which has no incoming edges and exactly two outgoing edges, with
two sinks (nodes with no outgoing edges) labeled by 0 and 1 respectively, and
with all other nodes (inner nodes) having exactly two outgoing edges and any
number of incoming edges. Every node except the sinks is labeled by one
of the variables xi and the two edges leaving the node are labeled xi = 0
and xi = 1, respectively. A truth assignment to variables thus determines

1We could have used the interpolation theorem of Atserias et.al.[2]; however, we give
our own feasible interpolation theorem because it is a simple corollary of the general inter-
polation for semantic derivations and because we want that our presentation is complete
(the proof of the interpolation theorem from [2] is due to appear in the full paper only).

2



a unique path from the root to a sink. In this way a BP defines a Boolean
function, sending the assignment to the value labeling the sink the path ends
in. The size of a BP is the number of its nodes. Every Boolean function can
be represented by a BP and, in fact, the minimal size of such a BP is tightly
linked with the space complexity of the function, cf. Wegener [21].

An OBDD is a BP in which variables are queried on every path at most
once and in an order consistent with one specific linear ordering π of all
variables; an OBDD consistent with π is called a π-OBDD. This class of
BPs has been introduced by Bryant[4]. The main feature of OBDDs is that
every Boolean function can be represented by a unique OBDD in a reduced
form, and the algorithm transforming any OBDD into its reduced form is
p-time. We shall not repeat the reduction and the arguments here (they
are straightforward). As a consequence of this fact one can decide in p-
time whether two OBDDs represent the same function and, in fact, decide
various other relations between functions or perform various manipulations
with them, also in p-time. In particular, one can decide in p-time whether
a function defined by one OBDD majorizes a function defined by another
OBDD (Boolean function f majorizes function g if f(a) ≥ g(a) holds for
all inputs a). This makes OBDDs very useful data structure representations
with applications in verification, model checking, computer-aided design of
VLSI circuits, and other areas. See Bryant[5] or Wegener[22].

Atserias et.al.[2, Def.1] define a fairly general concept of CSP Refutations.
This is a semantic concept, not a proof system in the sense of Cook and
Reckhow [6]. It operates with constraints. A constraint is a pair consisting
of a tuple of variables (not necessary all of them) and a relation on the set of
all possible values of these variables. There are four inference rules: (1) initial
constraints, (2) the join of two constraints which is simply the intersection of
the two relations extended naturally to all variables occurring in either one of
them, (3) the projection of a constraint which is the existential quantification,
and (4) the weakening which allows to relax the constraint by enlarging its
relation.

Atserias et.al.[2] studied in detail CSP refutations for Boolean logic and
with constraints represented by OBDDs. The lower bound we prove is inde-
pendent of any particular choice of inference rules such as above, as long as
they are binary (this is inessential) and sound. Hence rather than defining
the OBDD system with the four rules above, we define a ”semantic” version
of it. We shall call it the OBDD proof system (Atserias et.al.[2] do not use
any particular name).

3



For a OBDD P in n variables let fP denote the Boolean function with
domain {0, 1}n defined by P . For two Boolean functions f and g, the symbol
f ≥ g denotes that f majorizes g at every input. Note that a clause over n
variables is definable by an OBDD (under any order of variables) of size at
most 2 + n.

Definition 1.1 Let C = {C1, . . . , Cm} be a set of clauses in variables x =
(x1, . . . , xn). Let π be a linear ordering of variables x. A π-OBDD refuta-
tion of C is a sequence

P1, . . . , Pk

of π-OBDDs such that fPk
≡ 0, and every Pi is either a π-OBDD representing

a Boolean function defined by a clause from C, or:

fPi
≥ fPj1

∧ fPj2

for some j1, j2 < i. An OBDD refutation is a π-OBDD refutation, for
some linear ordering π of variables.

The size of the refutation is the sum of the sizes of Pi’, the number of
steps (sometimes called also the length) is k.

It is obvious that OBDD refutations are sound and complete. Note that
as a consequence of the above remarks on the uniqueness of reduced OBDDs
it is decidable in p-time, given π-OBDDs P1, P2 and P3, if fP3

≥ fP1
∧ fP2

.
Hence it can be decided in p-time if a sequence of π-OBDDs is a valid OBDD
refutation. In other words, the OBDD proof system is a proof system in the
sense of Cook and Reckhow [6].

Atserias et.al.[2] showed that OBDD refutations p-simulate resolution but
have an exponential speed-up over it, p-simulate cutting planes with small
coefficients CP ∗, and are incomparable with constant depth Frege systems.

2 Feasible interpolation

Let A(x, y) andB(x, z) be two propositional formulas having the indicated
occurrences of variables from tuples x = (x1, . . . , xn), y = (y1, . . . , ys) and
z = (z1, . . . , zt). Propositional interpolation theorem says that if A ∧ B is
unsatisfiable then there is a formula I(x), an interpolant of A and B, such
that both A ∧ I and B ∧ ¬I are unsatisfiable.

4



The idea of feasible interpolation is simple: For a given proof system P
establish an upper bound on the computational complexity of an interpolant
of A and B in terms of the size of a P-proof of the unsatisfiability of A ∧B.
Then any pair A and B which is hard to interpolate yields formula A ∧ B
that must have large P-proofs of the unsatisfiability. Unconditional lower
bounds are obtained by considering a monotone version of the above idea
(see below).

A useful way to look at interpolation (and one that we tacitly use below)
is in terms of separating a pair of disjoint sets. Let

U := {x ∈ {0, 1}n | ∃yA(x, y)} , V := {x ∈ {0, 1}n | ∃zB(x, z)} ,

and
W := {x ∈ {0, 1}n | I(x)} .

The unsatisfiability of A ∧ B is then equivalent to the disjointness of U and
V , and the fact that I is an interpolant of A and B means that W separates
U and V :

U ∩ W = ∅ and V ⊆ W .

We also say that a circuit separates two disjoint sets U and V if the set W
defined by the circuit does.

Feasible interpolation has been first formulated in Kraj́ıček[9](circulating
in 1991), and subsequently (but apparently independently in some cases) used
for a variety of proof complexity results (new lower bounds, independence
results for bounded arithmetic, establishing links between proof complexity
and cryptography, automatizability of proof search, etc.) in Razborov[20],
Bonet, Pitassi and Raz[3], Kraj́ıček[11], Kraj́ıček and Pudlák[15], Pudlák[18],
and a number of other papers; see [14, 19] for overviews.

In our lower bound proof we apply the general theorem on feasible inter-
polation for semantic derivations from Kraj́ıček[11] that uses communication
complexity2. We now recall the necessary definitions and facts from that
paper. We assume the reader is familiar with the concept of communication
complexity of a function, with inputs distributed among two players: It is
the minimal number of bits they need to communicate in the worst case (i.e.
the maximum over all inputs of the same length) in order to determine the

2The referee required that we mention that Impagliazzo, Pitassi and Urquhart [8] used
communication complexity to establish a lower bound for tree-like cutting planes.

5



value of the function at the given input. See Kushilevitz and Nisan[16] for
details.

Let N = n+s+t be natural numbers fixed for the rest of the section. The
semantic rule allows to infer a subset C ⊆ {0, 1}N from two subsets A, B ⊆
{0, 1}N iff C ⊇ A ∩ B. A semantic refutation of the sets A1, . . . , Am ⊆
{0, 1}N is a sequence of sets B1, . . . , Bk ⊆ {0, 1}N such that Bk = ∅, each
Bi is either one of Aj or derived from two previous Bi1 , Bi2 by the semantic
rule.

Let A ⊆ {0, 1}N and assume u, v ∈ {0, 1}n, yu ∈ {0, 1}s and zv ∈ {0, 1}t.
Consider three tasks:

1. Decide whether (u, yu, zv) ∈ A.

2. Decide whether (v, yu, zv) ∈ A.

3. If (u, yu, zv) ∈ A 6≡ (v, yu, zv) ∈ A find i ≤ n such that ui 6= vi.

These tasks can be solved by two players, one knowing u, yu (the U-player)
and the other one knowing v, zv (the V-player). The communication
complexity of A, CC(A), is the minimal number of bits they need to
exchange in the worst case in solving any of these three tasks3. That is,
CC(A) = max(t1, t2, t3) where ti is the communication complexity of task i,
i = 1, 2, 3.

Consider one more task:

4. If (u, yu, zv) ∈ A and (v, yu, zv) /∈ A either find i ≤ n such that

ui = 1 ∧ vi = 0

or agree (and indicate this by their outputs) that there is some u′

satisfying
u′ ≥ u ∧ (u′, yu, zv) /∈ A

(u ≤ u′ means
∧

i≤n ui ≤ u′
i; the players are not required to find any

u′.)

It should be noted that the task 4. has always a solution.

3We tacitly assume that the decomposition N = n + s + t, and hence the distribution
of input bits to the players, is apriori determined.

6



The monotone communication complexity w.r.t. U of A, MCCU(A),
is the minimal r ≥ CC(A) such that the task 4. can be solved communicating
≤ r bits in the worst case.

For A ⊆ {0, 1}n+s define the set Ã by:

Ã :=
⋃

(a,b)∈A

{(a, b, c) | c ∈ {0, 1}t}

where a, b, c range over {0, 1}n, {0, 1}s and {0, 1}t respectively, and similarly
for B ⊆ {0, 1}n+t define B̃:

B̃ :=
⋃

(a,c)∈B

{(a, b, c) | b ∈ {0, 1}s} .

Theorem 2.1 (Kraj́ıček[11]) Let A1, . . . , Am ⊆ {0, 1}n+s and B1, . . . , B` ⊆
{0, 1}n+t. Assume that there is a semantic refutation D1, . . . , Dk of the sets
Ã1, . . . , Ãm, B̃1, . . . , B̃` such that CC(Di) ≤ r for all i ≤ k.

Then the two sets

U = {u ∈ {0, 1}n | ∃yu ∈ {0, 1}s; (u, yu) ∈
⋂

j≤m

Aj}

and
V = {v ∈ {0, 1}n | ∃zv ∈ {0, 1}t; (v, zv) ∈

⋂

j≤`

Bj}

can be separated by a circuit of size at most (k + 2n)2O(r).

Moreover, if the sets A1, . . . , Am satisfy the following monotonicity condition
w.r.t. U :

(u, yu) ∈
⋂

j≤m

Aj ∧ u ≤ u′ → (u′, yu) ∈
⋂

j≤m

Aj

and MCCU(Di) ≤ r for all i ≤ k, then there is even a monotone circuit
separating U from V of size at most (k + n)2O(r).

3 The lower bound

Assume N = n + s + t, and let x, y and z be disjoint tuples of n, s and t
variables, as in the previous section. Let V ar be the set of all these variables
in x, y, z. A linear ordering π of V ar is block consistent with y < z < x iff
π puts all y-variables before all z- and x-variables, and all x-variables after
all z-variables.

7



Lemma 3.1 Let π be a linear ordering of V ar that is block consistent with
y < z < x. Assume a subset A ⊆ {0, 1}N is definable by a π-OBDD P of size
S. Then both CC(A) and MCCU (A) are bounded above by O(log(S)·log(n)).

Proof :
The U-player, knowing yu, starts the path through P and sends to the

other player log(S) bits indicating the last node he reached, i.e. the first
node not querying a y-variable. Then the V-player, knowing zv, continues in
the path and sends to the U-player log(S) bits naming the node with first
query of an x-variable he got to. Call this node p.

After this stage they both continue from p the computation individually,
using u and v respectively, and send each other 1 bit - their output. If the
outputs differ then they use binary search looking for a node whose x-query
they answered differently. This involves at most log(n) steps, each time
sending each other log(S) bits naming the node querying the particular x-
variable their paths got to. Hence the total estimate to CC(A) is O(log(S) ·
log(n)).

For the monotone complexity assume (u, yu, zv) ∈ A while (v, yu, zv) /∈ A.
Let p0, . . . , p` with p0 := p be the path from p determined by v (call it the
v-path), with p` being the sink labeled by 0. In particular, ` ≤ n.

The U-player indicates by sending 1 bit whether or not there is a u′ ≥ u
such that (u′, yu, zv) /∈ A, i.e. the u′-path from p leads to p`. If so, the players
stop, having answered the 4. task.

Otherwise the V-player picks a point in the middle of his path, say p`/2,
and sends its name (log(S) bits) to the U-player. The U-player sends back
1 bit indicating whether or not there is u′ ≥ u such that the u′-path from p
leads to p`/2.

If there is such a u′ they will move to sub-path p`/2, . . . , p`, otherwise to
the sub-path p0, . . . , p`/2. Note that the U-player does not know the whole
v-path from p, only the endpoints of the current sub-path.

In general, after r rounds of this process, the players have a sub-path of
length ≤ n/2r (the U-player knows its endpoints) such that there is a u′ ≥ u
for which the u′-path from p leads to the starting node of the sub-path but
no such u′ ≥ u exists for the end-node of the sub-path. Hence in at most
log(n) rounds, in which they have exchanged at most log(n) · (1 + log(S))
bits, they find a node pw on the v-path such that, in particular, for no u′ ≥ u
does the u′-path leads from pw to pw+1. If xi is the label of pw this means

8



(as xi is not queried at any earlier node) that vi = 0 while ui = 1, and the
players have found what they wanted.

q.e.d.

The following lemma is then an immediate consequence of Theorem 2.1
and Lemma 3.1 (we estimate the number of lines by the size). Atserias
et.al.[2, Thm.9] give an estimate to the circuit complexity of an interpolant
for orderings π block consistent with y < x < z.

Lemma 3.2 Let π be a linear ordering of V ar that is block consistent with
y < z < x. Let A1, . . . , Am ⊆ {0, 1}n+s and B1, . . . , B` ⊆ {0, 1}n+t. Assume
that there is a semantic OBDD refutation of the sets Ã1, . . . , Ãm, B̃1, . . . , B̃`

of size S.
Then the two sets

U = {u ∈ {0, 1}n | ∃yu ∈ {0, 1}s; (u, yu) ∈
⋂

j≤m

Aj}

and
V = {v ∈ {0, 1}n | ∃zv ∈ {0, 1}t; (v, zv) ∈

⋂

j≤`

Bj}

can be separated by a circuit of size at most SO(log(n)).

Moreover, if the sets A1, . . . , Am satisfy the monotonicity condition from The-
orem 2.1 then there is even a monotone circuit separating U from V of size
at most SO(log(n)).

Let A(x, y) and B(x, z) be arbitrary 3CNF formulas (i.e. sets of 3-
clauses), where x, y and z are n-, s- and t-tuples of atoms respectively,
as above, and N = n + s + t. We are going to construct a new CNF formula
DA,B(w, f), where w is an N -tuple of variables wi, and f an N2-tuple of
variables fij with i, j ∈ [N ].

Let Map(f) be the following CNF formula expressing that fij defines a
graph {(i, j) | fij = 1} of a permutation on [N ]:

∧

i

∨

j

fij ∧
∧

j

∨

i

fij ∧
∧

i1 6=i2,j

(¬fi1j ∨ ¬fi2j) ∧
∧

i,j1 6=j2

(¬fij1 ∨ ¬fij2) .

9



Next define formulas X1
j and X0

j by:

X1
j :=

∧

i∈[N ]

¬fij ∨ wi and X0
j :=

∧

i∈[N ]

¬fij ∨ ¬wi

for j ∈ [n], and similarly formulas Y 1
j and Y 0

j :

Y 1
j :=

∧

i∈[N ]

¬fi(n+j) ∨ wi and Y 0
j :=

∧

i∈[N ]

¬fi(n+j) ∨ ¬wi

for j ∈ [s], and Z1
j and Z0

j :

Z1
j :=

∧

i∈[N ]

¬fi(n+s+j) ∨ wi and Z0
j :=

∧

i∈[N ]

¬fi(n+s+j) ∨ ¬wi

for j ∈ [t].

Note that, assuming Map(f), formulas X1
j and X0

j (and similarly the Y s
and Zs) are complementary.

The CNF formula DA,B(w, f) consists of the conjunction of all clauses of
Map(f) together with all clauses obtained by the following process: For any
3-clause C from either A or B do the following:

1. Replace each positive literal xj by formula X1
j and each negative literal

¬xj by X0
j , and similarly for variables y and z.

2. The resulting formula is a disjunction of 3 conjunctions, each being a
conjunction of N 2-clauses: Use distributivity to replace this formula
by a conjunctions of N 3 6-clauses.

3. Each 6-clause obtained in this way is a clause of DA,B.

Lemma 3.3 Let σ be an arbitrary linear ordering of variables w and f , and
π be an arbitrary linear ordering of variables x, y and z.

Assume that the formula DA,B(w, f) has a σ-OBDD refutation of size S.
Then the formula A(x, y)∧B(x, z) has a π-OBDD refutation of size at most
S.

Proof :
Assume σ induces on variables w ordering

wi1 < wi2 < . . . < wiN ,

{i1, . . . , iN} = [N ]. Let F be a permutation of [N ] such that F (ir) equals

10



• to j, if the r-th element of π is xj,

• to n + j, if the r-th element of π is yj,

• to n + s + j, if the r-th element of π is zj,

respectively.
Substitute in the whole refutation fuv := 1 if F (u) = v, and fuv := 0

otherwise. If xj is the r-th element of the ordering π, after the substitution
the formula X1

j reduces to wir (the r-th variable w in the ordering σ) and
X0

j reduces to ¬wir (and analogously for the variables y and z). Hence the
ordering of these reduced formulas X, Y and Z induced by the σ ordering of
the variables w is identical to the π ordering of x, y and z.

The substitution for the variables f satisfies Map(f). Hence the original
σ-OBDD refutation becomes after the substitution a π-OBDD refutation of
A(x, y) ∧ B(x, z).

q.e.d.

To prove the lower bound we only need a pair of 3CNF formulas hard to
interpolate, i.e. a pair of NP sets U and V hard to separate. The set U will
be closed upwards and will satisfy the monotonicity condition of Theorem
2.1, so that we can use the monotone feasible interpolation. This is essential
as lower bounds for monotone circuits are known (Theorem 3.5) but not for
general circuits.

Denote the set of two-element subsets of [m] := {1, . . . , m} by the sug-

gestive symbol
(

m
2

)

. Truth assignments a to variables xij, {i, j} ∈
(

m
2

)

,

are naturally identified with undirected graphs on [m]; such graph will be
denoted Ga.

Recall that a clique in a graph is a complete subgraph, and that a graph
is ξ-colorable if every vertex can be assigned one of ξ colors such that no two
adjacent vertices have the same color.

The following formulas (essentially) have been first discussed by Razborov
[20] and used many times since then in connection with feasible interpolation
(see the references given above).

Definition 3.4 Let m, ω, ξ ≥ 1. Cliquem,ω(x, y) is any conjunction of 3-

clauses in variables xij, {i, j} ∈
(

m
2

)

, and mO(1) additional variables y such
that:

11



• The condition ∃yCliquem,ω(a, y) defines the set U of graphs Ga having
a clique of size at least ω.

• Formula Cliquem,ω(x, y) satisfies the monotonicity condition of Theo-
rem 2.1: a ≤ a′ ∧ Cliquem,ω(a, b) → Cliquem,ω(a′, b).

Colorm,ξ(x, z) is any conjunction of 3-clauses in variables xij, {i, j} ∈
(

m
2

)

,

and additional mO(1) variables z such that the condition ∃zColorm,ξ(a, z)
defines the set V of graphs Ga that are colorable by ξ colors.

It is obvious that U is closed upwards and that one can find its definition
Cliquem,ω(x, y) satisfying the monotonicity condition. A suitable definition
is constructed as follows. The additional variables y consists of ω ·m variables
y′

t,i, one for each t ∈ [ω] and i ∈ [m], together with auxiliary variables y ′′

whose role will be explained below.
Consider the conjunction of the following clauses:

1.
∨

i y
′
t,i, one for each t ∈ [ω].

2. ¬y′
t,i ∨ ¬y′

s,i, one for each t 6= s ∈ [ω] and i ∈ [m].

3. ¬y′
t,i ∨ ¬y′

s,j ∨ xij, one for each t 6= s ∈ [ω] and i 6= j ∈ [m].

The clauses in the first and in the second group enforce that {(t, i) | y ′
t,i = 1}

is the graph of an injective map F : [ω] → [m], and the clauses in the last
group stipulate that the range of F is a clique in the graph determined by
xij.

The formula Cliquem,ω(x, y) is the conjunction of these clauses after one
first uses the auxiliary variables y′′ to replace them by 3-clauses. The mono-
tonicity condition is clearly satisfied: If F (represented by y) witnesses that
a graph G has a clique of size [ω] then F continues to witness this fact for
any graph H that results from G by adding more edges but not deleting any.

A suitable formula Colorm,ξ(x, z) is constructed analogously, with z en-
coding a ξ-coloring of the graph. Note that the formula

∧

Cliquem,ω ∧
∧

Colorm,ξ

is obviously unsatisfiable if ω > ξ.
We need to use the following well-known lower bound (we formulate it

only for a particular set of parameters).

12



Theorem 3.5 (Alon-Boppana[1]) Let m ≥ 3, and put ξ := m1/2 (rounded
to the nearest integer) and ω := ξ + 1. Let U and V be the two sets defined
from the parameters m, ω, ξ in Definition 3.4.

Then any monotone circuit separating the sets U and V must have the
size at least 2Ω(m1/4).

Now we are ready to state and prove the lower bound. Denote by Am(x, y)
the formula Cliquem,m1/2+1(x, y) and by Bm(x, z) the formula Colorm,m1/2(x, z).

Hence n = m(m + 1)/2, s = mO(1) and t = mO(1). The total size of formulas
Am and Bm, and also of formula DAm,Bm, is mO(1).

Theorem 3.6 (main) Let m ≥ 3. Then any OBDD refutation of the set of

clauses DAm,Bm(w, f) must have the size at least 2Ω(m1/5).

Proof :
Let π be any linear ordering of variables x, y and z of formulas Am and Bm

that is block consistent with y < z < x. Let σ be any ordering of variables
w and f . Assume that DAm,Bm has a size S σ-OBDD refutation.

By Lemma 3.3 then there is a π-OBDD refutation of Am ∧ Bm of size
at most S. By Lemma 3.2 any such refutation yields a monotone circuit
separating U from V of size at most SO(log(n)).

By Theorem 3.5 then SO(log(n)) ≥ 2Ω(m1/4), i.e. S ≥ 2Ω(m1/5).

q.e.d.

One can consider a refutation proof system R(OBDD) combining reso-
lution R with the OBDD proof system. In particular, R(OBDD) operates
with clauses Γ = {P1, . . . , Pk} where Pi are π-OBDDs (the same ordering π
in the whole refutation) and has just one rule:

Γ ∪ {P1} ∆ ∪ {P2}

Γ ∪ ∆ ∪ {P3}
, if fP3

≥ fP1
∧ fP2

.

The objective is to derive clause {0} where 0 denotes the reduced OBDD
representing the constant 0. Mikle-Barát [17] considered a similar system
but with specific syntactic rules modeled upon [2] in place of the semantic
rule.

It is easy to see that R(OBDD) p-simulates systems R(k) of [13] and it
is thus unlikely that feasible interpolation applies to R(OBDD). Proving

13



lower bounds for the system appears to be an interesting open problem. In
particular, its relation to R(CP ) of [12] is also unknown.

Acknowledgments: I thank A. Atserias (Barcelona) for discussions
about [2] and to E. Jeřábek (Prague), L. Kolodziejczyk (Warsaw/Prague)
and N. Thapen (Prague) for critical comments on an earlier draft of the
paper. I am also indebted to the anonymous referee for careful reading of
the paper.

References

[1] N. Alon, and R. Boppana, The monotone circuit complexity of Boolean
functions, Combinatorica, 7(1), (1987), pp.1-22.

[2] A. Atserias, P. Kolaitis, and M. Vardi, Constraint propagation as a
proof system, 10th Int.Conf. on Principles and Practice of Constraint
Programing, LN in Computer Science vol.3258, Springer, (2004), pp.77-
91.

[3] M. L. Bonet, T. Pitassi, and R. Raz, Lower bounds for cutting planes
proofs with small coefficients, J. of Symbolic Logic,(1997), pp.708-728.

[4] R. E. Bryant, Graph-based algorithms for Boolean function manipula-
tion, IEEE Transactions on Computing, C-35, (1986), pp.677-691.

[5] R. E. Bryant, Syntactic Boolean manipulation with ordered binary de-
cision diagrams, ACM Computing Surveys, 2493), (1992), pp.293-318.

[6] S. A. Cook and A. R. Reckhow, The relative efficiency of propositional
proof systems, J. Symbolic Logic,44(1), (1979), pp.36-50.

[7] R. Dechter, Constraint processing, Morgan and Kaufman, (2003).

[8] R. Impagliazzo, T. Pitassi, and A. Urquhart, Upper and lower bounds
for tree-like cutting planes proofs, in Proc. Logic in Computer Science,
(1994), pp.220-228.

[9] J. Kraj́ıček, Lower bounds to the size of constant-depth propositional
proofs, Journal of Symbolic Logic, 59(1), (1994), pp.73-86.

14



[10] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity the-
ory, Encyclopedia of Mathematics and Its Applications, Vol. 60, Cam-
bridge University Press, (1995).

[11] J. Kraj́ıček, Interpolation theorems, lower bounds for proof systems,
and independence results for bounded arithmetic, J. of Symbolic Logic,
62(2), (1997), pp.457-486.

[12] J. Kraj́ıček, Discretely ordered modules as a first-order extension of the
cutting planes proof system, J. Symbolic Logic, 63(4), (1998), pp.1582-
1596.

[13] J. Kraj́ıček, On the weak pigeonhole principle, Fundamenta Mathemat-
icae, Vol.170(1-3), (2001), pp.123-140.

[14] J. Kraj́ıček, Propositional proof complexity I., lecture notes available at
http://www.math.cas.cz/˜krajicek/ds1.ps

[15] J. Kraj́ıček, and P. Pudlák, Some consequences of cryptographical con-
jectures for S1

2 and EF”, in: Logic and Computational Complexity (Proc.
of the meeting held in Indianapolis, October 1994), Ed. D. Leivant,
Springer-Verlag, Lecture Notes in Computer Science, Vol. 960, (1995),
pp.210-220.

Revised version in: Information and Computation, Vol. 140 (1), (Jan-
uary 10, 1998), pp.82-94.

[16] E. Kushilevitz, and N. Nisan, Communication complexity, Cambridge
University Press, (1996).

[17] O. Mikle-Barát, Strong proof systems, MSc. Thesis, Charles University,
(2007). (Available at the ECCC.)

[18] P. Pudlák, Lower bounds for resolution and cutting plane proofs and
monotone computations, J. of Symbolic Logic,(1997), pp.981-998.

[19] P. Pudlák, The lengths of proofs, in: Handbook of Proof Theory,
S.R.Buss ed., Elsevier, (1998), pp.547-637.

[20] A. A. Razborov, Unprovability of lower bounds on the circuit size in
certain fragments of bounded arithmetic, Izvestiya of the R.A.N., 59(1),
(1995), pp.201-224.

15



[21] I. Wegener, The complexity of Boolean functions, John Willey and Sons
and Teubner Verlag, (1987).

[22] I. Wegener, Branching programs and binary decision diagrams - theory
and applications, SIAM Monographs in Discrete Mathematics and Its
Applications, (2000).

Mailing address:
Mathematical Institute
Academy of Sciences of the Czech Republic
Žitná 25, Prague, 115 67
The Czech Republic
krajicek@math.cas.cz

16


