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Let g be a map defined as the Nisan–Wigderson generator but based on an NP ∩ coNP-
function f . Any string b outside the range of g determines a propositional tautology
τ(g)b expressing this fact. Razborov [27] has conjectured that if f is hard on average
for P/poly then these tautologies have no polynomial size proofs in the Extended Frege
system EF.

We consider a more general Statement (S) that the tautologies have no polynomial
size proofs in any propositional proof system. This is equivalent to the statement that
the complement of the range of g contains no infinite NP set.

We prove that Statement (S) is consistent with Cook’ s theory PV and, in fact,
with the true universal theory TPV in the language of PV. If PV in this consistency
statement could be extended to “a bit” stronger theory (properly included in Buss’s
theory S1

2) then Razborov’s conjecture would follow, and if TPV could be added too
then Statement (S) would follow.

We discuss this problem in some detail, pointing out a certain form of reflection
principle for propositional logic, and we introduce a related feasible disjunction property
of proof systems.
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1. Introduction

A propositional proof system is a polynomial time function P whose range is exactly
the set of propositional tautologies TAUT (say in 3DNF). This definition of Cook
and Reckhow [8] captures the usual logical calculi for propositional logic: map a
string that is a valid proof to the formula it proves and all other strings to p ∨ ¬p.
The range of such a map is TAUT by the soundness and the completeness of the
calculus, and it can be computed in polynomial time because in logical calculi valid
proofs can be recognized in polynomial time.
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A P -proof of a formula ϕ is any string π such that P (π) = ϕ. A proof system P is
p-bounded if there is a constant c ≥ 1 such that any tautology ϕ has a P -proof of size
at most |ϕ|c. Cook and Reckhow [8] have observed that a p-bounded proof system
exists if and only if the class NP is closed under complementation. It is therefore
believed that no such proof system exists and to establish this is a fundamental
problem of proof complexity.

At present it is not ruled out that the usual textbook propositional calculus
based on a finite number of axiom schemes and inference rules (a Frege system F
in the terminology of [8]) is p-bounded. It is generally assumed that the so called
Extended Frege system EF is a pivotal case in the study of the fundamental problem.
EF augments F by the ability to abbreviate formulas or, equivalently, it is a Frege
system but operating with circuits rather than with formulas (cf. [13, 12]). The
field of proof complexity has also other sources motivating its investigations (e.g.
bounded arithmetic or automated theorem proving) and the interested reader may
consult [13, 25].

A key issue in attacking the fundamental problem of the existence of a p-bounded
proof system is to come up with plausible candidates for hard formulas, tautologies
that it will be hard to prove in a proof system under consideration (or in all proof
systems). A class of such candidate formulas, the so called τ-formulas or proof
complexity generators, were proposed independently in [2, 14]. Their theory was
developed so far in about a dozen papers and its large part (but not all) is exposed
in [18, Chaps. 29 and 31]. We shall explain now the main idea.

Let g : {0, 1}n → {0, 1}m with m = m(n) > n be a map. For simplicity we
assume that m(n) is injective, hence m determines n. Let b ∈ {0, 1}m be any
string outside of the range Rng(g) of g. If g is polynomial time or at least (as
in this paper) an NP ∩ coNP map then the statement b /∈ Rng(g) is a coNP
property of b and can be expressed by a propositional formula τ(g)b in the sense
that

τ(g)b ∈ TAUT if and only if b /∈ Rng(g).

We shall not discuss how precisely is the formula defined and take it as a
canonical construction in the style of a proof of the NP-completeness of SAT, cf. [16].

Say that g is a hard proof complexity generator for P if and only if the
τ(g)-formulas have no polynomial size proofs in P : for any constant c ≥ 1, if m is
large enough then τ(g)b has a P -proof of size ≤ |τ(g)b|c for no b ∈ {0, 1}m\Rng(g).
The idea underlying the theory of these formulas is that there are maps that are
hard for very strong proof systems like EF or maybe even for all proof systems.

There are several maps that are candidates for hard proof complexity genera-
tors (see [18]) but in this paper we shall consider only one example proposed by
Razborov [27]. He considers a map g defined as the Nisan–Wigderson generator
with parameters as in [23]. Such a map is determined by a matrix A and by a
Boolean function f (see Sec. 2 for details). In [23] f is computed by a deterministic
algorithm and is assumed to have a certain hardness property. Razborov’s idea was
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to take, for the purpose of proof complexity, an NP ∩ coNP function f that is hard
for all P/poly:

Conjecture 1.1 (Razborov [27, Conjecture 2]). Any NW-generator based on
a matrix A which is a combinatorial design with the same parameters as in [23] and
on any function f in NP∩coNP that is hard on average for P/poly, is hard for EF.

We will discuss the details (e.g. the conditions on the parameters involved) in
Sec. 2. Pich [24] has recently established this statement for proof systems admitting
a certain form of feasible interpolation, including resolution.

This is a beautiful conjecture. But it is not clear (to this author) why the state-
ment should hold only for EF and not for other, or all, proof systems. Polynomial
size EF proofs operate with polynomial size circuits but an arbitrary proof sys-
tem can by p-simulated by one that has the same property (an extension of EF
by polynomial time set of extra axioms, see [19, 13]). In particular, consider the
following.

Statement (S)(informally). Let g be the Nisan–Wigderson generator with the same
parameters as in Razborov’s conjecture, and assume it is based on an NP ∩ coNP-
function f that is a hard bit of a one way permutation.

Assume that R is an infinite NP-set which has infinitely many elements with
length equal to m(k) for some k ≥ 1.

Then

Rng(g) ∩R �= ∅.
In this paper, we prove that Statement (S) is consistent with Cook’s theory

PV and, in fact, with the true universal theory TPV in the language of PV. These
two theories are significant in proof complexity: PV corresponds to EF and TPV

corresponds to the union of all proof systems. The correspondence we refer to here
is a variety of technical results linking theories and proof systems (cf. [13, 7]). In
particular, one can view PV as a uniform version of EF in a manner analogous to
how polynomial time algorithms are uniform versions of polynomial size circuits.

Demonstrating that a complexity-theoretic conjecture is consistent with a
bounded arithmetic theory appears to be interesting (as opposed to demonstrating
the unprovability in a weak theory). The reason is that such a consistency result in
effect establishes the conjecture in a structure (a model of the theory in question)
that is quite close to the world of complexity theory. Even weak theories of bounded
arithmetic (low in the Buss’s hierarchy of theories Si

2 and T i
2, cf. [4, 13]) contain a

significant part of contemporary complexity theory.
In our case there is an extra reason to consider a consistency statement like the

one we do. If PV in this consistency statement could be extended to “a bit” stronger
theory (properly included in Buss’s theory S1

2), then Razborov’s conjecture would
follow, and if TPV could be added too then Statement (S) would follow.

This paper stems from a forcing construction in [18, Chap. 31] establishing
a special case of our main theorem. Here we employ classic methods and give a
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new construction, and also extend the result to a larger variation of parameters in
Statement (S) in Theorem 4.2. We also discuss in some detail what is the obstacle to
extending the result in a way that would allow to deduce the Razborov’s conjecture
and possibly also Statement (S).

2. An Interactive Computational Task

We first briefly review the Nisan–Wigderson construction from [23], fixing the nota-
tion along the way. Let 1 ≤ d ≤ � ≤ n < m be some parameters and let A
be an m × n 0-1 matrix with � ones per row. Ji(A) := {j ∈ [n]| Aij = 1}. Let
f : {0, 1}� → {0, 1} be a Boolean function.

Define function NWA,f : {0, 1}n → {0, 1}m as follows: The ith bit of the output
is computed by f from the bits of the input that belong to Ji(A). For x a string
of length n and J ⊆ [n] of size � denote by x(J) the substring of x of length �

consisting of those xj from x for which j ∈ J . Hence the ith output bit of NWA,f (x)
is f(x(Ji(A))).

Matrix A is a (d, �)-design if in addition the intersection of any two different
rows Ji(A)∩Jk(A) has size at most d. Nisan and Wigderson [23] construct matrices
A that are (d, �)-designs for a wide range of parameters. In particular, m can be
exponential in nΩ(1) and this is crucial for many applications. For our purposes
however, it is best to have m as small as possible and we shall fix the parameters
as follows:

m := n+ 1, d := log(n+ 1), and � := n1/3. (2.1)

Later we shall remark on how the parameter m can be altered.
We shall denote by An some canonical matrix with these parameters (e.g. pro-

vided by one of the constructions from [23]). It is not important for us to have An

explicit.
Let f be an NP∩ coNP function (i.e. it is the characteristic function of a lan-

guage in NP ∩ coNP). We shall assume that f is given by two NP predicates

∃ y(|y| ≤ |u|O(1) ∧ F0(u, y)) and ∃ y(|y| ≤ |u|O(1) ∧ F1(u, y)) (2.2)

with F0 and F1 polynomial-time relations such that

f(u) = a if and only if ∃ y(|y| ≤ |u|O(1) ∧ Fa(u, y))

for a = 0, 1. Any string y witnessing the existential quantifier will be called a witness
for f(u) = a. We shall say that f has unique witnesses if the witness y is unique
for all u.

Let A be a matrix and f an NP ∩ coNP function as above. As n < m there are
strings in {0, 1}m that are outside of the range of NWA,f . Fix b = (b1, . . . , bm) ∈
{0, 1}m any such string. In this situation we define the following.

Computational Task (T). Given x ∈ {0, 1}n find i ∈ [m] such that the ith bit of
NWA,f (x) differs from bi.
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We shall consider a specific model for solving (T) in which two players, a com-
putationally limited Student and an unrestricted Teacher, interact in the following
way. In the first step:

• The Student, upon receiving an input x ∈ {0, 1}n, computes his first candidate
solution i1 ∈ [m].

• If i1 solves (T) the Teacher will acknowledge it and the computation stops.
• If i1 fails to solve (T) the Teacher sends to the Student a witness y1 to
f(x(Ji1 (A)) = bi1 .

In general, in the kth step the Student computes a candidate solution ik ∈ [m]
from x and from the witnesses y1, . . . , yk−1 he has received from the Teacher in the
previous k − 1 steps. The Teacher acts as above: if ik solves (T) she acknowledges
it, if not she sends to the Student a witness yk certifying the incorrectness, i.e.
witnessing f(x(Jik

(A))) = bik
.

This computational model was introduced in [22] as an interpretation of a form
of Herbrand theorem, and formalized in terms of computational classes in [21] (see
also [13]).

For c ≥ 1 we say that a Student solves (T) in c steps if the computation with
any (honest) Teacher stops in at most c steps on every input x ∈ {0, 1}n. It is
convenient to think of such a Student as being determined by c functions

S1(x), S2(x, y1), . . . , Sc(x, y1, . . . , yc−1), (2.3)

Sk computing the kth candidate solution ik from x and from the witnesses
y1, . . . , yk−1 received from the Teacher in earlier rounds. We shall concentrate on
the case when all Sk are computed by circuits Ck and we will be interested in the
total size of these c circuits.

3. The Hardness of Task (T)

The following hypothesis will play a crucial role later on.

Hardness Assumption (H). There is an NP∩ coNP function f such that for all
c ≥ 1 and k ≥ 1 the following holds for all large enough n and any b ∈ {0, 1}m\
Rng(NWAn,f ):

Any circuits computing the moves of a Student that solves (T) in c steps must
have the total size at least nk.

This is a conservative formulation. One may contemplate a hypothesis that each
Student solving (T) in a constant number of steps must have an exponential size
(see Corollary 3.3).

In the rest of this section we shall derive (H) from a more conventional hypoth-
esis. Recall the hardness of a Boolean function f used in [23]: For two number
parameters ε(�) and S(�) depending on � define f to be (ε, S)-hard if for every �
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and every circuit C with � inputs and of size at most S(�) it holds:

Probu∈{0,1}� [C(u) = f(u)] < 1/2 + ε/2,

[23] then use the concept for ε := 1/S and are concerned with the maximal S such
that the function is (1/S, S)-hard; such S is called the hardness of f and denoted
Hf (�). We shall not use this setting of ε (in the main case of [23] m is exponential
in n and that leads to exponentially small ε but our m is small). Instead we are
interested mainly in the parameter S, with ε being always of the rate �−O(1). The
only exception is part 3 in Theorem 4.2.

It is convenient to introduce the following notation (AH stands for approximating
hardness) measuring the rate of the parameter S. Function AHf :N × N → N is
defined in the following way:

• For �, k ≥, define AHf (�, k) to be the minimal s such that there is a size s circuit
C with � inputs such that

Probu∈{0,1}� [C(u) = f(u)] ≥ 1/2 + �−k.

The difference Probu∈{0,1}� [C(u) = f(u)]−1/2 will be called the advantage (tacitly,
over 1/2) of C in computing f .

In the definition of the task (T), we have not assumed that f , an NP ∩ coNP
function, has unique witnesses but we shall use such an assumption in Theorem 3.2.
Such functions do appear quite naturally as hard bits of polynomial-time permu-
tations. Let us recall briefly the relevant notions (see [3, 10] for details) and state
a formal lemma for a later reference. We use the non-uniform setting and do not
stress it further in the terminology.

A polynomial time function h is a permutation if it permutes each {0, 1}�. It is
defined to be ε(�) one way with security parameter t(�) if and only if for all � and
any circuit D with � inputs and of size at most t(�) it holds:

Probv∈{0,1}� [D(h(v)) = v] ≤ ε(�).

There are several permutations constructed from discrete logarithm, factoring or
RSA that are conjectured to be �−k one way with super-polynomial (or even expo-
nential) security parameter (see [3, 10]). Having such a permutation h one may
assume (by the Goldreich–Levin theorem, cf. [3]) without loss of generality that h
has a hard bit function b(v). That is, a small circuit (of size t(�)Ω(1)) can compute
b(v) from the input u := h(v) only with a negligible advantage over 1/2. Then we
can define an NP ∩ coNP function f with unique witnesses by f(u) := b(h(−1)(u)).
This yields the following lemma.

Lemma 3.1. Assume that there exists a polynomial time permutation h such that
for any fixed k ≥ 1 it is �−k one way with a super-polynomial security parameter
t(�) = �ω(1).

Then there exists an NP ∩ coNP function f with unique witnesses such that for
any fixed k ≥ 1 the function AHf (�, k) is a super-polynomial function of �.
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If, in fact, for any fixed k ≥ 1 h is even �−k one way with an exponential security
parameter t(�) = 2�Ω(1)

then the function AHh(�, k) is an exponential function of �
for any fixed k ≥ 1.

Now we are ready to state the reduction.

Theorem 3.2. Assume that f is an NP ∩ coNP function with unique witnesses
and c ≥ 1 is a constant. Then any circuits computing moves of a Student solving
(T) in c steps must have total size at least

AHf (n1/3, 4c) − (c− 1) · nO(1).

The O(1) constant depends on f but not on c.
In particular, if AHf (�, k) is a super-polynomial function of � for any fixed

k ≥ 1, then the hypothesis (H ) holds for f, and if AHf (�, k) is exponential for any
fixed k ≥ 1 then the total size of the circuits computing Student’s moves have to be
exponential in n.

Proof. Let f be a function satisfying the hypothesis of the theorem. Assume that
for some constant c ≥ 1 and an n large enough, a Student computed by circuits
of the total size s solves the task (T) in c steps. We want to derive a lower bound
on s.

Assume that for a given x ∈ {0, 1}n the communication between the Student
and the Teacher stops after the kth step of the Student, his candidate solutions
in the computation being i1, . . . , ik (and ik is correct). Call the k-tuple (i1, . . . , ik)
the trace of the computation on x and denote it Tr(x). Note that k ≤ c and that
the trace determines also the Teacher’s messages because of the assumption of the
unique witnesses for f .

Claim 1. There is a k-tuple i = (i1, . . . , ik) ∈ [m]k for some k ≤ c that is the trace
of computations on at least a fraction of 2

(3m)k of all inputs x.

To prove the claim construct by induction on t a string (i1, . . . , it) ∈ [m]t such
that the traces of at least 1

3t−1mt of all inputs x start with the t-tuple. For t = 1
note that there arem possible values and hence at least one of them, say i1, appears
at the beginning of at least a fraction of 1/m traces of all inputs. For the induction
step assume we have a t-tuple (i1, . . . , it) with the required property and consider
two cases: (i) (i1, . . . , it) is actually the whole trace of at least 2/3 of all inputs
whose traces start with (i1, . . . , it), and (ii) otherwise.

In case (i) (i1, . . . , it) is the required trace. In case (ii) extend (i1, . . . , it) by it+1

so that for at least 1/(3m) of all inputs with traces starting with (i1, . . . , it) the
traces will start with (i1, . . . , it+1) as well. This is possible because in case (ii) at
least a third of all computations with traces starting with (i1, . . . , it) continue and
there are m choices for it+1. This proves the claim.

For the rest of the proof fix a trace i = (i1, . . . , ik) provided by the claim. For
u ∈ {0, 1}� and v ∈ {0, 1}n−� define w(u, v) ∈ {0, 1}n by putting bits of u into bits



September 6, 2011 16:39 WSPC/S0219-0613 153-JML
S0219061311000979

18 J. Kraj́ıček

of w in positions Jik
(in the natural order) and then fill the remaining n − � bits

of w by bits of v (again in the natural order). An averaging argument yields the
following claim.

Claim 2. There is an n− �-tuple a ∈ {0, 1}n−� such that there is at least a fraction
1

(3m)k more u ∈ {0, 1}� with Tr(w(u, a)) = i than those with Tr(w(u, a)) properly
containing i.

Fix one such an (n − �)-tuple a. Because matrix An is a (d, �)-design, for any
row i �= ik at most d = log(n+ 1) input bits from Ji are not set by a. Hence there
are at most n + 1 assignments v to bits in Ji not set by a. For each such v let zv

be the (unique) witness for the value of f on the assignment given by v and a to
variables in Ji, and let Yi be the set of all these witnesses zv. Note that the total
bit size of each Yi is (n+ 1)�O(1) = nO(1), and that there are n of them.

Now we define an algorithm C that attempts to compute f on inputs of length
�, and uses i, a and all Yi’s as an advice. The algorithm will invoke the Student (i.e.
the circuits computing its moves) and this is an additional source of non-uniformity
of C.

Upon receiving an input u ∈ {0, 1}� C defines the string w := w(u, a) ∈ {0, 1}n

and starts computation as the Student on x := w. Let U be those inputs u for which
the trace Tr(w(u, a)) is either i or starts with i, and let V be the complement of
U . Define b0 to be the majority value of f on V .

If the Student’s first candidate solution is different from i1 then C halts and
produces b0 as the output C(u). (If C had a source of random bits then it would
output a random bit at this point but deterministic C needs a fixed value.) If the
first candidate solution is i1 algorithm C reads from Yi1 the right witness y1 and
sends it to the Student in place of the Teacher. Note that the uniqueness of witnesses
for f implies that there is exactly one suitable string in Yi1 and that C can find it
in polynomial time: the size of Yi1 is polynomial and each string can be tested in
polynomial time.

In an analogous manner, if any of the candidate solutions the Student produces
in steps 1, . . . , k− 1 is different from the particular ij , j = 1, . . . , k− 1, C halts and
outputs the value b0. Otherwise C sends to the Student always the correct witness
it reads in the appropriate Yi’s. If the computation halts before reaching the kth
step C again outputs b0.

Finally we reach the kth step. If the Student’s candidate solution is different
from ik C outputs b0. But if it is ik it outputs 1 − bik

.

Claim 3. The algorithm C computes correctly f on at least a fraction of

1/2 +
1

(3m)k
≥ 1/2 +

1
(3(�3 + 1)c)

≥ 1/2 +
1
�4c

of all inputs u ∈ {0, 1}�.

The algorithm outputs the bit b0 in all cases except when the computation
reaches the kth step and the Student produces ik as its candidate solution. If the
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Student/Teacher computation actually stops at that point, then the value 1 − bik

in indeed equal to f(u). If the computation were to continue then we have no
information. But note that by the choice of a in Claim 2 the former case happens
for at least a fraction 1

(3m)k more inputs u ∈ {0, 1}� than the latter case. Because b0
is the correct value of f for at least half of u ∈ V , the overall advantage algorithm
C has in computing f is at least 1

(3m)k .

Claim 4. The algorithm C can be computed by a circuit of size at most s + (c −
1) · nO(1).

C proceeds as the Student except when it needs to simulate the Teacher and
find an appropriate witness in one of the sets Yi. This is done at most (c− 1)-times
and takes nO(1) time each.

Claims 3 and 4 imply that

AHf (n1/3, 4c) ≤ s+ (c− 1) · nO(1)

and the theorem follows.

Lemma 3.1 and Theorem 3.2 imply the following corollary.

Corollary 3.3. Assume that there exists a polynomial time permutation h such that
for any fixed k ≥ 1 it is �−k one way with a super-polynomial security parameter
t(�) = �ω(1). Then the hypothesis (H) holds.

If the permutation h is �−k one way with even an exponential security parameter
t(�) = 2�Ω(1)

for all fixed k ≥ 1, then the hypothesis (H) holds even when asserting
that the total size of the circuits computing Student’s moves have to be exponential
in n.

We shall conclude this section with two remarks useful for a later reference.

Remarks.

(a) We have chosen the valuem := n+1 in order to maximize a time bound in Sec. 4
(ideally this would translate into lower bounds for lengths of proofs). However, the
construction allows bigger values ofm, up to exponential in �. First,m influences the
rate of the advantage the algorithm C has in computing f : when m is polynomial
in � the advantage is polynomially small �−O(1), while for an exponential m it
would be exponentially small 2−�Ω(1)

. It is consistent with the present knowledge
that there are NP ∩ coNP functions which is difficult to approximate even with an
exponentially small advantage but it is clearly a stronger assumption to make than
the standard hypothesis about one way permutations we have used.

Second, m does not appear explicitly in the size estimate for C but it is involved
implicitly: the Student knows b which has size m. Hence for values of m that are
super-polynomial in n one should estimate the size of C in terms of m rather than
in terms of n, and it would be exponential in � if m was.
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(b) Assume we would want to allow f not only from NP ∩ coNP but from a larger
class NTime(r(�)) ∩ coNT ime(r(�)) with a super-polynomial r(�). In such a case
the witnesses for the function values will have the length O(r(�)).

The size of witnesses plays a role in the estimate of the size of C: each step
when C simulates the Teacher and searches for a witness for f(x(Ji)) = bi in Yi

would now take time O(nr(�)O(1)). Hence the size of C would be estimated by
s+O(cnr(�)O(1)) = s+O(c�3r(�)O(1)). For this to give a non-trivial upper bound
one must have r(�) ≤ 2(1−Ω(1))� or better still r(�) ≤ 2�Ω(1)

. In particular, one
cannot allow f from NE ∩ coNE. This is relevant to note because a version of the
Razborov’s conjecture allowing NE ∩ coNE in place of NP ∩ coNP was shown to
have a startling consequence in [17].

4. A Model of TPV Where Task (T) has no Solution

The language LPV of Cook’s [6] theory PV has a name for every polynomial-time
algorithm obtained from some basic algorithms by the composition and by the lim-
ited recursion on notation, following Cobham’s [5] characterization of polynomial
time. The axioms of PV codify how the algorithms are built from each other. Cook
has originally defined PV as an equational theory but after [22] it became cus-
tomary to define it as a usual first-order theory whose axioms are purely universal
statements; this is the convention we adopt here. We do not spell out the definition
of either LPV or PV as we use only two facts: every function symbol from LPV is
in the standard model N interpreted by a polynomial time function and PV is true
in the standard model ([13] offers all details).

Theory PV is closely linked with Extended Frege system EF and this relation
has many facets. For example, PV proves the soundness of EF and EF can simulate
by polynomial size proofs of instances any PV proof of a universal statement. We
shall, however, not use this relation (at least not directly). In fact, we shall work
instead with the true universal first-order theory of N in the language LPV . We shall
denote this theory TPV. Note that TPV contains formulas expressing the soundness
of all proof systems and that PV ⊆ TPV.

A class of models of TPV can be constructed as follows. LetM be a non-standard
model of true arithmetic (tacitly in the language LPV ). Let n ∈ M be a non-
standard number and define Mn and M∗

n to be the substructures of M consisting
of numbers whose bit length is less than nk for some standard k ∈ N or less than
2n1/k

for all standard k ∈ N, respectively (such models are called a small and a large
canonical model in [15]). Both Mn and M∗

n are indeed closed under all functions in
the language LPV as these have polynomial length-growth. Note that, for example,
matrix An is in Mn ⊆M∗

n.

Theorem 4.1. Assume f is an NP ∩ coNP function with unique witnesses. Let M
be a non-standard model of true arithmetic, n ∈M a non-standard element, and let
b ∈M be any string of length m (= n+ 1) that is outside of the range of NWAn,f

(such a string b exists as the domain of NWAn,f is smaller than 2m).
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If, for all fixed k ≥ 1, AHf (�, k) is a super-polynomial function of �, then there
exists a model N of TPV that is a cofinal extension of Mn, and a string w ∈ N of
length n such that in N it holds:

∀ i ∈ [m]f(w(Ji)) = bi. (4.1)

If, for all fixed k ≥ 1, AHf (�, k) is an exponential function of �, then there exists a
model N∗ of TPV that is a cofinal extension of M∗

n, and a string w ∈ N∗ of length
n such that in N∗ (4.1) holds.

Proof. Let T be a theory consisting of the diagram of Mn (with a name for every
element of Mn and, in particular, for An and b) together with the theory TPV.
Assume for the sake of contradiction that no model N with the required proper-
ties exists (as the statement in question is bounded to elements whose length is
bounded by elements of Mn, we may consider without a loss of generality only
cofinal extensions of Mn).

By completeness of first-order logic, it follows that T proves

∀x(|x| = n)∃ i ∈ [m]∀ y(|y| ≤ nO(1)) ¬Fbi (x(Ji), y)

where F0 and F1 are the polynomial-time relations defining f as in (2.2), and are
represented here by open formulas of LPV .

As T is a universal theory we may apply the KPT witnessing theorem from [22]
(see also [13, 7]), a form of Herbrand theorem, and conclude that there are terms
of the language of T

i1(x), i2(x, y1), . . . , ic(x, y1, . . . , yc−1) (4.2)

for some natural number c ≥ 1, such that each term ik depends only on the variables
shown and may use constants from Mn, and such that T proves (and hence in Mn

it holds) the universal closure of the following disjunction:

(i1 ∈ [m] ∧ ¬Fbi1
(x(Ji1 ), y1)) ∨

(i2 ∈ [m] ∧ ¬Fbi2
(x(Ji2 ), y2)) ∨ (4.3)

. . .

(ic ∈ [m] ∧ ¬Fbic
(x(Jic ), yc)).

(We have left out the bounds to the lengths from the formula.)
The value of each term ij can be computed in time polynomial in n as they

contain only parameters of polynomial length, functions interpreting the language
are polynomial-time and the input length is polynomially bounded too.

It remains to observe (as it is now standard) that this disjunction defines an
algorithm for a Student that solves the task (T) in c steps: The Student first pro-
poses solution i1(x). If it fails it proposes i2(x, y1) computed from x and witness
y1 to f(x(Ji1 )) = bi1 provided by the Teacher, etc. The fact that the disjunction
is universally valid means that the Student must find a correct solution in at most
c steps.
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Hence this gives a polynomial nO(1) time non-uniform algorithm for the Student
which contradicts Theorem 3.2.

The case of M∗
n is completely analogous except that parameters in the terms

are now of sub-exponential size 2no(1)
and this yields also a sub-exponential time

bound for the Student.

At the beginning of Sec. 2, we have set m = n + 1. If the function f has
exponential approximating hardness we get by the previous theorem N∗ ⊇M∗

n and
this model contains strings of length up to anything subexponential 2no(1)

. This
translates in the next statement (part 2) to the a bigger time allowed for a non-
deterministic algorithm defining set R: it can be also subexponential 2�o(1)

. But
if f has even exponential hardness Hf (�) we can take also a bigger value for the
parameter m, any m = m(n) ≤ 2no(1)

. Now the time bounds allowed for definitions
of R, as measured in terms of m, include all polynomial bounds (and can include
slightly super-polynomial ones) but not arbitrary subexponential.

Theorem 4.2 (Consistency of Statement (S)). Let k ≥ 1 be a natural number
parameter and m = m(k) an injective function of k, and assume k < m(k) < 2ko(1)

.
Let Ak be k ×m 0-1 matrices that are (logm, k1/3) designs. Assume f is an NP ∩
coNP function with unique witnesses. Then the following three statements hold:

(1) If m = n+ 1 and, for all fixed k ≥ 1, AHf (�, k) is a super-polynomial function
of �, and R is an infinite NP set then it is consistent with TPV that

R ∩ Rng(g) �= ∅.
(2) If m = n + 1 and, for all fixed k ≥ 1, AHf (�, k) is an exponential function of

�, and R is an infinite set from the class NTime(2mo(1)
) then it is consistent

with TPV that

R ∩ Rng(g) �= ∅.
(3) Let m(k) be any function that is 2ko(1)

and assume that Hf (�) is an exponential
function of �. Assume R is an infinite NP set that has infinitely many elements
whose length equals to m(k) for some k ≥ 1.

Then it is consistent with TPV that

R ∩ Rng(g) �= ∅.

Proof. Let us start with the first statement; the proof of the second is completely
analogous using the remark before the theorem.

Let R be an infinite NP set and assume that it is defined by the condition
∃ y(|y| ≤ |x|O(1))R0(x, y), where R0 p-time.

We may assume that R is disjoint with Rng(g) as otherwise there is nothing to
prove. Let M be a non-standard model of true arithmetic. Set R has non-standard
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elements in any such model; take one such element from M and denote it b. It is
not in Rng(g).

The fact that b ∈ R is witnessed by some polynomially longer string c such that
R0(b, c) holds.

Now define m = |b| and n = m − 1 and apply Theorem 4.1 to get a model
N ⊇ Mn of TPV in which b is in the range of g. But c is also in N and R0(b, c)
holds, so b ∈ R in N too.

The proof of the third statement is again analogous but we need to use the extra
lengths-condition posed on R to guarantee that b has the length of the form m(n),
and also the assumption that Hf (�) is exponential (approximating hardness would
not suffice) because the advantage the algorithm in Theorem 3.2 gets in computing
f is Ω(m−c) which is only 2−�o(1)

if m = 2�o(1)
.

Statement (S) is related to proof complexity as follows. Denote (S1), (S2)
and (S3) the three statements whose consistency was established in Theorem 4.2;
all three have the forma that, under certain assumptions on map g and set R,
R ∩ Rng(G) �= ∅.

Let P be any proof system and r ≥ 1 a constant, and let m(k) = k + 1 and f

have super polynomial approximating hardness as in (S1). Because the length of
the τ -formula τ(g)b is polynomial in the length of b, the set

RP := {b ∈ {0, 1}∗ | τ(g)b has a P -proof of size at most |b|r}
is in NP, and by the soundness of P it is disjoint with Rng(g). Statement (S1)
therefore implies that g is hard for P .

If f has an exponential approximating hardness and m(k) = k + 1 then we
get analogously an exponential lower bound on the P -proofs of the formulas τ(g)b,
via (S2).

If f has an exponential hardness then m(k) can be any subexponential function,
and (S3) analogously implies that g is hard for P . In fact, we can get m up to 2kδ

for some δ > 0 by compactness. These are the parameters in Razborov’s conjecture.
From the proof complexity point of view the best choice of m(k) is indeed k+1

as it translates into better lower bounds.

5. Missing Reflection

Let P be a proof system and RP be the NP set from the end of the last section. If
RP is finite for all r ≥ 1 then g is hard for P and thus P is not p-bounded.

If RP is infinite take the model N from Theorem 4.1 and the string from Mn

satisfying in N b ∈ Rng(g)∩RP . The formula τ(g)b has a P -proof in Mn (a witness
to the membership of b in RP ) and hence also in N . The soundness of P is a true
universal statement and hence valid in N . But in N the statement the τ -formula

aThese statements seem also akin in form to the demi-bit conjecture of Rudich [28].
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encodes is false. That should yield a contradiction and hence a proof that RP is
finite, and as r ≥ 1 was arbitrary also that g is hard for P . This type of a lower
bound argument goes back to Ajtai [1].

Unfortunately the soundness of P , the usual reflection principle, that is valid in
N is too weak to support this reasoning. That principle says that if a formula has
a P -proof then no truth assignments can falsify it. The formula τ(g)b has the form

∨

i∈[m]

ψi(x, yi)

where ψi(x, yi) is a propositional translation (with respect to the length |x| = n)
of the formula

|yi| ≤ nO(1) → ¬Fbi (x(Ji), yi)

saying that no yi is a witness that f(x(Ji)) = bi.
Let π be its P -proof from Mn (i.e. of polynomial size). Substituting (inside N)

for x := w (without loss of generality we may assume that P has such a substitution
property) we get in N a P -proof σ of

∨

i∈[m]

ψi(w, yi).

What we have in model N are truth assignments vi falsifying each ψi(w, yi) individ-
ually but we do not have there one string v = (v1, . . . , vm) collecting all vi together
and providing a truth assignment for the whole disjunction.

The existence of such a string v can be deduced from the existence of individual
strings vi via the so called sharply bounded collection scheme (cf. [4, 13]). Its
instance looks like:

∀ i∃ yiB(i, yi) → ∃ z∀ iB(i, (z)i)

where i are sharply bounded (by m in our case), yi and z are bounded, and B is an
open PV-formula. Unfortunately, Cook and Thapen have proved that this scheme
is not provable in TPV unless factoring is not hard, cf. [9].b

Let us introduce a handy notation:

∨̇i ϕi

meaning that the formulas ϕi in the disjunction use disjoint sets of variables, i.e.
no two formulas share a single variable.

Define the disjunction soundness of P to be the following principle:

• If P proves a formula of the form ∨̇iϕi, then at least one of ϕi is a tautology.

bIn fact, it would be enough to arrange that the instance of the collection scheme needed holds in
some extension of N only. But Thapen pointed out that the argument of [9] should rule out this
option too.
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If we could arrange the disjunction soundness in N then the argument outlined
above would yield Statement (S) and hence Razborov’s conjecture.

For a proof system P we shall say that P admits feasible disjunction property
(FDP) if:

• There is c ≥ 1 such that whenever π is a P -proof of a disjunction ∨̇iϕi then there
is a P -proof σ of one of the disjuncts ϕi and of the size |σ| ≤ |π|c.
A simple but maybe useful observation is that for the purpose of proving that

P is not p-bounded (an arbitrary P ) we may assume without a loss of generality
that P does admit the feasible disjunction property. This is because the failure of
the property automatically implies that P is not p-bounded: one of the disjuncts
ϕi must be a tautology and its P -proofs cannot be p-bounded.

By the observation we may assume that P has the FDP in Mn. If we had the
FDP for P in N too we could get the wanted contradiction: one of the formulas
ψi(w, yi) would have a P -proof in N and we have falsifying assignments for all of
them (and the ordinary soundness applies). Note that we cannot hope to prove
FDP for strong P in PV as that would entail (via a witnessing argument) feasible
interpolation for P and that is known to contradict the security of RSA, see [20].

In fact, similarly as it would suffice to have an extension of N with a witness
to the collection scheme, also the FDP property can be weakened: it would suffice
that for some i ∈ [m] there is an extension of N in which ψi(w, yi) has a P -proof.
It is perhaps worthwhile to point out that this property does hold for disjunctions
of two formulas.

6. Specializations to Smaller Computational Classes

We may specialize the whole situation to some smaller classes of circuits. Of par-
ticular interest from the point of view of proof complexity are AC0, AC0(q), and
NC1. Here we shall comment on the first two classes as they offer a possibility to
perform the construction without an unproven assumption or with a significantly
weaker one.c

Specializing to a circuit class means to consider NP ∩ coNP functions f defined
as in (2.2) but with formulas Fa in the class, and allowing also functions S1, . . . , Sc

in (2.3) defining the Student’s moves only from the class. Note then that the con-
struction of circuit C will yield again a circuit in the same class. One only needs to
verify that the steps when C simulates the Teacher and searches for a witness can
be performed in a constant depth. A simple definition by cases

(yi)j :=
∧

z∈Yi

(Fbi(u, z) ∧ (z)j)

expressing the jth bit of the correct witness yi works.

cThe case of NC1 is being worked out by J. Pich (in preparation). It relates to another Razborov’s
conjecture from [27].
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It is well-known that in the AC0 case the random restriction method (in the
sharp version of [11]) shows that, for any fixed d, the parity function needs an
exponential size depth d circuit even for an approximation with an exponentially
small advantage (cf. [3]). This readily yields a suitable NP ∩ coNP function with
unique witnesses and our argument then proves the AC0 version of the hypothesis
(H) unconditionally (even with an exponential lower bound for the Student).

For the class AC0(q) the situation is different. For q a prime the Razborov–
Smolensky approximation method [26, 29] allows to approximate any small AC0(q)
circuit by a low degree polynomial over Fq with a very small error. For example,
setting the parameters right allows to approximate any polynomial size circuit by
a degree d polynomial with a negligible error, as long as d = ω(log �).

Hence finding a suitable NP ∩ coNP function f that needs super-polynomial
size AC0(q) circuit for an approximation with any particular �−O(1) advantage is
equivalent to finding f that cannot be approximated well by a low degree polynomial
over Fq. The qualification “low” here means at least ω(log �) (and �Ω(1) would yield
exponential lower bounds).

Unfortunately this problem is open. In fact, it is even open if there is an NP
function which no degree log � polynomial approximates with an advantage 1/�. See
[30] for a survey of this topic.
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Čech Center) and by a grant from the John Templeton Foundation. Also partially
affiliated with the Institute of Mathematics of the Academy of Sciences and grant
AV0Z10190503.

References

[1] M. Ajtai, The complexity of the pigeonhole principle, in Proc. IEEE 29th Annual
Symp. on Foundation of Computer Science (1988), pp. 346–355.

[2] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov and A. Wigderson, Pseudorandom
generators in propositional proof complexity, Electronic Colloquium on Computa-
tional Complexity, Rep. No. 23 (2000). Ext. abstract in Proc. of the 41st Annual
Symp. on Foundation of Computer Science (2000), pp. 43–53.

[3] S. Arora and B. Barak, Computational Complexity: A Modern Approach (Cambridge
University Press, 2009).

[4] S. R. Buss, Bounded Arithmetic (Naples, Bibliopolis, 1986).
[5] A. Cobham, The intrinsic computational difficulty of functions, in Proc. Logic,

Methodology and Philosophy of Science, ed. Y. Bar-Hillel (North-Holland, 1965),
pp. 24–30.

[6] S. A. Cook, Feasibly constructive proofs and the propositional calculus, in Proc. 7th
Annual ACM Symp. on Theory of Computing (ACM Press, 1975), pp. 83–97.

[7] S. A. Cook and P. Nguyen, Logical Foundations of Proof Complexity (Cambridge
University Press, 2010).



September 6, 2011 16:39 WSPC/S0219-0613 153-JML
S0219061311000979

On the Proof Complexity of the NW-Generator Based on a Hard NP ∩ coNP Function 27

[8] S. A. Cook and Reckhow, The relative efficiency of propositional proof systems,
J. Symb. Log. 44(1) (1979) 36–50.

[9] S. A. Cook and N. Thapen, The strength of replacement in weak arithmetic, ACM
Trans. Comput. Log. 7(4) (2006).

[10] O. Goldreich, Foundations of Cryptography, Vol. 1 (Cambridge University Press,
2001).

[11] J. Hastad, Almost optimal lower bounds for small depth circuits, in Randomness and
Computation, ed. S. Micali, Advances in Computing Research, Vol. 5 (JAI Press,
1989), pp. 143–170.
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