Lecture 3

back-and-forth, Ehrenfeucht-Fraisse

topics

- diagram of a structure
- Cantor's thm
- Ehrenfeucht-Fraisse games
- DLO
- the theory of the countable random graph

leftovers

HW: Show that $Th(\mathbf{A})$ determines \mathbf{A} up to iso if \mathbf{A} is finite.

Our debt: $(Q, <) \leq (R, <)$.

We shall solve the first task now and the second later in the lecture.

the diagram:

$$R(a, a), R(a, b), \neg R(b, a), R(b, b)$$
.

Getting rid of the names:

$$\theta := \exists x, y \ [x \neq y \land R(x, x) \land R(x, y) \land \neg R(y, x) \land R(y, y)] \ .$$

diagram

L, **A**: any, L_A : L with names for all elements of A

Definition - diagram

The diagram of \mathbf{A} , denoted $Diag(\mathbf{A})$, is the set of all

- atomic L_A -sentences true in \mathbf{A} , and
- the negations of atomic L_A -sentences false in **A**.

The diagram is sometimes also called atomic diagram to distinguish it from elementary diagram which is $Th_A(\mathbf{A})$ we introduced last time.

Lemma

A can be embedded in **B** (both *L*-structures) iff there is an expansion **B**' of **B** by an interpretation of constants from $L_A \setminus L$ such that

$$\mathbf{B}' \models Diag(\mathbf{A})$$
.

ex. of an embedding

L: constant c and binary function symbol \circ

A:
$$(R, 0, +)$$

B:
$$(R_{>0}, 1, \cdot)$$

An embedding:

$$a \in A \longrightarrow e^a \in B$$

This works because

$$e^0=1$$
 and $e^{x+y}=e^x\cdot e^y$.

(Base e could be any, e.g. 2 or 10.)

Cantor's thm

Let us append the earlier definition of theory DLO:

theory DLO (dense linear ordering without endpoints):

- ax's of LO,
- $\forall z \exists x, y (x < z \land z < y)$ (no endpoints),
- $\forall x, y (x < y \rightarrow \exists z (x < z \land z < y))$ (density).

Cantor's theorem

DLO is countably categorical: all countable models of DLO are isomorphic to (Q,<).

Prf.:

Let **A** and **B** be two countable models of DLO. We can enumerate their universes:

A:
$$a_0, a_1, ...$$

$$B: b_0, b_1, \dots$$

and construct an increasing sequence of partial isomorphisms:

$$h_i :\subseteq A \rightarrow B$$

such that

$$\{a_0,\ldots,a_i\}\subseteq dom(h_i)$$
 and $\{b_0,\ldots,b_i\}\subseteq rng(h_i)$.

Then $\bigcup_i h_i$ is an isomorphism $\mathbf{A} \cong \mathbf{B}$.

End of the proof.

our debt

uncountable DLOs

games

Ehrenfeucht-Fraisse games

L: finite, no function symbols **A**, **B**: L-structures (not necessarily finite)

games $G_n(\mathbf{A}, \mathbf{B})$ and $G_{\omega}(\mathbf{A}, \mathbf{B})$

2 players:

- Spoiler (or ∃-player, Eloise),
- Duplicator (or ∀-player, Abelard).

moves

1st move:

- Spoiler picks either (i) some $a_1 \in A$ or (ii) some $b_1 \in B$,
- Duplicator replies (i) with some $b_1 \in B$ or (ii) with some $a_1 \in A$.

That is, they determined a pair $(a_1, b_1) \in A \times B$.

(k+1)st move:

After first k moves they have already determined pairs $(a_1, b_1), \ldots, (a_k, b_k) \in A \times B$ and proceed as above:

- Spoiler picks either (i) some $a_{k+1} \in A$ or (ii) some $b_{k+1} \in B$,
- Duplicator replies (i) with some $b_{k+1} \in B$ or (ii) with some $a_{k+1} \in A$.

rules

For G_n the game goes on for n rounds, determining

$$(a_1,b_1),\ldots,(a_n,b_n)\in A\times B$$

and for G_{ω} there are infinitely (countably) many rounds, determining

$$(a_1, b_1), \ldots, (a_i, b_i), \ldots, \text{ all } i \in \mathbf{N}.$$

Rules:

- Duplicator wins if the resulting set of pairs is a partial isomorphism from A into B,
- otherwise Spoiler wins.

D wins

S wins

infinite game

a strategy of a player: any function determining the next move of the player from the history of the play

Lemma

Let A, B be countable. Then Duplicator has a winning strategy for $G_{\omega}(A,B)$ iff $A \cong B$.

Prf.: ←

If $h: A \rightarrow B$ is an isomorphism define Duplicator's strategy by:

$$b_k := h(a_k)$$
 or $a_k := h^{(-1)}(b_k)$.

Spoiler's strategy

Spoiler enumerates both universes:

```
A: u_0, u_1, ...

B: v_0, v_1, ...
```

and in round k plays:

- k = 2i + 1 odd: chooses u_i ,
- k = 2i + 2 odd: chooses v_i .

If Duplicator were to win his answers would form a total isomorphism between ${\bf A}$ and ${\bf B}$.

finite game

Lemma

Let **A**, **B** be countable. Then Duplicator has a winning strategy for $G_k(\mathbf{A}, \mathbf{B})$ for all $k \geq 1$ iff $\mathbf{A} \equiv \mathbf{B}$.

Prf.:

We shall prove only \Rightarrow : this is enough for our applications.

Assume $\mathbf{A} \not\equiv \mathbf{B}$ and, in particular,

$$\mathbf{A} \models \theta$$
 while $\mathbf{B} \models \neg \theta$

where θ has the form

$$\forall x_1 \exists x_2 \forall x_3 \dots Q_k x_k \ \alpha(\overline{x})$$
.

Spoiler's strategy

Spoiler: always pick witnesses for ∃ quantifier

1st move: $b_1 \in B$ such that

$$\mathbf{B} \models \forall x_2 \exists x_3 \dots \overline{Q}_k x_k \neg \alpha(b_1, x_2, \dots, x_k)$$

where \overline{Q} is the quantifier opposite to Q.

Key fact: no matter which $a_1 \in A$ Duplicator chooses it will hold:

$$\mathbf{A} \models \exists x_2 \forall x_3 \dots Q_k x_k \ \alpha(a_1, x_2, \dots, x_k) \ .$$

Ex.

concluding the proof

If Duplicator were to win, the *k* pairs:

$$(a_1,b_k),\ldots,(a_k,b_k)$$

would form a partial isomorphism while it would also hold:

$$\mathbf{A} \models \alpha(\overline{a}) \text{ and } \mathbf{B} \models \neg \alpha(\overline{b}) .$$

That is a contradiction.

Rado graph

theory RG: the theory of the countable random graph

language L: binary relation R(x, y)

Axioms:

- $\bullet \exists x, y \ x \neq y$
- $\forall x \neg R(x, x)$,
- $\bullet \ \forall x, y \ R(x, y) \rightarrow R(y, x),$
- extension axioms, one for each $n \ge 1$:

$$\forall x_1,\ldots,x_n,y_1,\ldots,y_n \bigwedge_{i,j} x_i \neq y_j \rightarrow [\exists z \bigwedge_i R(x_i,z) \land \bigwedge_j \neg R(y_j,z)].$$

The 2nd and the 3rd axioms just define undirected graphs without loops.

ext. axioms

categoricity

Lemma

RG has a countable infinite model.

This is a HW problem: construct such a model.

Theorem

RG is countably categorical.

Prf.:

Use G_{ω} game, as in the next picture.

prf

determinacy

Are the games determined? I.e. does one of the players always have a winning strategy? Yes for finite games:

Spoiler has a wining strategy iff

- \exists Spoiler's first move s_1 such that
- \forall Duplicator's reply d_1 it holds that
- \exists Spoiler's second move s_2 such that ...

- ..

- Spoiler winns.

and Duplicator has one iff

- \forall Spoiler's first moves s_1 it holds
- \exists Duplicator's reply d_1 such that
- \forall Spoiler"s second move s_2 ...

- ...

- Duplicator winns.

Negations of each other!

ax. of determinacy

For infinite games this argument does not work: we do not have formulas with infinitely many quantifiers.

We could define such flas but would the DeMorgan rules still apply? Are

$$\exists x_1 \forall x_2 \dots Q_i x_i \dots \alpha(x_1, \dots)$$
 $\downarrow \quad \text{negation}$
 $\forall x_1 \exists x_2 \dots \overline{Q}_i x_i \dots \neg \alpha(x_1, \dots)$

complemenary?

ZFC rules this out as a general rule but it holds for some special games.