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Abstract. Invariants of topological spaces of dimension three play a major

role in many areas, in particular . . .

Introduction by the Organizers

The workshop Invariants of topological spaces of dimension three, organised by
Max Muster (München) and Bill E. Xample (New York) was well attended with
over 30 participants with broad geographic representation from all continents. This
workshop was a nice blend of researchers with various backgrounds . . .
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Proof search problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5





Mathematical Logic: Proof Theory, Constructive Mathematics 5

Abstracts

Proof search problem
Jan Kraj́ıček

Propositional proof complexity is linked with SAT solving by interpreting the
run of a complete SAT algorithm that fails to find a satisfying assignment for ϕ
as a proof that ¬ϕ is a tautology. Often such an ”abstract” proof system is equal
to (or close to) a standard proof system as is R (resolution). Various technical
results (and lower bounds, in particular) known in proof complexity for the proof
system can then be interpreted as results about the original algorithm. That is,
proof complexity contributes to the analysis of SAT algorithms.

This seems to be too narrow and proof complexity ought to attempt to precisely
formalize and to answer some of the outstanding informal problems. These include:

(1) How do you compare two proof search algorithms and is there an optimal
way to search for propositional proofs?

(2) Why it does not seem to be particularly helpful to search for proofs in
stronger proof systems?

(3) How is it possible that real-world algorithms (SAT or automated theorem
proving) perform well even for very long formulas while we have exponen-
tial lower bounds for the associated proof systems?

Basic notions of proof complexity as are propositional proof systems and simu-
lations and p-simulations among them, can be found in [1]. The fundamental
problems are the NP vs. coNP problem, asking whether for some proof system P
is the length-of-proof function

sP (τ) := min (|w| | w is a P -proof of τ )

bounded by |τ |O(1), and the optimality problem: Is there a proof system that is
maximal in the quasi-ordering induced by (p-)simulation? The optimality problem
relates to a number if questions in a surprisingly varied areas and there are quite
a few relevant statements known cf. [1, Chpt.21]).

We define a proof search algorithm to be a pair (A,P ), where P is a proof
system and A is a deterministic algorithm such that A(τ) is a P -proof of τ , for all
tautologies τ . We note two statements:
Lemma For any fixed proof system P there is A such that (A,P ) is time-optimal
among all (B,P ); it has at most polynomial slow-down:

timeA(τ) ≤ timeB(τ)O(1) .

Let (AP , P ) denote some proof search algorithm time-optimal among all (B,P ).
Theorem Let P be any proof system containing R and having the property that
for some c ≥ 1, for every τ and every τ ′ obtained from τ by substituting constants
for some atoms it holds sP (τ ′) ≤ sP (τ)c.

Then P is p-optimal iff (AP , P ) is time-optimal among all proof search algo-
rithms (B,Q).
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The proof of the non-trivial if-direction uses the fact that for any Q there is a
p-time construable sequence of tautologies

〈RefQ〉n , n ≥ 1

such that if it is feasible to construct P -proofs of these formulas then P p-simulates
Q.

Another context where easy sequences of hard formulas appear are length-of-
proofs lower bounds: whenever we can show that Q is stronger than P we can
demonstrate it on such a sequence.

I would like to have a definition of a quasi-ordering on proof search algorithms
that does not declare (B,Q) stronger only because B will recognize a simple se-
quence of formulas that have short Q-proofs but long P -proofs. The idea is that
we compare proof search algorithms only on special test sets T that do not contain
easy to recognize sets of tautologies. Having such a notion, we put
Definition Define that (A,P ) is as good as (B,Q), denoted by (A,P ) � (B,Q),
iff for all test sets T :

timeA(τ) ≤ timeB(τ)O(1) for all τ ∈ T .

In [1, Sec.21.5] I took test sets to be of the form TAUT \ H with H ∈ P/poly,
allowing to disregard those easy sequences of hard formulas. But maybe one
ought to disallow all such easy sets at the same time, and to declare a set easy if
it is computable in sub-exp-time 2o(n) rather than in p-time. Such ”subexp-time-
immune” subsets of TAUT can be constructed by a diagonalization process but
there are also candidates that are more transparent, constructed from conjectured
proof complexity generators: tautologies in such test sets express that a string is
outside of the range of a suitable map.

An open problem is whether for some natural test sets there is (A,P ) that is
�-maximal among all proof search algorithms. It would be interesting if some
such � allowed for an unconditional affirmative answer and if the proof system P
would be one of the weaker proof systems (this would offer answers to informal
problems 1 and 2 mentioned above).

While we have easy sequences of hard formulas for various proof system they
are in a sense rather rare (e.g. combinatorial principles or reflection principles).
This can be an explanation why real life algorithms solve problems of huge size
(cf. informal problem 3 above): the formulas are instances from easy to describe
sets and such sets of hard formulas are rare.

Slides from the talk are available at:
www.karlin.mff.cuni.cz/˜krajicek/talk-proofsearch-mfo-11-20.pdf

References
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