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This paper is based on my lecture [26]. It examines the problem of proving

non-trivial lower bounds for the length of proofs in propositional logic from the

perspective of methods available rather than surveying known partial results

(i.e., lower bounds for weaker proof systems). We discuss neither motivations

for proving lower bounds for propositional logic nor relations to other problems

in logic or complexity theory. The reader is referred to [20] for the background

information (as well as for all details missing in this paper). The paper is aimed

at curious non-specialists. The style of our exposition is accordingly informal

at places and we do not burden the text (especially in the introduction) with

exhausting references not directly related to our main objective. The reader

starving for details can �nd them, together with all original references, in [20]

(see also expository articles [25, 32]).

Introduction

The language of propositional calculus contains constants 0 and 1 (false and

true), connectives :, _ and ^ with their usual meaning, and atoms p

0

; p

1

; : : :.

A propositional calculus is given by a �nite number of axiom schemes (like

A_:A) and schematic inference rules (like modus ponens: from A and :A_B

infer B). The only requirement is that the axioms and rules are sound and

implicationally complete (i.e., if B is a tautological consequence of A

1

; : : :A

k

then B is provable fromA

1

; : : : ; A

k

). Calculi of this type are called Frege systems

after [9]. Fix one of them and call it F .

The complexity of a proof (tacitly a proof in F ) is measured by two important

functions: the number of proof steps and the size, i.e., the total number of

symbols in the proof. These functions yield two measures of complexity of a

tautology � , namely k

F

(� ) and s

F

(� ), the minimal number of steps in a proof

�
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of � and the minimal size of a proof of � respectively. Important observation is

that if we augment F by the substitution rule (allowing to infer any substitution

instance of an already proved formula in one step) then these two measures

become essentially equal. The same e�ect has the extension rule (allowing to

abbreviate formulas in a proof). None of these rules is schematic in the same

sense as is modus ponens.

Now we are in a position to state the main problem.

1

Problem: Show that there is no polynomial p(x) such that for a Frege

system F it holds k

F

(� ) � p(n), for every n and every tautology � of size

at most n.

The set of tautologies TAUT is coNP -complete and a proof of � with k steps

can be coded by a string of size O(k + j� j) (this is non-trivial, cf. [20, Lemmas

4.5.3 and 4.5.7]). Hence a Frege system can be thought of as a non-deterministic

acceptor of TAUT and the existence of a polynomial bounding the number of

steps in proofs would imply that TAUT 2 NP . Thus, unless the generally

accepted conjecture that NP 6= coNP fails, indeed no such polynomial p(x)

exists.

The problem is quite robust as it is stated. It does not depend on a particular

language (any complete language is good) or on particular axioms schemes and

rules. We may add even the substitution and the extension rules. It also does

not depend on a particular format of proofs we require (tree-like or sequence-

like). In fact, it also does not matter whether we con�ne to Frege systems

or whether we use Gentzen's sequent calculus (with cut) or natural deduction,

or extended resolution. The phrase does not matter means that proofs in one

system can be translated into proofs in another system with just a polynomial

increase in the number of steps.

No non-trivial lower bounds for k

F

(� ) are known at present. For some

provably less e�cient systems superpolynomial lower bounds are known. These

systems include, in particular, resolution, constant-depth subsystems of a Frege

system and their extensions by some counting principles, and cutting planes

proof system.

The methods used in the proofs of these lower bounds include counting ar-

guments, an adaptation of the method of random restrictions from Boolean

complexity (that can be cast also as forcing in non-standard models of bounded

arithmetic), and e�ective interpolation theorems. We shall discuss these meth-

ods later.

Finally we should mention the tautology that was used in one or other form

in all lower bounds mentioned earlier. It is the pigeonhole principle PHP

m

n

,

1

Experts among readers should note now, and keep in mind throughout the paper, that

we are concerned with the measure k

F

rather than with s

F

.
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m > n,

^

i<m

_

j<n

p

ij

!

_

i

1

<i

2

<m

_

j<n

(p

i

1

j

^ p

i

2

j

)

formalizing that no map from f0; : : : ;m�1g to f0; : : : ; n�1g can be injective. In

retrospect we can see that it was a crucial step taken by [9] to put this tautology

forward as a candidate for being hard (i.e., without short proofs) for usual proof

systems. One particular di�culty in approaching the problem stated earlier is

that we lack such good candidates for F .

In next three sections we describe and compare three universal frameworks

for lower bounds to k

F

. In section 4 we consider some related mathematical

structures. Section 5 discusses limitations of particular methods used so far for

subsystems of F . In section 6 we discuss new candidates of hard tautologies.

1 Partial Boolean valuations

A partial Boolean algebra B is a set together with distinguished constants 0

B

, 1

B

and partial functions :;^;_ such that any instance t = s of any identity of some

�xed equational axiomatization (e.g., [14]) of the theory of Boolean algebras, in

which both terms t, s are de�ned, is actually valid in B. The following notion

was de�ned in [23].

Let � be a �nite set of formulas closed under subformulas. A partial Boolean

valuation of � is a map

� : �! B

of � into a partial Boolean algebra B such that

1. �(0) = 0

B

and �(1) = 1

B

, whenever 0 and 1 are in �

2. :�(A) is de�ned and equal to �(:A), whenever A;:A are in �

3. �(A) ^ �(B) is de�ned and equal to �(A^B), if all A;B;A^B are in �.

Analogously for _.

Theorem 1.1 ([23]) Let � be a tautology and let � range over sets of formulas

containing � and closed under subformulas.

(a) Assume that every set � with � k formulas admits a partial Boolean valu-

ation � : �! B in which �(� ) 6= 1

B

. Then:

k

F

(� ) > � � k

(b) Assume that k

F

(� ) > k

c

. Then every set � of � k formulas admits a

partial Boolean valuation � in which �(� ) 6= 1

B

.

Constants �, c depend only on the particular formulation of the Frege system.
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Part (a) says that partial Boolean valuations can be used to prove a lower

bound to k

F

(� ). Part (b) complements this by showing that at least a lower

bound of the form k

F

(� )


(1)

can be proved, in principle, by a construction of

suitable partial Boolean valuations.

Let us illustrate the method on an example. Consider the tautology (:)

(2k)

(1),

2k negation signs in front of 1. It was proved in [21] that k

F

((:)

(2k)

(1)) = 
(k).

We show this by constructing a suitable partial Boolean valuation for every set

� of at most 2k formulas and containing (:)

(2k)

(1). As � � 2k, � does not

contain some formula (:)

(i)

(1), for i < 2k. De�ne map �

i

in two stages:

1. For j < i give to (:)

(j)

(1) the value 1

B

if j is even and the value 0

B

if j

is odd.

For j � i give to (:)

(j)

(1) the value 0

B

if j is even and the value 1

B

if j

is odd.

2. For any formula A(p) evaluate �rst atoms p by 0

B

, maximal subformulas

of the form (:)

(j)

(1) according to 1., and then evaluate A using ordinary

truth-tables of :;_;^.

It is easy to see that this de�nes a partial Boolean valuation of � in f0

B

; 1

B

g in

which �

i

((:)

(2k)

(1)) = 0

B

. Hence a lower bound k

F

((:)

(2k)

(1)) = 
(k) follows

by Theorem 1.1.

Admittedly the tautology (:)

(2k)

(1) is rather primitive. Sadly enough, this

is essentially the best lower bound for any k

F

(� ) known at present.

2 Local Boolean valuations

Another form of a Boolean-type valuation was used in [28] and formalized into

a universal framework in [8, 32].

Let � be a set of formulas. A local Boolean valuation is a map � assigning to

every subset � � � of at most c formulas an ordinary total Boolean algebra B

�

and a map �

�

: �! B

�

preserving all connectives for formulas in � satisfying

the following compatibility condition. Whenever �

1

� �

2

� � are two sets of

size at most c then there is a homomorphism � from B

�

1

into B

�

2

such that

�(�

�

1

(A)) = �

�

2

(A) holds for all A 2 �

1

. The constant c depends only on the

particular Frege system F .

It was proved in [20, Chpt.13] that any set � with a local Boolean valuation

in which �

f�g

(� ) 6= 1

B

f�g

admits a partial Boolean valuation � : � ! B in

which �(� ) 6= 1

B

(assuming that c is large enough). This shows that if we can

�nd a local Boolean valuation with this property for any � of size � k, then

k

F

(� ) = 
(k).

In the other direction consider the following construction. From � form a

new set �

0

� � as follows. Let B

c

be the �nite total Boolean algebra (of size

2

2

c

) freely generated by b

1

; : : : ; b

c

, let t

1

; t

2

; : : : be 2

2

c

terms (formed from b)
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expressing all elements of B

c

, and let s

1

; s

2

; : : : be all terms occurring in some

�xed derivations (from the identities de�ning Boolean algebras) of all identities

of the form :t

i

= t

j

, t

i

_ t

j

= t

k

and t

i

^ t

j

= t

k

valid in B

c

.

Given set � of at most c formulas A

1

; : : : ; A

d

, d � c, form the set �

+

of

all formulas s

1

(b

1

=A

1

; : : : ; b

d

=A

d

; b

d+1

=1; : : : ; b

c

=1); : : :. De�ne �

0

� � to be the

minimal set closed under subformulas and containing

S

���;j�j�c

�

+

. Note that

j�

0

j = j�j

O(1)

.

Obviously, a partial Boolean valuation � of �

0

yields a local Boolean valuation

of � as the images of �

+

in � are total Boolean algebras. Hence part (b) of

Theorem 1.1 implies part (b) of the next theorem.

Theorem 2.1 Let � be a tautology and let � range over sets of formulas con-

taining � and closed under subformulas.

(a) [8, 32] Assume that every set � with � k formulas admits a local Boolean

valuation � in which �

f�g

(� ) 6= 1

B

f�g

. Then k

F

(� ) = 
(k).

(b) On the other hand, any set �, � � k

F

(� )

�

, admits a local Boolean valuation

� in which �

f�g

(� ) 6= 1

B

f�g

.

Constant � depends only on the particular formulation of the Frege system.

3 A Prover - Adversary game

The following game played by two players, Prover and Adversary, was de�ned

in [8, 32]. In every round Prover asks about the truth-value of a formula and

Adversary replies with a value. When aiming at proving � , Prover asks in

the �rst round about the truth-value of � and Adversary is obliged to reply

with 0. The game ends when the answers of Adversary contain an elementary

contradiction, i.e., 0 gets value 1 or vice versa, or formulas A;:A get the same

value, or formulas A;B;A^B (resp. A_B) get values contradicting the truth-

tables of ^ (resp. of _). The following theorem was proved in [8, 32] by induction

on t and k

F

(� ).

Theorem 3.1 ([8, 32]) Let t be the minimal number such that there is a Prover

forcing the end of the game on � in t rounds against any Adversary. Then t is

proportional to log

2

(k

F

(� )).

The theorem can be also seen as a corollary (in fact, an equivalent version)

of the fact that every proof can be rewritten into a form of a balanced tree with

only a polynomial increase in the number of steps.

Let us illustrate the method on the same example as in section 1 (following

[8]). Adversary may use partial Boolean valuations �

i

de�ned in section 1 as

follows. In every round s, being asked about a formulaA, he takes the collection

X

s

of all �

i

such that all his answers in rounds 1; : : : ; s� 1 were consistent with
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�

i

. Then he answers 1 if at least half of valuations from X

s

give to A value

1

B

, otherwise he answers 0. Clearly jX

s

j �

2k

2

s�1

and Prover cannot force an

elementary contradiction if jX

s

j � 2. Hence Adversary using this strategy

survives at least log

2

(2k) rounds with any prover.

This construction of a strategy for Adversary from partial Boolean valuations

can be generalized to any � . Fix t such that k

F

(� ) > 2

O(t)

, the constant in the

exponent to be determined later. For any prover P take the binary tree of depth

t�1 corresponding to all possible plays P can have against some adversary. Put

�

P

to be the smallest set closed under subformulas and containing all 2

t

� 1

conjunctions of answers of an adversary (determining a path in the tree) in �rst

i = 1; : : : ; t rounds. In particular, :� 2 �

P

. A crucial technical fact is that if

there would be a prover P forcing the end of a game in t rounds against any

adversary then, in fact, there would be such prover yielding the set �

P

of size

O(2

t

+ j� j), and such that it is a priori su�cient to restrict to �nitely many of

such provers. This follows from Theorem 3.1 and [20, Lemmas 4.4.4 and 4.4.6].

Consider only such provers P .

Assume that k

F

(� ) > j�

P

j

c

, c the constant from Theorem 1.1. Then there

is a partial Boolean valuation �

P

: �

P

! B

P

in which �

P

(� ) 6= 1

B

P

, i.e.,

�

P

(:� ) 6= 0

B

P

. Put X

1

to be the set of all these valuations. At round s

Adversary has the set X

s

of those �

P

for which �

P

( 

1

^ : : :^ 

s�1

) 6= 0

B

P

, where

 

1

(= :� ); : : : ;  

s�1

are his answers in the �rst s�1 rounds. Enquired about the

truth-value of  he computes the �

P

-values of the conjunctions  

1

^: : :^ 

s�1

^ 

and  

1

^ : : :^  

s�1

^ : (both are in �

P

) and answers in such a way that the

new conjunction has still the �

P

-value di�erent from O

B

P

.

4 Related structures

We shall digress at this point and consider four di�erent mathematical struc-

tures related to the methods described earlier. In particular, we shall discuss

non-standard models of bounded arithmetic, the approximation method from

Boolean complexity, logical structures arising in quantum mechanics, and par-

tial algebraic structures.

4.1 Non-standard models of bounded arithmetic

Let N be a countable non-standard model of a su�ciently strong fragment

of true arithmetic, say of Peano arithmetic. Let � 2 N be a non-standard

propositional formula of size n = j� j, built from non-standardly many atoms

p

0

; : : : ; p

m

. Assume that N thinks that � is a tautology that k

F

(� ) > n

`

, all

standard `. By compactness argument this is a consistent situation if k

F

cannot

be bounded by a polynomial. Consider the following construction.

Let M �

e

N be the initial part of N consisting of numbers with at most n

`

bits, ` < !. Let F las

M

be all elements ofM coding in N andM a formula built
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from atoms p

0

; : : : ; p

m

. Assume that we �nd a map � : F las

M

! B, where B is

a total Boolean algebra, and such that �(� ) 6= 1

B

.

Take an ultra�lter U � B such that �(� ) =2 U and de�ne the map

� : A 2 F las

M

! �(� )=U 2 f0; 1g

In particular, �(� ) = 0 and, in a sense, we may think of the tuple �(p

0

); : : : ; �(p

m

)

as of a truth-assignment satisfying :� . A problem with this interpretation is

that we cannot de�ne the assignment neither in N (as we do not assume U

to be de�nable in N ) nor in the standard model (as both � and the assign-

ment are nonstandard). This suggest to consider the set of all tuples of bits

h�(A

1

); : : : ; �(A

t

)i formed from all tuples A

1

; : : : ; A

t

of elements of F las

M

that

are coded in M . These tuples of bits can be identi�ed via dyadic encoding with

numbers. The set of these numbersM

�

is, in fact, a structure extendingM and

with a suitable choice of U it is a model of bounded arithmetic theory S

1

2

, see

[23]. Moreover, in M

�

� is not a tautology anymore.

On the other hand, having an extension M

0

of M in which :� is satis�ed

by a truth-assignment a 2 f0; 1g

m+1

allows to evaluate in M

0

any A 2 F las

M

under a, obtaining a Boolean valuation in which � gets value 0.

We note that the valuation � of F las

M

is really only a partial Boolean

valuation from the point of view of N , as F las

M

is not closed even under all

conjunctions (in N ).

In this way Boolean valuations of sets of propositional formulas correspond to

extensions of models of bounded arithmetic. The particular theory S

1

2

appears

as we consider Frege systems; other proof system correspond to other theories

of bounded arithmetic.

4.2 The approximation method

[36] formalized [34, 35] into a universal framework for proving lower bounds on

the size of general circuits. A particular presentation is as follows, cf. [36, 16].

Let f : f0; 1g

n

! f0; 1g be a Boolean function about which we want to prove

that it cannot be computed by a small circuit. Let C be a Boolean circuit (over

the base 0; 1;:;_;^) with inputs x

1

; : : : ; x

n

. Every node (i.e., a subcircuit) y of

C determines a function C

y

of x

1

; : : : ; x

n

computed by the subcircuit y. Take

the set X := f

(�1)

(0) and assign to every node y a subset kyk of X of those

inputs accepted by C

y

. We may think of the map k : : :k as a map from C into

the Boolean algebra exp(X) of the subsets of X preserving the connectives.

We assign to nodes of C a value in f0; 1g as follows. Pick U � exp(X) and

assign to y the value �

U

(y) := 1 if kyk 2 U and �

U

(y) := 0 otherwise. Assume

that C computes f . Then �

U

(C) = 0 i� ; =2 U . U de�nes a vector w

U

2 f0; 1g

n

whose i

th

coordinate is �

U

(x

i

). Thus if we �nd U not containing ; such that

f(w

U

) = 1 and �

U

preserves the connectives in C we, in fact, demonstrate that

C(w

U

) 6= f(w

U

) and so C does not compute f . This method is universal in
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the sense that such U exists whenever the size of C is at most k

�

, k being the

circuit-size of f (and � an independent constant), cf. [36, 16]).

Note that the map �

U

is only a partial Boolean valuation unless U is an ul-

tra�lter. Thus partial Boolean valuations are inevitable as on the �nite Boolean

algebra exp(X) the only ultra�lters are principal and thus always w

U

2 X.

For the approximation method in the particular form as in [34, 35, 38] a

partial Boolean valuation of the subcircuits of C can be described directly. Let

y

�

be the approximating function assigned to y and let E be the set of all inputs

that are erroneously computed by y

�

at some y. Then de�ne the value of y to

be the collection of all subcircuits y such that y

�

= z

�

holds outside the set E.

By the de�nition of E this map preserves all connectives of C. The point then

is to show that C

�

and f do not agree outside E.

Now assume that f is the characteristic function of an NP -predicate. Form

a formula � of the form

�(x

1

; : : : ; x

n

; z

1

; : : : ; z

n

O(1)

)! �(x

1

; : : : ; x

n

; y

1

; : : : ; y

m

)

where � is a formula formalizing that f(x

1

; : : : ; x

n

) = 1 as witnessed by z, and

� formalizes that circuit C de�ned by y accepts x. Hence � is a tautology i�

C accepts all inputs accepted by f . Now assume also that we have a partial

Boolean valuation � of the set of subformulas of � in which �(� ) = 0

B

. Hence

�(�(x

1

; : : : ; x

n

; z

1

; : : : ; z

n

O(1)
)) = �(�(x

1

); : : : ; �(x

n

); �(z

1

); : : : ; �(z

n

O(1)
)) = 1

B

and

�(�(x

1

; : : : ; x

n

; y

1

; : : : ; y

m

)) = �(�(x

1

); : : : ; �(x

n

); �(y

1

); : : : ; �(y

m

)) = 0

B

so we may think of the tuple �(x

1

); : : : ; �(x

n

) as an input from B

n

accepted by

f but not by C. In fact, the model-extension construction from the previous

section can made the intuition precise (and, in particular, yield a new 0-1 input

in M

�

).

4.3 Logical structures arising in quantum mechanics

Important object arising in quantum mechanics is the lattice of closed linear

subspaces of a Hilbert space. This object is called also a lattice of (quantum

mechanical) propositions, see [5, 15]. It is not a Boolean algebra.

The sublattices of the lattice of propositions that are Boolean algebras play

an important role in de�ning compatible propositions; propositions are compat-

ible if the sublattice they generate is a Boolean algebra. The sublattices that

are complete Boolean algebras correspond to reference frames of observations,

see [42]. Another way of approaching a logic in which not all propositions are

compatible is by formalizing the informal notion of logic with partial proposi-

tions, see [39, 18]. These were studied in a connection with the hidden variables

problem, see [17, 19].
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A third logical object arising in quantum mechanics are formal dialogs, used

as a form of semantic for quantum logic (see [30, 40]).

These three structures, the lattice of propositions, reference frames and

formal dialogs, appear to be analogous to partial Boolean valuations, local

Boolean valuations and the Prover-Adversary game. For the latter structures

sections 1-3 explain why they occur simultaneously, while for the former struc-

tures this seem to be a matter of discussion, see [3].

While we are at pointing informal relations we may as well add one more.

Note that the construction from section 4.1 is somewhat analogous to a con-

struction of a Quantum set theory, see [41]. This is a theory constructed as

Boolean-valued set theory with formulas taking their truth-values in the lattice

of propositions de�ned earlier rather than in a complete Boolean algebra.

4.4 Partial algebraic structures

A partial algebraic structure is a set together with a collection of partial op-

erations. A variety of algebraic structures of a given signature axiomatized by

identities T (call the variety also T ) gives rise to an associated class T

p

of partial

algebras in the same signature. Namely, a partial algebra is in T

p

i� instances

t = s of all identities of T that are actually de�ned in the partial algebra are also

valid in it. (Occasionally few more technical conditions are added, see [10, 11].)

An interesting problem associated with T

p

is the embeddability problem: given

a �nite partial structure from T

p

decide whether it can be embedded into a

total (possible in�nite) structure from T . Important theorem of [10] says that

the embeddability problem is decidable i� the word problem associated to T

is decidable. It follows that if all partial algebras from T

p

can be embedded

into total ones then the word problem for T is decidable. It is instructive to

compare the following proof-sketch of this corollary with the proof of Theorem

1.1 in [23]. Let a be generators of an algebra A from T , r

i

(a) = s

i

(a) its �nite

presentation and w

1

(a); w

2

(a) two words. For every subterm t occurring in one

of r

i

; s

i

; w

1

; w

2

introduce new unknown b

t

and rewrite the identities r

i

= s

i

into the set of indentities the form b

i

= b

j

and f(b

i

1

; : : : ; b

i

k

) = b

j

. From

these identities derive, using T , all possible identities of the same form, possible

identifying new pairs b

i

= b

j

. This process yields a partial algebra A

p

from T

p

.

If b

w

1

= b

w

2

in A

p

then w

1

= w

2

in A. Otherwise A

p

can be embedded into a

total algebra A

0

and hence w

1

6= w

2

in its subalgebra generated by the image

of A

p

. Hence w

1

6= w

2

in A as well.

Partial Boolean algebras arising in section 1 can be never embedded in a

total one. This is because every tautology must get value 1 in every total

Boolean algebra (otherwise a suitable ultra�lter would de�ne a truth-assignment

not satisfying the tautology). It is an interesting problem whether we can get

any quantitative information about the structure of partial Boolean valuations.

Speci�cally, assume that � : � ! B is a partial Boolean valuation in which a

9



tautology gets a value di�erent from 1

B

, and let jBj = `. The tables of operations

:;_;^ of B have 2`

2

+ ` potential entries.

Can we show that, say, at most 99% of entries of the tables of a partial

Boolean algebra are �lled? This would hold if the fact that more than 99%

of the entries are �lled would imply that B is embeddable in a total Boolean

algebra (something similar holds for partial groups, see [29]).

5 Limitations of particular methods

In this section we want to examine why methods used for lower bounds for

subsystems of a Frege system mentioned in the introduction do not work for F

as well. First we should frankly admit that the word methods is not appropriate.

This is because we are able to prove lower bounds only for very few tautologies

and we are de�nitely not able to determine the minimal number of steps needed

in a proof of an arbitrary tautology.

Secondly there seems to be a popular opinion that a lower bound for a proof

system is essentially a corollary of a Boolean complexity lower bound for the

class of formulas occurring in proofs in the particular proof system. This is,

unfortunately or fortunately, not the case. (A sceptical reader may try to adapt

[35, 38] to a lower bound for tautologies Count

q;1

- de�ned below - in a natural

proof system working with constant-depth formulas with counting-mod-p gates,

p; q di�erent primes, see [20, 4] for a de�nition of such a system.) One reason

perhaps is that formulas or circuits represent deterministic computations while

proof systems are non-deterministic.

A counting argument used originally by [12] to prove a lower bound for

resolution works as follows. There is a large set X of truth assignments (to

atoms of PHP

n+1

n

- see the introduction) with the following property. Any

refutation of the clauses representing :PHP

n+1

n

determines a map from X to

the clauses occurring in the refutation such that the preimage of any clause is

small. As X is large, the number of clauses must be large too.

There is no a priori reason why similar approach cannot work for F . Indeed,

[13] succeeded in reproving an exponential lower bounds for monotone circuits

([34, 2]) in this way. However, the structure ofF -proofs appears to be much more

complex than that of resolution refutations (the di�erence between the two proof

systems may be also documented by a big di�erence between bounded arithmetic

theories corresponding to them, see [20]) to allow a direct construction of a

suitable map.

The method of random restrictions in Boolean complexity works as follows.

Given a constant-depth and not too big circuit one shows (by a probabilistic

argument) that there is an assignment of 0 and 1 to some inputs simplifying

the circuit substantially. This means that the Boolean function computed by

the restricted circuit on the unassigned inputs can be, in fact, computed by a

10



circuit of a very simple form. Then one shows that the function the original

circuit supposedly computed does not have this property.

In lower bounds for constant-depth subsystems of a Frege system a related

approach is used (e.g., [1, 22, 28, 31]). First partially evaluate atoms so that

all formulas in a �xed and not too big proof of a tautology (e.g., PHP

n+1

n

) get

simpli�ed. Then argue that there cannot be a proof of the restricted tautology

involving only simple formulas. As the restrictions must not simplify the tau-

tology too much they must be of a special form. In the case of the formula

PHP

n+1

n

the restrictions correspond to partial injective maps from f0; : : : ; ng

into f0; : : : ; n�1g. The second step is then achieved in [28] by a form of a local

Boolean valuation (of the set of simpli�ed formulas occurring in the restricted

proof), in [22, 31] it is an argument in the spirit of the Prover-Adversary game.

A principal reason why this does not work for F is that a general formula

or a circuit do not simplify much after a restriction (but see [20, Chpt.13]). We

may at least try to learn a lesson of how partial Boolean valuations implicitly

occurring in proofs of lower bounds for PHP

n+1

n

are constructed and used, and

think about how to extend such an approach to F . The reader may �nd this in

detail in [20, Chpt.12] and here we add only few general observations (we shall

assume a familiarity with [28, 23] for the next paragraph).

Important objects in [28] are complete systems. A disjunction of maps (map-

conjuctions precisely) from a complete system is shortly provably equivalent to

1, assuming :PHP

n+1

n

as an axiom. Shortly provably equivalent means that we

take a set � of not too many formulas and any proof may use only formulas

from �, cf. [23]. Thus, assuming :PHP

n+1

n

, complete systems are just new

disjunctive normal forms of 1. In terms of a partial Boolean valuation � : �! B

this means that �-values of maps from a complete system form a partition of

unity in B. To restrict the proof means to augment:PHP

n+1

n

by a new axiom, a

map-conjunction. Under this new axiom all formulas in � have (shortly provably

equivalent) new disjunctive normal forms. In proving this a crucial step is an

application of a switching lemma. In the language of � this corresponds to

re�ning a subset of B into an antichain.

Let us now turn to the method of e�ective interpolation. It was �rst expli-

citly proposed in [22] and put to work in [37, 24], implicitly in [6], and in [33].

(This development is not much covered in [20] so we add references.)

We say that a proof system admits e�ective interpolation if every implication

A(p; q)! B(p; r)

provable in k steps has an interpolant I(p) whose circuit-size is k

O(1)

. An e�ect-

ive monotone interpolation asserts the same for implications without negative

occurrences of p

i

in A and B, and requires I(p) to de�ne a Boolean function

computable by a monotone circuit of size k

O(1)

. These e�ective versions of in-

terpolation are valid for resolution, cut-free sequent calculus, a version of the

11



depth 2 subsystem of the sequent calculus, linear equational logic and cutting

planes (see the references above).

The idea of using e�ective interpolation for lower bounds is as follows. As-

sume that a proof system P admits e�ective (monotone) interpolation and that

A

n

(p; q)! B

n

(p; r) is a family of implications with atoms p = p

1

; : : : ; p

n

and of

size n

O(1)

that do not have (monotone) interpolants of polynomial size. Then

the implications necessarily do not have P -proofs with n

O(1)

steps.

It is an important open problem to decide which proof systems do admit

e�ective interpolation. There are some limitations to e�ective monotone in-

terpolation (see [24]) showing that the known positive results are almost best

possible. However, for the non-monotone version similar statement is open. [27]

show that unless a standard cryptographical conjecture about the security of the

RSA encryption scheme fails, Frege systems do not admit e�ective interpolation.

For constant-depth subsystems we do not have similar result but we may note

that a theorem of [4] implies that a version of e�ective interpolation valid for

proof systems mentioned earlier does not hold for extensions of constant-depth

systems by modular counting principles. This version implies, in particular,

that if formulas A and B have no common atoms and A _ B is provable in k

steps then one of A, B is provable in k

O(1)

steps.

Consider formulas :Count

n

q;i

(r) formalizing that the atoms r de�ne a q-

partition of n, where n � i (mod q). In particular, there is one atom r

e

for each

q-element subset e of f0; : : : ; n � 1g and the formula formalizes the fact that

fe j r

e

= 1g is not a total partition of f0; : : : ; n� 1g. De�ne:

A := Count

6a+1

2;1

(r) and B := Count

6b+1

3;1

(s)

From r and s we can de�ne constant-depth formulas C such that :A^:B imply

by a short constant-depth proof

:Count

(6a+1)(6b+1)

6;1

(C)

(think of the rectangle (6a+1)� (6b+1) partitioned into rectangles of size 2�3

de�ned by r; s). Hence a constant-depth Frege system augmented by instances

of Count

6;1

proves A _B by a poly-size proof. However, by the main theorem

(Thm 1.2) of [4] none of Count

2;1

or Count

3;1

admits poly-size proofs from

Count

6;1

.

It is not known whether min(k

F

(A); k

F

(B)) = k

F

(A _ B)

O(1)

for A;B

without common atoms. The reader may contemplate di�culties encountered

while trying to prove such an inequality using one of Theorems 1.1, 2.1 or 3.1.

6 Hard tautologies ?

It is apparently rather di�cult to come up with tautologies � that would be

reasonable candidates to have large k

F

(� ). A heuristic reason for that is that

12



Frege systems can count and hence combinatorial principles derivable by count-

ing arguments (like the pigeonhole principle) cannot be hard for F (even when

measuring the complexity of proofs by s

F

(� ) rather than by k

F

(� ), see [7]).

In [27] the following tautologies �

p

were de�ned. It is not known whether

they have Frege proofs with polynomially many steps.

Fix p a prime with n bits. The tautology �

p

is formed from atoms x

1

; : : : ; x

n

,

y

1

; : : : ; y

n

and z

1

; : : : ; z

n

O(1)
. Atoms x; y represent bits of two integers and z

stand for bits of the table of a computation of the product x � y. The formula

�

p

asserts that if both x; y are bigger than 1 and z is indeed a computation of

x � y then the output of the computation (as encoded in z) is not equal to p.

Currently no lower bounds for these tautologies are known in any proof

system. On the other hand, we also do not know an in�nite set of primes p for

which there would be Frege proofs with polynomially many steps. It would be

very interesting to prove a superpolynomial lower bound to k

F

(�

p

) even under

some unproved but plausible conjecture from computational complexity theory.
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