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Abstract

We prove a limitation on a variant of the KPT theorem proposed
for propositional proof systems by Pich and Santhanam [7], for all proof
systems that prove the disjointness of two NP sets that are hard to dis-
tinguish.

For a coNP property ψ(x), given n ≥ 1, we can construct a size nO(1)

propositional formula ||ψ||n(x, y) with n atoms x = (x1, . . . , xn) and nO(1) atoms
y such that for any a ∈ {0, 1}n, ψ(a) is true iff ||ψ||n(a, y) ∈ TAUT. This
is just a restatement of the NP-completeness of SAT. In addition, if ψ(x) is
defined in a suitable language of arithmetic and has a suitable logical form, the
translation can be defined purely syntactically without a reference to machines
or computations. This then allows to transform also a possible first-order proof
of ∀xψ(x) into a sequence of short propositional proofs of tautologies ||ψ||n,
n = 1, 2, . . .; if the original proof uses axioms of theory T (essentially any
sound r.e. theory) then the propositional proofs will be in a proof system PT

associated to T . Many standard proof systems are of the form PT for some
T , and this is often the most efficient way how to construct short PT -proofs of
uniform sequences of tautologies. Although the unprovability of ∀xψ(x) in T
does not imply lower bounds for PT -proofs of the tautologies, a method used in
establishing the unprovability sometimes yields an insight how the lower bound
could be proved. All this is a well-established part of proof complexity and the
reader can find it in [4, Chpt.12] (or in references given there).

The translation is, however, not entirely faithful for formulas of a certain
logical form, and this is an obstacle for transforming the conditional unprov-
ability result for strong universal theories in [3] into conditional lower bounds
for strong proof systems. To explain the problem in some detail assume ψ(x)
has the form

∃i < |x|∀y(|y| = |x|) ϕ(x, i, y) (1)

where ϕ is a p-time property and |x| is the bit length of x. The provability of
∀xψ(x) in a universal T can be analyzed using the KPT theorem which provides
an efficient interactive algorithm for finding i given x (cf.[6] or [4, Sec.12.2]).
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The same method does not, however, work in the propositional setting. To
illustrate this assume that ||ψ||n has a proof in proof system PT attached to T
and from that we can deduce in T that∨

i<n

||ψ||n(x, i, yi) (2)

is a tautology (in addition the translation assures that all yi are disjoint tuples
of atoms). This implies in T that for all assignments a and b = (b0, . . . , bn−1)
for all x and all y variables there is i < n such that ||ψ||n(a, b) is true. But to get
(1) (and then use the KPT analysis from [3]) we would need to show that for
all a there is one i < n such that for all bi the formula is true. Unfortunately,
to derive this one needs to use the bounded collection scheme (allowing to move
the quantifier bounding i before the quantifier bounding bi) and this scheme is
not available in universal theories under consideration, cf.[1]. The reader can
find more about this issue in [3, Sec.5] or at the end of [4, Sec.12.8]; knowing
this background offers my motivation for this research (which differs perhaps
from that of [7]) but it is not needed to understand the argument below.

Pich and Santhanam [7] proposed a direct way how to bypass this obstacle:
simply ignore it and prove a version of the KPT theorem for (some, at least)
strong propositional proof systems. For such proof systems a conditional lower
bound can be indeed proved, cf. [7] or [3].

Definition 1 ([7])
Let P be a propositional proof system. The system has KPT interpolation

if there are a constant k ≥ 1 and k p-time functions

f1(x, z), f2(x, z, w1), . . . , fk(x, z, w1, . . . , wk−1)

such that whenever π is a P-proof of a disjunction of the form

A0(x, y1) ∨ . . . ∨Am−1(x, ym)

where x is a n-tuple of atoms and y1, . . . , ym are disjoint tuples of atoms, then
for all a ∈ {0, 1}n the following is valid for all b1, . . . , bm of the appropriate
lengths:

• either Ai1(a, yi1) ∈ TAUT for i1 = f1(a, π) or, if Ai1(a, bi1) is false,

• Ai2(a, yi2) ∈ TAUT for i2 = f2(a, π, bi1) or, if Ai2(a, bi2) is false,

• . . ., or

• Aik
(a, yik

) ∈ TAUT for ik = fk(a, π, bi1 , . . . , bik−1).

An illuminating interpretation of the definition can be made using the interactive
communication model of [5] involving Student and Teacher. Student is a p-time
machine while Teacher has unlimited powers. At the beginning Student gets
a ∈ {0, 1}n and the proof π and computes from it his first candidate solution:
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index i1 such that Ai1(a, yi1) is - he thinks - a tautology. Teacher either approves
or she provides Student with a counter-example: an assignment bi1 for yi1 which
falsifies the formula. In the next round Student can use this counter-example
to propose his next candidate solution, etc. Functions f1, . . . fk in the definition
form a strategy for Student so that he solves the task for all a and π in k steps
in the worst case. Note that if we fixed m = 2 as in ordinary interpolation then
k = 2 would suffice; the concept makes sense for variable m only.

Unfortunately, we show in this note that this property fails for strong proof
systems (above a low depth Frege system) for essentially the same reasons why
ordinary feasible interpolation fails for them (cf.[4, Sec.18.7])). For a set U ⊆
{0, 1}∗ and n ≥ 1 put Un := U ∩ {0, 1}n. LK3/2 is the Σ-depth 1 subsystem of
sequent calculus (cf.[4, Sec.3.4]).

Theorem 2
Let P be a proof system containing LK3/2. Assume that U, V are disjoint

NP sets such that:

1. Propositional formulas expressing that Un ∩ Vn = ∅ have p-size P-proofs.

2. For any constant c ≥ 1, for all large enough n there is a distribution Dn

on {0, 1}n with support Un ∪ Vn such that there is no size nc circuit Cn

for which

Probx[(x ∈ Un ∧ Cn(x) = 1) ∨ (x ∈ Vn ∧ Cn(x) = 0)] ≥ 1/2 + n−c

where samples x in the probability are chosen according to Dn.

Then P does not admit KPT interpolation.

Remarks:

1. An example of a pair of two NP sets U, V that are conjectured to sat-
isfy the second condition can be defined using one-way permutation (more
generally an injective one-way function with output length determined by
input length) and its hard bit: U (resp. V ) are the strings in the range
of the permutation whose hard bit is 1 (resp. 0). Distribution Dn is in
this case generated by the permutation from the uniform distribution on
the seed strings, i.e. it is uniform itself.

2. It is known that the hypothesis of the theorem can be fulfilled for sys-
tems such as EF, F, TC0-F and, under stronger hypotheses about non-
separability of U and V , also for AC0-F above certain small depth; see the
comprehensive discussion in [4, Sec.18.7].

3. The phrase that P contains LK3/2 means for simplicity just that: P can
operate with sequents consisting of Σ-depth 1 formulas and all LK3/2-
proofs are also P-proofs. However, this is used only in Claim 1 and, in fact,
it would suffice that P represents formulas U(x, y) and V (x, z) (defined
below) in some other formalism and efficiently simulates modus ponens.
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Proof of the theorem occupies the rest of this note.

Write U(x, y) for a p-time relation that y witnesses x ∈ U and similarly
V (x, z) for V , with the length of both y and z p-bounded in the length of x. Let
n,m ≥ 1 and for m strings x1, . . . xm of length n each consider the following 2m
propositional formulas translating the predicates U(x, y) and V (x, z) (which we
shall denote also U and V in order to ease on notation):

• U(xi, yi): xi is an n-tuple of atoms for bits of xi and yi is an nO(1)-tuple
of atoms for bits of a witness associated with xi together with bits needed
to encode U as propositional formula suitable for P (e.g. as 3CNF),

• V (xi, zi): analogously for V ,

• where all xi, yi, zi are disjoint.

Consider the induction statement:

x1 ∈ U ∧ (∀i < m, xi ∈ U → xi+1 ∈ U) → xm ∈ U (3)

and write it as a disjunction with m+ 1 disjuncts:

x1 /∈ U ∨
∨
i

(xi ∈ U ∧ xi+1 /∈ U) ∨ xm ∈ U . (4)

Now replace xi ∈ U by xi /∈ V and xm ∈ U by xm /∈ V and write it proposi-
tionally:

¬U(x1, y1) ∨
∨
i

[¬V (xi, zi) ∧ ¬U(xi+1, yi+1)] ∨ ¬V (xm, zm). (5)

Note that except the x-variables the m+ 1 disjuncts are disjoint.

Claim 1:(5) has a p-size proof in P.
To see this note that induction (3) can be proved by simulating modus ponens
(here we use that P contains LK3/2). Disjunction (5) follows from it because
we assume that the disjointness of Un, Vn has short P-proofs, i.e. U(x, y) →
¬V (x, z) has a short proof.

Now apply the supposed KPT interpolation to (5). W.l.o.g. we shall assume
(and arrange that in the construction below) that x1 ∈ U and xm ∈ V (with
witnesses y1 and zm, respectively). Hence Student in the KPT computation is
supposed to find i < m for which the i-th disjunct

Ai := [¬V (xi, zi) ∧ ¬U(xi+1, yi+1)] , i = 1, . . . ,m− 1

is valid (i.e. where the induction step going from i to i+1 fails). We shall show
that the existence of such a KPT p-time Student allows to separate Un from Vn

with a non-negligible advantage violating the hypotheses of the theorem.
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Take any m such that 3 · 2k−1 ≤ m ≤ nO(1) (the upper bound implies that
the proof in Claim 1 is of size nO(1)). For 1 ≤ i < m define:

Wi[m] := U i × V m−i and W [m] :=
⋃
i

Wi[m] .

Note that any string w = (w1, . . . , wm) ∈W [m] satisfies w1 ∈ U and wm ∈ V .
Let k ≥ 1 and f1, . . . , fk be the constant and the p-time functions provided

the assumed KPT interpolation for P. Assume that 1 ≤ i1 < m is the most
frequent value f1 computes on inputs from W [m] (thinking of a P-proof π as
fixed). This maximal frequency γ is at least 1/m. (Here the frequency means
with respect to the product of distributions Dn on {0, 1}n for which it is assumed
that Un, Vn are hard to separate.)

Claim 2:The frequency on Wi1 [m] is at least γ − nω(1), i.e. it is at least 1/m
modulo a negligible error.
Note that for any i < j the frequency for Wi[m],Wj [m] can differ only negligibly
because otherwise we could use the usual triangle inequality argument to find a
non-negligible discrepancy between frequencies on Wt[m] and Wt+1[m] for some
i ≤ t < j, and use it to separate Un from Vn (on position t+ 1, after fixing the
rest of coordinates by averaging). Because all Wi[m] are disjoint, the frequency
must be γ up to a negligible difference.

Now we describe a process that transforms the assumed successful strategy
for Student into a p-time algorithm with p-size advice, separating Un, Vn with
a non-negligible advantage.

Assume first i1 < m/2. By averaging there are u1, . . . um/2 ∈ Un s.t. f1(w) =
i1 with frequency at least 1/(2m) (the factor 2 in the denominator allows us to
forget about the ”up to the negligible error” phrase) for all w of the form:

{u1} × . . .× {um/2} ×W [m/2] .

Fix such u1, . . . , um/2 and also witnesses a1, . . . , am/2 for their membership in
U . These will be used as advice for the eventual algorithm.

If i1 ≥ m/2 then fill analogously the last m/2 positions by elements of Vn

and include the relevant witnesses in the advice. W.l.o.g. we assume that the
first case i1 < m/2 occurred.

We interpret this situation as reducing the Student-Teacher computation to
k− 1 rounds on smaller universe W [m/2]. Namely, given w = (w1, . . . , wm/2) ∈
W [m/2] define:

w̃ := (u1, . . . , um/2, w1, . . . , wm/2) ∈ W [m] (6)

and run f1 on w̃. If f1(w̃) 6= i1, declare failure. Otherwise use the advice
witnesses to produce a falsifying assignment for Ai1 : U(ui1+1, ai1+1) holds.

After this first step use functions f2, f3, . . . (and Claim 2 for the smaller
universes) and as long as they give values j < m/2 always answer for Teacher
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using the advice strings aj . Eventually Student proposes value j ≥ m/2: choose
the most frequent such value i2 ≥ m/2 and proceed as in case of i1, further
restricting domain (6) as in binary search. Repeating this at most (k−1)-times
the situation will be as follows:

1. The universe will shrink at most to W [m/(2k−1)] which is at least W [3].
In fact, we shall arrange in the last step that exactly W [3] remains (by
filling in more positions by elements of Un or Vn, respectively, if needed)
and hence the inputs before applying the last KPT function fk are of the
form (w1, w2, w3) with w1 ∈ U and w3 ∈ V .

Note that Student gets to use fk because if he succeeded earlier it would
violate Claim 2.

2. The last function fk has to find a gap in the induction, and this itself will
violate Claim 2. In particular, the gap is either between w1 and w2 and
then w2 ∈ V , or between w2 and w3 and then w2 ∈ U .

3. This process has the probability ≥ 1/(2m), i.e. non-negligible, of not
failing in any of the k−1 rounds and hence it will not fail and will compute
correctly the membership of (any) w2 in U or V with a non-negligible
probability. In all cases when the process fails output random bit 0 or 1
with equal probability.

This proves the theorem.

We conclude by pointing out that the KPT theorem enters propositional proof
complexity also via notions of pseudo-surjective and iterable maps in the theory
of proof complexity generators, cf.[2] or [4, Sec.19.4] for detailed expositions of
this subject.

Acknowledgements: I thank J. Pich (Oxford) for comments on an earlier
note.
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