This book presents an up-to-date, unified treatment of research in bounded arith-
metic and complexity of propositional logic with emphasis on independence proofs
and lower bound proofs. The author discusses the deep connections between logic
and complexity theory and lists a number of intriguing open problems.

An introduction to the basics of logic and complexity theory is followed by dis-
cussion of important results in propositional proof systems and systems of bounded
arithmetic. Then more advanced topics are treated, including polynomial simula-
tions and conservativity results, various witnessing theorems, the translation of
bounded formulas (and their proofs) into propositional ones, the method of ran-
dom partial restrictions and its applications, direct independence proofs, complete
systems of partial relations, lower bounds to the size of constant-depth propo-
sitional proofs, the method of Boolean valuations, the issue of hard tautologies
and optimal proof systems, combinatorics and complexity theory within bounded
arithmetic, and relations to complexity issues of predicate calculus.
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PREFACE

The central problem of complexity theory is the relation of deterministic and
nondeterministic computations: whether P equals NP, and generally whether the
polynomial time hierarchy PH collapses. The famous P versus NP problem is often
regarded as one of the most important and beautiful open problems in contemporary
mathematics, even by nonspecialists (see, for example, Smale [1992]).

The central problem of bounded arithmetic is whether it is a finitely axiomati-
zable theory. That amounts to deciding whether there is a model of the theory in
which the polynomial time hierarchy does not collapse.

The central problem of propositional logic is whether there is a proof system in
which every tautology has a proof of size polynomial in the size of the tautology. In
this generality the question is equivalent to asking whether the class NP is closed
under complementation. Particular cases of the problem, to establish lower bounds
for usual calculi, are analogous to constructing models of associated systems of
bounded arithmetic in which NP # coNP.

Notions, problems, and results about complexity (of predicates, functions,
proofs, ...) are deep-rooted in mathematical logic, and (good) theorems about
them are among the most profound results in the field. Bounded arithmetic and
propositional logic are closely interrelated and have several explicit and implicit
connections to the computational complexity theory around the P versus NP prob-
lem. Central computational notions (Turing machine, Boolean circuit) are crucial
in the metamathematics of the logical systems, and models of these systems are
natural structures for concepts of computational complexity.

Moreover, the only approach in sight universal enough to have a chance of
producing lower bounds to the size of general Boolean circuits needed for the first
problem is the method of approximations, which is a version of the ultraproduct
construction (and of forcing); forcing bears a relation to the second and the third
problems, and a general framework for the last problem is in terms of Boolean
valuations (Sections 3.1, 9.4, 12.7, and 13.3).

Xi



Xii Preface

Much of the contemporary research in computational complexity theory con-
centrates on proving weaker versions of P # NP, for example, on proving lower
bounds to the size of restricted models of circuits, and some deep results (although
telling little about the P versus NP problem) have been obtained.

It is, however, possible to approach the same problem differently and to try
to prove statement P # NP first for other structures than natural numbers N, in
particular for nonstandard models of systems of bounded arithmetic.

Such an approach is, in fact, common in mathematics, where for example a
number-theoretic conjecture about the field of rational numbers is first tested for
function fields that share many properties with the rationals. Similarly, we can try
to prove that P 7 NP holds in a model of a system of bounded arithmetic. Nonstan-
dard models of systems of bounded arithmetic are not ridiculously pathological
structures, and a part of the difficulty in constructing them stems exactly from the
fact that it is hard to distinguish these structures, by the studied properties, from
natural numbers.

Methods (all essentially combinatorial) used for known circuit lower bounds
are demonstrably inadequate for the general problem. It is to be expected that a
nontrivial combinatorial or algebraic argument will be required for the solution
of the P versus NP problem. However, I believe that the close relations of this
problem to bounded arithmetic and propositional logic indicate that such a solution
should also require a nontrivial insight into logic. For example, recent strong
lower bounds for constant-depth proof systems needed a reinterpretation of logical
validity (Section 12.4).

The relations among bounded arithmetic, propositional logic, and complexity
theory are not ad hoc but are reflected in numerous more specific relations, ranging
from intertranslatability of arithmetic and propositional proofs and computations
of machines, to characterizations of provably total functions in various subsystems
of bounded arithmetic in terms of familiar computational models, correspondence
in definability of predicates by restricted means and their decidability in a par-
ticular computational model, to proof methods based on analogous combinatorial
backgrounds in all three areas, and finally to formalizability of basic concepts and
methods of complexity theory within bounded arithmetic. It is the main aim of this
book to explain these relations.

The last several years have seen important developments in areas of complexity
theory, as well as in bounded arithmetic and complexity of propositional logic,
and other deep relations between these areas have been established. Although
there are several monographs on computational complexity theory and very good
survey articles covering the main fields of research, many recent results in bounded
arithmetic and propositional logic are scattered in research articles, and some
important facts, such as relations between various theorems and methods, are only
a part of unpublished folklore or appeared in a longer but now less significant, and
hence less read, work.



Preface Xiii

To my knowledge there are three published monographs treating, at least par-
tially, bounded arithmetic and its relation to complexity theory: Wilkie (1985),
Buss (1986), and the last part of Hajek and Pudlak (1993) (Chapter 5, pp. 267—
408). Although these are very interesting books, the first two contain none of the
developments of the last several years (obviously) and none of the three treats
propositional logic.

This book is not intended to be a textbook of either logic or complexity theory.
It merely wants to present the main aspects of contemporary research in bounded
arithmetic and complexity of propositional logic in a coherent way and to illustrate
topics pointed out at the beginning of this Preface. It is aimed at research mathe-
maticians, computer scientists, and graduate students. No previous knowledge of
the topics is required, but it is expected that the reader is willing to learn what
is needed along the way. My hope is that the book will stimulate more people to
contribute to this fascinating area.

Prague Jan Krajicek
July 28, 1994
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1

Introduction

Ten years ago I had the wonderful opportunity to attend a series of lectures given
by Jeff Paris in Prague on his and Alec Wilkie’s work on bounded arithmetic and
its relations to complexity theory. Their work produced fundamental information
about the strength and properties of these weak systems, and they developed a
variety of basic methods and extracted inspiring problems.

At that time Pavel Pudldk studied sequential theories and proved interesting
results about the finitistic consistency statements and interpretability (Pudlak
1985,1986,1987). A couple of years later Sam Buss’s Ph.D. thesis (Buss 1986)
came out with an elegant proof—theoretic characterization of the polynomial time
computations. Then T learned about Cook (1975), predating the above develop-
ments and containing fundamental ideas about the relation of weak systems of
arithmetic, propositional logic, and feasible computations. These ideas were de-
veloped already in the late 70s by some of his students but unfortunately remained,
to a large extent, unavailable to a general audience. New connections and opportu-
nities opened up with Miki Ajtai’s entrance with powerful combinatorics applied
earlier in Boolean complexity (Ajtai 1988).

The work ofthese people attracted other researchers and allowed, quite recently,
further fundamental results.

It appears to me that with a growing interest in the field a text surveying some
basic knowledge could be helpful. The following is an outline of the book.

Chapter 2 lists notions and results from logic and complexity theory the reader is
expected to have heard about. Chapter 3 overviews basic Boolean complexity and
basic facts about predicates definable by bounded arithmetic formulas. Sketches
of a few proofs are offered there, but mostly I refer the reader to other survey texts.
All later chapters contain all necessary proofs.

Chapters 4 and 5 present basic information about the main propositional proof
systems and complexity of proofs issues, and about the main first order systems
of bounded arithmetic and their strength and mutual relations.
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Chapters 6 and 7 survey the characterizations of definable functions in the
systems of arithmetic known as witnessing theorems. Chapter 8§ treats the second
order systems of bounded arithmetic using RSUV isomorphism and transfers some
results of the previous three chapters to these systems.

Chapter 9 defines and studies propositional translations of arithmetic formulas
and propositional simulations of arithmetic proofs with applications to polynomial
simulation results.

Chapter 10 is devoted to the fundamental problem of whether bounded arith-
metic S is finitely axiomatizable, the central problem in the area. It surveys all
relevant results known (to me) to date.

Chapter 11 studies direct combinatorial arguments allowing separation of the
lowest relativized subsystems of bounded arithmetic.

Chapters 12 and 13 concern the central question of propositional logic, whether
there is a proof system admitting polynomial size proofs of all tautologies, for Frege
and extended Frege systems and for constant-depth systems. The main results are
several exponential lower bounds for the constant-depth systems and a certain
conceptual framework for the unrestricted system.

Chapter 14 presents finitistic consistency statements and studies the issue of
hard tautologies and optimal proof systems.

The final chapter, Chapter 15, develops some combinatorics and Boolean com-
plexity theory within bounded arithmetic and studies several model-theoretic con-
structions relevant to all the basic questions studied earlier in the book.

I have made an attempt to present the chosen material as completely and as
up to date as possible but I did not try to compile a handbook of the whole field
(hence the Bibliography also does not attempt to list the whole literature in the
field). Open problems are occasionally mentioned in the text (see the Index), but
I refer the reader to Clote and Krajicek (1993) for a comprehensive annotated list
of open problems in the area.

In the main text I give explicit credit only for main ideas and results. The
chapters end with a section of bibliographical and other remarks where complete
bibliographical information is given, and where I briefly comment on related but
not covered topics.

Finally I want to comment on material that is not covered in the book. This
includes, in particular, intuitionistic versions of bounded arithmetic systems, func-
tional interpretations of these theories (and the issue of feasible functionals in
general), equational theories and machine-independent characterizations of vari-
ous computational classes, and modifications of the basic systems relating them
to a variety of subclasses of the polynomial time. Some of this material is omitted
as I do not feel familiar with it; some is omitted because I think that it — although
technically difficult and innovative — builds on basic ideas already apparent from
earlier results presented in the book.
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Preliminaries

In this chapter we briefly review the basic notions and facts from logic and com-
plexity theory whose knowledge is assumed throughout the book. We shall always
sketch important arguments, both from logic and from complexity theory, and so a
determined reader can start with only a rough familiarity with the notions surveyed
in the next two sections and pick the necessary material along the way.

For those readers who prefer to consult relevant textbooks we recommend the
following books: The best introduction to logic are parts of Shoenfield (1967);
for elements of structural complexity theory I recommend Balcalzar, Diaz, and
Gabbarr6 (1988, 1990); for NP-completeness Garey and Johnson (1979); and for
a Boolean complexity theory survey of lower bounds Boppana and Sipser (1990)
or the comprehensive monograph Wegener (1987). A more advanced (but self-
contained) text on logic of first order arithmetic theories is Hajek and Pudlak
(1993).

2.1. Logic

We shall deal with first order and second order theories of arithmetic. The second
order theories are, in fact, just two-sorted first order theories: One sort are numbers;
the other are finite sets. This phrase means that the underlying logic is always the
first order predicate calculus; in particular, no set-theoretic assumptions are a part
of the underlying logic.

From basic theorems we shall use Godel completeness and incompleteness the-
orems, Tarski’s undefinability of truth, and, in arithmetic, constructions of partial
truth definitions.

A prominent theory is Peano arithmetic (PA), in the language of arithmetic
Lpa = {0, 1, +, -, <, =} axiomatized by Robinson’s arithmetic Q

l.a+1#0
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2.a+l=b+1—>a=b
3.a+0=a

4. a+b+1)=(@+b)+1
5.a-0=0

6.

a-b+1)=(@a-b)+a
7. a#0—-3Ix,x+1=a
see Tarski, Mostowski, and Robinson (1953), and by the induction scheme IND

(¢(0,3) AVX(¢p(x,@) > ¢(x +1,3))) > Vx¢(x,a)

for every formula ¢ (x, @) in the language Lpa.

We shall use the letters x, y, z, ... mostly for bounded variables; the letters
a,b,c,... will be reserved for free variables (also called parameters). Free vari-
ables in axioms are assumed to be universally quantified; for example, the first
axiom given is equivalent to the formula Vx, x + 1 # 0.

There are other schemes that can equivalently replace the induction scheme,
for example, the least number principle LNP scheme

¢(b,a) > IVy(P(x,a) Ay < x —> —=p(y,a))).

The standard model N of PA is the set of natural numbers with the symbols
of Lpa interpreted with the usual meaning. A crucial fact about PA is that there
are nonstandard models (models not isomorphic with N) of PA and indeed of
the theory of N, Th(N). Natural numbers N are isomorphic to a unique initial
substructure of any nonstandard model M and we shall usually simply assume
that VC M.

A cut in a nonstandard model M is any nonempty / C M satisfying

l.a<bAabel -acel,alla,be M

2.ael »>a+lelallae M.
For example, N is a cut in every nonstandard model. Cuts in nonstandard models
of PA closed under both addition and multiplication have special prominence as
they are particular models of bounded arithmetic I Ay: They satisfy induction for
all bounded arithmetic formulas Ag, which are formulas in the language Lpa with
all quantifiers bounded (Section 3.2 is devoted to bounded formulas).

Nonstandard models of PA and even of its proper subtheories are difficult to
construct; it is a theorem of Tennenbaum (1959) that there are no countable re-
cursive nonstandard models of PA (and, indeed, of a weak subtheory IE; with the
induction just for bounded existential formulas, cf. Paris (1984). In particular, these
results show that every nonstandard countable model of IE; has a nonstandard cut
that is a model of whole PA; hence, in a sense, the model theory of bounded arith-
metic is as complex as that of PA. Consult Hajek and Pudlak (1993), Kaye (1991),
or Smorynski (1984) for the model theory of PA.
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From proof theory we shall use theorems of Gentzen and Herbrand in various
versions. The reader is advised to refer to Takeuti (1975) for Gentzen’s sequent
calculus.

We close this section with some remarks on notation. Logical connectives we
shall use are the standard —, v, A, —, and = with the usual meaning — negation,
disjunction, conjunction, implication, and equivalence — and the constants 1, 0 for
truth and falsity.

The symbols C and C are used in the sense of proper inclusion and inclusion.

The symbols f(n) = O(g(n)), f(n) = Q(g(n)) and f(n) = ©(g(n)) denote
that eventually f(n) < cg(n), f(n) > cg(n), and c1g(n) < f(n) < c2g(n)
where ¢, ¢, and ¢; are positive constants, and f(n) = o(g(n)) means that

f(n)/gn) — 0.

2.2, Complexity theory

I assume that the reader is acquainted with such notions as Turing machine, oracle
Turing machine, and time and space complexity measures. We adopt the multi-
tape version of Turing machines with a read-only input tape and with a finite but
arbitrarily large alphabet.

The basic relations between classes of languages Time( /) and Space( /) rec-
ognized by a deterministic Turing machine in time (respectively space) bounded
by f(n), n the length of the input, and their nondeterministic versions NTime( /)
and NSpace( f) are

L. Time(f(n)) € NTime(f(n)) < Space(f(n))

2. Space(f(n)) € U, Time(c/ ™)

3. (Hartmanis and Stearns 1965) Time(f(r)) = Time(c - f(n)) and
Space( f(n)) = Space(c - f(n)) whenever n = o(f(n)) and n < f(n)

4. (Hartmanis and Stearns 1965, Hartmanis, Lewis, and Stearns 1965)

Space(f) C Space(g)
and

Time( f) C Time(g log(g))

whenever f = o(g(n)).
5. (Savitch 1970)

NSpace( f) C Space(f2)

whenever f(n) is itself computable in space f(n)
6. (Szelepcsényi 1987, Immerman 1988)

NSpace(f) = coNSpace(f)

for f(n) > log(n) and f itself computable in nondeterministic space f(n).
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7. (Hopcroft, Paul, and Valiant 1975) Forn < f(n)

Sf(n) )
log f(n)

Particular bounds to time or space define the usual complexity classes

Time( f(n)) € Space <

LinTime = U Time(cn)
C
P = J Time(n*)
c
NP = | JNTime(n°)
c

L = Space(log(n))

PSpace = U Space(n©)
4

LinSpace = Space(n)

E = U Time(c")

EXP = | J Time(2")
[

Oracle computations allow one to define hierarchies of languages, the most
important of which are the linear time hierarchy LinH of Wrathall (1978)

Ti" = LinTime and £/ = NLinTimeZ'"
and the polynomial time hierarchy PH of Stockmeyer (1977)

=P and TF,, = NP¥
The class of complements of languages from class X is denoted co X, and special
classes of this form co 2,'.“‘ and coZip are denoted 1'[}*" and I f’ , respectively.

The class O +1 is the class of functions computable by a polynomial-time
machine with access to an oracle from the class X ,.p .

Some important facts about these classes include the following: E,'.i“ C E,.p (and
generally more resource in the “same” computational class properly increases the
class; see Zak 1983 fora general diagonalization technique), and LinH contains L
and is, in fact, equal to the class of rudimentary predicates as defined by Smullyan
(1961) (cf. Wrathall 1978). It is also known that LinH also equals the class of
predicates definable by Ag-formulas; we shall prove that in Section 3.2. Also note

that either LinH # PH or LinH does not collapse (i.e., LinH # Z}i" for all 7).
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The notion of NP-completeness, Cook’s theorem, and the P versus NP problem
are central to complexity theory, as well as to the connections with logic, and
in Section 3.1 we shall review more basics, in particular some facts from circuit
complexity.

Many interesting problems and notions arise in connection with counting func-
tions. For R(x, y) a binary predicate with the property that for every x there are
only finitely many y’s satisfying R(x, y) defines the function

#R(x) := the number of y’s such that R(x, y)

Class #P consists of all functions # R(x) with the polynomial time computable
relation R(x, y) and satisfying the preceding finiteness property in a stronger form
(cf. Valiant 1979):

R(x, y) — |yl < |x|OD

An important result of Toda (1989) is that every language in PH is polynomial-time
reducible to a function in #P.

Nonuniform versions of the preceding classes are defined with the help of
advice functions. Polynomially bounded advice is a function f : N — {0, 1}*
such that:

[f(n)| =nO®

The class P/poly, a nonuniform version of P, is the class of all sets 4 such that
there are a set B € P and a polynomially bounded advice function f for which it
holds

x € Aiff (x, f(Jx])) € B

The classes NP /poly, L/poly, and so on, are defined analogously (see the paragraph
after Theorem 3.1.4).
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Basic complexity theory

We shall survey the basic notions and results of Boolean complexity (Section 3.1)
and bounded formulas (Section 3.2) in this chapter. Most of the results in the
first section are stated without a proof; some proofs appear later (Chapter 15, in
particular) formalized in bounded arithmetic. In the second section, most proofs
are at least sketched.

3.1. The P versus NP problem

The central problem in complexity theory, and a major problem of contemporary
logic and mathematics, is whether the class P equals the class NP, the famous P
versus NP problem (Cook 1971). By Cook’s theorem the problem is equivalent
to asking whether there is a polynomial time deterministic algorithm recognizing
the set of satisfiable propositional formulas, or equivalently, such an algorithm
recognizing the set of propositional tautologies.

One approach to this problem is via investigating the circuit-complexity of
Boolean functions. Some interesting, although only preliminary, results were ob-
tained in Boolean complexity.

Definition 3.1.1. A Boolean function with n inputs and m outputs is a function
f 40,1} = {0, 1},

Examples of Boolean functions are obtained from any language Z < {0, 1}*:
For any n, define the Boolean function Z, : {0, 1} — {0, 1} to be the character-
istic function of Z N {0, 1}".

On the other hand, a sequence of Boolean functions

Jo {0, 1} > {0,1}, n=0,1,...
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defines a language

Utwe o, "1 iwy =1

n

Definition 3.1.2.

(a) A Boolean connective is a Boolean function with one output. A basis is a
finite set of connectives.

(b) A Boolean circuit with input variables x,, . . . , x,; output variables yy, . . .,
Ym, and basis of connectives 2 = {gy, . .., gk} is a labeled acyclic directed
graph whose out-degree 0 nodes are labeled by y; s, in-degree 0 nodes are
labeled by x;’s or by constants from 2, and whose in-degree £ > 1 nodes
are labeled by functions from Q2 of arity L.

(c) A Boolean formula is a Boolean circuit in which every node has the out-
degree at most 1.

We shall mostly consider the de Morgan basis 2 = {0, 1, =, v, AL

A Boolean circuit with input variables x, . . ., x, naturally computes a Boolean
function with domain {0, 1}": given input € € {0, 1}" evaluate consecutively the
nodes of'the circuitby 0, 1 where a node gets the value computed by the connective
labeling the node from the values at the incoming nodes. The requirement that a
circuit is acyclic guarantees that this can be done consistently (and uniquely).

Definition 3.1.3.

(a) The size of a circuit is the number of its nodes.

(b) The depth of a circuit is the maximum length of a directed path in the
circuit.

(c) For a Boolean function f, Cq(f) denotes the minimal size of a circuit
with basis 2 computing f, Depthq(f) denotes the minimal depth of a
circuit with basis Q computing f, and Lo ( f) denotes the minimal size of
a formula with basis 2 computing f.

When 2 is the de Morgan basis then the index 2 is usually omitted.

The following theorem is the stimulus for investigating the circuit complexity
of Boolean functions.

Theorem 3.1.4. Let Z < {0, 1}* be a polynomial-time recognizable language
Z € P. Then there exist a polynomial p(x) and a sequence {C,}, of circuits in
de Morgan basis with one output such that for all n

1. Z, is computed by C,

2. the size of C,, is at most p(n).
In other words, C(Z,) < p(n), for all n.

Note that the languages Z with polynomially bounded C(Z,,) are exactly those
from the class P/poly: circuits C, can act as advice for inputs of length n (as
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the evaluation of a circuit can be performed by a polynomial time algorithm),
and, for each n, an algorithm computing whether (x, f(|x|)) € B (see the end of
Section 2.2) can be turned into a polynomial size circuit.

Corollary 3.1.5. Assume that for some Z € NP the function C(Z,) is not bounded
by any polynomial in n.
Then P # NP.

Hence the following problem is a fundamental one.

Fundamental problem. Isthere alanguage Z € NP with superpolynomial circuit-
size complexity?

The next theorem shows that even the unexpected negative answer has important
corollaries.

Theorem 3.1.6 (Karp and Lipton 1982). Assume that every NP language can be
computed by a family of polynomial size circuits; that is, NP C P/poly.
Then the polynomial time hierarchy PH collapses to its second level

PH == =T1J.

Theorem 3.1.7 (Shannon 1949, Muller 1956). For every n there are Boolean
[functions with n inputs and one output having the circuit complexity Q (2" ~logny

Proof. There are 22" Boolean functions with #n unknowns and one output, whereas
there are at most

(n + m)O(m)

circuits of size < m, which is less than 22" form < (2"/c-n)and c a sufficiently
large constant. Q.ED.

Next we give an account of the method of approximations of Razborov (1989),
following to some extent an exposition of Karchmer (1993) but stressing the ultra-
product interpretation of the construction. We include this material here because
it is the only framework that can be, at least in principle, applied to unrestricted
circuits.

Let f: {0, 1}" — {0, 1} be a Boolean function of » inputs and one output, and

U:= f~10).
Let C be a circuit in # inputs and of size m. We shall denote the nodes of C
by z1, ..., z, where the first n nodes are labeled by xq, ..., x, and the last one

is the output node y. We identify node z; with the Boolean function of » inputs
computed by the subcircuit ending in z; and we shall occasionally write x; instead
ofz; ifi <nandyifi =m.

The idea is to take the set of all computations of C on inputs ¥ € U and
produce by “ultraproduct” a new computation on some w ¢ U. As all original
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computations are rejecting (assuming that C computes f'), the new computation
will also be rejecting. Hence w ¢ U will mean that C cannot compute f correctly
on all inputs.

Let B be the Boolean algebra of subsets of U. Forany g : {0, 1}" — {0, 1} put

llgll :={u € Ulgu) =1}

If F € B were an ultrafilter then we would define a new computation by
labeling node z; by 1 if ||z;]| € F , and by 0 otherwise. This would produce a
correct rejecting computation, but the particular input defined by the choice of F
would be from U as all ultrafilters on a finite set are principal. Hence we have to
relax the notion of ultrafilter if anything nontrivial should be achieved.

A subset F C B is closed upward ifa € Fanda C b impliesb € F. F
preserves the pair (a, b) iff

ace FAbe F>anbeF
W r is the set of all w € {0, 1}” satisfying
wi=1->|lx;lle Fandw; =0 - ||~x;|| € F

If exactly one of each ||x;|| and ||—x;|| is in F, then W consists of one 0—1
vector denoted wg.

Let p(f) be the minimal 7 such that there exist ¢ pairs (a;, b;); <, of elements
of B having the property that if ' C B is closed upward, ¥ ¢ F and F preserves
all pairs (a;, b;)i<; then Wrp C U.

Theorem 3.1.8 (Razborov 1989).

1
5PNy =CN) = 00> (f)) + 0

Proof. We first prove the easier of the two inequalities: %p( H=<C) Let C
be an optimal circuit for f and assume all — are at the bottom level (we may
assume that by de Morgan rules possibly increasing the size of the circuit twice).
Let (¢;, di)i<, be all pairs of nodes of C such that ¢; and d; fan into a common
node labeled by A. That is, if (g;, /#;) is a pair of Boolean functions computed at
nodes ¢;, d; then the conjunction g; A A; is computed at some node of C too (and
(gi, hi)i<, exhaust all such pairs).

Seta; := ||g;|| and b; := ||h;||. Assume that F C B is closed upward and that
it preserves all pairs (a;, b;)i<;.

Claim 1. Let g be a function computed by a subcircuit of C and let w € Wg. If
g(w) = L then ||g|| € F.

The claim is readily established by induction on the size of the subcircuit com-
puting g: It holds for x; and —x; by the definition of W, it holds for subcircuits
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with top gate Vv as F is closed upward, and it holds for circuits with top gate A as
F preserves all (a;, b;)i <, that is, all possible conjunctions in C.

Now assume that for some w € Wr, w ¢ U: thatis, f(w) = 1. By the claim
then || f]| € F.But || f|| = @: that is, @ € F. This proves the first inequality.

For the second inequality assume that we have (a;, b;);i<, such that for any
F C B closed upward such that # ¢ F and that preserves all (a;, b;);<;, we have
WrpCU.

Claim 2. For any w € {0, 1}, f(w) = 1 iff @ € F,, where F, is the minimal
subset of B that is closed upward, preserves all pairs (a;, b;)i<,, and satisfies
x| € Fy (7’8511 ll—=x;]| € Fw)for w; =1 (resp. w; = 0).

To see the claim assume first f(w) = 1, from which Wg,_ & U follows, as by
the definition of F,,, w € Wr, . Hence @ € F,.

Now assume f(w) = O:thatis, w € U. Take F = {X C Ulw € X}. Then
Fy € F, F is closed upward and preserves all (a;, b;);i<;, but @ ¢ F. Hence also
d¢ Fy.

We are ready to construct a circuit computing the function f based on an idea
that for w € {0, 1}" the circuit will try to prove that & € F,,,.

Let

A ={ay,br,a1Nby, ..., ar, b, a bVl Ix1 1] [1=xtlls oo [l [ =xa | U{0)

The size of 4 is at most 3¢t +2xn + 1.

Foranya € Aandk < 3t+2n+1 considera function v inductively introduced
by

1 ifa=|lxil|lAwi=1, or ifa=|—x}{jAw;=0

S o

0 otherwise

and
k1, k k k k k
ut=\/ uv Vg av)v \/ (”uxnl A ”n—xin)
bCa,beAd Jj€Ja i<n
where J; = {j < tla; Nb; = a).
Obviously, if for some r

. ro__ ,rtl
Va € 4; v, = v,

then forall s > randalla € 4 : v, = v) and 4 N F, = {alv, = 1}. Hence
@ € F, iff v(’,‘, = 1 for k = 3¢ + 2n + 1, and the definition of vé; constitutes a
definition of a circuit of size O((37 + 2n + 1)3) = 0(3) + 0(n®) computing
whether @ € F,,, that is, computing f(w). Q.E.D.

In principle thus, one can establish a lower bound ¢ to C(f) by showing that
for each set of 2¢ pairs (a;, b;)i<, of subsets of U there is a nontrivial F closed
upward and preserving all pairs (a;, b;)i<, such that Wr € U.
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The method has been successfully applied in the monotone case (i.e., for mono-
tone functions and circuits in the basis {0, 1, v, A}); (cf. Razborov 1985). It seems
that that was possible as the condition posed on a vector to be in W is in the
monotone case relaxed to one implication, w; = 1 — ||x;|| € F, only.

The following function has () variables x;;. Denote by G (x;;) the undirected
graph with vertices ¥ = {1, ..., n} and edges

E={{ij}xj=1)

A cligque in a graph is a complete subgraph.
The clique function
1 if G(x;;) has a clique of size at least k
CLIQUE, 4 (x;j) = .
0  otherwise
Let C*(f) denote the minimal size of a circuit in the basis {0, 1, v, A} com-
puting a monotone function f. C*(f) is sometimes also denoted C™ ( f).

Theorem 3.1.9 (Razborov 1985, Alon and Boppana 1987). Fork < n'/4:
C*(CLIQUE, ;) = n®/P

Now we turn our attention to another restricted model of circuits: constant-
depth circuits. To obtain a nontrivial model of computation we have to allow \/
and /\ of unbounded arity. Note that any Boolean function can then be computed
by a depth 2 circuit: Take its disjunctive or conjunctive normal form.

It is easy to see that any depth d size m circuit can be rewritten as depth d size
< m“ formula; hence there is no essential difference in studying constant-depth
circuits versus formulas.

There are three simple Boolean functions of particular importance.

The parity function

1 if); x;isodd
0 otherwise

@(x1,...,x,,)=[

The majority function

if(n/2) < Z,’ Xi

1
MAJ(xy, ..., xp) =
(1 n {0 otherwise

The Sipser function of depth d

Sa(xiyiy) = \/ /\ cee Xiyiy

i1<nia<n

where i; range over {1, ..., n} and the d connectives \/, /\ alternate.
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Note that the disjunctive normal form of all these functions has exponential size
(in n& M)y,

Theorem 3.1.10 (Yao 1985, Hastad 1989). For any d > 2, any depth d circuit
computing the parity function

@(xls""xn)

must have size at least
ZQ(”H/((/—‘)))

The proof of the optimal lower bound utilizes the method of random restrictions
and the so-called Hastad’s switching lemma (there are two, in fact); the idea of
the structure of the lower bound proof goes back to Ajtai (1983); Furst, Saxe, and
Sipser (1984); and Yao (1985).

A restriction of a circuit is a partial evaluation of its inputs

p:{xls"~’xn}H {0717*}

where the value p(x) = * is a convenient abbreviation of “o(x) is undefined.”
The restricted circuit then computes a function of the inputs that received * by p.

The idea of the lower bound proofs by the method of restrictions is that if
the circuit is small then there will be a restriction leaving some input variables
unevaluated, such that the restricted circuit will compute a constant function. If a
circuit computes the parity function, each restriction computes either the parity or
its negation and specifically cannot be a constant function. Hence there cannot be
small constant-depth circuits computing the parity function.

We shall now only state the Hastad's switching lemma and leave a proof of its
variant to Chapter 15 (Lemma 15.2.2), where we shall formalize its proof within
bounded arithmetic.

Lemma 3.1.11 (Hastad 1989). Let 0 < p < 1. Construct a restriction p by the
following random process: for any x; define p(x;) independently
*  with probability p
p(x;) =3 1  with probability (1 — p)/2
0  with probability (1 — p)/2

Assume that a circuit C is a depth 2 circuit that is a disjunction of conjunctions of
literals, with each conjunction of arity at most t.
Then with a probability of at least

1—Gpt)

the function computed by the circuit restricted by a random restriction can also be
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computed by a depth 2 circuit that is a conjunction of disjunctions of literals, with
each disjunction of arity at most s.

In applications ¢, s are of the form n® and p is of the form 7€~ In that case the
bound from the lemma is very closeto 1 : 1 — 27" Hence it is highly probable
that a disjunction of small conjunctions can be “switched” into a conjunction of
small disjunctions.

That this really simplifies the function is clarified by a simple lemma. First we
need a definition.

Definition 3.1.12.
(a) A branching program is a directed acyclic graph with one in-degree 0 node
(the source); with all nodes of out-degree either 2 (the inner nodes) or 0
(the leaves); the inner nodes labeled by variables with the two outgoing
edges labeled by 0, 1, respectively; and the leaves labeled by elements of
aset?.

(b) A decision tree is a branching program that is a tree with the edges directed

from the root toward the leaves.

Any evaluation « of variables determines a path P(«) through the program or
the tree: The path uses the edge labeled 1 from a node labeled by x; if and only if
o (x,-) =l

We say that a branching program (a decision tree) computes a function
Sf(xt, ..., xy) if for every evaluation «

Sfla(xy),...,a(xy)) =y iff path P(«) ends with a leaf labeled by y

The size of a branching program (a decision tree) is the number of nodes.
The height of a decision tree is the maximum length of a path through it.

Most often the set Y is just the set {0, 1}, in which case the branching program
(decision tree) computes a Boolean function.

For the first part of the next lemma note that any conjunction in a disjunction (of
conjunctions) computing j has to have a literal in common with every disjunction
in a conjunction (of disjunctions) computing /.

Lemma 3.1.13. Assume that a function f(xy,...,Xx,) is computed by a depth 2
circuit that is a disjunction of conjunctions of arity at most s, and at the same time
also by a depth 2 circuit that is a conjunction of disjunctions of arity at most s.
Then f can be computed by a decision tree of height at most s*.
On the other hand, if a function is computed by a decision tree of height t then
it can be computed by a depth 2 circuit that is a conjunction of disjunctions of arity
at most t and also by a depth 2 circuit that is a disjunction of conjunctions of arity

at most t.
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Modular counting functions are defined similarly to the parity function.
Modular counting function
1 if )"; x; is not divisible by p

MOD,(x1,...,x,) =
(1 2 0 otherwise

Theorem 3.1.14 (Razborov 1987, Smolensky 1987). Let p, q be different primes
and let d > 2 be arbitrary. Then any depth d circuit in the basis {0, 1, -, Vv, A,
MOD, } computing the function MOD(x\, ..., x,) must have size at least

29(,,(1/(211)))

In particulay, any such circuit computing the majority function
MAJ(xy, ..., xn)

must have size at least

ZQ(n(l/(2d+1)))

The bound to the majority function follows from the first part as it is easy
to see that all MOD), functions have depth 2 circuits of size O(n) in the basis
{0,1, =, v, A, MAJ}.

We shall now turn our attention from the size of circuits to the depth of circuits.
We consider circuits in the de Morgan basis again with the binary v and A. There
are two simple but important facts. The first is about the relation of the circuit
depth to the size of formulas. The idea for the proof of this theorem is used in
several proofs in later chapters.

Theorem 3.1.15 (Spira 1971). For any Boolean function f
Depth(f) = O(log L(f)) and L(f) < 2'+Depth(/)

In particular, the notions “polynomial size formulas” and “O(logn)-depth
circuits ” are equivalent concepts.

The second fact concerns the important notion of communication complexity.
Consider a game played by two players A and B; player A receives @ € {0, 1}”
and player B receives b € {0, 1}" such that f(@) # f(b). Their task is to find i
such that @; # b;. They send each other bits of information and the game ends
when the players agree on an answer.

The communication complexity of function f(X) is the minimal number of
bits they need to exchange in the worst case before the game ends. We shall
denote it CC(f). The following is an important characterization of the circuit-
depth measure. The theorem is proved by a straightforward induction.
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Theorem 3.1.16 (Karchmer and Wigderson 1988). For any Boolean function f

Depth(f) = CC(f)

As little is known about the size of formulas as about the circuit-size.

Theorem 3.1.17 (Andreev 1987, Hastad 1993). There is a polynomial-time lan-
guage Z such that

L(Zy) = n®oW

The language Z from the theorem is a rather artificial one. Earlier Chrapchenko
(1971) showed

L(®(x1, ..., %)) > n?

3.2. Bounded arithmetic formulas

We shall consider several languages of arithmetic as underlying languages for
various systems of bounded arithmetic, but there are two basic ones: the language
of Peano arithmetic Lpp defined in Section 2.1, and the language of the theory S,,
denoted simply L, which extends the language Lpa by three new function symbols

EIL
- X X
5 ¥

The intended values of |x| and x#y are [log,(x + 1)] for x > 0 and |0] = 0, and
21614 respectively. Note that |x| is the length of the binary representation of x, if
x> 0.

We shall consider the class of bounded formulas in the language L p 4 first. They
were first defined by Smullyan (1961), who called sets defined by such formulas
constructive arithmetic sets.

Definition 3.2.1.
1. Eg = Uy is the class of quantifier free formulas.
2. Class E; | isthe class of formulas logically equivalent (i.e., in the predicate
calculus) to a formula of the form

Iy <p(a)...3Ix <y(a)p(a,x)

with the formula ¢ € U; and t;(@)’s terms of the language Lpa
3. Uiy is the class of formulas logically equivalent to a formula of the form

Vx <n(a)...Vx, <tr(a)p(a,x)

with the formula ¢ € E;.
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4. Class Ao of bounded arithmetic formulas is the union of classes E; and U;

A0=UEi=UUi
; i

Note that both E; and U; are contained in both E; . and U; 4.

For M a structure for language Lpa symbols E;(M?), U;i(M%), and Ag(MP),
respectively, denote the classes of subsets of M¢ definable by the E;, U;, and Ap
formulas, respectively (we shall usually omit the superscript £ when it is obvi-
ous from the context). Already the class E;(M) can be quite nontrivial from the
complexity-theoretic point of view, as according to Adleman and Manders (1977)
the class E) (V) contains an NP-complete set

{(@,b,0)|3Ix <3y < c,ax2+by= c}

There are several important characterizations of the class Ag(/V). We start with
the notion of rudimentary sets introduced by Smullyan (1961).
The intended structure for the language of rudimentary sets is the set of words
over {0, 1} or, via dyadic coding, the set of natural numbers.
The language of rudimentary sets consists of
1. A: the empty word,
2. T i the concatenation,
3. 0, 1: constants,
and two special kind of quantifiers
4. 3x €, yand Vx C, y: the part-of quantifiers,
S. 3lx| < |y| and V|x| < |y|: the length-bounded quantifiers.
The meaning of x €, y is that the word x is a part of the word y

Azy,z5z)x 2=y
and the meaning of |x| < |y} is obvious: the length of x is at most the length of y.

Definition 3.2.2 (Smullyan 1961).

1. The class of rudimentary sets RUD is the class of subsets of N definable
in the language of rudimentary sets with all quantifiers either part-of or
length-bounded.

2. The class of strictly rudimentary sets SRUD is the class of subsets of N*
definable in the language of rudimentary sets with all quantifiers of the
part-of fype.

3. The class of positive rudimentary sets RUD" is the class of subsets of N*
definable in the language of rudimentary sets with all quantifiers are either
part-of or length-bounded, and in which all quantifiers 3|x| < |y| appear
positively and all quantifiers ¥|x| < |y| appear negatively.
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4. The class of strongly rudimentary sets strRUD is the class of sets that are
positive rudimentary and whose complements are also positive rudimen-
tary.

Note that terms are allowed to appear in the quantifiers.

5. A function f : N® v N is rudimentary if its graph is a rudimentary set

and the function is majorized by a polynomial.

Theorem 3.2.3 (Bennett 1962).

RUD = Ag(N)

Proof (sketch). Clearly there are only two claims to be established:

Claim 1. The graphs of addition and the multiplication are in RUD.

Claim 2. The graph of the operation of concatenation is in Ao(N).

The idea of the proof of Claim 1 is in Bennett’s lemma saying that any function
defined by bounded recursion on notation is rudimentary (see Lemma 3.2.4). We
shall see a bit stronger argument of the same type in Theorem 3.2.8.

For Claim 2 note that

x~y=z iff w<z,y<wAx-w+y=zA “wisapowerof two”
where the last condition is expressed by
Vi<u,v<wit <u,u-v=w —> 2 -t =u

Q.ED.

Lemma 3.2.4 (Bennett 1962). Assume that a function f is defined from two rudi-
mentary functions g and h by bounded recursion on the notation
1. f(0,%) =h(¥)
2. f(x€r, ..., x €, Y) =g(X,E,, f(X,¥)) forall€ € {0, 1}"
and satisf Tes the condition
EP =0 ([T bl + 3] )

Then the function f is rudimentary too.
Theorem 3.2.5 (Wrathall 1978).
LinH = RUD
Proof (sketch). Using the natural coding of computations of machines by 0—1
strings one verifies that 2(')"‘ C RUD, from which LinH € RUD follows immedi-

ately.
The opposite inclusion is obvious. Q.E.D.



20 Basic complexity theory

The possibility of coding in Ag(N) merits further discussion. We shall now
mention two results and return to this topic again in Section 5.4.

Theorem 3.2.6 (Bennett 1962). The graph of exponentiation
{(x,y,2) | x¥ =2}
is rudimentary.

Theorem 3.2.7 (Wrathall 1978). All context-free languages are rudimentary and
hence in Ay(N).

The last theorem finds a root in an important theorem of Nepomnjascij (1970),
generalizing Lemma 3.2.4.

The term TimeSpace( f(n), g(n)) denotes the class of languages recognized by
a Turing machine working simultaneously in time f(n) and space g(n).

Theorem 3.2.8 (Nepomnjascij 1970). Letc > 0and1 > € > 0 be two constants.
Then

TimeSpace(n®, n€) C Ag(N)

Proof (sketch). We shall give an idea of the proof. By induction on & prove that
TimeSpace(n* 179, n) € Ag(N)

If £ = 1 then the sequence consisting of the instantaneous descriptions of a
TimeSpace(nk “(1-€) 4€) computation has size O(n), and hence its code is bounded
by a polynomial in input x, |x| = n.

Assume we have

TimeSpace(n* (1=, n€) € A¢(N)
and let
L € TimeSpace(n®+D-(1-9 pe)

Then x € L if and only if there exists a sequence w = (wy, ..., w,) such that
wg = X, each w; | is an instantaneous description obtained from the instantaneous
description w; by a TimeSpace(n* (! =€), n€) computation, w, is a halting accepting
position, and » < n!~¢,

The length of any such w is again O(n) and the conditions defining it are Ao-
definable by the induction assumption. Q.ED.

Corollary 3.2.9.
L CAy(V)
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The main problem about Ag(N) is whether the hierarchy collapses, which is
the same as whether LinH collapses: that is, whether

Ao(N) = Ei(N)

for some i.
The only partial result is the following weak hierarchy theorem of Wilkie and
Woods.

Theorem 3.2.10 (Wilkie 1980, Woods 1986). Denote by Vi (N) the class of sub-
sets of N definable by a Ao-formula ¢ (x) with at most k quantifiers bounded by
<Xx.

Then for all k

Vi(N) C Vi1 (N)

The rest of this section is devoted to bounded formulas in the language L.

Definition 3.2.11 (Buss 1986).
1. The class 23 = 1'13 of sharply bounded formulas consists of formulas in
which all quantifiers have the form

dx < |t] or Vx < |t}

That is, the quantifiers are bounded by the length of a term.
2. For 0 < the classes Zf’ '+ and l'If’ 11 are the smallest classes satisfying

(@ TPUM] S E NI,
(b) both Zf’ ' and l'lf’ '+ are closed under sharply bounded quantifica-
tion, disjunction Vv, and conjunction A

(c) Ef’ 1 is closed under bounded existential quantification

(@) l'[f’ 11 is closed under bounded universal quantification

b

(e) the negation of a 2;’ 1 Sormulais TI7 | , and the negation of a né R

; b
Jormula is £} .

3. The class L, of bounded L-formulas is the union | J; £? = | J; I°.
4. 4 Ef’ -formula is Af’ (respectively Af in a theory T) iff it is equivalent to a
I'[f7 -formula in predicate logic (respectively in T ).

In words: The complexity of bounded formulas in language L is defined by
counting the number of alternations of bounded quantifiers, ignoring the sharply
bounded ones, analogously to the definition of levels of the arithmetical hierarchy
where one counts the number of alternations of quantifiers, ignoring the bounded
ones.
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Theorem 3.2.12. The subsets of N defined by Ego-formulas are exactly the sets
from the polynomial-time hierarchy PH.
In fact, fori > 1 the Zf’-formulas exactly define the Zip -predicates.

Proof (sketch). The only difference from Lemma 3.2.4 and Theorem 3.2.5 is
that now we need to code computations of length n9, n = |x|. If |y| < nOD
then y < x#...#x, which is a term of L; hence such y’s can appear in bounded
quantifiers. Q.ED.

We should note that Bennett (1962) also considered a class of the extended
rudimentary sets, which are defined similarly to the rudimentary sets except that
the language is augmented by a function of the growth rate of the function #. It is
then a straightforward extension of Theorem 3.2.5 that the extended rudimentary
sets are exactly those from the polynomial time hierarchy PH.

3.3. Bibliographical and other remarks

For the history of results and ideas from Section 3.1 the reader should consult
Boppana and Sipser (1990), Wegener (1987), and Sipser (1992). Important top-
ics omitted are NP-completeness, for which Garey and Johnson (1979) is a good
source, and the completeness results for other classes, in particular, the complete-
ness of directed st-connectivity for class NL and the completeness of undirected
st-connectivity for class L/poly (Aleliunas et al. 1979). Karchmer and Wigderson
(1988) and Raz and Wigderson (1990) study the depth of monotone circuits for
connectivity and matching.

Other interesting facts, but not used later in the book, concern branching pro-
grams: Barrington (1989) characterized Boolean functions with polynomial size
formulas as those computed by width 5, polynomial-size branching programs, and
a relation of space bounded Turing computations to size of branching programs:
L/poly = BP (cf. Wegener 1987).

Very important but unfortunately unpublished is Bennett’s Ph.D. thesis (Ben-
nett 1962), containing either explicitly or implicitly most later definability results
such as Cobham (1965) and Nepomnjascij (1970). Paris and Wilkie (1981b) study
rudimentary sets explicitly.
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Basic propositional logic

This chapter will present basic propositional calculus. By that [ mean properties
of propositional calculus established by direct combinatorial arguments as distin-
guished from high level arguments involving concepts (or motivations) from other
parts of logic (bounded arithmetic) and complexity theory.

Examples of the former are various simulation results or the lower bound for
resolution from Haken (1985). Examples of the latter are the simulation of the
Frege system with substitution by the extended Frege system (Lemma 4.5.5 and
Corollary 9.3.19), or the construction of the provably hardest tautologies from the
finitistic consistency statements (Section 14.2).

We shall define basic propositional proof systems: resolution R, extended res-
olution ER, Frege system F, extended Frege system EF, Frege system with the
substitution rule SF, quantified propositional calculus G, and Gentzen’s sequent
calculus LK. We begin with the general concept of a propositional proof system.

4.1. Propositional proof systems

A property of the usual textbook calculus is that it can be checked in deterministic
polynomial time whether a string of symbols is a proof in the system or not. This
is generalized into the following basic definition of Cook and Reckhow (1979).

Definition 4.1.1. Let TAUT be the set of propositional tautologies in the language
with propositional connectives: constants 0 (FALSE) and 1 (TRUE), — (negation),
V (disjunction), and A (conjunction), and atoms py, pa, .. ..

A propositional proof system is @ polynomial time function P whose range is
the set TAUT.

For atautology 1 € TAUT, any string w such that P(w) = 1 is called a P-proof
of 1.

23
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The size of a string w is the total number of occurrences of symbols in it; it is
denoted |w)|.

Note that standard calculi, like those mentioned earlier, are all covered by this
definition as one can define a function P

P(w) T wis aproof of T in the calculus
w) 1=
1w is not a proof in the calculus

This function is polynomial-time, the P-proofs of t are precisely the original
proofs (except when t = 1), and the range of P is the whole set TAUT as all these
calculi are complete (resolution and extended resolution after a suitable encoding
of all formulas by formulas in the disjunctive normal form).

The following problem is one of the most fundamental open problems of logic.

Fundamental problem. Is there a propositional proof system P in which every
tautology has a polynomial size proof? That is, are there a proof system P and a
polynomial p(x) such that any tautology t has a P-proof of size at most p(|t|)?

Theorem 4.1.2 (Cook and Reckhow 1979). There exists a propositional proof
system in which every tautology has a polynomial size proof if and only if the
class NP is closed under complementation: NP = coNP.

Proof. The “only if” part follows as Jw(|w| < p(|t]); P(w) = 1 defines a non-
deterministic acceptor for the coNP-complete set TAUT whenever all tautologies
have size < p(|t|) P-proofs.
For the “if part” let M be a nondeterministic polynomial time acceptor for
TAUT and define
T w is an accepting computation of M on 7
P(w) :=

1  otherwise QED.

Not surprisingly, then, there are no lower bounds known for the size of proofs
in a general propositional proof system. The current research activity concentrates
rather on proving lower bounds for particular natural propositional calculi or on
comparing the efficiency of various systems. For the latter task the following
definition is basic.

Definition 4.1.3. Let P and Q be two propositional proof systems.
(a) Let g: N — N be a function. We say that a system P has a speed-up g
over a system Q iff:

Pw)=1— 3w, lwi] <gllwhDA Q) =1

holds for all w and t.
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We say that P has a polynomial speed-up over Q iffit has an n* speed-up

(k a constant), and we say that it has a superpolynomial speed-up (resp.

an exponential) iff it has no n* speed-up for all k (resp. if it has no 2"*

speed-up, some € > Q).

We denote by P < Q the fact that P has a polynomial speed-up over Q.
(b) A polynomial simulation of P by Q (or briefly a p-simulation) is a poly-

nomial time function f(w, T) such that for all w and ©

Pw)y=1—- 0(f(w, 1)) =1
We write P <, Q if there is a polynomial simulation of P by Q.

An immediate corollary of the definition is that both < and <, are quasi-
orderings of propositional proof systems, and that <, is a finer quasi-ordering
than <. Note that if tautologies have polynomial size P-proofs then they have
polynomial size proofs in every system <-greater than P. A system P admitting
polynomial size proofs for all tautologies would be, in particular, a maximal el-
ement in the quasi-ordering <. It is unknown, however, whether there are any
maximal elements in this quasi-order (cf. Krajicek and Pudlak 1989a).

4.2. Resolution

The resolution system was introduced by Blake (1937) and developed in Davis
and Putnam (1960) and Robinson (1965). The system operates with atoms p;,
P2, - .. and their negations —p|, —py, ..., but has no other logical connectives.
The basic object is a clause, a finite (possibly empty) set of literals, that is, atoms
or negated atoms. We think of a clause as of a disjunction of the literals in it. A
truth assignment

«:{p1, p2,...} = {0, 1}

satisfies a clause C if and only if it satisfies at least one literal in C. This will be
denoted by « = C. It follows that no assignment satisfies the empty clause.
The resolution rule allows us to derive new clause C| U C> from two clauses
CiU{p}and G U {—p}
Ci1U{p} U{-p}
CiuC,

There are no restrictions on occurrences of literals p, —p in C or C,. An obvious
property of the resolution rule is that if a truth assignment satisfies both upper
clauses of the rule then it also satisfies the lower clause. This is the soundness of
the resolution rule.

A resolution refutation of a set C = {Cy, ..., Cy} of clauses is a sequence of
clauses Dy, ..., D, such that each D; is either an element of C or derived by the
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resolution rule from some earlier D,, D, u, v < i, and such that the last clause
D, is the empty clause.

Although the system does not allow one to work with propositional formulas
directly, there is an indirect way called limited extension similar to reducing the
general satisfiability problem to the satisfiability of sets of clauses. Let 6 be a
formula in atoms py, ..., p,. Introduce for each subformula ¢ of 8, including 6
itself, a new atom g4 and a set Ext(#) of all clauses of the form

L. {94, —pi}, {—q¢, pi}, if ¢ is atom p;
2. {gp, 9y}, {mg4. ~qyl}if ¢ =~y
3. =94, 9y v} 190, 9y, 1 90, gy, if @ = Y1 VY2
4. {_'q¢’ qy, b {_'q¢’ qllfz}v {qd)’ 4y _'qlﬁz} ifo =11 A
Clearly the set Ext(0) is satisfiable if and only if the formula 6 is satisfiable.

Theorem 4.2.1. A set of clauses is unsatisfiable: that is, there is no truth as-
signment satisfying simultaneously all clauses in the set, if and only if there is a
resolution refutation of the set.

Proof Any truth assignment satisfying all clauses in set C would have to satisfy,
by the soundness of the resolution rule, all clauses in a resolution refutation of C.
In particular, the empty clause would also be satisfied, and that is impossible. This
proves the “if part” of the theorem.

Assume now that C is unsatisfiable and let py, ..., p, be all atoms such that
only the literals p1, —p1, ..., pn, —pn appear in C. We shall prove by induction
on »n that for any such C there is a resolution refutation of C.

Decompose C into four disjoint sets Cop U Co1 U Ci0 U C11, of those clauses
which contain no p, and no —py, no p,, but do contain —p,, do contain p, but
not — p, and contain both p,, —p,, respectively.

Let Co1 x Cio be the set of clauses obtained by the resolution rule applied to
all pairs of clauses C1 U {—p,} from Cqy and to C, U {p,} from Cjo; these new
clauses do not contain either p, or = p,. Form a new set of clauses

¢’ = Coo U (Cor x C10)

The set C’ is unsatisfiable too. This is because any assignment o’ : {p;, ..., p,} =
{0, 1} satisfies either all clauses C such that C{ U {—p,} € Cp, or all clauses C,
such that C; U { p,} € Cip.

Apply the same procedure to atoms p,—1, py—2, ... to produce setsC”, C"”, ...
which are all unsatisfiable and derivable by the resolution rule from the original set
C. The nth such set will contain just the empty clause: that is, we get a resolution
refutation of set C. Q.E.D.

As a corollary of the completeness proof we get a simple upper bound to the
number of clauses appearing in a resolution refutation of an unsatisfiable set of &
clauses.
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Corollary 4.2.2. Let C be an unsatisfiable set of k clauses formed from literals
built from n atoms. Then for every 0 <t < n there is a resolution refutation of C
with at most
t k2‘
n—t
D IE
s=0
clauses.

Proof. By the completeness of R any unsatisfiable set of clauses formed from ¢
atoms or their negations has a resolution refutation with < 4¢ clauses as 47 is the
number of all such clauses.

In the proof of Theorem 4.2.1 we start with k clauses in n atoms; after the first
step we create an unsatisfiable set of at most (k> /4) new clauses in n — 1 atoms,
and after 7 steps we have k+ k2/4)+. .. (k2’ /4") clauses with the last set being an
unsatisfiable set in n — ¢ atoms, that is, with a refutation with at most 4"~ clauses.

Q.E.D.

We shall see later that this upper bound cannot be much improved.

The following search problem is associated with an unsatisfiable set C =
{C1, ..., Ci}: given a truth assignment & find C; € C false under «. This search
problem can be solved by a branching program (cf. Definition 3.1.12), with leaves
labeled by the clauses from C. A branching program solves the search problem if
and only if for every truth assignment «, the leaf of the path P(«) determined by
a is labeled by a clause false under «.

Theorem 4.2.3. Let t be the minimal number of clauses in a regular resolution
refutation of C, where “regular” means that on every path through the refutation
every atom is resolved at most once.

Let s be the minimal number of nodes in a read-once branching program solving
the search problem associated with C, where “read-once” means that on every path
through the branching program every atom occurs at most once as a label of a
node.

Then

t=s

Proof. Letn be aregular resolution refutation of C. Construct a branching program
as follows: The last clause in 7 (the empty one) becomes the root, the initial
clauses from C become the leaves, and all other clauses in 7 become out-degree 2
nodes with the two edges directed from a clause to the two clauses that form the
hypotheses of the inference giving the clause. If the resolved atom in that inference
is p; then the edge to the clause containing p; is labeled by 0, and vice versa.

Now it is straightforward to verify that all clauses on a path determined by a
truth assignment « are false under «: That is, the branching program solves the
search problem and it is read-once as m was regular.
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For the opposite direction let o be a read-once branching program of the minimal
size. With every node v in o associate a clause C, having the property that every
assignment determining a path going through v falsifies C,.

If v is a leaf then C, is the clause from C labeling v in 0. Assume that the node
v is labeled by atom p; and the edge (v, vy) is labeled by 1, and (v, vp) by 0.

We claim that C,,, does not contain p; and Cy, does not contain —p;. This is
because ¢ is read-once and so no path reaching v (and at least one path does reach
v as s is minimal possible size) determines the value of p;. Hence we could prolong
such a path by giving value 1 to p; if p; € C,, or value 0 if —=p; € C,,. This new
path would satisfy C,, or C,, respectively, contradicting the previous assumption.

1t follows that either one of the clauses C,,, Cy, contains none of p;, = p;, or
that C,, contains p; but not —p; and C,, contains —p; but not p;. In the former
case define C, to be the clause containing none of p;, —p;, and in the latter case
define C, to be the resolution of clauses C,, and C,, with respect to (w.r.t.)
atom p;.

It is easy to verify (using an argument similar to the earlier one) that no path
through v satisfies C.

The root of ¢ has to be assigned the empty clause as all paths go through it.
Hence the constructed object is a regular resolution refutation. Q.E.D.

Note that the first part of the proof showed that s < ¢ even without the restriction
to regular and read-once.

In the rest of the section we prove a strong lower bound to the number of clauses
in resolution refutations of particular sets of clauses having clear combinatorial
meaning: the weak pigeonhole principle.

Letm > n be two natural numbers. Consider set — PHP}' of clauses with atoms
pij,i=0,....m—-land j=0,...,n -1

{=pix, —pjk}, alli # jandk

{Pios s Pita-1)}»  alli

Interpreting conditions p;; = 1 as defining a relation € {0,...,m — 1} x
{0,...,n — 1} the clauses say that the relation is a graph of an injective map
from {0,...,m — 1} to0 {0, ..., n — 1}. Hence the set is unsatisfiable and has (by
Theorem 4.2.1) a resolution refutation. The following theorem was first proved by
Haken (1985) form =n + 1.

Theorem 4.2.4 (Haken 1985, Buss and Turan 1988). Inany resolution refutation
of set = PHP?! at least

22(%)

different clauses must occur.
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Proof. A 1-1 truth assignment to atoms p;; is a truth assignment « for which the
relation

{G.yemxnla(py) =1}

is a partial 1-1 function from m to n. We shall denote by dom(«) and mg(w) its
domain and range.

A maximal 1-1 assignment is a 1-1 assignment « that assigns n ones.

Let 7 be a resolution refutation of — PHP}’ and assume # is divisible by 4.

Claim 1. For every maximal 1—1 truth assignment o there is a clause Cq in
satisfying
1. o does not satisfy Cq
2. foreveryi ¢ dom(a) there are at most (n/2) j’s such that p;; € Cy
3. there is exactly one i ¢ dom(w) such that there are exactly (n/2) j’s such
that bij € Co

To see the claim consider the unique path P, in 7 consisting of clauses Cy, C,
..., C, such that
(i) Co is the end clause of 7, that is, the empty clause
(ii) Cj;4; is one of the two clauses that are the hypothesis of the resolution
inference giving C;
(iii) « does not satisfy any of C;
(iv) C; € ~PHP}
As « is maximal 1-1, clause C, must have the form

Cr ={pios - - -+ Pin=1)}

for some i ¢ dom(w). Let C be the first such clause in Cy, ..., C; such that for
some i ¢ dom(w), there are at least (n/2) j’s such that p;; € C. This C satisfies
all conditions 1-3.
For o a maximal 1-1 assignment let C, be the first clause in 7 satisfying 1-3.
For B a 1—1 assignment, not necessarily maximal, let C # be the first clause C,
for some maximal ¢ extending 8.

Claim 2. Assume that B is a 1-1 assignment which assigns (n/4) ones. Then there
are at least (n/4) + 1 i’s for which either there is j such that —p;; € C B or there
are at least (n/2) j's such that p;; € ch.

To prove the claim let C# = C, for a maximal 1—1 assignment «. Define:
COL™ := {i | 3, ~pi; € CF}
COL* :={i | i € dom(a) A (Vj, =pi; ¢ CPYATFZWD j p;: e CP}
ig := the i ¢ dom(a) such that for exactly (n/2) j’s, p;; € Cc#
A= {p;jjla(pi;) =1AB(pi) =0}
The sets COL~,COL™ and {i,} are mutually disjoint (as COL™ N(n\dom(e)) =
@ holds because C# is not satisfied by «). Point iy satisfies the condition of the
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claim, and as, by the definition, forall i ¢ dom(«), i # i( there are less than (n/2)
j’s for which p;; € CP, it remains to show

|COL™| + |COL*| >

NI

Assume otherwise; then there must be p;; € 4 for which { p;; j, = pio;} N CP=¢
andi ¢ COL™ U COL™. This is true because the former condition excludes only
(n/2) elements of A and the latter excludes less then (n/4) elements of A: That
is, both conditions exclude less than (3n/4) = | 4| elements of 4. Now take such
an atom p;; and define a new maximal 1-1 assignment o’ from « by changing the
value of p;; from 1 to 0 and of pj,; from 0 to 1. Clearly 8 C o’ and ' does not
satisfy C# either, but for all « ¢ dom(a’) there are less than (n/2) v’s for which
Puv € CP (as we replaced ig by i). It follows that the clause C precedes C# in
the refutation, contradicting the definition of C#.

We are ready to prove the bound. Let A(n, m) be the number of 1-1 assignments
« with | dom(a)| = (n/4) and let g(n, m) be the maximal number of such 1-1
assignments S sharing the clause C#. Clearly then the ratio

h(n,m)
g(n,m)

is a lower bound to the number of different clauses in the refutation of = PHPJ'.
To simplify the expression put k£ := (n/4). Then clearly

e (0)01

but A(n, m) can also be expreséed differently. For fixed clause C = C# let X,
|X| = k + 1, be a set of some k + 1 i’s satisfying the property of Claim 2. If ¢
denotes the number of atoms p;;, B(p;i;) = 1, such thati € X then we also have

k b+ 1N\(m—k—1\ n
h(""")=z< ¢ )( k—t )(n—k)!
=0

Foreachi € X there are at most (n/2) j’s for which it is possible that 8(p;;) = 1,
for a 1-1 assignment 8 such that C = Ch, | dom(B)| = k. Thus

k b+ 1\ (m—k—1\ /n\t (n— 1)
g(””")fz( ¢ )( k—t )(5) B!

=0

Therefore we obtain a lower bound to the ratio

h(n, m) Ym0 (T Yo (D

>

gln,m) = YE N 2y (= 0t/n) T T (F) ("N @/3y
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G e <()

holds for ¢ < k = (n/4). The last ratio is 22¢°/m QED.

because

Note that when m < n'~¢ the bound is exponential and for m = o(n?/ log(n))
it is still superpolynomial.

Open problem. Are there resolution refutations of = PHP™, m = n?, with poly-
nomially many clauses?

4.3. Sequent calculus

Gentzen’s sequent calculus is the most elegant proof system, for both propositional
and predicate logic, allowing sharp proof-theoretic analysis. In this section we shall
treat the basics of the propositional part of Gentzen’s system LK, which we shall
also denote by LK as there is no danger of confusion. The full predicate system LK
and its modifications for bounded arithmetic are considered in the next chapter.
For the details of Gentzen’s system we refer the reader to Takeuti (1975).

We shall confine ourselves to the same language asin Section4.1: 0, 1, =, v, A,
and atoms. The formulas are built by using the connectives from atoms and con-
stants. First we define the notion of the depth of a formula (a proof).

Definition 4.3.1.
1. The logical depth of formula ¢, denoted £dp(p), is the maximum nesting
of connectives in ¢. Precisely:

(a) €dp(0) = £dp(l) = €dp(p) = 0, any atom p
(b) tdp(—=y) =1+ Ldp(y), any
(¢) Ldp(noy) = 1 +max(€dp(n), Ldp(y)), foranyn, ¥ ando = VvV, A

2. The depth of formula ¢, denoted dp(¢), is the maximum number of alter-
nations of connectives in ¢. Precisely:

(@) dp(¥) =0if tdp(¥) =0
(b) dp(—y¥) = dp(y) if the outmost connective of  is —, and
dp(—y) = 1 +dp(yr) otherwise
(i) dp(n Vv ¥) = max(dp(n), dp(i)) if the outmost connective in
bothn,yris vV,
(ii) dp(n Vv ¢) =1+ max(dp(n), dp(¥)) if none of n, ¥ has v as
the outmost connective,

(iii) dp(n v ¥) = max(1 + dp(n), dp(¥)) if V is the outmost con-
nective of yr but not of
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(iv) dp(n v ) = max(dp(n), | +dpQp)) if v is the outmost con-
nective of  but not of V.

3. The depth of proof m (resp. the logical depth) is the maximal depth of a
Jormula in w (resp. the maximal logical depth). It is denoted dp(w) or
Ldp(m), respectively.

The basic object of the sequent calculus is a sequent, an ordered pair of two
finite sequences (possibly empty) of formulas written as

S1oes by — V1, Yo

The symbol — separates the antecedent ¢y, . . . , ¢, from the succedent 1, . ..,
Yy. We shall use letters I', A, I, . .. to denote finite sequences of formulas, also
called cedents.

The truth definition is extended from formulas to sequents by the following: An
assignment « satisfies a sequent I’ — A if and only if « satisfies a formula from
the succedent A or the negation of a formula from the antecedent I'. In particular,
the empty sequent § —> @, also written simply —, is unsatisfiable.

Definition 4.3.2. An LK-proof is a sequence of sequents in which every sequent
either is an initial sequent, that is, a sequent having one of the forms

A— 4, 00—, — 1

with A an atom, or is derived from previous sequents by one of the following rules:
1. weakening rules

r—A . r — A
left ———  and right ——
AT — A r — A, A4
2. exchange rules
', 4, B, I, — A . ' — A|,A4,B, A
left — 2 and right ! 2
FI,B,A,FZ_)A F_)A],B,A,AZ
3. contraction rules
', 4, A, T, — A ) ' — A,A4,4,A
left — 2 and right ] 2
r,A, T, — A I' — A}, 4, A
4. —:introduction rules
r— A, 4 AT — A
left ———  and right —
—A4,T — A '— A,—A4
5. A :introduction rules
A, T A AT — A
left ——— 2 and

ANBT A ™ BAAT S A

r—A,4 I'—A,B
I' — A,AAB

and right
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6. V :introduction rules
A T'— A BT — A

left AVB.T A and
N F_)A9A F“"’A,A
right — MM and —m8M————
I'— A,AV B I'— A,BVv A

7. cut-rule
r — A, 4 AT — A
r— A

The new formula introduced in a rule is called the principal formula of the rule;
formulas from which it is inferred are called the minor formulas of the rule. All
other formulas are called side formulas.

Foraformulain A orT inthe lower sequent of a rule, the same occurrence in the
upper sequent(s) is called the immediate ancestor of the formula. The immediate
ancestor(s) of a principal formula of a rule are the minor formulas of the rule.

An ancestor of a formula is any formula obtained by repeating the immediate
ancestor step.

Theorem 4.3.3. The system LK is complete. That is, whenever a sequent ' —> A
is satisfied by every truth assignment then there is an LK-proof of T —> A.

Proof. We shall define a tree with nodes labeled by sequents by the following
process:

1. The root is labeled by ' — A.

2. Ifanode is labeled by

hn— %, -¢

where —¢ is a formula with the maximal logical depth in the sequent, then
the node has only one successor labeled by

¢, 11— X
3. If anode is labeled by
n— X, 0ny

where ¢ A ¥ has the maximal logical depth, then the node has exactly two
successors labeled by

M—ZX,¢ and M— Z, ¢

respectively.
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4. If a node is labeled by
hn— Z,¢vy

where ¢ v ¥ has the maximal logical depth, then it has one successor
labeled by

n—Z,¢vy,ovy

which has one successor labeled by
n— X, ¢,0vy
and this node also has one successor labeled by
In— 2,¢,¢

5. The cases where a formula of the maximal logical depth is only in the
antecedent are defined dually, exchanging the roles of v and A.

Claim. All sequents appearing as labels are valid.

The claim follows from the assumption that the sequent I' —> A labeling the
root is valid.

It follows that the leaves of the tree must be labeled by a sequent consisting
of atoms in which an atom appears in both the antecedent and the succedent, or
containing 1 (resp. 0) in the succedent (resp. in the antecedent).

Such sequents can be obtained from the initial sequents by the weakening rules.
The rest of the tree then defines an LK-derivation of I' —> A. Q.ED.

Definition 4.3.4.
(a) An LK-proof is called treelike if every sequent in the proof is used as a
hypothesis of an inference at most once.
(b) An LK-proofis called cut-free iff the cut rule is not used in the proof.
(¢) The height of an LK-proof is the maximal number h such that there is a
sequence Sy, . . ., Sy, of sequents of the proof in which S; is a hypothesis of
the inference yielding S;+1, all i < h.

Note that if the LK-proof is treelike its height is just the usual height of the
proof tree.

Corollary 4.3.5. Assume that U —> A is a valid sequent of size n. Then there is
a cut-free, treelike LK-proof of T' —> A of size at most O(n - 2").

Proof. Let f(n) be the least upper bound to the size of treelike LK-derivations
of valid sequents of size n. Then the proof of the previous theorem shows that f
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satisfies inequality
S)=0m +2f(n—1)
which yields
f(n) = 002"
Q.E.D.
Corollary 4.3.6. Every valid sequent

¢|$'--7¢ll_—)1//1""’wv

has a (cut-free) LK-proof in which every formula is a subformula of one of the
formulas ¢1, ..., Qu, W1, ..., Yy,

Proof. By Theorem 4.3.3 every valid sequent has a cut-free proof. Observe that in
every rule except the cut-rule all formulas appearing in the upper sequents of the
rule also appear as subformulas in the lower one. Q.ED.

Important applications of cut-free proofs are the Craig interpolation theorem
and the Beth definability theorem.

Theorem 4.3.7 (Craig 1957). Let the sequent
F'(p.g) — A(B,7)

have a cut-free, treelike LK-proof of height h.
Then there is a formula I(p), an interpolant of the sequent, satisfying the
Jollowing conditions:
1. I(’p) contains no atoms q orr
2. both sequents

r—1 and I — A

are valid
3 tdp(Iy<h+1
Morevover, both sequents from condition 2 have a cut-free, treelike proof of height
O(h).

Proof Let I1 — X be a sequent in the proof. Assume that I[1 = I1; U I1, and
¥ = X UX, where I, X, are the ancestors of I" and I, X, are the ancestors of
A. We shall show by induction on /', the height of the subproof yielding [T — %,
that there is a formula I’ with no atoms g, 7 such that both sequents

H| b 21,] and ], H2~——-> 22

are valid, and such that ¢dp(I') < &’ + 1.
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For 2’ = 0 the sequent [T — T is an initial sequent. If it is 0 — put
, 0 if0ell
I' =
1 if0 e I,
and dually in the case of the sequent —> 1

, 1 ifle X
I =
0 ifteX

If 1 — X is the initial sequent p; —> p; define
Di ifIlh=21=0
0 fMly=%,=0
1 ifllj =% =0
—p M =%=0

I'=

If 1T — X is the initial sequent g; —> ¢; then both occurrences of ¢; must
be ancestors of I' and we put /' := 0. Dually, if [T — I is the initial sequent
r;i —> ri thenweput I’ ;= 1.

The only case of an initial sequent when the logical depth of I’ is not 0 is when
I' = —p;, that is, always €dp(I'y < 1 = h' + 1.

For #’ > 0 we distinguish several cases according to which inference rule
was used to derive [T —> X and according to which of the sets 1y, 13, =y, X3
contain the principal formula of the inference.

Let us consider just the case of the A : right inference of [ — X from
M-— X,eand 1 — X', B where a A 8 is the principal formula and /| and
I are two interpolants associated with the upper sequents. Define:

hAnD ifarnBeX

I =
Lhvh ifanBeZ

Hence ¢dp(1) < | + max(¢dp(l1), Ldp(ly)) < 1 +h'.
The cases of the other rules are treated analogously. We also leave it to the
reader to verify that all sequents

My — X4,/ and I[,11 — %>
have cut-free, treelike proofs of the height O(h'). Q.E.D.
Theorem 4.3.8 (Beth 1959). Let the sequent
L(p.q).T(p. 7)., q1t — |

withqg = (q1,...,qm),T = (ri,..., rm) have a cut-free, treelike LK-proof of
height h.
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Then there is formula E(p), an explicit definition of q1, satisfying the following
conditions:
1. E(p) containsnogqorr
2. both sequents

F'(p.9).q1 — E(P) and T'(p.q), E(P) — q1

are valid
3 ldp(Ey <h+ 1.
Morveover, both sequents in 2 have treelike, cut-free LK-proofs of height O (h).

Proof. Let E be the interpolant constructed in the previous proof for the sequent
nl’ n2 —> 2]’ 22 Wlth nl = r(?’q)’ q1, nz = F(?"aF)a 2[ = @ and
Yy = r;. Then

F(ﬁ’a)v ql —> E
and
'(p,7r), E—r

from which immediately follows by renaming 7 into g
r( -ﬁ» q )» E —> CIl

QE.D.

It is an open problem whether the assumption that the proof is cut-free can be
dropped from the hypothesis of the last two theorems; see Krajicek (1995b) and
Krajicek and Pudlak (1995).

The last but one theorem of this section is a lower bound to the worst case
increase of the size of proofs after cut-elimination, showing that the upper bounds
from Corollary 4.3.5 are good even if we would strengthen the hypothesis 0f4.3.5
to the assumption that the sequent has a short LK-derivation.

Theorem 4.3.9. There is a sequent S of size |S| = m such that every cut-free,
treelike LK-proof of S has at least ome® sequents.
Moreover, the sequent S has an L K-proof of size m°).

Proof. Let S be the sequent whose succedent is empty and whose antecedent
consists of n + 1 + ("31) . n disjuncts \/ C (arbitrarily bracketed), one for each
clause C of = PHP”*! from Section 4.2.

Let 7 be a cut-free, treelike LK-proof of S. By Lemma 4.3.6 every sequent Z
m 7 has the form

Dlv"'lel_)qh'--’qv
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where D, are disjunctions of literals p;; or — p;; and g, are atoms among p;;. By
induction on the number & of inferences in the subproof of 7 yielding the sequent
we show that there is a resolution derivation of the clause

{‘Il,---,Qv}

from the clauses Dy, ..., D, (we identify a disjunction of literals with the clause
consisting of those literals) with at most & resolution inferences.

If Z is an initial sequent in 7 or derived by a structural rule, then there is nothing
to prove. The only other inferences in 7w canbea \/ : left inference ora — : left
inference. In the former case,

'NE— A F— A
LMEVF— A

where I', EV F — A is the sequent Z, assume that ¢ and o are two resolution
derivations of A fromI", E and from I, F, respectively. Construct a new derivation
o of A from I, E v F by first replacing E in o9 by E v F, getting a derivation of
A, F, and then joining this with o), where F is replaced by A, F.

In the latter case

I'— A,q

'h-g — A
we have by the induction assumption a resolution derivation of A, g from .
Prolong this derivation by a resolution inference applied to A, ¢, and {—¢}.

Clearly the number of resolution inferences is bounded by the number infer-
ences in 7 ; we use the assumption that 7 is treelike to maintain this bound during
the simulation of a \/ : left inference.

By Theorem 4.2.4 every resolution refutation of — PHP?*! must contain at
least 22 clauses. Hence 7 must contain 2% inferences, which is 2" for
m = |S| = O@n3).

By Corollary 13.1.8 and Lemma 4.4.15 the sequent S has a size m @V LK-proof.

Q.ED.

We shall see in Section 12.5 that Theorem 12.5.3 has a much stronger lower
bound for the sequent S.

The next proposition will show that every treelike proof can be balanced with
only a polynomial increase in size. The lemma itself looks rather technical so let
us first motivate it. Assume that we have a proof 7w of sequent S from sequents
S1, ..., Sk (additional axioms: initial sequents). Let & be a truth assignment not
satisfying §. It determines a path P(«) through n: a sequence Zg,..., Z; of
sequents such that Zy = S, each Z; is false under o, Z; ) is a hypothesis of the
inference yielding Z;, and Z, is initial. Obviously Z; € {Sy, ..., S¢} and hence
7 acts as a branching program solving the search problem to find false S; (cf.
Theorem 4.2.3). Z;4 is uniquely determined by Z; alone in all rules except in
A : right,\/ : left and in the cut-rule. It is thus of interest to estimate the number
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of these inferences on any path through 7 as such an estimate gives information
about the complexity of the search problem.
We introduce two new derived rules:
1. special \ : right
' — A, A4
F' > A YA AVaAT AL A AA

2. special \/ : left

AT — A
“PIV... VY, VEH V...V VAT — A

where I' = (y,...,¥,) and A = (81, ..., 8p). Their advantage, in connection
with the preceding discussion, is that they have only one hypothesis. We call a
proof special if it uses special A : right and special \/ : left but does not use
A @ rightor v : left. Note that the only inference in special proofs with more
than one hypothesis is the cut.

Lemma 4.3.10. Let 7 be a treelike LK-proof of sequent S. Assume thatd = dp(w)
is the maximal depth of a formula in 7 and that = has size m.
Then there is a treelike special LK-proof ' of S from a set {Ty, ..., Ti} of
some tautological sequents such that
1. dp(zy<1+d
2. the size of any cut formula in ' is O(m?)
3. the number of cuts on any path through nt’ is at most O(log m)

Proof. Assume 7 satisfies the hypothesis of the lemma. Construct a proof o, of §
by replacing in 7w any A : right with a principal formula 4 A B (resp. v : left with
a principal formula 4 v B) by two cuts with the sequent 4, B — A4 A B (resp.
with A v B —> A, B); let these new sequents form the set T = (T, ..., Ty} of
tautological sequents used as axioms in o. Clearly |o;;| = O(m).

Denote by H(co) the number of cuts in a proof o and by 4 (o) the maximum
number of cuts on a path through o.

The following claim borrows from the idea of the proof of Theorem 3.1.15 from
Spira (1971).

Claim 1. Let 0 be an LK-proof and assume
G/2y~" < H(o) < (3/2)

Then there is a subproof 09 of o ending with cut-inference

' — A4 AT —A
Nr—A
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and with two immediate subproofs oy and o (with end-sequentsT" — A, A and
A, T —> A, resp.) such that fori = 1 ori = 2 it holds

173 t—1 3 t—1
5 (5) < H(oy) < ('2‘)

H(o) — H(oy) < 3/2)' !

and

The lemma follows from Claim 2 for o = o5 as dp(oy) = dp(r) and |o; | =
o(|x)).

Claim 2. Let o be a treelike special LK-proof from axioms T. Let d be the max-
imum depth of a cut-formula in o and n(o) the maximum size of a sequent in o.
Lett ;= [log 3/2(H(a))].
Then there is a treelike special proof o’ with the same end-sequent as o such

that

1. dp(cy<1+d

2. the size of any cut-formulain o’ is <2 . n(o)

3. k(o) <14t =0(og(c)))

We prove Claim 2 by induction on ¢: Assume ¢ satisfies these inequalities. By
Claim 1 there is a subproof oy ending with a cut-inference
r—-A,4 AT —A
r — A
with two subproofs o1, 62. Assume without loss of generality (w.l.o.g.)i = 1 in

Claim 1. Denote by n(o) the maximum size of a cut-formula in 0.
By the induction hypotheses applied to o} we get a special proof o; of

Fr— A, A4

such that n(o]) = 2'~! - n(o{),dp(o]) < 1+dandh(o)) < 1+t —-1<1t.
Prolonging o by several ~ : right and vV : right and contractions we get a
special proof oy’ of

— P V.. W VE V...V VA

where y;’s and §;’s are as in the definition of the special rules.
After the proof o7 insert one special \/ : left to derive from 4, — A

YV YV V...V VAT — A

and then continue as in ¢ carrying the extra side formula —y; v ... =y, V §; v
...V 8p V A in the antecedents. This yields a special proof 03, n(0;) < 2n(02),
and H(o;) = H(o) — H(o1).
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Apply the induction hypothesis to o, to get a special proof o, of
YV eV V...V VAT — X

where IT — X is the end-sequent of o, dp(0;) < 1+ d, h(o))
n(o)) <271 . n(o3) <2" - n(oy).

Joining the proofs o," and o," by one cut-inference gets the required special
proof o’, estimating the size of the last cut-formula by 2n(o7) <2’ -m. Q.E.D.

< t, and

There are other forms of this lemma, depending on a particular formulation of
the proof system and on a particular purpose (see 12.2.4).

In later chapters we shall frequently talk about constant-depth LK-proofs: the
proofs in which the depth of formulas is bounded by an independent constant.
For such systems it is more elegant to allow the connectives /\ and \/ to have an
unbounded arity and change Rules 5 and 6 of Definition 4.3.2 to allow introduction
of these new conjunctions and disjunctions from several hypotheses in one step.
We will conclude this section by the definition of these constant-depth systems
and by a simple statement.

Definition 4.3.11. Unbounded arity connectives /\ and \/ are connectives such

that \(Ay, ..., Ap)and\/ (41, ..., A,) (written brieflyas \; ., Aior\/; ., 4i)

are formulas whenever A;’s are formulas. - -
Rules for these connectives are extensions of Rules 5 and 6 of Definition 4.3.2:
5. A\ : introduction rules

AT — A

left
/\ifn A, [ — A

r— A4 ... T— A, A4,
I‘—-—-)A,/\ Ai

i<n

right

6. \/ : introduction rules

A, T — A ... 4, T — A

left
\/isn A,‘, r — A

r — A, 4
r — A, \/is” Aj
where A is among Ay, ..., A, in \ : left and \/ : right.

The depth d LK-system is the system LK with Rules 5' and 6' and allowing in
proofs only formulas of depth at most d.

right

The next lemma follows from the proof of Theorem 4.3.3.

Lemma 4.3.12. Let ' —> A be a valid sequent consisting of formulas of depth
at most d.
Then ' — A is provable in the depth d LK-system.
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4.4. Frege systems

A Frege system is a propositional calculus based on finitely many axiom schemes
and inference rules that is implicationally complete and sound. We shall restrict
ourselves to the language 0, 1, —, v, and A as before, but we consider the gen-
eral case at the end of the section. Most of the propositions in this section hold
identically for all Frege systems.

Definition 4.4.1. A Frege rule is a k + 1-tuple of formulas Ay, . .., Ay in atoms
Dls .-+, Dn Written as
Ay, ..., Ag
Ao

such that any assignment o : {p1,..., pn} — {0, 1} satisfying all formulas
A, ..., Ak also satisfies formula Ag (the soundness of the rule).

A Frege rule in which k = 0 is called a Frege axiom scheme.

Formula ¢q is inferred by the rule from formulas ¢, . .., ¢y if there exists a
substitution p; = \; for which ¢; = A;(pi /).

A well-known example of a Frege rule is modus ponens

A A— B
B
where 4 — B is an abbreviation for -4 v B.

Definition 4.4.2. Let F be a finite collection of Frege rules.

1. A Fregeproof (or, briefly, an F-proof) of formula ng from formulas {n, . . .,
Ny} is a finite sequence 0, . . ., O of formulas such that every 6; is either
an element of {n1, ..., Ny} or inferred from some earlier 6;s (j < i) bya
rule from F, and such that the last formula 6y is .

2. F is implicationally complete if and only if for any set {n, ..., n,} such
that every assignment satisfying all formulas in this set also satisfies no,
the formula ng is F-provable from {ny, ..., n,}.

3. F is a Frege proof system if and only if it is implicationally complete.

A Frege proof system that is often used consists of modus ponens and finitely
many axiom schemes.

We shall also define several complexity measures, besides the size, which make
sense for the sequent calculus, Frege systems, and systems treated in a future section
but not for a general propositional proof system. We shall introduce these measures
now as we want to understand some later results also in the perspective of these
complexity measures.

Definition 4.4.3.
1. Thenumber of steps in a proof 0., ..., 6 is k; it is the number of inferences.

The minimal number of steps in a proof of tautology t is denoted kp(t) (P
denotes the propositional proof system considered).
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2. The number of distinct formulas in a proof i is the minimal number € such
that there are formulas @, ..., ¢¢, such that any formula occurring as a
subformula in 7 is identical to one of ¢, . . ., d¢. The minimal number of
Jformulas in a proof of tautology t is denoted € p(7).

The next several lemmas clarify to some extent the relations among the size, the
depth, and these measures. Recall that |w| denotes the size of string w; in particular
|7 | denotes the size of proof 7. The following lemma is a particular corollary of
a more general result valid for predicate calculus.

Lemma 4.4.4. For every Frege system F there is a constant ¢ > 0 such that every
tautology T has an F-proof t such that

tdp(m) < c-kr(r)+ €dp(7)

In fact, for any F-proof ¢, ..., ¢y there is another F-proof 01, ..., 0 such
that
L Ldp@) <c-kali<k
2. there is a substitution & such that:

3(6;) = ¢i
foralli <k

Proof. Think of formulas as of labeled binary trees: The inner nodes are labeled
by connectives and the leaves by atoms or constants. If formula 8 is a substitution
instance of formula « then the tree representing o can be uniquely embedded into
the tree representing 8, mapping the root of « onto the root of 8 and the sons of
a node onto the sons of the image of the node. Moreover, the labels of the inner
nodes are preserved by such a map.

We say that the subformula y of 8 is in the image of « in B if the root of y is
in the image of « in the embedding.

Let

Ar, oo, Ag
Ao

be a Frege rule and

Vi, i
Yo
its instance. The Z-part of the instance of the rule consists of all subformulas of
Y; that are in the image of 4;,i =0, ..., k.

The Z-part of a proof ¢, .. ., ¢ is the union of the Z-parts of all inferences
used in the proof. Note that the Z-part of a proof with & steps has cardinality at
most ¢ - k, where constant ¢ is the maximal number of subformulas occurring in a
Frege rule of the system.
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Call those subformulas in the proof special whose identical copy is in the
Z-part. Those occurrences of special formulas o form the border, which has two
properties:

(i) if o is a subformula of 8 then B is special.

(i) at least one of immediate subformulas of « is not special.

Define from ¢, ..., ¢; a new sequence of formulas 6, ..., 6; by replacing
every border occurrence of a formula o by new atom p,.

Claim. Sequence 9, ..., 0y is a Frege proof and £dp(6;) < c - k.

The sequence is a Frege proof as each ¢; can be derived from 6;,, ..., 6;; by
the same rule as ¢; was derived from ¢;,, ..., ¢;;. The logical depth of 6; is at
most ¢ - k as any proper chain of subformulas formed from special formulas may
contain at most the cardinality of Z members.

Finally, note that the substitution

8 put>
gives the wanted substitution: §(6;) = ¢;. Q.E.D.

Lemma 4.4.5. Let T be a tautology and assume that 7t is a Frege proof of T of the
minimal possible size. Then

dp(m) < O/Im| - tdp(T))

Proof. Letm = ¢1,..., ¢ be a proof of © of the minimal size. Take a step ¢; of
7 and write

dp(p;) =t-/Iml, somet >0

Let the set S of subformulas occurring in 7 consist of those in the Z-part of 7
and of those occurring in the last formula. Note that any proper chain of subfor-
mulas (each one included in the previous one) from S can have cardinality at most
max(c, £dp(7)), with ¢ the constant associated to the system in Lemma 4.4.4.

Let 8y, ..., 6; be the sequence constructed in Lemma 4.4.4 and let §p be a
minimal substitution such that §o(0x) = ¢, but not necessarily: §0(6;) = ¢; for
i # k. But by the hypothesis 7 is of the minimal size, so, in fact, §o(6;) = ¢; must
hold for all i, as otherwise §¢(6y), . . ., 80(6x) would be a proof of t of size smaller
than |r|.

From the construction in the previous proof it follows that for every subformula
a of ¢; there exists an identical subformula in the set S. Put

d := 1 + max(c, €dp(r))

Hence every proper chain of subformulas from § has cardinality less than d.
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Assume ay, . . ., g is a maximal sequence of subformulas of ¢; such that
(i) «; is a subformula of o; 41
(ii) the depth of the root of @; in the tree ¢; is (s — i) - d
Thus we have

tJm|l u
s = ——, somel0<u~<d
d d
Letary, .. ., o be subformulas from S such that o] is identical to o;. Let P; denote
the path in the tree ¢, starting with o; on which ¢, ..., ag lies and let PI.’ be the

corresponding path originating from «/. The cardinality of P/ is
|P/|=d-i4+u+1l

Now for i # j: ! ¢ P/ by the property that any proper chain of subformulas
from S has cardinality less than 4. This implies that all paths P/ are disjoint, so

S S

ml= Y P12 @ j+u+)

Jj=0 j=0

Substituting into this inequality the value of s (and using 0 < u < d) we obtain

2.
2;', ie., t <+2d

|} =

Hence:

Ldp(¢y) < /2|mld = O/ |- Ldp(z))
Q.E.D.

This bound is, in fact, also optimal (see Krajicek 1989a).
The following lemma shows that the measures k¢ (7) and £ (1) are essentially
the same.

Lemma 4.4.6. For every Frege system F there is a constant ¢ > 0 such that for
every tautology T

kp(r) < Lp(t) < c-kp(r) + 1|

Proof. Let ¢1,..., ¢ be a proof of 7, and let the constant ¢ and the formulas
61, ..., 0¢ be those from Lemma 4.4.4. Let §¢ be a minimal substitution such that
80(6r) = ¢x = 7. Then sequence 89(6y), . . ., 80(6k) is a proof of T and it contains
at most ¢ - k£ + |7] distinct formulas, as any subformula in it must be identical to
one from the Z-part of the original proof or to a subformula of 7.

This proves the second inequality. The first one is trivial. Q.E.D.

The following three lemmas are simple structural properties of Frege proofs.

Definition 4.4.7. A Frege proof 01, ..., 6 is treelike if and only if every step 6; is
a hypothesis of at most one inference in the proof.
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Lemma 4.4.8. Assume that T has a Frege proof with k steps, of depth d and with
sizem.
Then t has a treelike F-proof w such that:
1 dp(r)y<d+c
2. 7| <c-logk) -m
3. 7 has at most c - k - log(k) steps
for some constant ¢ > 0 depending only on F.

Proof. Let, ..., 6 be an F-proof of 7 satisfying the assumptions. Define ¢; :=
61 A ... A 6;, brackets balancing the conjunction into a binary tree of depth at
most O(log(i)). We show that ¢; has a treelike proof from ¢; with a O (log(i))
number of steps, size O( - |¢;|), and depth d + O(1). This follows from the next
claim.

Claim., For j < i, any 6; canbe proved from ¢; by a treelike proof with O (log(i))
steps, size O(log(i) - |¢;|), and depth dp(¢;) + O(1).

Then the whole proof has ) ; O(log(i)) = Of(k - log(k)) steps and size

22 Olog(i) - 1¢i]) < O(log(k) - m). QED.
Lemma 4.4.9. Let t(p1, ..., pn) be a tautology. Then there are constants k and
¢ such that for every ¢, . . ., ¢y the tautology

(@1, ...y Pn)

has a treelike proof with k steps, depth at most ¢ + max; (dp(¢;)), and size at most

¢ (X D

Proof. Let  be any fixed treelike proof of 7. Then a proof obtained from 7 by
substituting ¢; for p; satisfies all the requirements. Q.E.D.

The following lemma provides a bound for the deduction lemma.

Lemma 4.4.10. Let ¢ be F-provable from by a proof with k steps, size m,
and depth d. Then the implication  — ¢ has an F-proof with O(k) steps, size
O(k - m), and depth d + O(1).

Proof. Let 6y, ..., 6 be an F-proof of ¢ from (= 6;). Construct successively
the proofs of implications ¥ — 6;.
If 6; was inferred from 6;,, . .., 6;, in the original proof then the implication

is a substitution instance of tautology

(g—=>4;))=>(..=>(@—> 4)..)
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where
A o eees A "
A;
is an F-rule. Hence by Lemma 4.4.9 the implication has a treelike proof with O(1)
steps, size O(|y| + 16| + Zssr {651y = O(m), and depth d + O(1).
From this nested implication and from the implications

v -6, s=<r
proved earlier the desired implication
Y — 6

follows in O(1) steps, size O(m), and depth d + O(1).
Hence the total number of steps in the proof of {» — ¢ will be O(k), the size
will be O(k - m), and the depth d + O(1). Q.E.D.

The knowledge of optimal bounds to the complexity of proofs of a tautology
measured by any of the measures is poor, except for the depth, which follows from
43.6.

Lemma 4.4.11. Let t be a tautology with logical depth d. Then t has an F-proof
of logical depth at most d + O(1).

For the number of steps and the size only the following trivial consequence of
Lemma 4.4.4 is known.

Lemma 4.4.12. Let v be a tautology which is not a substitution instance of any
shorter rautology. Let m be the sum of the sizes of all subformulas of t (including t).
Then any F-proof of T must have at least Q(£dp(t)) steps and size at least
Q(m).
In particular, any F-proof of v, := —...—1, negation — 2n-times, must have
Q(n) steps and size Q2 (n?).

Proof Let m = ¢1,...,dx be an F-proof of 7 and let constant ¢ and proof
61, ..., 0; be those constructed in Lemma 4.4.4. As 7 is not a substitution in-
stance of any shorter tautology we must have: 6y = ¢ = rand 6;,...,6; isa
proof of . Hence also ¢dp(r) - ¢! < k.

It follows from the construction of 1, . .., 6 that any subformula has an iden-
tical occurrence in the Z-part of ¢y, . .., ¢ and, in particular, every subformula
of 7 is special in every F-proof of t. A subformula from a Z-part has at most ¢
subformulas also in the Z-part; this condition entails that the size of any F-proof
of T must be at least Q(m). Q.E.D.

['have postponed till the end of this section the most important resuit of Reckhow
(1976). To appreciate it we now allow the language of Frege systems to be arbitrary
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complete finite set of propositional connectives, where complete means that any
Boolean function can be expressed by a formula in this language.

Recall Definition 4.1.3. In this definition we considered only the case when P
and @ had the same language. For the following theorem we extend the defini-
tion to P, @, which do not necessarily have the same language, by replacing the
implication in part (b) of Definition 4.1.3 by the implication

Pw)=g(t) > Q(f(w,t)) =1

where g is a polynomial-time function translating formulas in the language of Q
into the language of P. It is assumed that if T is a tautology then g(t) is also a
tautology.

Theorem 4.4.13 (Reckhow 1976). Any Frege system polynomially simulates any
other Frege system. Moreover, if the language of F contains the language of F>
then g can be the identity function and F| has at most a polynomial speed-up over
F5, and the simulation f can be chosen so that both the number of steps and the
size increase at most proportionally and the depth increases by a constant.

Proof (sketch). Instead of giving the full proof we shall outline the easy part
and point out the difficulty with the general case. The way how to overcome
the difficulty is then described separately in Lemma 4.4.14.

Let F be a Frege system in the language {0, 1, -, v, A}, with finitely many
axiom schemes and the modus ponens as the only rule of inference.

Let F’ be any other Frege system. We shall show that F and F’ mutually poly-
nomially simulate each other.

This is rather easy to see when the language of F’ is also {0, 1, =, v, A}. Any
rule of F' has the form

AP, ... A(P)
Ao(P)

and is sound, so the formula
A1 (p) = (A2(p) = (... = (4x(P) — Ao(P))-..)

is a tautology and hence any of its instances of size m has size O(m) F-proof (cf.
Lemma 4.4.9). Thus & applications of modus ponens simulate the inference in F/
using the rule, and this part of the simulation has size O(m).

On the other hand, all instances of axiom schemes of F have short F/-proofs,
by Lemma 4.4.9 again. System F’ is implicationally complete so there is a fixed
size F/-proof of ¢ from {p, p — ¢}. Thus any instance of modus ponens can be
simulated by a linear size F’-proof too.

To see the difficulty that may arise when F’ has a different language consider
the case when = ( the equivalence connective) is in the language of F'. In the
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language of F the equivalence p = ¢ is defined as (p A ¢) V (—p A —¢g), and, in
fact, there is no equivalent definition in which a variable would occur only once.
Consider the formula

n=p=@E=...(Pu-1 = pn)...)

which has size O (m). If we translate it into the language of F by using the preceding
definition we obtain a formula of size 2(2™); generally if the nesting of =’s is £,
then the translation will have size §2 (2" ).

This shows that we cannot just translate the connectives in one language into the
other one and literally translate proofs. However, it also suggests that a statement
analogous to the Spira theorem 3.1.15 might help: First transform the size m F'-
proof into a size m?(") F-proof in which all formulas have the logical depth
O(logm), and then apply the straightforward translation to construct size m ()
F-proof.

We extract this idea as a particular lemma explicitly in 4.4.14, and leave the
rest of the details to the reader. Q.E.D.

In the next lemma we again use the language 0, 1, v, A, —.

Lemma 4.4.14. Assume that © has an F-proof of size m. Then t has a proof of
size m9Y and of logical depth at most O (log(m)) + £d p(7).

Proof. We first state a claim allowing inductive proof of Spira’s theorem. The
claim is verified by induction on the logical complexity of «.

Claim 1. Let a('p) be aformula of size n. Then there are a formula 8(p, q ) with
one occurrence of atom q and a formula y (p) such that

1. a=p(Gq/y)

2. (1/3)n < B, Iyl = (2/3)n

We assume that among several such decompositions 8(y) we pick one in some
canonical way, and we shall call it the canonical decomposition. We also assume
that — is pushed by de Morgan rules into literals and that - is an abbreviation
for the formula arising from v by interchanging v and A, 0 and 1, and atoms and
their negations.

Then we define the balanced form of «, denoted o*, by induction on the size
of a:

l. ¢* :=q,if|a| < f
2. "= (Bg/DAy") v (B*(g/0) A—y™), where Ja| > f and B(y)
is the canonical decomposition of «.

The constant f is used for convenience and we shall specify it later.

The following claim is readily verified by induction on the logical depth of
formula g*.
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Claim 2. The equivalence
(B*@/DAY*) v B @/OA=y™)) = BT

isvalid and has an F-proof of size O(|8*(v*) 12y and of logical depth £dp(B*(y*))+
o).

The next claim is crucial.

Claim 3. Leto = B(q1/v1, - .-, qk/Vr) where each q; has exactly one occurrence
in B. Then the equivalence

o = BMaqi/vs ki)
has an F-proof of size O(|a|%"V) and logical depth £dp(a*) + O(1).

In proving the claim we shall proceed by induction on r := [logs, (l])] and
we shall distinguish two cases:
1. The canonical decomposition of ¢ = p(t/0c) has the form

p=¢@i/v1,....qe/ve. )
and
o =V (qet1/Ver1, - - Gr/Vk)

where

B=0@,....qe, /¥ (qesrs .., q1)

2. The canonical decomposition of @ = p(f/o’) has the form

p=B@i/v1, s =1/ Yi-1, 9/ $())

where
Yk =¢(t/o)

Let us consider the first case, leaving the analogous treatment of the second
one to the reader. For notational simplicity we shall consider a completely general
case with k = 2, £ = 1, denoting y; by y and y; by §.

By the definition o* is

(@, t/D)* AW EN") Vv (@, /0" A= ()")

As [logs 2 (19 (v, 1)D1, Tlogs ,(1¥ (8)D1 < r — 1, by the induction hypothesis this
is (shortly provably) equivalent to

@ (", DAYTEM) v (9% (", 0) A ¢ (™)
which is by Claim 2 (shortly provably) equivalent to
P*(y*, ¥ (™)
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Now we would like to show the equivalence

B* =¢(q1, ¥*(q2))
which would yield the wanted equivalence of ¢* with
B*(r*. 8%)

We cannot apply the induction hypothesis yet as it might hold that

[ogs/>(1¢(q1, ¥))] = r, but we note that [logs 5 (I¢)1, Mogs (YN <7 — 1.
Instead we shall simply take the canonical decomposition 8 (w) of ¢(q1, ¥) and
use this to prove the equivalence.

There are three cases to distinguish (the substitution is always for only one
occurrence of an atom)

(a) for some 6y

6 =¢@®) and ¥ =6(w)
(b) for some wy
¢ =0(wp) and = wo(¥)

(c) neither (a) nor (b) holds: That is, the occurrence of w in ¢ () is disjoint
with .

We shall consider the first case only; the other two are identical.

By the definition (¢ (¥))* is the formula

(@GN A w*) Vv (($66(0))* A —w*)

which is, by the induction hypothesis applied to ¢ (6p), (shortly provably) equiva-
lent to

(@* O3 (1)) Aw*) v (9 (G5 (0)) A —w™)
and by Claim 2 to
¢* (65 (@)

As |'10g3/2(|90(a>)|)] = |'log3/2(|1/f|)'| < r — 1, by the induction hypothesis this is
(shortly provably) equivalent to

¢* ((6o(®))*)
which is just
P*(¥")

Let f(m) denote the smallest size of an F-proof of (v(k))* = v*(x*) for
m = |v(x)|. As the induction hypothesis is in the preceding argument applied to
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formulas of length < (2/3)m we have (using the bound from Claim 2 too)

fmy=0 (f (%m) + mz)

which yields f(m) = m9W.

This proves Claim 3.

Choose constant f to be a number bigger than the size of any formula 4; ina
Frege rule of system F (cf. Definition 4.4.1). Let 7 = 6y, ..., 6, be an F-proof of

size n of formula 7 (= 6;). We construct F-proofs of §*,i =1, ..., ¢ by induction
oni.
Take i = ip and assume 8;, was inferred from 6;,, ..., 6;,,i1,...,ir < ip by
the rule
Ay, ..., Ag
Ao

such that 6;, = A4;(¥, ..., ¥¢). We already have F-proofs of 91.’; G=1....%k
and hence by Claim 3 also of '

AW D)
As A}’-‘ = A; by the choice of f, applying the same inference rule yields
AT, Y))

from which we deduce (by Claim 3 again) formula 6 .

By Claim 3 the prolongation of the constructed proof needed to get 0;‘(‘) is
Y < 16,197 = mO, and hence we eventually get size m ) F-proof of for-
mula 7*, which is equivalent (Claim 3 again) — with a short proof —to 7.

The logical depth of the proof of t* is < max; £dp(6) + O(1) = O(log m),
and of t from t* is < £dp(r) 4+ O(1). Hence the logical depth of the new proof
is O(log m) + £d p(r), as required. Q.ED.

We conclude the section by stating a straightforward relation between the sys-
tems LK and F.

Lemma 4.4.15. The system LK and F mutually polynomially simulate each other.
In particular, if a formula ¢ has an F-proof of size m then the sequent

% ¢
has an LK-proof of size O(m?), and vice versa: If a sequent
]//17--'7\;01,[ — ¢l,'-~’¢v

has an LK-proof of size m then the formula

(V) (Vo
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(disjunctions bracketed arbitrarily) has an F-proof of size O(m?).
Moveover, the depth of proofs in these simulations increases at most by a con-
stant.

The proof is omitted.

4.5. The extension and the substitution rules

In this section we consider two extensions of system F. As before we confine the
discussion to the language 0, 1, v, A, —.

Definition 4.5.1. The substitution rule allows simultaneous substitution of formu-
las for atoms in one inference step

6(p1,..., pn)
61, ..., ¢n)

A Frege system F augmented by the substitution rule will be denoted SF.

Another useful rule is the extension rule, whose version we saw already in
Section 4.2. Its introduction is a little less straightforward, and rather than define
a system, we define its proofs.

Definition 4.5.2. Let F be a Frege system. An extended Frege proof is a sequence
of formulas 6, ..., 0k such that every 0; either is obtained from some previous
0;’s by a rule from F or has the form

g=v

where:

1. the atom q appears in neither \ nor 6; for some j < i

2. the atom q does not appear in 6y

3. a = B abbreviates (@ N B) V (—a A —B)
A formula of this form is called an extension axiom and the atom q is called an
extension atom.

An extended Frege system EF is the proof system whose proofs are the extended

Frege proofs.

The first two lemmas are trivial.

Lemma 4.5.3. For every t

kep(t) < kp(v) = O (ker(1))

Proof. The first inequality is obvious. For the second one, replace an EF-proof
with the extension axioms

a1 =v1(P), @ =yv2P.q1), ..., G =¥(p.q1,...,q9r-1)
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first successively g, by ¥, ¢, -1 by ¥»—1, ..., and so on. This is an F-proof of
from axioms of the form i =  that remained from the extension axioms; each
has an F-proof with constant number of steps by Lemma 4.4.9. Q.ED.

Lemma 4.5.4. A Frege system with the substitution rule SF polynomially simulates
any Frege system with the extension rule EF.

Proof. Letq, = ¢, ..., q» = ¥, be all extension axioms introduced in an EF-
proof 8y, ..., 6 of T of size m. We may assume that these » formulas are the first
r steps of the proof. Note that none of g1, . . ., g, occurs in T but that g; may occur
By, ..., ¥

By the deduction Lemma 4.4.10 there is an F-proof of size O(m?) of the im-
plication of size O(m)

== @a=t > (.. @g=y)..)—>1.
Apply the substitution rule to this formula by substituting ¥, for g,
V=Y @a=Y-1> (.. q=y)..)>T

and then separately derive ¥, = ¥, (by a proof of size O(|¢,|): Lemma 4.4.9),
and by the modus ponens thus infer

Gt =Y = (@ =Y1)..) > T

By repeating this r-times we derive 7 by a proof of the total size O(m?). Q.E.D.

The next lemma is the converse of Lemma 4.5.4 and is considerably more
difficult.

Lemma 4.5.5. Any extended Frege system EF polynomially simulates any Frege
system with the substitution rule SF.

Proof. We shall assume for simplicity that the only rules in an SF system are the
modus ponens and the substitution rule (plus any number of axiom schemes).
Let ¢1(D), ..., ¢x(p) be an SF-proof where (p; ..., p,) = P are all atoms
appearing in the proof, and let (7 ..., g} ) be tuples of mutually distinct atoms
such that g, := .
A formula y; denotes ¢;(q; ), fori < k. For j < k define a tuple Bj of m
formulas as follows:
1. if¢;(P) is an axiom or has been inferred by modus ponens then set B =
g
2. ifj ¢;('p) has been inferred by the substitution rule (say by substitution o)
from formula ¢; (%), ¢;(7) = ¢i (@(P)), then set B; = a (g )
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Denote by
lllijz'(/f,'/\.../\llfj, 0<l“1§]<k

with W; ;_ denoting the constant 1.
The simulation of the original proof in system EF proceeds as follows. First
introduce variables g;_, ..., ¢ by the extension rule

gie = Wit i AVt ABig1,d) VooV (Wit k-1 A Y A Brye)
Obviously

Vipl, jmi A=Y = gip =Bje, i<

is valid and can be derived by a polynomial size proof. Hence by 4.4.9 we have
polynomial size proofs of

Wi, -t Ay —>¢i(§i)5¢i(3j), i<j
which can also be written as
Wity j—1 A Yy _)'//iE'//i(Ej)’ i<j

Now we prove consecutively ¥, ¥2, ..., ¥ and since ¥y = ¢ we obtain a
polynomial simulation.

Assume that the formulas vy, ..., ¥;_1 have been proved. Consider two pos-
sibilities: Either ¢; is an axiom, in which case so is 1;, or ¢; follows from ¢, ¢,
u,v < j, by modus ponens, or ¢; has been inferred by the substitution rule.

In the case of modus ponens, first derive W,y ;| and ¥,y ;_; and thus get
from the previous implication (withi = u and i = v)

¥ = ¢u(B;) A u(B;)

Applying modus ponens to ¢,( B;) and ¢, ( B, ) we get =/; — ¢;(B; ), which is
—y; — v, and hence v; follows.

In the case that ¢; was inferred by the substitution & from ¢; we obtain —y; —
#i( B;) in the same way as in the preceding formula. But by the definition then:

¢i(B;) = ¢i(@(q;)) =¢:(q,;) = ¥;
This completes the derivation of ;. Q.E.D.

Note that the number of steps in the simulation from the previous proof some-
times increases exponentially. In fact, ksp(r) may be exponentially smaller than
ker (7).

Lemma 4.5.6. For any sufficiently large n there is tautology t, with an SF-proof
having O (n) steps but whose every EF-proof must have at least 2 (2") steps.
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Proof. Define 1, := -~ (1) with =) standing for ¢ occurrences of —.

Consider formulas 8; = p — (—-)2k (p). Obviously SF derives By from ;1 by
O(1) steps (by first substituting (—-)2"_I (p) for pin B and by modus ponens).

As By is provable, every B has an SF-proof with O (k) steps. In particular, ,
has an SF-proof with O(n) steps.

Let 7, have an EF-proof with % steps; thus by Lemma 4.5.3 there is an F-proof
7 of 7, with O(k) steps.

By Lemma 4.4.4 there is an F-proof of logical depth O(k) of some o, such
that 7, is a substitution instance of o,,. But then o, = 1, and hence k£ = Q(2"),
which entails the lower bound. QE.D.

There is a close relation between the size and the number of steps in the extended
Frege system.

Lemma 4.5.7. Any tautology t has an EF-proof of size O (kg r(t) + |T}).

Proof. Let 1 be a tautology with atoms ¢, ..., g,. For all formulas 6 in atoms
g1, ..., qn consider the atom py and a set of defining conditions like Ext(6) in
Section 4.2:

1. Pqg =4i

2. po="po

3. poine, = po, A P,
4. peyve, = pe, V Pe, -
Also every formula v built from ¢;’s and ps’s is equivalent to some pg: Replace
po’s by s and let ¢ be the resulting formula. We will denote such ¢ by *.
Now assume that we have an EF-proof n of t with £ steps, and assume w.l.o.g.
that the first £ steps are the extension axioms

=@, ...l =
where ¢ contains only ¢;’s, and ¢;4| may also contain the extension atoms
Fly oo, rj.
Let
Oot1s...,6k

be the remaining & — £ steps of 7.

We shall construct a new EF-proof ' by the following process. First replace
¢y in the first formula 7| = ¢ by py, and replace the atom r; by py, in the whole
proof. Then replace ¢» (which now has py, in place of 1) in the second formula
ry = ¢y by Pot and r, by Py in the whole proof. Generally in the ¢'* step, 1 < ¢,
replace ¢ by pys in the ¢ formula and r, everywhere in the proof also by Py

After this transformation the first £ formulas of 7 are transformed to formulas
of the form

Py = Py
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which all have constant size F-proofs, and no atoms r;’s appear in the remaining
k — £ steps.

Our aim is to show that for each 6;, £ < i < k, the atom py~ has constant size
proof from Doy >+ Por and from some defining conditions. This is readily
shown by induction on i/, considering cases distinguished by the rule used in
7 to infer 6;. As an example consider the case when 6,, was inferred from 6,
and 6,(= 6, — 6) by modus ponens. Assume py+, pgr and use the defining
conditions to infer from pys the formula pgz — pgx and apply modus ponens
to get ppx. Finally, using the defining conditions we infer from poy (= pr) the
formula 7 itself. The defining conditions are just the extension axioms, so the
newly constructed sequence is an EF-proof =’ with O(k) + O(|t}) steps and total
size O (k) + O(|t)). Q.ED.

The previous proof can be used to give another proof that any two extended Frege
systems polynomially simulate each other. This is because we could construct the
new proof 7’ in another system with other language in the same way; only the
defining conditions for py (6 in the first language) would be written by using the
second language.

Lemma 4.5.8. Extended resolution ER is the system R augmented by all clauses
Jrom Ext(¢), for all formulas ¢, as extra initial clauses (cf. Section 4.2). Then ER
and EF polynomially simulate each other.

The substitution rule allows several seemingly weaker variants that are, how-
ever, polynomially equivalent. For example, we may restrict the substitution rule
by allowing substitution of only one formula at a time or, more interestingly, by
allowing only atoms in place of formulas ¢1, . . ., ¢, in Definition 4.5.1. We leave
the proofs of the equivalence of these versions to the reader.

4.6. Quantified propositional logic

Quantified propositional calculus is formed from a Frege system or the sequent
calculus LK by introducing propositional quantifiers: Vx8(p, x ) whose meaning
is0(p,0)A0(p,1),and IxA( p, x ) whose meaning is 6(p, 0) v 8(p, 1). This
also defines the satisfiability of quantified propositional formulas.

In first order logic quantifiers allow one to define relations and functions not
definable by quantifier-free formulas, but the propositional quantifiers do not in-
crease the expressive power of formulas. Instead they allow us to shorten some
quantifier-free propositional formulas. For example, \/ ; 6 (€ ) with € ranging over
{0, 1} has size 2(2"|¢|) but an equivalent quantified formula 3x; ...3x,0(X)
has size only O(n) + |6}

Definition 4.6.1.
1. The class Zg = I'Ig consists of the quantifier-free propositional formulas.
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2. The classes X}, and T1] | are the smallest classes satisfying:
@ Ui C N,

(b) both E?H and l'I? 1 are closed under Vv and A

© ifp e T then—¢ € ] |

@ if¢p e 7| then~¢ € I,

(e) E?H is closed under existential quantification

o0 1'[? 41 is closed under universal quantification

3. A quantified propositional formula is any formula appearing in one of Ef ;
T4, denotes the class of all quantified propositional formulas

We shall base our definition of the quantified propositional calculus on system
LK.

Definition 4.6.2.
1. Quantified propositional calculus G extends the system LK by allowing
quantified propositional formulas in sequents and by adopting the follow-
ing extra quantifier rules:
(a) V :introduction
A(B),T — A

left VAT — A and right

' — A, A(p)
' — A,V¥xA(x)

(b) 3 :introduction

r A B
Ap, I — A and right — 8, 4(B)
AxA(x), T — A ' — A,3xAX)

left

where B is any formula, and with the restriction that the atom p does not
occur in the lower sequents of V : right and 3 : left.

2. The system G; is a subsystem of G that allows only E? -formulas in se-
quents.

3. The system G} is a subsystem of G; allowing only treelike proofs.

The definition of the systems G; and G} may seem ad hoc, but these systems
naturally occur in connection with bounded arithmetic in Chapter 9.

Note that Go = LK and hence by Lemmas 4.4.8 and 4.4.15 G and G polyno-
mially simulate each other. This is unknown for G; and G fori > 0. We consider
these quantified systems primarily as proof systems for quantifier-free tautologies,
but later we shall also consider sets TAUT; of tautological E;’ -formulas, and we
shall compare the systems G; and G as proof systems for TAUT, rather then just
for TAUT.

Lemma 4.6.3. The systems G and EF polynomially simulate each other.
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Proof. First we show that GT polynomially simulates treelike SF, which implies
that it also polynomially simulates EF, by Lemmas 4.4.8 and 4.5.4. Clearly it is
enough to describe how G7 simulates an instance of the substitution rule

O(p1s..., Pn)
9(¢1v-"»¢n)

To —> 6(p1, ..., py) apply n-times V : right to obtain

—> Vx1...Yx,60(x1,...,xp).

Any sequent of the form

9(¢1""’¢n) —>0(¢]7‘-'a¢n)

has a short G7 -proof, from which follows

VX1 .. VxnB(x1, ..., %n) —> 01, ..., bn)

by n applications of V : left. The cut-rule infers from this sequent and the previous
sequent the desired sequent

__)0(¢1?-"9¢ﬂ)

Now we want to show that EF p-simulates G}. We shall first deal with a simpler
case in which all formulas in a G}-proof either are quantifier free or begin with a
block of existential quantifiers followed by a quantifier-free kernel; we shall call
such formulas strict £7.

In this case every sequent in a proof looks like

v @i(P)y o 3%0(D, X)), = Bs(P), - AT B T -

where «;, B; range over the quantifier-free formulas in the sequent and
ix jaj’. (P.%;),3%,8,(p.y,) over formulas with a block of existential quantifiers
in front of quantifier-free kernels a;., B’s.

Call a sequence of formulas satisfying the conditions of Definition 4.5.2 with
the requirement that the extension atoms cannot appear in the last formula dropped
an EF-sequence.

Claim. Assume that the sequent S of the form given previously has a GT-proof in
which all formulas are either quantifier free or strict !, with k sequents and of
sizem.

Then there is an EF-sequence from {...,a;(P), ..., ozj’.('ﬁ, g;),...} with ex-
tension atoms ¥y, . .., with the last formula

\ BBV B/(B.7)
s t

and with O(k) steps and size O(m).
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The claim is proved readily by induction on & and clearly implies the lemma.
The case when not all formulas are strictE? is treated similarly, only the defi-
nition of EF-sequences is slightly more complicated. We leave it to the reader.
QE.D.

The following lemma is proved completely analogously.

Lemma 4.6.4. For anyi > 0, the system G; polynomially simulates G} ,-proofs
of E?-formulas.

The system G is akin to sequent predicate calculus and shares some analogous
properties. We mention only one, the midsequent theorem (see Takeuti 1975), but
we will not prove it (the reader can follow the idea of the proof of Theorem 4.3.3).

Lemma 4.6.5. LetI' — A be a valid sequent consisting of quantified proposi-
tional formulas in a prenex normal form.
Then there is a treelike, cut-free G-proof of I' —> A in which there is a se-
quent S (the midsequent) such that
1. no quantifier inferences occur in the proof above S
2. no propositional inferences occur in the proof below S

There is an obvious generalization of the systems LK and G to the “higher
type” propositional calculi. We shall not pursue this generalization as any available
information about such systems is only a trivial generalization of facts about LK
and G.

4.7. Bibliographical and other remarks

The notions of a propositional proof system and of a polynomial simulation (Def-
initions 4.1.1 and 4.1.2(b)) are from Cook and Reckhow (1979).

Theorem 4.2.1 is from Davis and Putnam (1960).

Theorem 4.2.3 was used implicitly by various authors and explicitly noted
in Lovasz et al. (1991). The lower bound for resolution in Theorem 4.2.4 was
preceded by a lower bound for regular resolution in Tseitin (1968). Urquhart
(1987,1992) investigated the complexity of resolution further, in relation to cut-free
Gentzen’s systems and distinguishing between sequencelike and treelike resolution
refutations (for regular resolution treelike and sequencelike systems are equally
efficient). The proof of Theorem 4.2.4 follows Buss and Turan (1988) closely. See
Krajicek (1995b) for another proof.

As we excluded the implication from the language of LK, our system has an
additional structural property: All weakening inferences can be postponed till the
end of any proof. Interpolation theorems and their relevance to lower bounds
are studied in Krajiek (1995b); see also Krajicek and Pudlak (1995). Theorem
4.3.9 was originally proved differently by Statman (1978). The proof of Theorem
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4.3.10 follows Krajicek (1994). Notions of Frege and extended Frege systems were
defined in Cook and Reckhow (1979). Gentzen refers to such systems as Hilbert-
style systems; see Gentzen (1969). Parikh (1973) was the first to observe that a
bound to the number of steps implies a bound to the logical depth of a proof. His
proof implicitly gave an exponential upper bound. The optimal bound of Lemma
4.4.4 was proved in Krajicek (1989a) for the predicate calculus of arbitrary order.
The corollary for the propositional calculus follows also from Lemma 4.5.7: The
proof constructed there has formulas of constant logical depth, and thus replacing
the extension atoms by their definitions increases the logical depth only propor-
tionally to the number of steps. Lemma 4.4.5 is taken from Krajicek (1989a).
Lemma 4.4.6 was noted in Buss (1993a) and Krajiéek (1995a). Lemma 4.4.8 is
from Krajicek (1989a). A detailed study of the deduction lemma, 4.4.10, is in
Bonet (1993).

Lemma 4.4.14 is implicitly contained in Reckhow (1976).

Definitions 4.5.1 and 4.5.2 are from Cook and Reckhow (1979).

Dowd (unpublished) observed that Lemma 4.5.5 is a corollary of a relation of
EF to a bounded arithmetic theory PV established by Cook (1975); see Sections
5.3 and 9.3. This was independently observed in Kraji¢ek and Pudlak (1989a),
where the explicit polynomial simulation was constructed.

Lemma 4.5.6 is due to Tseitin and Choubarian (1975); the proof is from
Kraji¢ek (1989b). Lemma 4.5.7 is from Statman (1977).

Definitions 4.6.1 and 4.6.2 are from Kraji¢ek and Pudlak (1990a).

A system that I did not include into this chapter is the system of cutting planes
of Cook, Coulard, and Turan (1987). It is defined in Section 13.1. For ratural
deduction systems I refer the reader to Smullyan (1968).

The measure £p of Definition 4.4.3 appears a bit artificial. But for systems
P >, EF it is polynomially related to the size (the most important measure by
Theorem 4.1.2) and, in fact, all important lower bounds are actually lower bounds
to the measure £ p.
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Basic bounded arithmetic

Bounded arithmetic was proposed in Parikh (1971), in connection with length-of-
proofs questions. He called his system PB, presumably as the alphabetical succes-
sor to PA, but we shall stay with the established name 7/ Ag (for “induction for Ag
formulas™). This theory and its extensions by 1'[‘2) axioms saying that some particu-
lar recursive function is total were studied and developed in the fundamental work
of J. Paris and A. Wilkie, and their students C. Dimitracopoulos, R. Kaye, and
A. Woods.

They studied this theory both from the logical point of view, in connections with
models of arithmetic, and in connection with computational complexity theory,
mostly reflected by the definability of various complexity classes by subclasses
of bounded formulas. They also investigated the relevance of Godel’s theorem to
these weak subtheories of PA and closely related interpretability questions.

Further impetus to the development of bounded arithmetic came with Buss
(1986), who formulated a bounded arithmetic system S>, a conservative extension
of the system /Ag -+ §2; investigated earlier by J. Paris and A. Wilkie, and its
various subsystems and second order extensions. The particular choice of the
language and the definition of suitable subtheories of .S, allowed him to formulate
a very precise relation between the quantifier complexity of a bounded formula
and the complexity of the relation it defines, measured in terms of the levels of
the polynomial time hierachy PH. He also proved a first witnessing theorem for
bounded arithmetic precisely characterizing the computational complexity of a
class of functions definable in certain subtheories of S;.

Later developments, which established some deeper connections between
bounded arithmetic and the complexity theory, built on all this foundational work.

Paris and Wilkie also considered the relevance of the length-of-proof questions
in propositional logic to independence questions in bounded arithmetic (cf. Paris
and Wilkie 1985). Earlier Cook (1975) constructed an equational theory PV (a
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subsystem of bounded arithmetic, as we shall see later) and proved another relation
of PV to propositional logic.

In this chapter we first define and study Parikh’s system / A and its extensions.
Then we introduce Buss’s first order systems S> and 7, Cook’s PV, and Buss’s
second order systems U, and V,, and we prove basic relations among various
subsystems of these theories.

5.1. Theory I Ag

Recall the language Lpay from Section 3.2 and Definition 3.2.1 of Ag-formulas.

Definition 5.1.1. Bounded arithmetic theory I Ag is a first order theory of arith-
metic in the language Lp4, a subtheory of Peano arithmetic PA. It is axiomatized
by the following axioms called PA~:
l. a+0=a
(@a+b)+c=a+ (b+0o)
a+b=b+a
a<b—->3Ix,at+x=5>
0=avOl<a
0<1
O<a—-1<a
a<b—s>a+c<b+c
9. a-0=0
10. a-1=a
1l. (a-b)-c=a-b-0)
12. a-b=b-a
13. a<bArc#0)—>a-c<b-c
14 a-(b+c)y=(a-b)+(a-o)
and by the A¢-induction scheme IND:

(@O AVX($(x) = ¢(x + 1)) > Vxo(x)

o NN AN

where ¢ is a bounded formula (= Ao-formula), which may have other free vari-
ables besides x.

Note that the theory PA™ extends Robinson’s arithmetic Q, originally con-
sidered by Parikh. Its models are exactly nonnegative parts of discretely ordered
commutative rings.

It is often easier to work with basic theory PA™ instead of Q. Then notions like
order and cut make sense; this is not true in every model of Q: A model of Q is, for
example, a copy of N followed by one nonstandard element e in which we define
et+x=callx,e-0=0,ande.x =eforx #0.

Natural models for / Ag are cuts in models of PA. We shall define the general
notion of a cut in a model of PA™.
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Definition 5.1.2. Let M be a model of PA~. A cut in M is any subset I C M
closed under < and x + 1

Vx,yeM,xelny<x)—>(yelax+1lel
We denote this by I C, M (e is for “end-extension”).

Note that a cut is not necessarily closed under the addition and the multiplication
in M. Examples of cuts are the model itself and XV, the initial segment of M
isomorphic to the natural numbers.

Lemma 5.1.3. Let M be amodel of IAg and I €, M any cut in M closed under
the addition and the multiplication of M.
Then I is a model of I Ag.

Proof. This lemma is simple but it rests on an important property of bounded
formulas which is worthwhile to state explicitly:

Claim. Let ¢(a,b) be a bounded formula with all free variables displayed. As-
sume that I is a cut in M closed under the addition and the multiplication, and v
are some elements of 1. Then for every u € I

I'=¢w,v) iff ME¢uv)

The claim is easily established by induction on the quantifier complexity of ¢,
using the fact that 7 is closed under <.

To prove the lemma it is enough to establish that for any bounded formula ¢ (a)
with parameters from / the induction for ¢ (a) holds in /, as the axioms of PA~
are clearly preserved from M to [.

Assume

I'=¢0) AYx(P(x) = ¢(x + 1)) A —o(v)
for some v € /. By the Claim also
ME(O) A (D) — ¢ +1))

forallu € / andalso M &= —¢(v). Hence in M the induction fails for the bounded
formula

x>vVex)
which contradicts the assumption that M = 7 Ag. Q.E.D.

If M is not a model of 7 Ag, not all cuts in M closed under + and - are models
of 1A (e.g., M itself) but provided M satisfies at least theory Q, a cut that is a
model of TAy is actually definable in M. This is a nontrivial result of A. Wilkie
(unpublished); see also Hajek and Pudlak (1993) and Section 10.6.
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Generally, to construct a model of /Ay is difficult: There are no countable
recursive models of 1 A¢ (a theorem of Tennenbaum 1959) and, in fact, not even
of a weak subtheory IE} of IA( with the induction scheme restricted only to
E,-formulas, that is, bounded existential formulas (Paris 1984). A subtheory of
I Ag with the induction restricted to open formulas only, called /Open, does have
recursive nonstandard models (Sheperdson 1964). The construction of such models
and the question of deciding whether a Diophantine equation has a solution in
a model of /Open is of relevance to criteria for solvability of such equations in
number theory, but less to issues treated here. A curious reader is advised to consult
van den Dries (1980, 1990) and Otero (1991).

Theorem 5.1.4 (Parikh 1971). Assume that 6(a, b) is a Ag-formula and that
TAgF VX IYO(X, »)
Then there is a term t (X ) such that

IAg - V¥¥3y < (%), 0(X, y)

Proof. We prove the theorem by a simple compactness argument.

Assume that /A proves VX 3y6(X, y), but it does not prove VX 3y < (X ),
6(x, y), for any term ¢. This means that it also does not prove any disjunction of
the form

\/Vx3y <4,6(%. »)
i
as otherwise it would prove
VYx3dy <t,0(X,y)

fort:=t1+6+....
By compactness then the theory

IAg+{VYy < t(c)—0(c, y) |t aterm}

is consistent where € are new constants.
Let M be a model of this theory and define a cut [ in M by

bel iff MEb<t(c), sometermt?

Then 7 is a model of /Ay (by Lemma 5.1.3) but also / = IXVy—06(X, y),
contradicting the hypothesis of the theorem. Q.ED.

It follows from Parikh’s theorem that /A cannot Ag-define a function that
eventually majorizes all polynomials, for example, the exponentiation x” = z.
Consequently, / Ag cannot directly formalize constructions requiring exponentia-
tion (such as the cut-elimination).
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In fact, it is far from obvious that there is even a Ag-definition of the graph of
the exponentiation {(x, y, z) | x¥ = z}.

The existence of such a definition follows from Bennett’s Lemma 3.2.6 and
Theorem 3.2.3; see also Bennett (1962). Paris (described in Dimitracopoulos 1980)
and later Pudlak (1983) constructed a definition of the graph of the exponentiation
about which 7/ Ag could prove the recursive properties of exp:

=1 and xOtD =yxr.x

With such a definition we can define other functions in /A
1. [logy(x)] = yiff 207D < x <2¥
2. x| :=logy(x + )] ifx > 0, and |0} := 0.
and, more generally, one can define in /A the basic relations and operations of
the rudimentary sets (i.e., the concatenation, the part-of quantification) and prove
again the basic closure properties.

Of particular importance are functions helping to formalize syntactic construc-
tions so that /Ay can speak about proofs or computations. The existence of Ayp-
definitions of these basic notions follows from Theorem 3.2.7.

Coding of finite sequences is the most important function of this type and we
state its properties in a separate lemma. Section 5.4 is devoted to constructions of
such a definition.

Lemma 5.1.5. There is a Ag-formula 6(w, i, x) that we shall write as
(w); =x

such that I Ag proves:
I (wW)i=xAw)=y—->x=y
2. (w=xAj<i—>3Ay=<w, (w),=y
3. JwVivx, (w); #x
4. YwVivx, z3w'Vj # i, (w); = (W), A((w); =z —> (W) =x)

Theories that can interpret a theory of a binary operation satisfying conditions
1—4 of the lemma are called sequential in Pudlak (1985). They are very important
as they can interpret theory Q and it is often easier to interpret a sequential theory
in a theory first than some fragment of arithmetic directly.

What one cannot prove in /Ag, however, is that there is a sequence of all
numbers smaller than x, as its code would be exponentially large in contradiction
to Parikh’s theorem.

One also cannot prove in /Ay that in a word a letter can be substituted for by
another word

Yw, x, udw’, w’ = w(x/u)

as the code of w’ would have length bounded by |w|-|u| only: That is, its size would
be bounded by 2" which is superpolynomial. The substitution plays, however,
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an essential role in basic logical notions, including the definitions of predicate
calculus, and to avoid its use one would be forced into unnatural definitions of
formulas with only one explicit occurrence of a variable, and so forth.

Perhaps more importantly, coding of polynomial length proofs and polynomial
time computations requires totality of functions 2*I°, all k.

For this reason Paris and Wilkie (1981a,b; 1987b) studied the extension
IAp + ) obtained by adding to /Ag a Hg-sentence

Q) VxAy =y

Function x!*! is denoted by w (x).

We shall treat this in greater detail in the next section, but first we examine
the question whether one could at least interpret (cf. Section 10.6) theories like
ITAg+ 21 or IAp +Exp in I Ap and, in particular, whether one can define in 7 Aq
cuts closed under w(x) or exp. A positive result is due to Solovay (unpublished);
see Hajek and Pudlék (1993).

Theorem 5.1.6. Define functions wi(x) by
w1 (x) 1= w(x), wk—!—l(x) = 2a’k(|x|)

Then for every definable cut J(x) and every k there is formula Ii(x) such that
I Ag proves three properties:
1. I is closed under w;,

Vx, (Ik(x) = 3y, L(y) A wk(x) = y)
2. Iy defines a cut

L(0) AVx, (I (x) Ay < x) = (Tk(x + D) A ()

Vx, I (x) = J(x)
Proof. Note that wy(x) majorizes all wy(x) for £ < k and is majorized by 2*.
First define J'! (x) by
J'(x) =Yy, J(y) > J(y+x)
and J2(x) by
Py =y, () = I (y-x)

J?(x) defines a cut closed under addition and multiplication.
Then define 11 (x) by

Li(x) :=Vy, J2(y) > 3z, 20 = 2 A J2(2)
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Then I Ag proves that I is a nonempty cut closed under ;.
Having the formula I;(x) about which I Ag proves that it defines a nonempty
cut closed under wy(x) define a formula ;. ((x) by

[y1® x| @
2k

L1 (x) :=Vy, Ir(y) = 3z, =z A Ix(2)

where 2} is the k-times iterated function 2”. It is easy to verify that this formula
is in / A¢ a nonempty cut closed under wy41(x). Q.E.D.

The following negative result is interesting.

Theorem 5.1.7 (Wilkie 1986, Paris and Wilkie 1987a). There is no definable cut
that would be provably in I Ag closed under all wy(x), k > 1.
In particular, no definable cut is provably closed under 2*.

5.2. Theories S; and 7>

The language L of the systems to be defined in this section extends the language
Lpa. The idea is that one adds enough function symbols to spare the tedious
introduction of coding of syntactical objects within the systems.

The language L extends Lpa by three new function symbols

L=LeaU{[5 ] xl ¥y},

where the last symbol has the meaning 2*I'IY1,
For a convenience we shall sometimes also add the symbol (w);, for coding
sequences, into the language, so

LT = LU{(w))

The basic theory that will be included in all our systems is denoted BASIC and it
extends Robinson’s Q.

Definition 5.2.1. The theory BASIC consists of the following 32 axioms in the
language L:
l.a<b—sa<b+1
a#a+1
0<a
(@a<bAha#b)y—a+1<bh
a#£0—->2a+#0
a<bvb<a
(a<bAb<a)—>a=b
@<barb=<c¢)—a<c
0 =0
a#0—> (2al=lal+1A2a+1|=]a|+ 1)

OGN AN
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11. |11 =1
12. a <b— la] <|b|
13. la#b| = la|-|1b| + 1

14. O#a =1
15 a #£0 — (1#Qa) = 2(1#a) A 1#Q2a + 1) = 2(1#a))
16. a#b = b#a

17. |a} = |b| — a#tc = b#c

18. lal = |b| + |¢c| — a#d = (b#d) - (cHd)

19. a<a+b

20. @a<bhra#b)—> Ra+1<2bAr2a+1#2b)
21, a+b=b+a

22. a+0=a

23 a+ b+ =(@+b)+1

4. (a+b)+c=a+b+0)

25. a+b<a+4+c—->b<c

26. a-0=0
27. a-(b+1)=a-b+a
28. a-b=b-a

29. a-(b+c)=@-b)+@-c)
30 l<a—>{a-b<a-c) = (b<rc)
3. a#0— |al=|(a/2)]| +1
32 a=(b/2))=QRa=bv2a+1=>b)

For future theories, when L is replaced by LT the common theory BASIC
will automatically be extended to BASIC* by adding the four conditions from
Lemma 5.1.5.

The next two definitions introduce the basic systems of bounded arithmetic.

Definition 5.2.2. T. 2’ is a theory in the language L extending BASIC by the induc-
tion axiom IND

¢(0) AVx(p(x) > ¢(x + 1)) = Vxd(x)

forall Ef’ -formulas ¢ (a). The formula ¢(a) may have other free variables than a.
The theory T is the union of all theories T,.

Note that [E; C T;.

Definition 5.2.3. S{; is atheoryin language L extending BASIC by the polynomial
induction axiom PIND

¢0) A Vx(¢(L§J) = ¢(x)) = Yxo(x)

Jor all Ef’ -formulas ¢ (a). The formula ¢(a) may have other free variables than a.
The theory S; is the union of all theories S,.
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Finally we introduce a third version of induction.
Definition 5.2.4. The scheme of the length induction axioms LIND s
$(0) AVx(p(x) = d(x + 1)) — Vxp(|x])

The formula ¢ (a) may have other free variables than a.
The theory Zf’— LIND is BASIC augmented by the axioms of LIND for all
Eib -formulas ¢ (a).

Letters S, T are next to letters P, Q, R taken previously in Tarski, Mostowski,
and Robinson (1953) to denote PA, Robinson’s Q, and a theory R defined there.
The superscript i in T 2’ and Sé refers to the restriction of the induction scheme to
z f’ -formulas, while the index 2 refers to the presence of function # in L. An index
k would refer to the presence of a function symbol #; in L, a function of the growth
rate of approximately wy.4). We shall consider such systems only exceptionally
(see, e.g., Corollary 10.5.4).

Lemma 5.2.5. Foranyi > 1:
Si=3xb— LIND =N® - PIND =11° — LIND
and

Ti=3%b— IND =112 — IND

Proof. Let¢ bea Ef’ -formula. Assume first that

0@ AVx (25 ) = ¢@) A p@
Then

Y(O0) AVx < al(¥(x) = ¥ (x + 1)) A~y (fal)

where ¥ (x) := ¢(ay) for a, denoting the number consisting of the first x bits of
a. Formula ¥ (x) is Ef’ asay = y1is Zf-deﬁnable

ay =y iff |yl=xAFz<a,a=y+2M.z

where 2171 is just y#1.
That contradicts Zf’ — LIND.
Analogous reasoning gives the rest of the lemma. Q.E.D.

Definition 5.2.6. The following are four minimization/maximization principles:
(a) MIN

¢la) > Ix <a¥y < x,p(x) A —¢(p)
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(b) LENGTH-MIN

#@@) - Ix <a¥y <a,p(x) A (¥l < x| = =P (1)
(c) MAX

¢0) > Ix <aVy <a,d(x) A (x <y = —¢())
(d) LENGTH-MAX

¢0) — Ix <a¥y <a,dp(x) A (x| < |yl = o ()

Recall the definition of Af’ -formulas (cf. Definition 3.2.11, part 4).

Lemma 5.2.7, Foralli > 1:
(@) T} =Eb-MAX = Z0-MIN =T%_|-MAX =T1%_-MIN
(b) S, = Tb-LENGTH-MAX = X%-LENGTH-MIN
= N’_|-LENGTH-MAX = N}_-LENGTH-MIN
where for i = 1 the class l'lf?_l is replaced by the class of formulas All’ in Szl.

Proof.
(a) Letp(x)bea = f’ -formula satisfying

$(0) A —p(a)

By Ef’ -MAX there is maximal b < a such that ¢ (b), thatis, also —¢ (b+1).
Hence ¢ (x) does not satisfy the induction hypothesis. This shows that X f’ -
MAX implies T. 2’ . For the opposite direction let ¢ (x) bea T ,.b -formula and
define another Ef’ -formula i (x) by

Y(x)=3Jy<a,x <yA¢(y)

Condition ¢ (0) implies ¢ (0). By Ef’ -IND either i (a) holds, in which case
¢ (a) holds too, or ¥ (b) A = (b + 1) holds for some b < a, in which case
b is the maximal element < a satisfying ¢ (x).

The MAX and MIN principles for Ef’ (resp. for l'lf_l) are equivalent as x
is the maximal element < a satisfying ¢ (x) iff y = @ — x is the minimal
element < a satisfying ¢ (@ — y). Note thata — x is A%’ -definable in Szl.
Now we show that Ef’-MAX implies l'lf?_l—MIN: Take a I'lf’_l—formula
¢ (x) and define Ef’-formula ¥ (x) by:

Yx):=3y<a,x+y=ane¢(y

Formula ¢ (a) implies ¥ (0), and if 4 is the maximal element < a satisfying
¥, then a — b is the minimal element satisfying ¢.
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Finally assume l'lf’_l-MIN andlet¢(x) =3y < t(x,a)y¥(x,y) bea Eib-
formula with ¢ being Hf’_l (or All’ if i = 1). Define a formula 6 by
Oz, M) :=Vx Za,x+z=a > (y<tx,a) A¥(x, )

where (z, y) is the pairing function, which is increasing w.r.t the lexico-
graphic ordering. Formula ¢ (0) implies 8({(a, y)) for some ) < £(0, a).
By the MIN axiom there is minimal (b, ¢) for which 8 holds; clearly then
a — b is the maximal element < a for which ¢ holds.

(b) The proofs of Part (b) are completely analogous.

QE.D.

Lemma 5.2.8. Foralli > 1: Sé C Tzi - SEH and thus: Th = $,.

Proof. S C T} is easier: Let ¢ be a £2-formula and assume
P 0) AVX(P(x) = P (x + 1))

Hence by T} also Vx¢(x) and, in particular, also Vx¢(|x|). Hence T} implies the
X2-LIND which is by Lemma 5.2.5 equivalent to S5.

For T C Si*! we use the idea of shortening cuts from Theorem 5.1.6. Let ¢
bea Ef’ -formula satisfying

PO0) AVx(P(x) = d(x + 1)) A~ (a)
Define formula i by
Y(x)=Vy<a, ¢(y)— ¢lx+ y).

Then 1/f satisfies the assumptions of the PIND scheme and hence ¥ (a) foliows
from S5+ But ¥ (a) implies ¢ (a). Q.E.D.

The next lemma is proved by the same shortening of cuts as in the second part
of the previous lemma; we leave it to the reader.

Lemma 5.2.9. ' For all i > 1 and for arbitrary Eib -formula ¢ and l'lf? -formula r,
if the theory S, proves the equivalence

Vx <a,¢x)=y(x)
then S§ proves the formula
PO AV <a(p(x) > ¢(x + 1)) — ¢la)
Such a scheme is called Af’ -IND.

The lemma can be strengthened (Corollary 8.2.7) but that requires first some
other nontrivial results.
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The class of Boolean combinations of formulas from a class I is denoted by
B(T).

Lemma 5.2.10. Foralli > 1, the theory T. 2’ proves the induction scheme IND for
all B (Zf )-formulas.

Proof. Every B(Z f’)-formula ¥ (x) is logically equivalent to a formula of the form
Pr(x) A (Pr-1(X) A (. (@2(x) A= (x)) .. )

with all ¢; € Hf’ (analogously with the difference hierarchy of Hausdorf 1978).
We shall call a formula yr such that ¥ or =y can be expressed in this form a /level
k formula.

We shall show by induction on ¢ that T; proves the induction axiom for every
level £ formula. Denote

Pe(x) = Pe(x) A=(Pe_1 (X)) A=( .. ={@2(Xx) A= (X)) ..)

For £ = 1 this follows from Lemma 5.2.5. Let £ > 1 and let a be arbitrary, and
assume that the induction assumption for v, holds on the interval [0, a].

If Vx < age¢(x) holds, then the induction for ¥, on [0, a] is equivalent to the
induction for —~yr,_1, which is a level £ — 1 formula. If Vx < a¢¢(x) fails, take
b < a the least number such that —¢¢ (b); it exists provably in T 2’ by Lemma 5.2.7
as ¢y € Zf’ . Then the induction hypothesis for ¥, on [0, b — 1] implies the
induction hypothesis for the level £ — 1 formula —,_ and hence —i/_1 (b — 1)
holds. But that means that the implication

Yeb — 1) > Ye(b)

fails, contradicting the induction assumption for ;.

This establishes the induction for level £ formula v, which can be represented
as y¢. If  is a level € formula such that —y can be represented as /¢, the induction
for i follows from the induction for —yr(a — x), which can be represented as ;.
Q.E.D.

Definition 5.2.11.
(a) Bounded collection scheme B is the scheme

Vx <ady, ¢(x,y) = IzVx <ady <z, ¢(x, y)

where ¢ is a bounded formula. Symbol BY. f’ denotes the scheme restricted
to Zf’ -formulas only.
(b) Sharply bounded collection scheme BB is the scheme

Vi <lal3y <b,¢G, y) > IwVi < la|, ¢, (w)i)

Symbol BBE}’ denotes the scheme restricted to Zf’ ~formulas only.
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The collection scheme is sometimes also called the replacement scheme or, in
the context of second order systems, the choice scheme. We only remark that the
bounded collection scheme is as strong as the induction scheme when accepted
for all formulas (cf. Hajek and Pudlak 1993).

Lemma 5.2.12. Foralli > 1

Si + BBX?

Proof Note that the formula
Y(x) :=3Fw < a#b Vi <lal,i <x - ¢, (w))
is Ef’ whenever ¢ is, and satisfies the induction assumption
Y(0) AVx < la|(¥(x) = Y(x+ 1)

and hence also, by S, ¥ (lal) holds.

The bound a#b to w follows as w codes a sequence of at most Ja| numbers each
of length at most |b|, hence itself has length at most |a| - |b|. That is, its code is at
most 2141181 < g#b. (In fact, the bound a#b depends on a particular way of coding
sequences and could be replaced by another term; see Section 5.4.) Q.E.D.

Note that the same proof actually shows that Sé proves the scheme of the strong
sharply bounded collection scheme

JwVi < lal, @y < b (i, y) > ¢, (w)i))

A conservation result for the sharply bounded collection scheme was obtained
by Ressayre (1986).

Lemma 5.2.13. Leti > 1. Then the theory
! + BBX!
is VZ? ' -conservative over theory Sé.

The proof follows the idea of the proof of VES 41 -conservativity of B 23 41 over
theory [/ Z,? (cf. Hajek and Pudlak 1993).

Lemma 5.2.14. Denote by S5(L") a theory defined as S} but in the language L
and with BASIC™ instead of BASIC. Call a bounded formula in the language L™
strictEf’ if it has the form

Ay <uVxr <tr...¢(a@, xy, ..., x;)

with i alternating bounded quantifiers and a sharply bounded kernel ¢.
Then any E{’ -formula is in Sé(LJr) equivalent to a strict Zf’ -formula.
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Proof. Let¢(x)bea Zf’ -formula in prenex normal form. We want to show that ¢
is in Sé equivalent to a formula ¥ in prenex form, in which all sharply bounded
quantifiers follow after all bounded but not sharply bounded ones. Let

Vi < |t3y < 5,600, y)

be a subformula of ¢: That is, 6 is a Ef’ -formula too. By the sharply bounded col-
lection BBZ;” available through Lemma 5.2.12 in S:';_ this subformula is equivalent
to

Fw < t#sYi < |t], 0, (w);)

This demonstrates how to switch a pair of sharply bounded/bounded quantifiers.
Repeating this yields .

To get from y a strict Zf’ -formula we only have to replace two consecutive
occurrences of the same bounded, but not sharply bounded quantifier by one;
but this is easily achieved by a pairing function that can be defined by using the
function (w);. Q.E.D.

Lemma 5.2.15. The theory S; is a conservative extension of the theory I Ag+ 2.
That is: Any formula in language L p 4 provable in S is also provable in [ Ag+2).
In fact, every model M of I Ay + 21 can be expanded to a model of S>.

Proof. The theory S, defines the function w;(x) and proves the axiom €2{: This
follows from a trivial bound

w1(x) < ((x#x) +2)?

This shows that /Ag + 27 C 5.

Let M be a model of 1A¢ + £21. By Theorem 3.2.6 there is a Ag-definition of
the graph of exponentiation and by the remark before Lemma 5.1.5 there is such
definition for which /A can prove the recursive equations. It follows that / Ag
can also Ag-define the graph of the function a#b, and from the bound

atth <wj(a-b+2)

it follows that /Ag + 2; proves the totality of a#b. The axioms of BASIC pose
no problem; nor do the Ag-definitions of |x| and [ (x/2)]. This demonstrates that
M can be extended by functions to obey BASIC, and from the fact that they are
Ay- definable in M it follows that induction will hold for all bounded formulas in
the expanded language. Q.E.D.

5.3. Theory PV

Building on an earlier work of Bennett (1962), Cobham (1965) characterized the
class of polynomial time functions in the following “machine independent” way.
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We say that a function f is defined from functions g, ko, 41, and ¢ by limited
recursion on notation if:
1. f(x,0) =g(¥),
2. f(x,5i(y) = hi(X, y, f(F, ), fori =0,1,
3. (X, ) U, ),
where so( y) and s ( y) are two functions adding 0, respectively 1, to the right of
the binary representation of y

so(y) =2y
si(y)=2y+1

Theorem 5.3.1 (Cobham 1965). The class of polynomial time functions is the
smallest class of functions containing constant 0, functions so( ), s1( y) and x#y,
and closed under:

1. permutation and renaming of variables

2. composition of functions

3. limited recursion on notation

We might note at this point that it is possible to enlarge basic functions by finitely
many polynomial time functions such that requirement 3 becomes redundant in
the theorem: That is, the class of polynomial time functions has a finite basis (cf.
Muchnik 1970).

Building on this theorem Cook (1975) defined formal system PV (for poly-
nomially verifiable). There are two motivations for considering a system like that:
One is its relation to the extended Frege system (Corollary 9.2.4); another is more
philosophical, to define a system in which instances of general proofs can be
verified by constructive, computationally feasible procedures.

Definition 5.3.2. We simultaneously define function symbols of rank k and PV-
derivations of rank k, k = 0, 1, .... The language of PV will then consist of all
function symbols of any rank, and a PV-derivation will be a PV-derivation of any
rank.
(a) Function symbols of rank 0 are constant 0; unary so( y), s1( ), and Tr(x);
and binary x ~ y, x#y, and Less(x, y).
(b) Defining equations of rank 0 are:
70) =0
Tr(s;(x)) = x, i=0,1
x~0=x
x ~(si(y) =si(x ~ y), i=01
x#0 =0
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x#si(y) =x ~ (x#y), i=0,1
Less(x,0) = x
Less(x, si(y)) = Tr(Less(x, y)). i=0,1

Tr(x) truncates x (i.e., deletes the rightmost bit), x ~ y is the concatena-
tion, x#y is | y| concatenated copies of x, and Less(x, y) is x with |y| right
bits deleted.

(c) PV rules are as follows

R1

t=u

u=t
R2

t=u u=v

t=v

R3
H=Ul,...,t = ui
S, ... )= fluy, ..., up)

R4

t=u
t(x/v) =u(x/v)
RS Let Ey, ..., Eg be the equations (1-3) from the definition of the lim-
ited recursion on notation: three for f| and three for f> in place of

f. Then
Ei, ..., Eg
N(x, ») = L(X,y)
(d) PV -derivations of rank k are sequences of equalities E, . .., E, in which

every function symbol is of rank < k and every E; is either a defining
equation of rank < k or derived from some earlier equations by one of the
PV -rules.

(e) Lett be a term consisting of function symbols of rank < k. Then f; is a
Sunction symbol of rank k + 1 and f; = t is a defining equation of rank
k+ 1

(f) Other function symbols of rank k + 1 are obtained as follows. Whenever
g, ho, h1, o, £1 are function symbols of maximum rank k and w;, i = 0, 1,
are PV -derivations of rank k of equality

Less(hi(X, y,2),z ~£i(X, ) =0
then

f= f(g,ho,hlvfoyfhﬂo,ﬂl)
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is a function symbol of rank k+1, and the two equations (1) and (2) defining
f from g, h; by limited recursion on notation are defining equations of rank
k+ 1.

PV has a function symbol f for every function introduced from earlier ones by
limited recursion on notation, provided one can first prove (an equivalent statement
to) that f is bounded by a function obtained earlier.

Lemma 5.3.3. Let n denote the dyadic numeral of number n:

0:=0, 2n :=s0(n), 2n+ 1 :=s1(n)

and let f(xy, ..., xx) be any polynomial time function.
Then there is a PV-function symbol fpy (xy, ..., x;)suchthatforeverym,, ...,
mypandn = f(my,...,my) the theory PV proves the equation

Sev(my, ....mp)y=n.

On the other hand, every PV-function symbol defines in N a polynomial time
function.

Proof. The last part follows from Cobham’s Theorem 5.3.1. The first part is not
obvious because of the requirement in part ( /) of the definition of PV that be-
fore we may introduce a symbol for the function defined by limited recursion on
notation we must have a proof that it is bounded by some previously introduced
function. An inspection of the proof of Theorem 5.3.1 shows that as one constructs
polynomial time functions, one also has obvious PV-proofs of their boundedness.

Q.E.D.

Now we state a relation between the systems Szl and PV. Denote by Szl (PV) the
theory defined as S2l is in the language L augmented by all PV-function symbols,
with all PV defining equations as new axioms and with the PIND rule extended to
all £¢-formulas in the new language.

Theorem 5.3.4 (Buss 1986). The theory S2l (PV) is conservative over PV. That
is: Whenever an equation t = u between PV-terms is provable in Szl (PV), then it
is provable already in PV.

The proof requires some results from Chapter 7 and we postpone it till Section
7.2 (cf. Corollary 7.2.4 and the text after it).

Cook (1975) also defines an extension PV1 of PV, allowing open formulas and
propositional reasoning instead of only equations, and adding PIND scheme for
all open formulas. It holds then (and follows immediately from Theorem 5.3.4)
that PV1 is also conservative over PV.

Instead we shall define theories PV;,i = 1, 2, ..., which will act as a universal
axiomatization of a conservative extension of theories Tzi -1
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PV, consists of all equations ¢+ = u provable in PV but has also a form of
induction axiom: For an open formula 1 (x) define a function k2 (b, u) by

(a) h(b,0) = (0,b)

(b) if h(b, L(u/2)}) = (x, ) and u > 0 then set

(Mx+y/DL, yy if[x+y/2T <y A¥(x+y/2)D)
hb,u) :={ (x, [(x+y/2)1) ifx <[(x+y/DI A=Y+ y/2)])
(x,») otherwise

Then PV, contains the axiom
WO A YD) ARB, ) =(x,p) > X+ 1=y AP AY(p)

This axiom simulates the binary search and is thus related to the PIND scheme.
The logic of PV is the usual first order predicate calculus.

Theory PV, contains PV and has inductively defined characteristic functions
of all Zf’ - predicates in its language, in particular universal axioms of the form

B =<1(x), (X, =1-8X) =t(X)A f(X,8x) =1

where g are new function symbols introduced inductively for all formulas of the
form

Iy =tx), fZ, =1

Furthermore, PV, is closed under definition by cases, composition, and limited
recursion on notation (i.e., has function symbols for all functions introduced by
these processes) and also contains the preceding axiom for every open v in its
language. The logic of PV, is also the first order predicate calculus.

Note that each PV; is a universal theory. We state a theorem that will be proved
in Section 6.1 (cf. Corollary 6.1.3).

Theorem 5.3.5. For everyi > 1, PV;yy is fully conservative over the theory Tzi .
The theory PV is conservative over PV.

5.4. Coding of sequences

In this section we sketch a way to code finite sets and sequences in Sz‘. This is
necessary in order to be able to formalize various syntactic and logical notions and
computations of machines in subsystems of 5.

For the language Lpa (and 7 Ag + £21) this is quite nontrivial as one must first
find a well-behaved Ay-definition of the graph of exponentiation, in order to speak
about lengths of numbers and their bits. The existence of a Ag-definition of the
graph of exponentiation follows from Bennett (1962) (cf. Theorem 3.2.6), but the
theorem does not imply that there is such a definition about which / Ag or I A9+ £,
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could prove the basic recursive properties

1L x%=1

2. )l =xV . x
Such a bounded definition was constructed by J. Paris (in Dimitracopulos 1980)
(see also Pudlak 1983).

Another crucial function whose well-behaved bounded definition is needed is
Numones(x): the number of ones in the binary expansion of x. The function is
clearly computable in logarithmic space, and thus its graph is Ag-definable by
Corollary 3.2.9, but proving the basic recurrence properties

1. Numones(0) =0

2. Numones(2x) = Numones{(x)

3. Numones(2x + 1) = Numones(x) + 1
again requires some work. In / Ag + 27 this is easier. Theorem 3.2.7 is a general
tool showing that all usual concepts defined by inductive properties can be defined
in a well-behaved way in / Ag + §2;.

With these two definitions in hand one defines the basic relations and functions
on finite words, identifying a number with its dyadic representation and the coding
of sequences then follows the development of rudimentary sets in Bennett (1962).
In 7A¢ + 2 the formalization of syntax and logic is then smooth.

If one wants to formalize logical notions in /Ag only, there are other compli-
cations. For example, the term resulting from substitution of a term u into a term
v for a variable x will not in general have length proportional to |u| + |v|; hence
its code will not be bounded by a polynomial in #, v and by Theorem 5.1.4 Ay
cannot prove that the substitution is always defined.

In some situations one can restrict the syntax, for example, to terms and formulas
with only one occurrence of each variable (or to their representation with this
property), but the formalizations obtained in this way are unnatural.

We refer the reader to Paris and Wilkie (1987b) or Hajek and Pudlak (1993) for
detailed development of coding, sequences, and syntax in /Ag and /Ay + €2;.

With the language L of S; the situation is much simpler because we have the
length function |x| in language allowing us to define the graph of exponentiation
immediately by

V=y=3Fz<yz+l=yAlzl=xAlyl=x+1
which is equivalent to
=y=Vz<ypz+l=y->|zl=xAlyl=x+1

We want to define the basic notions of rudimentary sets and of coding of sequences
by means of All’-formulas in Szl , in such a way that S2‘ can prove the basic properties
and, in particular, the properties of Lemma 5.1.5. This is done in great detail in
Buss (1986). Another approach is to follow the development of Paris and Wilkie
(1987b) and Hajek and Pudlak (1993) in 52l and to verify that all notions that are
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only Ag there are A? in Szl. To illustrate these topics we outline a way of coding
sequences, but we shall proceed rather swiftly, leaving details to the reader.
First we define the pairing function

(a+b)(a2+b+ I)J +a

{a,b) := [

It is defined by a term (hence is A’l’) and 821 can prove the basic property

(a,by={(u,v) = (@a=unb=v)
Then we define the predicate “a is a power of 2”

Pow(a) =3x <a,x+1l=aAn|x|+1=|a|

which is provably in S} equivalent to

Vx <a,x+1=a— |x|+1=]al
Next define the function the ith bit of a

1 ifdu,v,w<a,u+v+2vw=an Pow@)A |v|=i+1

bit(a, i) := AU<UV
0 otherwise

which is also A‘l’ as bit(a, i) = 1 is also equivalent to
Yu,v,w <a,ut+v+2vw=aA Poww) Alu|<i - jv=i+1
Using this function we define the elementhood predicate
i€a = bit(a,i) =1
Clailm 1. Functions and predicates (a, b), Pow(a), bit(a,i), and i € a are A’l’
ins$,.

We want to code arbitrary 0—1 words. This cannot be done just by binary
expansions of numbers that always start with 1. So we think of a word as pair
{u, v}, coding the word consisting of first right |v| bits of ». With this interpretation
in mind define the equality of words a =,, b by

Ix,y<adu,v<b,(x,y)=a A {(u,v) =b A

AVi<pyliexs=(cuni<|WANi<||,icus@Fexni=<ly])
which is again A‘l’ as x, y and u, v are unique. We also define the function the ith

letter in word a

1 if3u,v<a,(uv)y=aAricuni<|v|
Letter(a,i) := .
0 otherwise
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The idea of coding sequences of words is that a sequence will be coded by a
pair (a, b), where the ith bit 1 in b marks the end of the ith subword of a: That

is, a sequence wy, ..., w; of ¢+ words will be coded by number @ whose binary
expansion is w; —~ ... —~ w; and number b, which has bit 1 in positions |w1],
lwil + w2l ..., w1 +--- + |we| = |a].

This idea requires that we must be able to define the function counting the
number of ones among the first i bits of a

Numones(a, i) := [{j|j<iAjea}
Define
Numones(a, i) = k iff
Ix < (afta)taVu < lal,(l,u)ex =@ eanVYv<u,véa
AVt u,v<lal,t,u)exAu<vAvear(Vs<v,u<s—séa)
- {4+ LvyexA u<ilkuyexAVu<ilk+1lu)édx

In words: x codes an increasing map from {1, ..., k} onto the 1’s of a. Such an x
is unique; hence the definition is A’ and the inductive character of the definition
of x allows us to prove basic inductive properties of Numones(a) (see previous
discussion).

We are ready to define sequences and the function (w);

Seq(w) =3x, y S w, {x,y) = wA x| = |y
and for w a sequence
(wyi=u= Ix,y<w,{x,y) =wAVt < |ulvj, k< |x|,

Numones(y, j) =i — 1 A Numones(y, k) =i — k= j+ |u|
ANteu=(j+tex

Lemma 5.4.1. The function (w); = u is All’ -definable in S21 and 521 proves the
conditions of Lemma 5.1.5.

We shall conclude this section by a lemma stating that some predicates can be
in a sense coded in S5. It extends Lemma 5.2.12.

Lemma 5.4.2. Let A(a) be a Eg(Ef’ ) -formula, that is, a formula obtained from
z lb -formulas by logical connectives and sharply bounded quantification. Leti > 1.
The theory Sé' proves

VxIyVe < |x|, At)=(t € y)

That is: Any bounded set of lengths defined by a 23(25’ )-formula can be coded
by a number.
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Proof. Itis enough to show that for 4 € Ef’ , which also implies that any 28 (= f’)-
predicate can be (on any interval [0, |x]]) expressed as All’ whose coding follows
from the case i = 1.

Considera X f’-formula B(s) with parameter x

dy<xVe<|x|,tey—> A A |yl=s

Clearly B(0) holds as y corresponds to the empty set, and so by the Ef’ -LENGTH-
MAX principle available in S, by Lemma 5.2.7 there is maximal s < |x| satisfying
B. 1t is straightforward to verify that y corresponding to this s codes 4 on interval
[0, [x|]. Q.E.D.

Corollary 5.4.3. Fori > | the theory Sé proves the 28 (2{’ )-PIND scheme.

An interesting topic related to coding are partial truth definitions; see Paris and
Dimitracopoulos (1982).

5.5. Second order systems

In this section we shall introduce some second order systems of bounded arithmetic,
most from Buss (1986). We shall, however, proceed by model-theoretic reasoning
rather than by direct proof-theoretic investigations. This will allow us to give simple
model-theoretic proofs for the so-called RSUV isomorphism and translate several
results from the previous section directly to these systems. It also allows us to
relate the use of a second order object to the limited use of exponentiation.
Consider M a nonstandard model of S, and define a particular cut 7 C, M by

foraeM:ael iff ME3Ix,a=|x|

For the obvious reason we shall denote this cut by Log(M). This cut is closed
under addition and multiplication (as |a| - |b| + 1 = |a#b|), but it is not necessarily
closed under # (that would require that M is closed under w; (x), which we do not
assume).

Take a collection X of those subsets of Log(M ) coded in model M, that is,
those o € Log(M ) such that for some a € M

Vi € Log(M), (M =i € a) = (bit(a, i) = 1)

We shall denote such an « by a.

Consider now the two-sorted first order structure (Log(M), Xs) with all sym-
bols of L \ {x#y} defined for elements of Log(M) by restricting the operations
and relations from M, with = defined on Xy and with the relation i € « defined
for pairs from Log(M) x X by the preceding condition. We call elements of the
second sort Xy sets.
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We call our systems second order although we treat them only as two-sorted first
order structures (as the underlying logic always remains just the first order pred-
icate calculus). In second order logic the underlying logic has to assume various
principles about sets and some set theory. In fact, there is no specific second order
logic. We shall, however, call our systems second order, to honor the established
terminology.

Second order bounded arithmetic theories Uj’ and Vji were introduced in Buss
(1986). In this section we define these theories and obtain some basic informa-
tion about their strength. L, is a second order language whose first order part
is L, with second order variables o', 8¢, ... ranging over finite sets of numbers,
where ¢, s, . .. are first order terms, and with a membership relation x € «'. The
superscript ¢ in o’ is introduced for technical reasons as an explicit upper bound
to elements in ’; we will mostly omit the superscript as such upper bounds are
implicit in (proofs of ) bounded formulas, and we shall display it only to simplify
the presentation. More systems are introduced in Buss (1986), using varying lan-
guage (whether variables for functions are included, or variables for unbounded
sets, etc). In accordance with the notation of Buss (1986) the systems we shall
introduce should be called (7} (BD) or 17; (BD), but we shall abuse the original
notation slightly and adopt the simplest notation. In any case, all these theories
prove the same bounded formulas.

Definition 5.5.1. Bounded second order formulas are formulas of L all of whose
first order quantifiers are bounded.

E(])’b-formulas are bounded formulas without second order quantifiers.

The classes of © ,.l ‘b-formulas and 11 ,l ’b-formulas are classes of bounded formu-
las defined analogously to classes & f’ and I'If, counting the number of alternations
of second order quantifiers and not counting the first order quantifiers.

A Zi]‘b-formula is A}‘b (resp. A,!’b in a theory T) if it is equivalent to a I'I}’b-

Jformula in predicate calculus (resp. equivalent to it in T ). In particular, all E(])’b-
Jormulas are A: ®,

Definition 5.5.2. The theory I E&‘b is a theory in language L, with the following
axioms:

1. BASIC

2. the extensionality axiom

Va!'® B (Wy <t(x)+s(x),yea=yep)o>a=24
3. axioms stating that all sets are bounded
Vo' VE, y; yeat > y < 1(F)

4. Z(l)’b-IND scheme
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5. bounded comprehension scheme for Eé’b—formulas
ot —c4
0

VxIYy*Vy <x,y € ¥* = A(y), forall A € Eé’b

Definition 5.5.3. The theory Vli is the theory of all structures (Log(M), Xuy)
obtained from all models M of the theory Sé.

Lemma 5.5.4. The theory V,i is equivalent to the theory I E(l)’b extended by the
IND scheme for all #-free ,' ’b—formulas.

Proof. Let M be a model of S} and (Log(M), X)) be a model of ¥V, defined
carlier. We want to show first that in all such structures the theory 7 E(I)’ holds and
£, "°-IND holds (for formulas in the language of V).

Note that statement like # € o or o’ = B in (Log(M), Xy) can be equiva-
lently stated in M by All’ -formulas

bit(a,u) =1 Au<t or a=b>b

forea =aand 8 = b, first order bounded quantifiers Ju < v and Yu < v in
(Log(M), Xpr) are equivalent to sharply bounded ones Ju < |2V and Yu < |27|
in M, as 2V exists in M, and second order quantifiers 3’ and VB* translate to
first order bounded quantifiers in M: 3a < 2" and Vb < 2°.

In this view the first three axioms of / Zé’b are trivially satisfied. To see that
bounded comprehension scheme 5 holds, let A(x) be a Z(;’b with x the only
free variable and with possibly some other first or second order parameters from
(Log(M), Xu), and let u € Log(M). Then the formula

IVy <u,ye v = A(y)

translates in M into a 2{’ -formula (as A translates into a AII’ formula) that clearly
holds for ¢ = 0 and satisfies the induction assumption. By Zf-LIND in M then
holds for any length, in particular for u = |2¥| € Log(M).

To verify the IND scheme for Z,l’b-formulas let A(y) bea E]l‘b-formula, with
y the only free variable and with parameters. The formula A4( y) translates in M
into a Zf -formula 4*( y), and the assumption

(Log(M), Xu) = A(0) AVx, A(x) > A(x + 1)
implies that
ME A*O) AVx < 2%, 4*(x) = A" (x + 1)

holds for all u € Log(M).
By 4-LIND in M there follows

M = A* )
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which gives back

(Log(M), Xy) = A(w)

This proves that V| contains / Eé’b + Ell’b-IND.

For the opposite inclusion let (K, X') be a model of / E(])'b + El"b—IND. We
want to show that (K, X’) also satisfies Vl'. To this end we shall define a model
M of S} such that

(K, X) =M, Xy)

The idea of the construction is to use pairs (a, @) € K x X to code elements of
M; specifically, (a, a?) would code an element with the value > ob 21 We
shall omit the superscripts of the second order variables.

i<a,i€

Claim 1. There are relations A:’b—deﬁnable in Vli
R=((ar, a1), (a2, a2)), R< (a1, a1), (a2, 2))
and

Ry (@1, 1), ..., (@ky1s 0ra1))

one for each k-ary function symbol f of the language L, such that Vll proves the
translations of all axioms of BASIC obtained by replacing = and < by R— and R,
and f(ai,...,a;) = ai+1 by Ry. VlI also proves all translations of the equality
axioms.

The relation R— is Eé'b-deﬁnable by utilizing the extensionality axiom, and
the relation R< is also Eé’b-deﬁnable by formalizing the lexicographic ordering
of sets. The relation R, is defined as a formalization of computations of bits of
f(x1, ..., x;) from bits of x|, ..., x¢. In the case of | (x/2)] this is trivial, in the
case of addition and multiplication this is a formalization of the table of compu-
tations, and in the cases of |x| and x#y this involves formalizing computations of
the values of the functions via the basic recurrence properties (in fact, the same
applies to all polynomial time functions introduced by Cobham definition 5.3.1).
These computations are unique and hence the defined relations will be A:’b, but
then we need bounded comprehension for A:’b-formulas.

The formula

WVy <a,yev®=A(y)

isX 1] bifdis A } b andis easily proved by induction on a; hence bounded A } b.ca
is provable in Vl1 . The details are left to the reader.

Let M be the structure (K, X')/R- with the symbols of L interpreted by the
relations of the claim. Numbers ¥ € K can be best represented by pairs (|u], a,)
with a, 1= (ig < --- < i} for which K | u = 2/0 4 .. 2,
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Claim 2. K is isomorphic to Log(M).
To see this one needs to show in (K, X')
(b, BR=(lal, ) — Jc < a, (b, BYR=(Ic|, ac)
and

Ry (a1l @), - - .o (ak1) @ap)) = flar, ... an) = akss

Both implications are readily proved by A{'b -IND on a (resp. on the sum a; +
... 041), utilizing Claim 1. Moreover, the length of every (a,a)/R= € M isa
(ie.,Log(M) C K),and foreverya € K, M =a = |(a + 1, {a})/R=|. That is,
K < Log(M).

Claim 3. The model M satisfies Sé‘

LetAbea Ef-formula with parameters from M. Using the definition of M it
can be translated into a Ell’b-formula A'((a, @)) with parameters from (K, X).
Assume that 4 satisfies in M

A(0) A (Vx <a, A (B‘J) N A(x)) A —A((a,a)/R<)
Then (X, X') satisfies
A (1, {OD) A (Vx < aVe, A'(“L(x, $)/2]") — A'((x, $)) A —4'((a, @)

Now “|(x, ¢)/2]” is just (x — 1, ¢) and w.l.o.g. (1, &) R=(1, {0}), so specifically
we have

(K,X) = B(I) A(Vx <a, B(x) > B(x+ 1)) A -B(a)
fora E{’b-formula B(x)
B(x) := A'((x, @)
But this contradicts Ell’b-IND in (K, &'). This proves the claim. Q.E.D.

Definition 5.5.5.

(a) The theory V; extends V| by augmenting the language by the function
symbol # and accepting the axiom scheme IND for Eil’b—formulas in the
extended language.

(b) The theory U j’ , J = 1,2, extends the theory 1 E(;’b by E]' "®_PIND scheme
in the language L \ {#} for j = 1l and L for j = 2.

The next lemma is entirely analogous to Lemma 5.2.8.

Lemma 5.5.6. The theory Vzi contains Ué and Ué“ contains Vzi .
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Lemma 5.5.7. The theory U ]’ proves the separation scheme I1 ,1 *>_SEP scheme
(Vx,—A(x) v =B(x)) »> VxIyPy*Vy < x,
(A(y) > yep)A(yey — —B(y)
with A, B € 1}*°.
Proof. Consider a formula C(a, b).
Vs < b3YPVy < bis < y < s+a = ((A(») —> y e ¥OA(y € ¥ > =B(»))
Assuming ¥x, —=4(x) Vv =B(x), the theory U/ proves

c (B’J ,b) - C(a, b)

as it can prove that two sets have a union.
C(0, b) is trivial. By Z:‘b-PIND then there follows the formula C (b, b), and
the instance of I1 ll *_SEP scheme follows. Q.E.D.

The separation scheme immediately implies a form of comprehension scheme.
Lemma 5.5.8. The theory U proves the A b_CA scheme
(Vx, A(x) = B(x)) > VxqYyVy <x,ye ¢ = A(y)
with A € Ei"b and B € l'I:‘b.
A:’b-CA over [ E(')’b readily gives the A}’b-IND scheme.

Lemma 5.5.9. The theory U proves A"°-IND.

Lemma 5.5.10. The theory U f proves the choice scheme Zi] b_4c:
Vx < ady A(x, ) > JpVx < a, A(x, (@)x)

with A € Zil > and y € (p)y defined as [x, y] € ¢, [x, y] a pairing function.

Proof. The lemma is proved analogously as Lemma 5.5.7: show that the required

@ exists when x is drawn from subintervals of [0, a] of length 1,2, 4, .... Hence
Ei' > _LIND, which is available in U { analogously with Lemma 5.2.5, is sufficient
to obtain the statement. Q.E.D.

A modified choice scheme is the scheme of the dependent choice Ei' 4 pe:
Vx < aVody A(x, ¢, ) —> Ye30, (0)o = ¢ AVx < a, A(x, (O)x, @)x+1)
with 4 € £},

Lemma 5.5.11. E,."b-DC is provable in Vzi and E,.l’b-DC +123‘b proves Vzi.
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Proof. It is clear that Eil’b-DC is provable in Vzi by induction on a in a Zi]‘b-
formula with parameter ¢

30, @) =@ AYx <a, 4(x, )x, O)xs1)

To see the opposite direction assume that a Zl.l 2 _formula I A(x, ), with
A e I}, satisfies

i
A0, Yo) ANVx < a, AYx A, Yx)) = GYrp14(x + 1, Yeq1))
The second conjuct can be written as
Vx < aV‘ﬁxa‘/fo’ A(X, ‘/’x) i A(x + 1’ ‘/fx+1)

which is the antecedent of an instance of DC scheme for the A,.l’b -formula
A(x,¥y) — A(x + 1, ¢¥x4+1). By the DC scheme with ¢ = g we get

30, (0 = Yo AVx <a, A(x,(@)yx) = Ax + 1, (O)x+1)

By IT!:% -IND on the formula 4 (x, (6)x) then 3y 4(a, ¥) follows.

The argument so far shows that Zi"b-DC +TI1 }’_b] -IND proves Zil‘b-IND. But
analogously with Lemma 5.2.5 T1 Il_bl -IND is implied by Zl.l‘_bl -IND. We may then
repeat the same argument for i — 1 in place of i to derive Zil;b] -IND in Zi]‘_l’l-
DC +E}’_b2-IND and hence also Ei“b-IND in Eil’b-DC +Eil’_b2-IND. Iterating this
process i-times gets the wanted result. Q.E.D.

We shall now state precisely the relation between first order subsystems of S,
and second order systems like U!, V{ implicit in the proof of Lemma 5.5.4.

Definition 5.5.12. The theory R§ is a first order theory in the language L axiom-
atized by BASIC and the axiom scheme

6@ Avx (¢ ([5]) = 6@) — vxpxD

Jor all Ef’-formulas ¢. '
Ry is the theory | J; R;.

Analogously with Lemma 5.2.8 S~! € R}, C 8%, hence Ry = S5, holds. The
relation of 7, ~' to R} is open.
The reason for defining a theory like this is the following result.

Theorem 5.5.13 (Takeuti 1993, Razborov 1993). There exists a translation of sec-
ond order bounded formulas into first order bounded formulas

Aexll s 4l ez
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and a translation of first order bounded formulas into second order bounded
Jformulas

Bezl > BPexld
having the following properties:
1. if S\ Bthen Vi + B2
2. ifV} + Athen S} - 4!
and
3. SI+B=(BY!
4. V4=
The same properties hold for R, and U} in place of S} and V!, respectively.

We shall omit the proof as it is a direct generalization of the argument in the
proof of Lemma 5.5.4. Proof-theoretic arguments can be found in Takeuti (1993)
and Razborov (1993). The pair of translations is called RSUV-isomorphism.

We shall use this theorem in Chapter 8 in characterizing functions and func-
tionals definable in second order systems.

Note that the second order choice principle AC translates in the RSUV-isomor-
phism into the sharply bounded collection scheme BB; hence, for example, a result
like Lemma 5.2.12 is essentially equivalent to Lemma 5.5.10. We shall see more
examples of such translations of statements.

A very important closure property is the closure under counting functions (cf.
Section 2.2).

Leta E(;’b-formula Enum( £, u, &) denote “ f is an increasing bijection from u
onto ¢,” that is, the conjunction of conditions

L. Vx<y<u, f(x) < f(y)
2. Vx <u, fx) ea
3. Vzeadx <u, f(x)=z

Lemma 5.5.14. U 11 proves that every set can be enumerated in increasing order

Vadud f, Enum(f, u, )

Proof. Let a bound all elements of « and consider the formula
A(t) = Vx,y<adB3f,u, y<x+2
= (B={zealx <z <yl A Enum(f, u, 8))

This is a Ell’b-formula clearly satisfying induction assumptions 4(0) and V7,
A(t) = A(t +1), and hence by Ell’b-LIND A(|a]) holds: That is, £, u witnessing
A(la]) for x = 0 and y = a increasingly enumerate . Q.E.D.

The lemma implies that in U 11 one can A}'b-deﬁne the cardinality of a set

¢l :=u iff 3f, Enum(f, u,a) iff Vf,v, Enum(f,v,a) > u=v
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and hence also all combinatorial principles provable by rudimentary counting are
provable in U ]1. We shall return to this in Chapters 13 and 15.

We shall conclude this section by characterizing a limited use of exponentiation
in first order proofs using second order systems. This is of interest as many com-
binatorial or number-theoretic arguments using exponentiation (or equivalently
power set operation) use it only once. For example, the usual proof of the infini-
tude of primes requires one to compute the number n! + 1, or a combinatorial
argument requires one to consider the set of all graphs on a given vertex set of size
n and so forth. In the following discussion we will consider only a particular case
of the theory S21, but the arguments apply to other subsystems as well.

Definition 5.5.15. The set S2l + 1—Exp consists of all Ego- Jformulas ¢ (a) such
that there is a term t (a) for which SZl proves the implication

ta) < lc| - ¢la)
where c is a free variable not occurring in t (a) or ¢.

Theorem 5.5.16. Let ¢p(a) be a first order bounded formula. Then

¢p@eS+1-Exp iff ¥V,

Proof. Assume first that V2l H ¢(a). That is, there is a model of Vzl such that
(K, X) = —¢(m)

for some m € K.
The construction form the proof of Lemma 5.5.4 gives a model M = S21 with
Log(M) = K. Assume

S} 1) < le|l = ¢p(a)

As (K, X) =V, t(m) € K so there is 2/ € M, and hence ¢ (m) should hold
in M. But by the claim in the proof of Lemma 5.1.3 the truth value of ¢ (m) has to
be the same in K and M: a contradiction.

Assume now ¢(a) ¢ Szl + 1— Exp. By compactness we can find a model M
of Szl with a cut I C, M such that

i 1S

(i) cee M\IVbe I M=20<¢
Consider a family X" of subsets @« C / codedby somea e M, M =a < c.

We claim that (I, X') is a model of V2‘. This is because in the translation of
second order bounded formulas over (7, X') into first order ones over M, second
order quantifiers 3¢, V¢ can be replaced by Ja < ¢ and Ya < ¢, and bounded first
order ones into sharply bounded quantifiers of the form 3x < |¢|, Vx < |c|. Thus
2,"*-IND in (1, X) follows from £?-LIND in M. QED.

We refer the reader to Krajicek (1990) for more on this topic.
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5.6. Bibliographical and other remarks

Definition 5.1.1 is from Parikh (1971) (he used Q in place of PA™). The theory
IA¢ was studied by Paris and Wilkie in a series of papers (e.g., Paris and Wilkie
1981a,b; 1987b) where its extensions by axioms ; and Exp were also defined.

Definitions and most lemmas in Sections 5.2 up to 5.2.12 are due to Buss (1986,
1990a). Lemma 5.2.13 is due to Ressayre (1986). Definition of PV in 5.3 is due
to Cook (1975), and definition of PV;’s follows Krajicek, Pudlak, and Takeuti
(1991).

The presentation of second order systems in 5.5 follows the model-theoretic
construction of Krajicek (1990), developed proof-theoretically in Takeuti (1993)
and Razborov (1993). Originally the systems were defined in Buss (1986), who ob-
served Lemma 5.5.6. Lemmas 5.5.7-5.5.10 are from Krajicek and Takeuti (1992).

Theories Ré were defined in Takeuti (1993). Theorem 5.5.13, Definition 5.5.15,
and Theorem 5.5.16 are from Krajicek (1990).
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Definability of computations

This chapter presents important definability results for fragments of bounded arith-
metic.

A Turing machine M will be given by its set of states Q, the alphabet ¥, the
number of working tapes, the transition function, and its clocks, that is, an explicit
time bound. Most results of the form “Given machine M the theory T can prove
...” could be actually proved in a bit stronger form: “For any % the theory T can
prove that for any M running in time < »* ... A natural formulation for such
results is in terms of models of T and computations within such models, but in
this chapter we shall omit these formulations.

An instantaneous description of a computation of machine M on input x con-
sists of the current state, the positions of the heads, the content of all tapes, and
the current time: That is, it is a sequence of symbols whose length is proportional
to the time bound for n := |x|.

A computation will be coded by the sequence of the consecutive instantaneous
descriptions.

Now we shall consider several bounded formulas defining these elementary
concepts. They are all All’ in the language L™ and thus also (by Lemma 5.4.1)
inL.

Subsequently oracles will be represented by formulas, but to make the presen-
tation uniform we shall augment the language L by new unary predicate symbols
a(x); the new language will be denoted L («). Definitions of classes X f’ (o), Hf (a),
Af’ (o) and theories Sé (o), T2i (e) are straightforward generalizations of the original
definitions for the language L. The characterizations from Section 3.2 generalize
to Ef’ () too: For example, subsets of NV defined by Zf(a)-formulas are exactly
those in NP*, NP with oracle {n | a(n)}.

Let M be an oracle Turing machine with the explicit time bound #(n) coded
in the description of M. The property that u is an instantaneous description of a

93
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computation of M is defined by a simple A’,’ -formula
Instan s (u)

saying that u is a tuple of sequences, one coding the current state, several coding
contents of tapes with positions of heads, one coding the content of the query tape,
and one coding the current time.

Another AY -formula

Initps(x, u)

expresses that # is an initial instantaneous description of M with the input x (i.e.,
in the initial state and positions of heads, with x on the input tape, with empty
working tapes and empty query tape, and time 0).

A halting configuration is defined by the All’ -formula

Halt (1)

The property that # and v are two consecutive configurations of a computation of
M with oracle « is expressed by the formula

Consecys(u, v, o)

which is All’ (a); it says that both u# and v are instantaneous descriptions, the time
in v is 1 plus the time in u, v was obtained from u by the transition function of M,
and, in particular, if ¥ was in a query state then v answers the query according to
.

Finally, the formula

Compy,(x, w, ) := Inity(x, (w)) A
Vi < t(|x]), Consecpy((w)i, (W)it1,) A Ij < r(|x]), Halty ((w);)

expresses that w is a computation of M on the input x with the oracle «, and the
function

Output,, (x, @)

is the content of the first working tape in the halting configuration of a computation
of M on x with the oracle «.

It will follow from results in Section 6.1 that all these notions are, in fact, A? (o)
in PV ().

6.1. Polynomial time with oracles

In this section we shall define polynomial time computations with oracles from
the polynomial time hierarchy PH in fragments of 5.
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Lemma 6.1.1. For every polynomial time Turing machine M the theory PV,
proves

Vx3tw, Comp,,(x, w, B)

Proof. Let the time bound (which is an explicit part of the definition of M) be
k
< n*.
Then the function
f(x,y) := the sequence of first | y| instantaneous

descriptions of the computation of M on x
is defined by the limited recursion on notation
f(x, 0) := u iff Initys (u)

and
f(x,14]) ~u  where Consecar(f(x, L5 Diy-1, %)
fx, 15D if |yl > |x|*

with the implicit bound

S, » :=[

£ G, 9] < 1% 0P
that is,
fle, y) <x#...#x
The uniqueness of a computation is obviously provable by LIND for open formulas

of PV, available in PV by its definition. Q.E.D.

Theorem 6.1.2. Leti > 0, let ¢(a) be a Ef’ ~formula and assume T = PV if
i=0andT =T 2’ ifi > 0. Assume that M is an oracle polynomial time Turing
machine. Then theory T proves

VxAlw, Comp,,(x, w, $(a))

Proof. Consider a formula A(x, v) defined as

Ax,v) 1= u, w < v; v = (u, w) ACompy(x, w,u) AVi <|w|
Vb < w, ( “if the ith oracle query was [¢ (b)?]” A bit(u, i) = 1)

— ¢(b)

Formula 4 is Ef’ fori > 0 and A’l’ for i = 0 (as u, w are uniquely determined
by v and b is uniquely determined by i, w). We think of u as coding the oracle
{ilieul)

ByLemma 6.1.1, PV proves that there is wg such that Comp s (x, wo, &) holds.
Put vg := (0, wo).
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By Lemma 5.2.6 the theory T' proves that there exists maximal v; < 2
satisfying A(x, v); note that such v; is then bounded by a term in x. Let vy :=
(uy, wy).

Claim. The theory T proves that for anyi < |wil, b < wy, if [@ (b)?] was the ith
oracle query then

[bit(u1, i) = 1] = $(b)

The claim holds as all the positive answers of u are correct by the definition
of the formula 4, and if some negative answer would be wrong, then we could
change it into a positive one and all later answers into negative ones. In this way
we would construct > > u; such that for w, for which Comp s (x, wy, u2) holds
the number vy = (u3, wy) is bigger than v}, contradicting the choice of v;.

It follows from the claim that Comp s (x, wi, ¢(a)) holds. The uniqueness of
w is simple. Q.E.D.

Corollary 6.1.3. Foralli = 1, the theory PV, is fully conservative over T. 2‘ .

Proof. The idea is to augment Tzi by function symbols for all Ef’ ', -definable

functions. By Theorem 6.1.2 all Df 1 -functions are Ef’ ’,1-definable in Tzi, hence
every function of PV;; will have a counterpart in this conservative extension of 7, .
Moreover, the defining equations for the PV, |-functions determine a polynomial
time oracle Turing machine computing that function using the defining equation,
and hence open induction on the computation proves in Tzi the defining equation.
Finally, open induction in PV, translates into open induction in the extension of
T4, which in turn translates into A% +1-IND, available in T, by Lemma 5.2.2.

Q.E.D.
Corollary 6.1.4. Foreveryi > 0O thereis a Zf’ +1-formula UNIV; 1 (x, v, z) such
that for any Ef’ +1-formula ¢ (a) there are a term t(a) and a natural number e such
that S21 proves the equivalence

$@) = UNIViy1(a,1(a), )

(e is the numeral of e).

Proof The idea of the proof is to use the universal Turing machine. The problem
is that this machine has to be itself in polynomial time, but then it cannot simulate
machines running in a greater polynomial time. This is repaired by an extra input,
produced by term ¢ (a): if the time of the universal machine is p(n) and time of
the machine to be simulated is g(»), then we need term #(a) so that

g(lab) = p(|t(@)])

Number e codes the description of a machine computing ¢. Q.ED.
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6.2. Bounded number of queries

Bounded query classes are defined similarly to oracle computations except that
the machine is equipped with an extra bound to the number of oracle queries it can
ask (cf. Krentel 1986). We shall consider only one type of such classes.

Definition 6.2.1. Class P z/ [O(ogn)] is the class of languages recognized by a
polynomial-time Turing machine querying at most O(log n)-times a Zip -oracle.

Theorem 6.2.2. Leti > 1, let ¢p(a) be a Ef’ -formula, and let M be a bounded

query oracle polynomial time Turing machine allowing O(logn) queries. Then
the theory Sé proves

Vx3lw, Comp(x, w, ¢(a))

Proof. The proof of this theorem is compietely analogous to the proof of Theorem
6.1.2 except that we can use the length-maximum principle in the Claim instead
of the original maximum principle, which is by Lemma 5.2.6 provable in Sé. This
is because the length of #’s is now bounded by the log of the |x|; that is, u’s are
sharply bounded. Q.E.D.

Although the definitions of these classes seem a bit ad hoc, they, in fact, coincide
with several other, perhaps more naturally defined classes.

Theorem 6.2.3. The class of sets PNP[O(logn)] is identical with the following
three classes:
(i) sets log-space Turing reducible to SAT- LN
(ii) sets truth-table reducible to SAT: <;,; (N P)
(iii) sets definable by 28 (2‘1")-formulas.

The interest in considering these classes in connection with bounded arithmetic
stems from Corollary 7.3.6.

6.3. Interactive computations

In this section we define the notion of counterexample computations, and then we
formalize a slightly more general notion in 6.3.2.

The intended environment for the counterexample computations are optimiza-
tion problems. An optimization problem is a binary relation R(x, y) and a function
¢(x) which are both polynomial time computable and where the relation R(x, y)
satisfies

R(x,y) = |y < |x|O0

Call any y such that R(x, y) holds a solution to x, and given two solutions y; and
2 to x call yy better than y; if c(y1) > c(y2). A solution is optimal if there is no
better one.
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There are two prominent examples: the optimization problem CLIQUE with
the relation

R(x, y) := “yis aclique in the graph x”
with the cost function
c(y) ;= “the size of y”
and the problem TSP with the relation

R(x, y) := “yisatour in the graph x with

the edges labeled by natural numbers”
and the cost function

¢(y) := “the sum of the labels of the tour y”

We refer the reader to Krentel {(1986) and Papadimitriou and Yannakakis (1988)
for alternative definitions and treatment of optimization problems.

A specific way of searching for an optimal solution requires interaction between
two players: the teacher and the student. The student will be a polynomial time
machine, whereas the teacher has unlimited ability: It is an arbitrary function.

On input x the student computes a solution y; : R(x, y1), the candidate for
an optimal solution. If y; is optimal then the teacher says so and the computation
is finished with the output y;. Otherwise the teacher presents the student with a
better solution y3 : c(32) > c(y1). Now knowing x and y» the student produces the
solution y3 and learns from the teacher that it is optimal or gets a better solution yj.

In this way the interaction proceeds until the student finds an optimal solution.
The total computational time of the student must be polynomial in the length of x.

In the example CLIQUE the student has a trivial strategy; first he produces
a trivial clique consisting of one vertex and then he just repeats the teacher’s
counterexamples (v3 := y2, ¥s := ya,...). As there are only < |x| possible cost
values he always outputs a clique of maximal size. Note that a similar strategy
fails in the second example TSP as there are, in general, exponentially many cost
values.

There is a natural reducibility notion between optimization problems in which
TSP is complete and in which CLIQUE is complete among those optimization
problems whose cost function is bounded by a polynomial: c(y) = [x[?(). Onecan
even prove, assuming that NP does not have polynomial size circuits, a hierarchy
theorem for computations allowing at most f(|x|) < |x|'~¢ counterexamples in a
single computation. We refer the reader to Kraji¢ek, Pudlak, and Sgall (1990) for
details and proofs.

We shall now generalize the counterexample computations to a slightly more
general context. Assume Vx3yVz, A(x, y, z) holds, with 4 a polynomial time
predicate and with a polynomial bound < #(x) to y and z implicit in 4. Given a
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the student should compute b such that Vz, 4A(a, b, z). A counterexample is any
¢ < t(a) for which —A(a, b, ¢). Thus the student produces by < t(a) and either
learns that it satisfies Yz, 4(a, b1, z) or receives from the teacher ¢; < r(a) such
that —A(a, by, c1). Having a, ¢ the student computes b> < t(a) and again etther
learns that it is a solution or gets a counterexample ¢;, and so on.

Note that the original situation with optimization problems is contained in
this scheme as the property “b is an optimal solution to a” can be expressed as
Vz, A(a, b, z): That is, it is a coNP-property.

A counterexample to the claim that Vz, A(a, b, z) holds is, in fact, a witness to
the existential quantifier in 3z, —=A4(a, b, z). Hence the following notion of com-
putation (cf. Krajicek 1993, Buss et al. 1993) generalizes the counterexample
computations.

Definition 6.3.1. A polynomial time Turing machine M with a witness-oracle
Q(x) = 3y < t(x)R(x, y) is a polynomial time machine with a query tape for
queries to ) that answers a query a as follows:
1. if Ay < t(a)R(a, y) holds, then it returns YES and some b < t(a) such
that R(a, b): That is, it returns a witness to the affirmative answer.
2. ifVy < t(a)—R(a, y) holds, then it returns NO.

Note that since there may be multiple witnesses to affirmative oracle answers,
the computation is not uniquely determined and witness-oracle Turing machines
thus generally compute only multivalued functions rather than functions. A mul-
tivalued k-ary function f(X) is justa (k + 1)-ary relation F (X, y) . We call any
ysuch that F(X, y) avalueof f(X) .

Definition 6.3.2. Leti > 1 and let g(n) be a function.
FPY [wit, g(n)}is the class of multivalued functions f computable by a poly-
nomial time witness-oracle Turing machine such that
1. on an input of length n the machine M makes at most q (n) oracle queries
2. the witness-oracle has the form

dy < t(a), R(a, y)

with R € l'lf’_I ifi > landin All’ ifi =1
3. on an input x the machine M outputs some y such that f(x) =y

Note that we do not require that all possible values of f(x) appear as outputs
of some computations. Also observe that without changing the strength of such
machines we may allow the machine unlimited access to a Eip_l -oracle. This is
because a question whether there is a computation with correct answers of a Eip_ -
oracle is a Elf’ -query that always has a unique witness. Hence such a computation
may be found by a single query to a 7 -witness-oracle.
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Let
WitCompy,(x, w, Q)

formalizes that “w is a computation of a witness-oracle machine M on an input x
with an oracle Q.”

Theorem 6.3.3. Let i > 1. Every function f from FPzip[wit, c-logn]is Ef’H-
definable in Sg.

That is, for each such function f there are a polynomial time witness-oracle
machine M and Zf -witness-oracle Q such that Sé proves

Vx3w, WitComp s (x, w, Q)

Proof Let Q(a) = 3y < t(a), R(a, y) and assume R is a Af.’-formula AN Sf,;.
Let p(n) be the time bound of the machine M computing f with witness-oracle Q.
Define a formula A(a, &, w) to be the conjunction of the following four conditions:
1. w satisfies all conditions posed on a computation of M on a with possibly
incorrect oracle answers
2. h= {1, j1)s--.,Ur, jr)) forr <c-|la|lsuchthati) < iy < ...i, < |w|
and ji,..., j,=0,1
3. oracle query in steps i5, s = 1, ..., r, is answered YES if j; = 1 and NO
if ji=0
4. whenever [ Q(u;)?] is the query in step s and j; = 1 then w, is a witness
to it and it is a part of the instantaneous description
The first three conditions are A2, the last is A?, so the formula 4 is Af’.

Claim. The theory S2] proves that there is a lexicographically maximal e of the
Jform

e={(ji,.-vsJr)
such that
ahv wv;9 h = ((lli ]])9 AR ] (il" ]r)) A A(aahv w)

The formula in the claim is Ef’ , the lexicographically maximal e is just the
maximal e, and any e of such form satisfies

e <2 <2¢llall < jq°

Hence the existence of such e follows by the Ef’—LENGTH—MAX principle that
is available in §, by Lemma 5.2.7.

To conclude the proof, argue as in the proof of Theorem 6.1.2: For & and w
witnessing the formula for the maximal e, all affirmative oracle answers are correct
as they are witnessed, and all negative answers are also correct as otherwise a 0 in
e could be changed to 1, all later 1’s to 0, in this way creating ¢’ > e satisfying the
claim. Hence w is a computation of M on input a. Q.E.D.
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Lemma 6.3.4. Foranyi > l,any f € F PE [wit, q(n)} is computable by a ma-
chine M with a Eip -witness-oracle allowing q (n) + | oracle queries but requiring
the oracle to return a witness only in the last query. Moreover, this last witness is
an ordered pair whose first component is the output of the computation.

Proof. Let M be a polynomial time machine M with witness-oracle Q . Consider

machine M’, which by a binary search constructs the maximal 0—1 sequence e =

U, - . . » jr) satisfying the formula B(a, e) from the claim from the previous proof.
This requires < g(n) queries to a Eip -oracle

af, Bla,e ~ f

but it does not need the witnesses to the affirmative answers.
Having found such maximal e the machine M’ states the query

[3y, (h,w, i) h = (Gr, i), -, G2, i)
A Ala, h,w) A “y is the output of w”?]

The answer must be YES and a witness is an output of a computation of M on a,
that is, a correct output. Q.E.D.

Corollary 6.3.5. Predicates from the class
U FPEIp[wit, ¢ -logn]
(4

that is, funct{)ons with unique values from {0, 1}, are exactly the predicates from
the class P¥i [O(ogn)] (¢f Definition 6.2.1).

Proof. That PE [O(logn)] is included among predicates in FPZ/ [wit, c-logn]is
trivial. The opposite inclusion follows similarly to Lemma 6.3.4 (in the last query
add condition y = 1 and do not require a witness to the oracle answer). Q.E.D.

6.4. Bibliographical and other remarks

Theorem 6.1.2 is due to Buss (1986), Definition 6.2.1 is from Krentel (1986),
Theorem 6.2.2 is from Krajicek (1993), and Theorem 6.2.3 is due to Buss and Hay
(1988) and Wagner (1990).

Counterexample computations (student—teacher) were defined explicitly in
Krajicek et al. (1990) and used earlier in Krajicek et al. (1991). The witness-
oracle computations were used in Krajicek (1993) and the classes based on them
(6.3.2) were explicitly defined in Buss, Kraji¢ek, and Takeuti (1993). Theorem
6.3.3 is from Krajicek (1993).
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Witnessing theorems

This chapter considers various witnessing theorems, which are theorems char-
acterizing functions definable in various systems of arithmetic in terms of their
computational complexity. A prototype of such a theorem (and its proof) is the
characterization of primitive recursive functions as provably total recursive func-
tions in fragment / Z? of PA (cf. Parsons 1970, Takeuti 1975, and Mints 1976).

There are other approaches to proving witnessing theorems, for example,
skolemizing the given theory by Skolem functions from a particular class and
then applying Herbrand’s theorem. Or there are intrigued model-theoretic con-
structions. I shall mention these methods too, but my opinion is that one really
has to know in advance which class of functions one targets before formulating
an argument while the methods based on cut-elimination (Section 7.1) and gener-
alizing Theorem 7.2.3 help to discover the right class. This certainly was the case
for all witnessing theorems discussed in this chapter.

7.1. Cut-elimination for bounded arithmetic

We first extend the sequent predicate calculus by rules allowing the introduction
of bounded quantifiers and by the induction rules and then we prove the cut-
elimination for such a system.
The predicate calculus LK extends the propositional LK from Section 4.3 by
four rules for introducing quantifiers to a sequent as in Definition 4.6.2:
1. V:introduction

A@), I — A . I' — A, A(a)
left and right
VxA(x), ' — A ' — A,VxA(x)
2. 3: introduction
A@), T A ' — A, At
left @. — and right ©
IxAx), [ — A ' — A,IxA(x)

102
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where ¢ is any term and variable a in V : right, and 3 : left must not occur in the
lower sequent
3. and by instances of equality axioms

H=S1,....tk =5k — f(t1,...)= f(s1,...)
and
H=s1,..., R(f) — R(3)

for all function symbols f and predicate symbols R of the language.
For technical reasons (an easier formulation of Theorem 7.2.3 )we stipulate that
formula 4 in any initial sequent

A— A
must be atomic.

Definition 7.1.1. LKB is a proof system for the predicate logic extending LK by
the following four rules allowing introduction of bounded quantifiers:
1. V < :introduction

A@), T A <t T AL A
©.r — and right 4= — (@)

left
t<s,V¥x<sAx),l — A ' — A, Vx <t A(x)

2. 3 < :introduction
a<t,Ala),IT — A . L — A, A@®)
and right
Ix <t Ax), I’ — A t<s,I'— A,3Ix <5 A(x)

with the requirement that the variable a in V < : right and 3 < : left does not
occur in the lower sequent.

The system LKB is sound and complete and, for that matter, any valid sequent
formed from bounded formulas can be proved in LKB without the use of unbounded
quantifiers. We shall see this later.

Definition 7.1.2.
(a) The IND-rule is the following inference rule

[, A(a) — Aa+ 1), A
[, A(0) — A1), A
(b) The PIND-rule is the following inference rule
T, A(la/2]) — A(a), A
I, 400) — A@®), A
(¢) The LIND-rule is the following inference rule
I, A(@) — A@@+ 1), A
T, A(0) — A(t]), A
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where t is any term and where the variable a does not occur in the lower sequent.
The 25’ -IND rule denotes the rule restricted to Ef’-formulas A, and similarly
Jor other classes of formulas and the other two rules.

Lemma 7.1.3. Denote by BASIC'X the set of sequents of the form

— 4

with A an axiom from BASIC.
Leti > 1 and let B be any formula. Then

T, + B
if and only if sequent
— B

is derivable in LKB +Ef’ -IND from the initial sequents BASIC*X .
The same holds for PIND- and LIND-rules: That is, Ef’—PIND- (resp. Ef’—
LIND-) rules are equivalent to S°—PIND- (resp. £2~LIND-) axioms.

The “if part” of the lemma is obvious and for the “only if part” it is sufficient
to infer any instance of an Zf’——IND-axiom in LKB using the Ef’—IND-rule only;
this is left to the reader (note that the restriction to X f’ applies only to the induction
formulas of the IND-rule, other formulas in a derivation can be arbitrary).

The next theorem, the cut-elimination theorem, is the crucial technical property
of the sequent calculus. The cut-elimination for LK was proved by Gentzen and it
is called Gentzen’s Hauptsatz (see Gentzen 1969).

Recall from Section 4.3 (Definition 4.3.2) the notion of an ancestor and suc-
cessor of a formula in a proof. A formula ¢ in an LKB derivation with induction
rules is called free if ¢ is in an initial sequent or no successor of ¢ is identical to
¢ or to one of the two principal formulas of an induction rule.

Theorem 7.1.4. Assume i > | and assume that the sequent

N — A

is provable in Tzi . Then
r — A

has a proof'in LKB with the Ef’—IND-rule in which no cut-formula is free.
The same is true for the Sé and the E?—PIND—rule.

The theorem is proved by double induction on the complexity of a proof in T. 2’
and on the complexity of the cut-formulas in it. We refer the reader to Takeuti (1975)
for a clear treatment of the cut-elimination that applies to LKB with the induction
rules. We shall state explicitly one immediate corollary of cut-elimination: the
subformula property.



7.2 Ef’-deﬁnability in Sé' and oracle polynomial time 105

Corollary 7.1.5. Leti > 1 and assume that the sequent
r — A

is provable in T, (resp. in S}).
Then there is a proof of

r — A

in the same theory in which every formula is either a subformula of a Ef’ -ora
I'If’ -formula or a subformula of a formula from

' — A

In particular, if all formulas in T, A are Ib -formulas, then all formulas in the
proof are Ef’ or l'lf’.

Proof. Let ¢ be a formula in a proof of ' — A without free cut-formulas; such
proof exists by the previous theorem. Assume ¢ is not a subformula of a Ef’ -
formula. It follows that ¢ is free, as are all its successors. If ¢ would not occur as
a subformula in ' — A then it would have to disappear before the end sequent
by a cut, in which case the cut-formula would be free, a contradiction.  Q.E.D.

7.2 Ef’-definability in S} and oracle polynomial time

The idea of the witness function method is the following. Assume that
r — A

is a valid sequent consisting of formulas starting with existential quantifiers, say
Ixy(a, x) —> Iyb(a, y)

Assume that a are free variables that do not have to all appear in all formulas of the
sequent. That means that for any x satisfying ¢ (@, x) there is y satisfying 8 (a, »)
so that the function

some y such that 8(a, y) if ¢ (a,x)

/@ x) = any y if ~yr(a, x)

is well defined and witnesses the validity of the sequent.

The witnessing functions for initial sequents are trivial so one hopes that pro-
gressing along a proof of the sequent allows an explicit description of the witness-
ing functions for each sequent in the proof and, in particular, an estimate of their
computational complexity. Obviously this cannot be done with an arbitrary proof
in which any formula may appear and so one has to appeal to the cut-elimination
theorem to assure the existence of proofs for which there is information about the
formulas in it.
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The next definition introduces a method to deal with sequents whose formulas
do not start with an existential quantifier. We use sequence coding from Section 5.4.

Definition 7.2.1 (Buss 1986). Leti > 1 and A be a Zf’ -formula with free vari-
ables among a. By induction on the logical complexity of A define the formula

Witness ' (w, @)
by:
I IfAe Xt un?, then
Witness [ (w, @) = A(a)
2. If A= B AC then
Witness'f(w,ﬁ) = (Witness ';,E((w)hﬁ) A Witness ic‘a((w)z, a))
3 IfA= BV C then
Witness'f(w, a) = (Witness 'f((w)h a) Vv Witness ic"_’((w)z, a))
4. If A(@) =Vx < |s(@)|B(a,x) and A ¢ > | UTI®_, then
Witness 'Lf(w, a) = (Seq(w) A Vx < |s(a)| Witness 'éa_'b((w)xH,E, X))
5. fA(@) =3x < s(@)B(a,x)and A ¢ B> UMNL_, then
Witness'7 (w, @) = (Seq(w)A(w)2 < s(a@)AWitness5®? (w1, @, (w)2))

6. If A =—-Band A ¢ Eib_, U l'lf’_l then use the prenex operations and
de Morgan rules to push the negations into the f’_] -subformulas and then
apply one of clauses 1—4.

Lemma 7.2.2. Leti > 1andlet A be a Ef’ -formula. Then:
(a) The formula Witness/’f(w, a)is A? in Sé .
®)
PV + Witness'" (w,@) — A(a@)

(c)
Sy + BBE! - A(@) — Fw, Wimess'F(w,a)

Proof. Property (a) is obvious from the definition of the witness formula. Property
(b) is proved by induction on the logical complexity of 4, which is straightforward.

To prove property (c¢) proceed also by induction on the logical complexity of
A. The only nontrivial cases of Definition 7.2.1 are those treating the quantifiers.
Let

A(a)=3x <t(a)B(a,x)
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Argue in S2]: If A(a) holds, then B(a, b) holds for some b < #(a) and by the
induction assumption

Witnessi}a(w, a,b)
holds for some w. Setting w’ := (w, b}, clearly
Witness'f(w', @)
Now let
A(a) =Vx < |s(a)|B(a, x)
By the induction assumption we already know
S} + BBX! - B(@, b) — 3, < 1(@), Witnessy" " (vp, @, b)
So
S} + BBE! - A(@) — Vx < |s(@)|3vyx < 1(@), Witnessy" * (v, @, x)
Applying BB 2;’ we get
S)+ BBXY - A(a) — JuwVx < |s(a)l,
(Witnessi?,a‘b((w)xﬂ,ﬁ, XA (Wet1 < t(E))
and thus also
S+ BBE! - 4(@) — 3w, Witness' (w, @)
QED.

We are arriving at Buss s witnessing theorem; our formulation is a combination
of the original version with a later improvement.

Theorem 7.2.3 (Buss 1986, 1990a). Leti > 1 and assume that
S+ A(@a) — B(a)

where A and B are Ef’ and @ are all free variables in the sequent.
Then there is a PV;-function symbol f(w,a) such that
1. the function f is Df and it is ):,.b-deﬁnable in Sé
2.

PV - Witness"f(w, @) —> Witness'¥ (f(w,a),a)

Proof. From the assumption and Corollary 7.1.5 there is an LKB proof 7 of the
sequent with the Zf’—PIND rule in which all formulas are Zf’ or l'If.’. A general
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sequent in 7 has the form (with possibly permuted formulas)
Ey.,....E.,U,.... U — F,....,Fe,Vy,..., Vs

with E;’s and F;’s El.b and U;’s and ¥V’s l'[f.
By induction on the number of inferences in w above the sequent we show that
there is a function g(w, b ) such that:

PV; + WitnessiG’E(w,E) — Witness'}‘,z(g(w,g),g)
where

G := /\Ei A /\(—-V,-) and H:= \/Fi % \/(_'Uj)
i J ! J

and b are all free variables of the sequent.

In the induction step we shall distinguish cases according to the type of the
last inference applied in 7 to derive the sequent. To simplify the notation we shall
picture sequents in the form

EEI'—A or T—A,F

thinking that all formulas are ib ,and we shall write, for example, Witnessg{’ r(w, b)
instead of the conjunction G in the index. We shall also describe only the inductive
definition of the function g leaving the provability of its properties in PV; to the
reader, and treat only the right rules of LKB as the left ones are treated dually.

Initial sequents. An initial sequent has either the form C — C for C atomic
or —> (C for C an axiom from BASIC; in both cases C is open and by definition

C(b) = Witness:?(w, b)

Structural inferences. Structural inferences are easy to handle, utilizing the
permutation of the components of the witness (for the exchange rule), defining by
cases distinguished by a Af’ -property (for the contraction rule) or adding a dummy
component (for the weakening rule).

Propositional inferences. Assume that for a /\ : right inference
' — A,C r — A,D
r— A,CAD
functions g and g witness the upper sequents where g; computes from a witness

w atuple (W), wc) (a witness for the succedent of the left upper sequent), and g»
computes on w a tuple (wy, wp). Then define the function g by

(1, 0) if Witnessi? (1, 5)

(w2, {we, wp))  otherwise

g(w) := {
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Assume that w witnesses I'. Then (w;, w¢) witnesses A, C, so either w)
witnesses A, in which case g(w) = (w, 0) witnesses A, C A D, or w¢ witnesses
C, in which case g(w) = (w3, (wc, wp)) witnesses A, C A D, as well, since
either w;, witnesses A or pair (wc, wp) witnesses the conjunction C A D.

Assume that for a \/ : right inference

r — A, C
r—A,CvD

function g is witnessing the upper sequent, computing on w a tuple (W, w¢).
Define function g by

g(w) = (wy, {(wc, 0))

It trivially witnesses the lower sequent.
Finally assume that g; is a witnessing function for the upper sequent of a
- : right inference

C,'— A
r— A,-C

Since we assume that all formulas in 7 are Z}’ , C is in fact in ):f’ Y Hf.’_l and

hence Witnessic'z(w, b) is by definition formula C itself.
Define the function g by

g(w) = (g1 ({0, w})), 0)

Quantifier inferences. Let g1 witness the upper sequent of the V < : right
inference
c<t,I' — A,C(c)
' — A, Vx<tCx)

We must consider two cases, when ¢ is of the form |s|, and when it is not of this
form.

In the latter case the formula Vx < tC(x) must be Hf’_] and hence its witness
formula is identical with it and the definition of g poses no problem.

In the former case assume that g; computes on input {(u, w), ¢) the output
(w€, wy). Define the function g by

¢ if w® witnesses A for some ¢ < |s]

wy=1{ _
&) (0, (wo, ..., wys)))  otherwise

If w witnesses I' then g(w) witnesses the lower sequent because each
21((u, w,¢)),c=0,...,|s|, witnesses either A or C(c).
Note that the sequence (wy, . . ., wys) exists by BBE,{’ available in Sé.
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Now assume that g; (w) = (w, v) witnesses the upper sequent of a 3 < : right
inference
r— A, C@
t<s, I —> A, dx <5 C(x)

Then define the function g by

0 ift >

gl w) = (wy, (val@@®),v)) ift<s

where val(¢) is the value of the term ¢. If w witnesses I" and ¢ < s then (u, w)
witnesses t < s, I', in which case either w; witnesses A or v witnesses C(z). That
is, (val (¢), v) witnesses Ix < ¢, C(x).

Cut-rule. Let g)(w) = (wy, u) and g (v, w) = wy, respectively, witness the
left and the right upper sequents of a cut-rule inference
'— A,C C,I' — A
r—A

Define the function g by

. . i b -
wy if Witness’,” (wy, b)
g(w) := oh
2 (u, wp) otherwise
The function g(w) is either w), in which case it witnesses A, or otherwise u
witnesses C and hence g(u, w) witnesses A.

Zf’—PlND rule Let g (u, w, ¢) = (wy, v) witness the upper sequent of a Zf’—
PIND inference
I, C(le/2)) — C(o), A
r,Cco — C@®), A

We shall consider only the case when C ¢ Ef’_] U l'If?_] as otherwise the construc-
tion of g is trivial.

The idea of the construction of the function g(u, w) witnessing the lower se-
quent is to iterate the function g for values ¢ = 0, .. ., t. We shall proceed by the
limited recursion on notation

0 if = Witnessic’l(’o)(u, b)

g1(u, w, 1) otherwise

= (o | 2)), )

gu,w) ;= f(u,w,t)

fu,w, 1) = {

and then we put
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The definition of f is correctas f is a priori bounded by 2¢, where ¢ is the maximal
sum of the lengths of witnesses for C(c) plus |w| plus |¢].

To see that g witnesses the lower sequent verify by induction on the length of
ythat f(u, w, y) witnesses the sequent

I[,C0) — Cy), A
This completes the proof of the theorem. Q.E.D.

The witnessing Theorem 7.2.3 has several important corollaries. We shall men-
tion four of them now.

Corollary 7.2.4. The theory S2l is 2{’ -conservative over the theory PV| and for
i > 1 the theory S£+' is Zf’H -conservative over the theory PV;, | and also over
the theory Tzi .

Proof. Assume A(a) € ):,.”H and

S A
By Theorem 7.2.3

PViy F Witnessif (f(a),a)
for some PV, | -function symbol f. But by Lemma 7.2.2 even
PV F Witness;" (f(a), @) — A(a)

That is, together

PVt + A(a)

This proves a part of the corollary. The part about the conservativeness over 7. 2’
follows from Theorem 5.3.5. Q.ED.

Note that the theory Tzi hasaVvVZ f’ ', -axiomatization; hence the preceding state-
ment is the best possible unless in fact T} = S3*'.

Corollary 7.2.5. Let i > 1 and let ¢(a) be a Ef’—formula and r(a) be a l'[?-
Jormula. Assume that
Si - ¢a) = ¥(a)

Then the formula ¢ (a) defines a A}D -predicate in N.
In particular, any property that is provably in Szl in the class NP N coNP is
actually in the class P.

Proof. From the hypothesis it follows that

St ¢@) Vv —y(a)
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where this disjunction is a Ef’ -formula. By Theorem 7.2.3 there is a IZ\f7 -function
f so that

PV; b Witnessyl,_, (f(a), @)

That is, either ( f(a)); witnesses ¢ (a) or ( f(a))2 witnesses — (a), and both cases
cannot occur at the same time as

85 = = (@(a) A ~¢(a))
Hence the characteristic function of ¢

1 if Witness;;“ ((f@ann

Zpla) =
¢ 0  otherwise

isa 07 -function: That s, ¢ (a) defines a predicate in the A! level of the polynomial
time hierarchy PH.

Fori = 1, £/ = NP, I1{ = coNP and A} = P (cf. Section 2.2 and Theo-
rem 3.2.12). Q.ED.

Corollary 7.2.6. Leti > 1 and let ¢(a, b) be a Zf’ -formula. Assume that
S5 F Vxdyg(x, y)

Then there is a Zf’ -formula ¢*(a, b) such that S£ also proves
1. ¢*(a,b) > ¢(a.b)
2. VxIyd*(x, y)

Proof. By Theorem 7.2.3 the hypothesis implies
S+ Vx, Witnessy” (f(x), x)
for some Df’ -function f Zf’-deﬁnable in Sé. Define the formula ¢* by
¢*(a,b) := (b= (flaN)

It clearly satisfies the requirement. Q.E.D.
Corollary 7.2.7. Fori = llet¢ € Ef’ Lyandy € Hf’ 1 be arbitrary, and assume
T ) =y ()

Then

Ty - (9(0) AVx(p(x) = ¢(x + 1)) — Vx, $(x)

The same holds for i = 0 and PV in place of T. 20 .
This scheme is called the Af’ +1—IND scheme.
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Proof. By Lemma 5.2.9 S;*" admits A?_—PIND. Using Vx, ¢(x) = ¥ (x) we
can write the IND-axiom for ¢ as

-y 0) VIx <al@x)A—yYx+1) Vv

which is a Zf’ ', -formula. By Corollary 7.2.4 Tzi proves all Zf’H -consequences of
s+t QED.

7.3. £°,,- and T}, |-definability in S} and bounded queries

We give two witnessing theorems for Ef’ ’,1-consequences of Sg. The first one
uses a simple idea of introducing a symbol for a Herbrand function to reduce the
quantifier complexity of the formula and then reinterpreting the Herbrand function.

Consider a formula of the form ¥ (@) = IxVy¢d(a, x, y). Let f(a, x) be a new
function symbol and define the formula vy 5 (a) by

Yy(a) :=3xp(a, x, y/fla, x))

That is, ¥y arises from ¥ by reducing the quantifier complexity with the help of
one Herbrand function for the first universal quantifier (a herbrandization of a for-
mula would require introduction of Herbrand functions for all universal quantifiers
and the new formula would be existential). The following lemma is trivial.

Lemma 7.3.1. Let Y (a) = AxVyd(a, x, y). Then the implication
V(a) » Yu(a)
is logically valid.
We shall define a particular interpretation of the function f(a, x)

is the minimal y s.t. =¢(a, x, y) holds
e x) = y oy y ( »)

0  thereis nosuch y

Lemma 7.3.2. For every n the sentence 3x¢(n, x, f*(n, x)) is valid if and only
if IxVyd(n, x, y) is valid.

Proof. Assume 3x¢(n, x, £*(n, x)) and let x = a witness the existential quanti-
fier, while Vx3y—¢(n, x, y) and, in particular 3y—¢(n, a, y). But the definition
of f*(n, a) also implies that —¢ (n, a, f*(n, a)), which is a contradiction.
Assume now IxVy¢ (n, x, y) with x = a witnessing the existential quantifier:
Vyp(n,a, y). IfVx—¢(n,x, f*(n, x}) would hold, then also ~¢ (n, a, f*(n, a)),
which is again a contradiction. Q.E.D.

Now we use the Herbrand function to derive from Theorem 7.2.3 a witnessing
theorem for the Ef’ ', p-consequences of Sé'.
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Theorem 7.3.3. Letp(a,b,c) bea E{’ -formula and assume that
SiFIVy <adla,x,y)
Then there is a function g(a) such that
N=VnVy <n,¢(n,gn), y)

and g is computable by a counterexample computation with the student being a
polynomial time Turing machine with a Zip_ j-oracle and the teacher producing
counterexamples toVy < ad(a, b, y), that is, some ¢ < a for which —¢(a, b, ¢),
if such c exists.

In particular, g € FPi [wit, poly]. (See Section 6.3 for the definitions of the
computational models involved.)

Proof. Consider the formula
GxVy <a¢a,x, y)p =3, fla,x) <a — ¢(a,x, fla,x))
The hypothesis of the theorem implies that
Sé(f) F3Ix, fla,x) <a— ¢a,x, fla,x))

where Sé' (f) is atheory defined like Sé but in the language L U{ f} and with axiom
f(a, x) < a. For such a theory we have a statement straightforwardly analogous
to the witnessing Theorem 7.3.2 with the witnessing functions now being from
the class O ,.p (f). That is: The witnessing function is computable by a polynomial
time machine querying a Zip_ ,-oracle and querying also for values of the function
/- Such a witnessing functional F then satisfies

fla, F(a, [)) <a— ¢a, Fa, f), fla, F(a, /)

Now substitute into the algorithm computing F(a, f) for oracle f a particular
function f*

minc < a s.t.-¢(a, b, c) ifitexists
Sf*a, b) = .

a+1 if Vy < a¢(a, b, y)
Then

f*a,b) <a— ¢(a,b, f*(a, b))
implies

Vy<a,¢(a,b,y

and hence the preceding implication yields

Vy <a.¢(a, Fa, 9,y
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Note that the algorithm computing F(a, f™*) specifies a counterexample compu-
tation with the required properties. Q.ED.

In principle we may apply the herbrandization to bounded formulas of ar-
bitrary complexity and obtain a Ef’ (fi,-.-. fx)-formula. The Herbrand func-
tions, however, do not appear to have a nice interpretation (cf. Krajicek 1992 and
Lemma 11.1.2).

Corollary 7.3.4. Leti > | and assume that a function f is Ef’_H-deﬁnable in Sg.
Let the graph of [ be defined by a formula of the form 3IxVy < aA(a, b, x, y),
whereVy < ad(a,b,c, y)is l'[f’.

Then there is a function g that can be computed by a counterexample compu-
tation where the student is a polynomial time machine with a Z‘ib_l—oracle and
receives from the teacher counterexamples to the formula

Vy<a,A(a,b,c,p)

and such that the function f(a) is a projection of g(a). That is, for any a the value
g(a) has the form g(a) = (f(a), x), for some x.

Proof. Let f be defined by a Ef’ ', -formula
IxVy < ad(a,b, x, y)

The statement then follows from Theorem 7.3.3. Q.ED.

If a function f is Ef’H-deﬁnable in S; and thus also in S§+], then it is a
I:ll.p 1 -function. Corollary 7.3.4 implies that such a function is, in particular, in

FPZ? [wit, poly]. The class F pE’ [wit, poly] contains, however, the class O f 4 triv-
ially. Thus the only new information the corollary gives is the form of the formula
to which the teacher offers counterexamples. That appears to be rather poor infor-
mation to yield some estimate of the computational complexity of the functions
Ef’ ', ~definable in S£ and we need another approach to it. We shall use witness-
oracle computations to obtain a witnessing theorem for Ef’ ', j-consequences
of S5.

Theorem 7.3.5 (Krajicek 1993). Leti > 1 and let A(a, b) be a Ef’Hfformula
such that
Sy - VxIyA(x, y)

Then there is a multivalued function f(x) € Fsz [wit, O(logn)] that is Ef’ 1
definable in S} such that

Sy - ¥x, A(x, f(x))
This means that any value y = f(x) satisfies A(x, y).
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Note that the converse of this theorem, Theorem 6.3.3, is also true.

Proof. We shall show that there is a function f € FPE? [wit, O(logn)]; its )35’ 1
definability in Sé' follows from Theorem 6.3.3.

Assume for simplicity that 4 € I12. By Corollary 7.1.5 the hypothesis of the
theorem then implies that there is a derivation 7 of the sequent

— dyd(a, y)
in which every sequent has the form
Fl ’ A] —> F2’ AZ

where
() Mur,czfun’
(i) A has the form

3}’1“1 (b9 yl)’ cees ayrar(b, J’r)
(iii) A; has the form:
azlﬂl(b9 Zl)’ ceey azsﬁs(bﬂ ZS)

where a;’s and ;s are T2 -formulas.

We will assume for simplicity that bounds to y;’s and z;’s are parts of the
formulas «;; and 8;, respectively.

Now we modify the notion of a witness from Section 7.2. We say that u is a
witness to 'y, A (for parameters b) if » has the form

u=(b,n,..., )
and the conjunction
ATi® A N ej®, 3)
J
is true. We say that v of the form
v:i=(b,z1,...,25)
is a witness to I'z, A if the disjunction

\/ D2y v \/ B;(b, zj)
J

is true.

By induction on the number of inferencesbabove the sequent in w we prove that
there is a multivalued function g(x) € FPZi[wit, O(logn)] having the property
that if u witnesses ['1, A1, then any value of g(u) witnesses I'2, A,.
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This is proved analogously with the proof of Theorem 7.2.3 with an additional
case in the 3 < : introduction-rules and a bit different treatment of the PIND-rule.

The case of 3 < : right only involves evaluating a term; this is done by a
polynomial time machine. In the case of 3 < : left there are two different situations:
The inference introduces one of the Jy;’s or it introduces an existential quantifier
into a Zf’-formula.

In the former case the witnessing algorithm remains the same, except that a
variable treated as a parameter now moves into the nonparametrical part of the
witness.

In the latter case assume that the formula introduced by the rule was

Uy (b, 1)

and that it was inferred from y (b, ¢), ¢ a parameter not occurring among b (by
the proviso of the 3 < : left rule). Assume that M (b, ¢, ) computes the witness
function for the upper sequent.

Consider a new algorithm M’: on the input (b, 7} it first asks the witness-oracle
a Zf’ -query [3ty (b, t) ?]. If the answer is negative, M’ outputs 0 and halts. This is
correct as (b, ) was not a witness to the antecedent of the lower sequent.

If the answer is affirmative then M’ is also provided with a witness ¢ to it:
y (b, ¢). M’ then forms a tuple u = (b, c, 7) and runs as M on u. Clearly if (b, y)
witnessed I'j, A1, then the output of this computation must witness I'>, Aj.

The principal formula of a V < : right inference is I'If’ . This case is treated
dually to the 3 < : left inferences.

Now consider a PIND-inference

y(le/2]) = v(o)
y0) - y@)

with y € 25’ (we omit the side formulas). Let M be the witness-oracle machine
witnessing the upper sequent. Define machine M’ as follows.

On input &’ = (&', ...) it computes the value v of the term ¢ and asks the query
[y (v)?]. If the answer is affirmative it outputs O (any tuple witnesses true y (¢)).
If it is negative M’ asks query [y (0)?]. If the answer to this query is negative it
answers 0 and again stops (no tuple can witness false y (0)).

In the remaining case (answers to y(v) and y(0) negative and affirmative,
respectively) it finds by binary search some ¢ such that y(|c/2]) is true while
y (¢) is false. Note that this takes O(logn) Ef’-queries as we deal with PIND (and
where n = j¢] ).

Then M’ forms u = (b, c, ...) and computes as M on u. Any output v of this
computation witnesses the succedent of the upper sequent, but as y (c) is false it
must witness the disjunction of the remaining formulas in the succedent. These
formulas are also in the lower sequent, so v witnesses the succedent of the lower
sequent to0o. Q.E.D.
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Corollary 7.3.6. Fori > 1, a predicate is Zf’ '1-definable in Sé if and only ifit is

a predicate from the class 21 [Oogn)].

Proof. pBy Corollary 6.3.5 the class 2 [O(logn)] equals the class of predicates
in FP%i [wit, O(log n)]. Theorem 7.3.5 then implies the corollary. Q.E.D.

In the rest of this section we shall consider a witnessing theorem for a theory
extending S21 by a particular combinatorial principle. The witnessing functions
will be computed by probabilistic algorithms.

A pigeonhole principle is the obvious fact that m pigeons cannot sit in » holes
if m > n, each hole accommodating at most one pigeon. There are several ways to
formalize this principle in arithmetic (see Dimitracopoulos and Paris 1986), and
we will now consider one of them. Later (in Chapters 11, 12, and 15) we shall
consider some other ways.

The pigeonhole principle PHP(E(’;O) is the scheme

Vx <ndy<n, A(x,y) — Ixy <x2 <n,y<n, AQx1, y) A A(x2, y)

for bounded formulas 4. Observe that PHP(Ego) proves (over BASIC) all induc-
tion axioms of 7. It is unknown whether 75 proves all instances of PHP(Ego).
A weak pigeonhole principle for function f, WPHP( f), is the formula

Ay <2aVx <a, fx)#y

stating that no map from [0, a] can be onto {0, 2a]. The word weak indicates that
a stronger version is also valid with a + 1 in place of 2a.

Let WPHP(PV) denote the set of axioms WPHP( /) for every PV -function
symbol f(x) (f(x) may have other arguments besides x and they are treated as
parameters in the axioms). Recall from Section 5.3 that S21 (PV)y) is the theory S21
in the language of PVy; it is a conservative extension of SzI by Theorem 5.3.4
and Corollary 7.2.4. Later (Theorem 11.2.4) we shall see that 7. .f (PV1) proves the
scheme WPHP(PV). It is open whether S2l (PV1) proves it too.

Theorem 7.3.7. Let3z <tA(a,z)bea E{’(PV])-formula and assume that
SY(PV) + WPHP(PV\) 3!z <1, A(a, 2)

Then there is a multifunction g, computable by a probabilistic polynomial time
algorithm with bounded error, that witnesses the formula ¥x3z < t, A(x, z)

Vx, g(x) <t A A(x, g(x))

In particular, predicates 2{’ -definable in S2l (PVy) + WPHP(PV) are witnessed
by a function from R (random polynomial time; cf. Balcazar, Didz and Gabarré
1988).



7.3 25’ pp-and T f’ ’,.-definability in Si' and bounded queries 119

We should remark on what we mean by a bounded error probabilistic com-
putation of a function g. This means that there is a probabilistic polynomial time
algorithm that on input x outputs some g(x) with probability > (3/4).

Proof. Assume that there is a S) (PV)-proof of
Az <t, A(a, z)

using the WPHP(PV) axioms for functions fi,..., fi. For simplicity assume
k = 1; case k > 1 is similar.
It follows that there is a S21 (PVy)-proof of

(3bYy <2b3x < b, f(x) = y) V(32 <1, A(a, 2))
Introduce a Herbrand function 4 to get rid of the universal quantifier:
S}V, k) - 3b3x < b, h(b) <2b— f(x) =hb)) Vv (z <1, A(a, z))

By the relativization of Theorem 7.2.3 there is a polynomial time machine M
querying an oracle for values of the function # and computing from a a witness

Ma, h) = ({(b,x),2)

to the disjunction, where either (b, x) are witnesses to the existential quantifiers
in the first disjunct or z witnesses the second disjunct.
For a particular function 4 = A* computing counterexamples

h*(b) :=some y <2bst.Vx <b, f(x)#y

it holds (for reasons analogous to those in the proof of Theorem 7.3.3) that the
algorithm M outputs ((b, x), z) such that z is always a witness to the second
disjunct: That is,

Vx, A(x, (M(x, h*))2)

Assume that p(n) is the time bound of the algorithm M. It is therefore sufficient
to describe a probabilistic algorithm for A* with the probability of error at most
< (1/4p(n)): The probability that algorithm answers at least one query of M about
h* wrongly is then < (1/4). Such algorithm is, however, trivial: Pick randomly
with a uniform distribution £ numbers < 2b. Each of them has probability < 1/2)
to be in the range of f’; hence the probability that all of them are in the range is
< /25). So it is sufficient to pick £ > 2 + log( p(r)) such numbers.

Assume now that B(x) is a predicate whose characteristic function is Ef—
definable in S} (PV)+ WPHP(PV)). Then the algorithm can check whether g(a)
is actually a witness for B(a): That is, it can make an error only if @ does not
satisfy B(x). This shows B € R. Q.E.D.
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7.4. T} ,-definability in T} and counterexamples
In this section we prove that Theorem 7.3.3 can be substantially improved when
the theory S! is replaced by PV;, that is, by Tz’_1 Gfi > 1).

Theorem 7.4.1 (Krajicek, Pudlak, and Takeuti 1991). Leti > 1 and assume that
¢(a,x,y)isan 31'[5’ -formula. Suppose

T+ 3xV¥y, ¢(a, x, y)

Then there are DipH-functions fila), f(a,br), ..., fila, b, ..., by—1) with all
free variables shown such that T} proves

#(a, fi(a),b1) vV ¢(a, fr(a,b1),b2) V...V ¢(a, fila, b1, ..., bk-1), bk)
This is also true for PV;.1 in place of Tzi and for PV ifi = 0.

Proof. Take PV;1, a universal conservative extension of 7} by Theorem 5.3.5.
Assume that

¢la,x,y)=3z¥(a,x,y,2)

with ¢ € I'If? . By the definition of PV, the formula v is in PV, equivalent
to an open formula, say to a formula 5(a, x, y, z).

Since PV, is a universal theory we may apply the Herbrand theorem to obtain
from a PV, -proof of 3z n(a, x, y, z) the terms #,, s, such that the disjunction

[n(a, ti(a), b1, s1,1) vV ... vV n(a, ti(a), b1, 51,n)]
V...Vn(a,tla, by, ..., bk—1). br, Sk.1)
V...vn(a, tila, b, ..., bk_1), br, Sk,n)]
is PV, -provable. Terms #1, ..., #; depend only on the variables shown; terms
sy, may depend on all variables a, by, ..., bs.

From the disjunction follows by a repeated introduction of 3-quantifiers instead
of terms s, , (and contracting occurrences of identical formulas) the disjunction

3z n(a,n(a), b1, 2) v...vIzn(a, tk(a, by, ..., bk-1), b, 2)

The functions

are then the desired functions. Q.E.D.

Corollary 7.4.2. For i > 1, a function Ef’_l_z-deﬁnable in PV; (or in Tzi -1 Jor
i > 1) is computable by a counterexample computation where the student is a
polynomial time machine with a Zl.p_l-oracle and the teacher answers at most ¢
queries for counterexamples to a I'If7 1-Property, where ¢ is a constant.



715 E{’-definability in T2l and polynomial local search 121

Proof Let f(a) = b be defined by

Ix <tVy <t,¢(a,b,x,y)
with ¢ € =2, that is,

PV; - 3b3IxVy, ¢(a, b, x, )

(we leave out the bounds < ¢ for simplicity of notation). Write this as
PV 3cVy, ¥(a,c, y)

where

¥ia,c,y) =@, (01, (02, )

It is obviously sufficient to describe a computation of c.
By the previous theorem there are Df -functions fi, ..., fi such that

Yia, @, y)Vv...v¥@, fila, y1,-.., Yk=1)» &)

The counterexample computation, with £ = &k — 1, will look like this: The stu-
dent computes ¢; := fi(a) and submits to the teacher that Yyyr(a, ¢, »). If he
fails he also receives a counterexample: y| s.t. =y (a, ¢y, y1). Then the student
computes ¢2 = fa(a, y1) and submits it to the teacher, and so on. As the pre-
ceding disjunction is valid, one of ¢, . .., ¢ computed with the help of at most ¢
counterexamples must work. Q.ED.

This corollary will play a crucial role in Section 10.2.

7.5. Xb-definability in 7, and polynomial local search

In this section we shall characterize the Z{’-consequences of T 21 in terms of poly-
nomial local search problems. These problems occur naturally in polynomial time
version only, but their obvious generalizations to O f’ -functions would, via a state-
ment analogous to Theorem 7.5.3, characterize £ f’ -consequences of Tzi.

The following definition is from Johnson, Papadimitriou, and Yannakakis
(1988).

Definition 7.5.1. A polynomial local search problem (PLS-problem) P is an op-
timization problem satisfying the following conditions:
1. Instances of the problem P are x € {0, 1}*, and for any x there is a set of
solutions Fp(x) satisfying
(i) the binary predicate s € Fp(x) is polynomial time
(ii) ¥xVs € Fp(x),|s| < p(Ix]), some polynomial p

(iii) Vx,0 € Fp(x).



122 Witnessing theorems

2. A cost function is a polynomial time function
cp(s,x) 1 {0, 1} x (0,1} - N
3. A neighborhood function Np(s, x) is polynomial-time and it satisfies
Vx,s, Np(s,x) € Fp(x)
4. The cost and the neighborhood functions satisfy
Vx,s, Np(s,x) #s — cp(s,x) < cp(Np(s,x), x)

5. The task is, given x find a locally optimal solution s € Fp(x), that is, a
solution s € Fp(x) for which

Np(s,x)=s
It follows from the definition that there is a polynomial time computable func-
tion Mp(x) such that Mp(x) > cp(s, x) forall s € Fp(x).
A PLS-problem P can be expressed by a 1'111’ -sentence: the conjunctions of the

first four conditions. If this is provable in Tzl then we say P is definable in Tzl.
The formula Optp(x, s) is the All’-formula formalizing Np(s, x) = s.

Lemma 7.5.2. Let P be a PLS-problem definable in T. 2'. Then
T, - Vx3y, Optp(x, ).
Proof By Lemma 5.2.7 T2I proves the Z{’—MAX axioms. Hence in T2l , forall x,
there is a maximum value ¢y < M p(x) satisfying
s € Fp(x),cp(s,x) =co

Taking s to be a witness for this last formula, s is even globally optimal and hence,
specifically, satisfies Optp(x, s). Q.E.D.

We shall use the Witness formula from Section 7.2.

Theorem 7.5.3 (Buss and Kraji¢ek 1994). Let R(a) be a E{’-formula such that
T2l b Vx R(x). Then there is a PLS-problem P definablein T. 2‘ such that Tzl proves

VxVs, Optp(x,s) — Witness}g”(s,x).
Proof. Assume that
T,) + R(a)

and that R is a strictE{’ -formula. By Theorem 7.2.3 there is a Tz' -proof 7 in the
system LKB of the sequent —> R(a) such that every sequent in 7 has the form

A1(D), ..., Ag(b)Y —> B|(D), ..., Be(b)
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where b are all  (including a) free variables and where all the formulas 4; and
B; are strictEf -formulas.

We shall prove by induction on the number of inferences in w above the sequent
that the sequent corresponds computationally to a PLS-problem. Namely, there is
a PLS-problem P’ such that

1. inputs to P’ are k + r-tuples (m1,...,m,, v1,..., vg) wheremy, ..., m,
are values for the variables by, ..., b,

2. for an input tuple (m, v ), the locally optimal solutions are the k£ + » + 1-
tuples of the form (71, v, w) such that if each v; witnesses 4;(m ) then w
is a witness for one of the formulas B;(m ), ..., Be(m).

From such a problem P’ we get problem P satisfying the requirement of the
theorem by adding to each P’-solution (v, w) a new neighbor w with a higher
cost, provided w is a witness to R.

The existence of the PLS-problem is obvious for the initial sequents. The cases
of the propositional inferences and the structural inferences are obvious, requiring
only minor changes to the PLS-problem.

The case of an 3 < : right inference

F— A,A@)
t<s, I — A,3Ix <sA(x)

is simple too: By the induction hypothesis there is a PLS problem Py that applies
to the upper sequent. We modify Py to get a PLS problem P’ that works for the
lower sequent. First, let

cp(s,x) =cpy(s,x) + 1

fors € Fp,(x).

Inputs {7, vo, ) to P’ that provide witnesses to I' are assigned cost 0 and
have as neighbor the input (7, v) to Py. An output (m, v, w) of Py has as its
P'-neighbor a tuple {7, vo, U, w’) with the cost Mp,({m,V)) + |, where w’ = w
or w' = (t(7), w), depending on which one of them provides a witness to a
formula in the succedent

A,3x <sA4

Clearly P’ has the desired properties.

The cases of 3 < :leftand V < : left are handled by simple modifications to the
PLS-problem too. The case where the final inference is a vV < : right is analogous
to the case of the induction rule IND treated later.

Consider the case where the sequent was inferred using the cut-inference

r — 4 A— A
r— A
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By the induction hypothesis, two PLS-problems P; and P> for the upper sequents
satisfy the requirements.

A PLS problem for the lower sequent is formed as a “composition” of PLS
problems. To simplify this case, we assume w.l.0.g. that the cut formula A is the
only formula in the succedent (antecedent) of the left (resp. right) upper sequent.
W.Lo.g. assume that domains Fp, and Fp, are disjoint. The local optima of the
problem Py will have as neighbors the instances of P». By adding Mp, to the
cost function of P, the cost of any P-solution is greater than the cost of any
Py -solution. This allows us to arrange that any local optimum of the combined
problem can be found by applying P, to a local optimum of P;. The details are
left to the reader.

Finally consider the case when the sequent was inferred by the induction infer-
ence Z{’—IND

A(bo,b) —> A(bo+ 1,D)
A(0,5) — A(t(b), D)

Assume w.l.0.g. that there are no side formulas. Given a PLS-problem P, for the
upper sequent, define problem P’ for the lower sequent by an exponentially long
iteration of instances of FPj.

First, the set Fp: ({7, v)) is the set of tuples (myg, z, s) where mg < t(m)
and s € Fp,({mg,, z)); thus Fp is a disjoint union of the solution sets of the
instances of Fy. Then define

cpr({mo, z, s}, (M, v)) = mo- M(@m,z) +cp(s, (mg, m, z})

where M is large enough to dominate Mp,(s) whenever mo < t(m) and s €
Fp,({mo, m, z)). The neighborhood function is defined such that

Np((mo, z, 5), (m, v)) = {mg, z, Np (s, (mo, 7, 2}))
with the exception of the case when s = Np, (s, {mg, m, z}), in which case we set
Np({mo, z,5), (m,v)) = (mo+ 1,2/, (mo + 1,7, 2'))

for mo < t(m) — 1, where 2’ is the last component of s, that is, the witness for
Amo+1,m). If my =t(m) — 1, then

Np'({mg, z,s), (m,v)) = (m,v,z)

This last case gives a local optimum for P’. It is easy to verify that P’ gives a
PLS-problem that satisfies the requirement of the theorem for the sequent.
QE.D.

Corollary 7.5.4. A multivalued function f is Ef -definable in T2l iff f can be
expressed as a PLS-problem composed with a projection function.
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Proof. Any PLS-problem (and hence also its projection) is by Lemma 7.5.2 E{’ -
definable in T2‘ . On the other hand, by Theorem 7.5.3, witnesses to a Ef-definable
function can be computed by a PLS-problem (i.e., its local optima are all witnesses)
and a witness to the existential quantifier of the Zf-formula is obtainable by a
projection from the witness. Q.E.D.

It is a bit unnatural to speak about definable multivalued functions but in this
situation it appears inevitable. It is an open question whether any PLS-problem P
can be reduced to a PLS-problem P’ that has a unique optimal solution in every
instance. Reduction refers to an obvious notion: By polynomial time functions
translate P-instances into P’-instances and then P’-local optima back to P-local
optima (cf. Johnson et al. 1988 for details).

On the side of bounded arithmetic the related problem (by Lemma 7.5.2 and
Theorem 7.5.3) is whether for every 2{’ -formula 4 for which

T, - Vx3y, A(x, )

one can find another )3{’ -formula 4* such that
() T, F 4%, y) = A(x, )

(i) T) FVx3ly, 4*(x, y)

(an analogous statement is open for Tzi too). Note that by Corollary 7.2.6 this
implication holds for .
Several other search classes were introduced by Papadimitriou and Yannakakis
(1988) and Papadimitriou (1990, 1994), in particular the classes PPA, PPAD, and
PPP. A search problem in PPA is defined as a PLS-problem except that there is no
cost function and the neighborhood function satisfies
1. Vx,s, Np(s,x) € Fp(x)\ {s} A [Np(s,x)}| <2
2. Vx,s,5, s € Np(s,x) =s € Np(s', x)
3. Vx3!'s, s € Np(0, x).

The task is to find s € Fp(x) \ {0} such that

s, 5" € Np(s, x)

Thinking about the condition s’ € Np(s, x) as defining the edge (s, s’) in a graph
G p(x) with the set of vertices Fp(x), the conditions imply that G p(x) is a sym-
metric graph of degree < 2 in which vertex 0 has degree 1. Hence the task is to
find another degree 1 vertex.
The problems in the class PPAD are defined similarly but the graph G p(x) is

now directed and satisfies the conditions

1. indeg(0) = OA outdeg(0) = 1

2. indeg(v) < 1A outdeg(v) < 1 for any vertex v
and the task is to find a vertex v # 0 such that

indeg(v) + outdeg(v) <1
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A problem in class PPP is specified by a polynomial time function
fp(s,x): Fp(x) = Fp(x)\ {0}
and the task is to find two 5, s" € Fp(x), s # s’, such that
fps,x) = fp(s'.x)

In other words: the task is to find two witnesses to the fact that fp(s, x) does not
violate the pigeonhole principle.

Denote by PPA(PV) the set of VZ{’ (PV)-sentences expressing that no PV ;-
function Np(s, x) can define a symmetric graph of degree < 2 with deg(0) = 1
and no other degree 1 node. Similarly denote by PPAD(PV) and PPP(PV)) the
corresponding principles underlying the classes PPAD and PPP.

The following theorem is proved similarly to Theorem 7.3.7 (interpreting the
Herbrand function 4 as a function A* witnessing the principle).

Theorem 7.5.5. Amultivalued function f is Z{’ -definable in S21 (PV1)+ PPA(PV/)
iff it can be witnessed by PPA problem.
Similarly for PPAD and PPP.

A reason for studying these classes is that numerous other seemingly different
search problems are reducible to one of them (cf. Papadimitriou 1990).

7.6. Model-theoretic constructions

In this section we shall give a few model-theoretic constructions for some re-
sults proved earlier in the chapter by proof-theoretic methods and obtain a new
proposition.

We begin with a general discussion of complexity classes in models of PV. This
is elaborated on more in Sections 15.2—3.

In model M of PV the class P is the class of subsets of M definable by an atomic
PV-formula with parameters from M (in S2l this would be provably A’,’ -formulas
with parameters), or equivalently, recognizable by a standard DTM with an extra
input (the parameter) that may be nonstandard, or equivalently, recognizable by
a DTM possibly with a nonstandard description but whose time is bounded by a
standard degree polynomial from M[n].

The class P/ poly is defined in the same way except that the parameter of the
standard DTM may vary with the length of the inputs, the class PS?" is defined as
the class P but allowing no parameters, and the classes NP, NP/ poly, NPS@" are
defined analogously using NDTMs.

The first theorem is a strengthening of Corollary 7.2.5.
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Theorem 7.6.1. Let M be a countable model of PV. Then there exists a model
M* of PV, a 2? -elementary extension of M, such that

M* = “P = NP N coNP”

Proof. Leta(x) € Zf and B(x) € 1'111’ be two formulas with parameters from M.
There are two cases:

(@)
PV + Thyp(M) b Vx(a(x) = Bx))

in which case there is by the Herbrand theorem a PV-symbol f(x, y)and b € M
such that

PV + Thvn?(M) FVx(a(x) = (f(x,b) =1))
so the set defined by a(x) is in the class P of M, or
(b)
PV + Thvn;;(M) H Vx(a(x) = B(x))

in which case either
M
PV + Thvn;l,(M) 7 Vx(—al(x) v B(x))
which means that
M = a(c) A —B(c)
some ¢ € M, and this will remain true in every extension of M, or
(2)
PV + Thvnf(M) 7 Vx(a(x) v =p(x))
In case (2) take a new constant ¢ and form a model M’ satisfying
PV + Thvn:r (M) + —a(c) + B(co)
Any Ef -elementary extension of M’ will satisfy this theory and hence also
—Vx(a(x) = B(x))

Enumerate with infinite repetitions («g, Bo), (¢, 1), - . - all pairs of a Z{’ and
a I'Ill’ -formula in the language of PV augmented by a name for every element of
M and by countably many new constants. Construct a countable chain of 2? -
elementary extensions

M=MyCMC...

where M;y is obtained from M; as M’ from M for pair (o, 8) = (a;, B;), and
such that every element of any M; has a name among the constants of the language.



128 Witnessing theorems

Then the union of the chain
M* =M,
i
is the desired model. Q.E.D.

The nonuniform analog of this theorem for P/ poly, NP/ poly, and coNP/ poly
also holds as one can treat every length from Log(M ) separately in the construction
of the chain.

Next we give a model-theoretic proof for the counterexample witnessing The-
orem 7.4.1.

Lemma 7.6.2. Let M be a model of T,, for i > 1, or of PV} for i = 0. Assume
that M* C M is a subset of M closed under all standard O f 1 functions definable
in M using parameters from M*.
Then it holds that
1. M*isa Ef’-elementary substructure of M
2. M* =T, fori > 1, or M* =PV fori =0
Proof. The Skolem functions for the Ef’ -formulas are Zf’ ' -definable in T, 2‘, as Tzi
proves the Zf’—MAX principle (by Lemma 5.2.7). This shows condition 1.
For condition 2 we want to show that IND holds for any Ef’ -formula ¢

=0 vV o@ Vv 3x <a,¢x)A—¢d(x +1))

Since M*isa X f’-elementary substructure of M, it suffices to find a Df 1 -function
in M that on the input a for which ¢ (0) A —~¢(a) holds outputs x < a for which

dX)AN—P(x +1)

Such a function is available in PV, by definition (cf. Section 5.3): Take the
function (A (b, b));. Q.E.D.

With the help of this lemma we give an alternative proof of Theorem 7.4.1.
Let ¢ satisfy the hypothesis of that theorem and assume for the sake of contra-

diction that forno k and f1,..., fy € I:If R Tzi proves the disjunction required in
the theorem.

Let f1, f2, ... be an enumeration of all Df 4 -functions with the following
properties:

(i) fjis < j-ary,
(i) each O l.p 1 -function occurs in the list infinitely many times.
Letc,d), d>. ... be new constants. By compactness then the theory

T3+ =4(c. fi(0).d)) v —~$(c, filc,d).d) V...

is consistent. Take M as a model of this theory.
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Let M* C M be the set
M* = {fi(o), falc,dr), ...}

It holds that

1. {e,dy,...} © M*

2. M*is closed under the 07, -functions.
This is because the projections are O ,” +1-definable and because each Dip +-function
occurs infinitely many times.

Lemma 7.6.2 then implies that M* = T2’ and it is E,{’-elementary. That is,
M* = T; +Vx3y, ~¢(c, x, ¥)

(for x = fi(c,dy,...,d; 1) take y = d;). This contradicts the hypothesis, and
hence Theorem 7.4.1 is proved.

The last theorem in this section is a model-theoretic statement implying the
witnessing Theorem 7.2.3. In proving that theorem, one would like to reason as
follows. Assume that for 4 € £, S! does not prove A(a, f(a)) forany f e O7.
By compactness then there is a model M and a € M such that

M Si+ -4, f(a)

forall f € I'_'If’ . Take M* C M to be the subset of M generated from a by all
O”-functions. M* is a substructure of M and

M* k= 3xVy—A(x, y)

Unfortunately the argument fails at this point as there is no apparent reason why
M* should satisfy S;.

However, a chain construction similar to the one underlying Theorem 7.6.1 and
Lemma 7.6.2 works.

Theorem 7.6.3. Any countable model M of PV; has a Zib-elementary extension
M’ such that
1.

M’ = S;(PV))

2. for any open PVi-formula ¢(x, y) with parameters from M’ there is a
PVi-term f(x) with parameters from M' for which

M’ = Vx3yp(x, y) — Yx¢ (x, f(x))
Proof. Let M be a countable model of PV; and let ¢ be an open PV;-formula with
parameters from M. Let Thn?( M) denote the 1'[11’ -theory of M. If

PV, + Thn7(M) EVx3dy < t(x)é(x, y)
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then by the Herbrand theorem (analogously to the proof of Theorem 7.6.1) there
is a PV;-term f(x) such that

Vx, f(x) <t(x) Ao(x, y)

will hold in every 2%’ -elementary extension of M. Otherwise there is eithera € M
such that

MEVYy <t@-¢a,y)

and that will remain valid in all Zf -elementary extensions of M or, if there is
no such element a, take a new constant ¢ and form a model M, of the theory
PV;+ Th“7 (M)+Vy <t(c)~¢(c, y). Hence VxIy < t(x)¢(x, y) will fail in all
extensions of M.

Iterating this construction countably many times as in the proof of Theorem
7.6.1 yields a model M’ satisfying condition 2. However, that already implies that
M’ is also a model of Sé (PV;): if ¢ is an open PV;-formula and & € M’ such that

M =¥, u) AV¥x < |bVvIw, ¥ (x,v) = ¥(x + 1, w)

holds (with the bounds to v, w implicit in i) then by condition 2 also
M EVYx < |bVoyr(x,v) = ¥(x + 1, f(x,v))
for some PV;-term f. As M’ is a model of PV; there is w € M’ of the form
w = {Ug, ..., U
where
uo:=u and wujyy = f(j,u;)
But then
M EYj<|bl,y(u) = G+ Luj)

and by induction for the formula v (x, u,) available in PV; ¥ (|b], u)p|) follows:
That is, vy (||, v) holds in M. Q.E.D.

Following Zambella (1994) we derive Corollary 7.2.4 from Theorem 7.6.3.
Assume that Sé'(PVi) proves Vxdy < t(x)¢(x, y), where ¢ is an open PV;-
formula (every Ef’ -formula is equivalent to a E{’(PVi)-formula). Assume for the
sake of contradiction that for no PV;-term f(x) does PV; prove Vx, f(x) < t(x)
A@(x, f(x)). By compactness we may take a countable model M of PV; in which

M= -=(f(a) <t(a) Ad(a, f(@)
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holds for somea € M and all PV;-terms f. Take M’ to be the extension of M guar-
anteed by Theorem 7.6.3. Clearly Vx3y < #(x)¢(x, y) fails in M’, contradicting
the assumption that the formula is provable in Sé.

7.7. Bibliographical and other remarks

The proof-theoretic method for proving the witnessing theorems for systems Sé
and T, was developed by Buss (1986) and Theorem 7.1.4 is stated there. The
witness formula (7.2.1) is also defined there. Theorem 7.2.3 follows from Buss
(1986, 1990a) from which Corollaries 7.2.4—7.2.7 were also obtained.

The use of Herbrand functions for witnessing Theorem 7.3.3 comes from
Krajicek (1992); it was obtained by using a direct method in Pudlak (1992b).
Theorem 7.3.5 and Corollary 7.3.6 are from Krajicek (1993).

Theorem 7.3.7 was proved by Wilkie (unpublished). Theorem 7.4.1 is from
Krajicek et al. (1991). Section 7.5 is based on Buss and Krajicek (1994). Topics
mentioned at the end of Section 7.5 are considered in Chiari and Krajicek (1994).

Theorem 7.6.1 is new. I do not know whether it is valid for PS", NP5"*" and
coNP*2" in place of P, NP, and coNP. Lemma 7.6.2 and the model-theoretic proof
of Theorem 7.4.1 follow Krajiéek et al. (1991).

The first model-theoretic proof of Corollary 7.2.4 was obtained by Wilkie (un-
published). The proof here follows Zambella (1994).
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Definability and witnessing in second
order theories

This chapter is devoted primarily to proving several definability and witnessing
theorems for the second order system Uz" and sz , analogous to those in Chapters
6and 7.

Our tool is the RSUV isomorphism (Theorem 5.5.13), or rather the definition
of Vli (Definition 5.5.3), together with the model-theoretic construction of Lemma
5.54.

The first section discusses and defines the second order computations. In the sec-
ond section are proved some definability and witnessing theorems for the second
order systems and further conservation results for first order theories (Corollaries
8.2.5-8.2.7). The proofs are sketched and the details of the RSUV isomorphism
arguments are left to the reader.

8.1. Second order computations

Let A(a, B'®) be a second order bounded formula and (K, X') a model of V!
By Definition 5.5.3 we may think of X as of K = Log(M) for some M = sl
with X being the subsets of K coded in M. Pick some a, b € K of length n and
some B'® . Then

(K, X) = A(a, B'®)
if and only if (see Theorem 5.5.13 for the notation)
ME A'(a,u)

where u codes 8'®. The length of u is thus 21®) = 20
Moreover, if 4 € El.l‘b then 4! € Ef’ ; hence a second order query to a 2,.”’
oracle with the first order inputs of length » and the second order inputs (i.e., the

132
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characteristic function of 8*®) of length 20™ is just a query to a X?-oracle of
length 20,

Hence the second order computations in a model of Vl1 are analogous to the first
order computations in a model M of S21 stipulating that some inputs and outputs are
from Log(M). With such a notion we shall be able to use the RSUV-isomorphism
5.5.13 to characterize the functions definable in the second order systems.

One more remark concerns the time bound. If (K, X) V21 then M = SI,
where S} is defined as S} is but in the extended language L(#3) := L U {#3},
where

xthy = plxi#lyl

Compare the definition of the function w; (x) in Theorem 5.1.5. This is completely
analogous to Lemma 5.5.4 as K is closed under # iff the lengths in M are closed
under # iff M itself is closed under #;. Similarly R} is defined as R} (Definition
5.5.12) butin the language L (#3). We use a statement analogous to Theorem 5.5.13
as a lemma, as we shall use it later.

Lemma 8.1.1. The RSUV-isomorphism (Theorem 5.5.13) holds identically for
pairs of theories Sy and V5, and R} and U},

In addition definability and witnessing theorems of Chapters 6 and 7 straight-
forwardly translate to the theories in the language L (#3). Call #3-time a time bound
t(n) where ¢ is a term of language L. We have, for example, a statement analogous
to Theorems 6.1.2 and 7.2.3: The theory T; z f’ '+ (#3)-defines exactly the functions
computable in the #3-time using a Ef’ -oracle.

In the following definition we identify a finite set ¥” with its characteristic
function on the interval [0, y].

Definition 8.1.2. Let Q(x, V) be a second order oracle set, with x its first order
input and 7 its second order input.
A Turing machine M with the time bound t(n), with first and second order
inputs and with the oracle Q, is required to satisfy the following conditions:
1. M has two read-only input tapes: a first order one with inputs of size n
and a second order one with inputs of size < 2™,
2. M writes the queries on a pair of write-only tapes. On the first order tape
M writes a string x of size < t(n), on the second order tape a string ¥” of
size < 2'™ The oracle answers YES/NO according to whether Q(x, ¥”)
holds or not, and erases the query tapes.
3. The total computational time is bounded by 2!™.
4. M writes the outputs on two write-only tapes: one for a first order output,
which can have size at most < t(n), and one for a second order output,
which may have size < 2'™.
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TIMEQ2'™)€ denotes the class of the functionals computable by a Turing
machine M satisfying the conditions stated. Set

Exp? := | ) iMEQ™)?
k

and
1.6
ExP¥" = | ) ExpP?
0O Eil b
The space complexity of such a computation is the total space used on working

tapes of M. SPACE(s(n))€ denotes the class of the functionals computable by
such computations with the space complexity < s(n) and

b
PSPACE®" := ] | SPACE(*)2
gez!t k

We say that a machine from the definition computes a function, if it has no
second order inputs or outputs (but it may ask second order queries).

Lemma 8.1.3. Leti > 0. The functionals from the class EXPEi that are functions
are precisely the functions from the class EXP%i for i= 0 this is EXP.

Similarly the functionals from the class PSPACE}: that are functions are
precisely the functions from PSPACE“i =7 , and for i = 0 this is just PSPACE.

Proof. The statement follows from the discussion before Lemma 8.1.1. The cases
for i = 0 follow from the observation that any E(l,’b-property can be decided in
PSPACE. Q.E.D.

8.2. Definable functionals

The first result is analogous to Theorem 7.2.3.

1.6
Theorem 8.2.1. Leti > 1. The functionals from the class EXPE50 gre precisely
those Zil’b-deﬁnable in V5. In particular, the functions 211 ’b—deﬁnable in V21 are
precisely the functions from the class EXP.

Proof. Let F(a,a) = (b, B) be a functional (for simplicity we suppress the su-
perscripts in the second order variables). Let (K, X') be a model of Vzi, a,be
K, a, B € X such that

(K, X)YE F(a,a)=(b, 8

Take M = S3" s.t. K = Log(M) and s.t. X are the subsets of K coded in M, and
leta=a,8="vforu,ve M.
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Assume that a Zil’b-formula A(a, a, b, B) defines the graph of F in (K, X).
Then the Ef’-formula Al(a, u, b, v) defines the graph in M (cf. Theorem 5.5.13
for the definition of 4'). As A4 defines F provably in V.L,' , by Theorem 7.2.3 4!
defines a D” (#3)-function f provably in S' On the input a, u with {a| = n and
|u| = 2" ow’ the running time is 2”0(”, and it queries a 2,_ -oracle.

The same machine then computes F when «, 8 are identified with their char-
acteristic functions., and the oracle becomes by the remarks before Lemma 8.1.1,

El bl -oracle. Thus F is in EXPZi- l
The extra statement for i = 1 follows then from Lemma 8.1.3. Q.E.D.

If we would augment the machine in Definition 8.1.2 by a witness-oracle rather
than just an oracle (cf. Definition 6.3.1) then it would not change the class EXPE
This is because the number of queries is unlimited so M may ask consecutively
for all < 2!™ bits of a witness. However, when the number of queries is bounded,
then this trivial simulation does not apply and we get an apparently distinct class.

Definition 8.2.2. Class EXPEi1 ! [wit, poly] is a class of multivalued functionals
computable by a Turing machine M in time 2" g equipped with a witness-oracle
from E,.l’b satisfying all conditions of Definition 8.1.2 and in addition satisfying
1. Ifthe oracle answer to the query (x, ) is YES then the oracle writes on a
special write-only witness tape a witness for the Eil’b-formula O, ¥).
2. The total number of queries made is bounded by a polynomial n®®,

16
Lemma 8.2.3. Let i > 0 and assume that values of | € EXPEi" [wit, poly] are
only first order.

Then, in fact

Lb
f € PSPACE™:

Proof. Computing a particular bit of the value of f does not require witnesses to
the oracle answers, analogously to Lemma 6.3.4 and Corollary 6.3.5.

For f with only first order values we may compute each bit of the output
separately. By Definition 8.1.2 there are at most n (" bits in the output and in a
computation of each the machine asks n%() queries. So f is computable by an
EXPEi] ! -machine with only polynomially many queries to the oracle: Call the class

of the functionals computable in this way EXPE/ [poly]. Completely analogously
with Theorem 6.2.3 (condition (i) of that theorem) we get

PSPACEzllb = E)(Pziu7 [pol ]
Y

Theorem 8.2.4. For i > 1, multzvalued Sfunctionals 21 -definable in U‘ are
precisely those from the class EXPEi- l[wzt poly). In particular, the functions
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. 1,b
Eil’b-deﬁnable in U, are those from the class PSPACE®i~i, which is PSPACE
fori=1.
For i > 2 the same is true with Vz’"1 in place of Uz".

Proof. Inthe RSUV-isomorphism (Theorem 5.5.13) the theory U} corresponds to
Ry, Vi to 87" and £ to B2.

By statements analogous to Theorems 6.3.3 and Corollary 7.3.6 for the #;-
time, the multlvalued functions Eb -definable in S Iare precisely those from the

class TIME(#3) - [poly]. Hence the RSUV-isomorphism implies the part of the
theorem for V,~

To prove the part for Ué we establish a statement analogous to Theorem 6.3.3
and Theorem 7.3.6 for the theory Rg inplace of S;‘l . In the proof of the witnessing
Theorem 7.3.5 the number of queries in the functions witnessing the sequents in a
proof increases by a constant for all LKB rules except for the cut, by a factor of 2
for the cut rule, and by O (log n) queries in the case of the f’_l—PIND rule. Now,
if the rule

¢(a/2)) — ¢(@)
$(0) — ¢(lt)
of Rg from Definition 5.5.12 is used instead of the Ef’_l—PIND, the witness con-
tains a witness to the existential quantifiers of the Ef’ -formula ¢, and hence the
function g witnessing the lower sequent is obtained from the function g; witness-
ing the upper sequent by < |¢|| iterations. The value of ||¢|| is (log n) 9D for the
language L(#3). Hence if the number of queries asked in the computation of g; is
(logn)2M, so is the number of queries asked in the computation of g.

Thus a witnessing argument identical to that in the proof of Theorem 7.3.5
shows that the multivalued functions Eb -definable in R’ are in the class
TIME(#;) -1 [(log n) (V).

The proof of Theorem 6.3.3 needs no change at all to show that S; ! can
Eb-defme all functions from TIME(#;)~ 4 1[(log n)O(M], and hence also R} as
S e R3 (see the remark after Definition 5.5.12).

This gives the wanted characterization of the functions f’ -definable in Rg, and
hence the theorem is proved. Q.E.D.

Corollary 8.2.5. Fori > 1, the theory U, i+ s VEI b |-conservative over V’

Also the theory RH'1 is VE,” ',1-conservative over S ;

Proof. The corollary follows from the previous theorem similarly to the way Corol-
lary 7.2.4 follows from Theorem 7.2.3. Q.E.D.

From this statement and its proof we can deduce three more interesting corol-
laries. Recall that B(E,."b) denotes the class of Boolean combinations of 2,.1'1’ -
formulas, AC is the axiom of choice scheme (cf. Lemma 5.5.8), and BBE;’ is the
sharply bounded collection scheme (cf. Definition 5.2.11).
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Corollary 8.2.6. For i > 1, the theory U, i+ g VB(El +1)-conservative over the
theory Vi + T}:b-4C.

Also the theory R”'1 is VB(Z?, )-conservative over the theory S3+ BBE, -

i+1

Proof. Work with the first order systems. As any Boolean combination can be
written in a conjunctive normal form, it suffices to prove the statement for a formula
of the form

nVo
withr € l'I 1 ando € E, +1, that is, for sequents of the form

7T —> 0

This is a sequent of }3 -formulas and hence the witnessing theorem for R’Jrl
(outlined in the proof of Theorem 8.2.4) implies that R "+1 proves the sequent

z+1 a

Jw Witness'" "% (w, @) —> 3w’ Witness:H ! (w’, a)

which is, by Corollary 8.2.5, provable in Sg too.
Hence it would be enough to show in S; the equivalence

Jw’ Witness;H?(w’, a) = o(a)

By Lemma 7.2.2 (a statement analogous to it for the #3-time), however, this is

provable in S3 + BBZ? HRE
This proves the theorem for the first order case and by RSUV-isomorphism also
for the second order case. QE.D.

The next corollary is related to Lemma 5.2.9.

Corollary 8.2.7. Fori > 1 both S’ and 52 prove the Al +1—FIND scheme.
Also Vz’ proves the A 1 ~PIND scheme

Proof. As with Lemma 5.2.9 one can show

Ry + Ab —PIND
An instance of PIND fora Al +-formula is VE, '+1> hence Corollary 8.2.5 implies
that

Si - A, —PIND
too.

This proof does not apply to Si but we may argue as follows. By Lemma 5.2.13
we know that S} + BBE? v 18 VE |-conservative over S5. It is thus sufficient to

prove A ,—PIND in S2 + BBE, 1 We have

Si+ BBZ!, | FVx3yVr < |xl,o(t) =t €y



138 Definability and witnessing in second order theories

for any Af.’ +-formula o, as follows from BBX f’ ’+1 applied to the formula
Vi < [x3y, p=1A0®)) vV (y=0A—0())

Hence LIND for o follows from Ab—LIND for t € y, which is provable in Sl
A, +| —PINDisa spec1a1 case of E, +1—PIND and hence provable in Uﬁ“ ,and

its instance is a VX% -formula, hence by Corollary 8.2.5 also provable in V’
Q. E D.

l+1

We conclude this section with a useful statement.

Corollary 8.2.8. Fori > 1

V2 = A, +1AC
Proof. By Lemma 5.2.8 Uﬁ“ proves A, +1 —AC and by Corollary 8.2.5 it is prov-

able in V‘ too. Q.E.D.

8.3. Bibliographical and other remarks

The treatment of the second order computations follows Buss (1986) and Buss et
al. (1993). Theorem 8.2.1 is from Buss (1986); Definition 8.2.2 and the statements
8.2.3—8.2.8 are from Buss et al. (1993).

We did not use the proof-theoretic treatment of the second order systems but
we at least remark on the sequent calculus formalization. Namely, the ZA’b—CA
scheme becomes provable from the introduction rules for the second order 3

' — A, A(¢/B)
' — A,3¢ A(¢)

where 4 is any formula and B is E(l)‘b. The CA for B then follows by applying the
rule to

—> Vx < a, B(x) = B(x)

quantifying only one occurrence of B.
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Translations of arithmetic formulas

We shall define in this chapter two translations of bounded arithmetic formulas
into propositional formulas and, more importantly, we shall also define translations
of proofs in various systems of bounded arithmetic into propositional proofs in
particular proof systems.

In the first section we shall consider the case when the language of /Ay is
augmented by new predicate or function symbols, and the case of the theories U 1‘
and VI1 . In the second section we treat formulas in the language L and the theories
S5, T,,and U,.

In the third section we study the provability of the reflection principles for
propositional proof systems in bounded arithmetic and the relation of these re-
flection principles to the polynomial simulations. In the fourth section we present
some model-theoretic proofs for statements obtained earlier. The final section then
suggests another relation of arithmetic proofs to Boolean logic, namely the relation
between witnessing arguments and test (decision) trees.

9.1. Bounded formulas with a predicate

First we shall treat the theory /Ag(R) and then generalize the treatment to the
theories U]I and Vll. Instead of 7Ag(R) we could consider the theory / Eé’b but
the presentation for the former is simpler. The language Lpa (R) of /Ag(R) is the
language Lpa augmented by a new binary predicate symbol R(x, y).

Definition 9.1.1. LetO(ay, ..., ar) beabounded formula in the language Lps(R)
and let p;; be propositional atoms, one for each pair (i, j) € N x N.

Forny, ..., ny € Nwe define the propositional formula (0), ... n,) by induc-
tion on the logical depth of 6:

139
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1. if 0 is the atomic formula s(a) = t(a) then

6) = 1 ifs(R)=t(7n)is true
TN o ifs(A) = 1(7) is false

2. if 8 is the atomic formula s(a) < t(@) then
O)) = { L) S ) b e
0 ifs(n) <t(n)isfalse
3. if 6 is the atomic formula R(s(a),t(a)), s(7i) =i andt(n) = j then
@) 7)== pij
4. if0 = —& then
@)y =) i)
5. if0=vo§ o=V, Athen
0)m) = W@y o )a)

6. if6 =3x <s(a)v(a,x)ands(n) = uthen

O =V Wm

m<u

7. if0 =Vx < s(a@) v(a,x)and s(i) = u then

Oy = /\ V) Em

m=<u

In clause 6 (resp. 7) the disjunction (resp. the conjunction) is formed from the
binary connectives with the brackets associated, for example, to the left.
The next lemma is proved by induction on the complexity of 8.

Lemma 9.1.2. Let 0(a) be a bounded formula in the language L p 4(R). Then
there are d and £ such that for every n

1. dp({)(z)) =d

2. |{6) iyl < (max(7) + 2)f

Note that we used the depth of 6 and not the logical depth, as the connectives
in clauses 6 and 7 of the preceding definition are of unbounded arity.

The theory 7 Ag(R) is defined exactly as the theory  Ag is in Section 5.1 except
that the axiom scheme of induction IND is accepted for all bounded formulas in
Lpa(R). The theories T; (R), S5(R), and S>(R) are defined analogously.

Theorem 9.1.3. Let 6(a) be a bounded formula in L p4(R) and assume

TAo(R) - VYx6(x)
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Then there are d and € such that every propositional formula (9) ) has a depth d
F-proof of size at most n’.

Moreover, there is a polynomial time algorithm producing on input 1 ... 1(n-
times) a depth d F-proof of (0) ).

Proof. We shall describe the construction of a depth d size n® LK-proof of the
sequent

—> (O)m)

and it will be obvious that the required algorithm exists. This is equivalent to the
required task by Lemma 4.4.15.

By cut-elimination Theorem 7.1.4 (straightforwardly modified for 7Ag(R))
there is an LKB-proof 7 using the A¢(R)-IND rule of the sequent

—> B(a)
A sequent in the proof 7 has the form
$1(B), ... ¢ (B) —> Y1(b), ... Ys(b)

where all ¢;, ¥; are Ag(R) (by Corollary 7.1.5). By induction on the number of
inferences above the sequent in 77, prove that there are 4 and £ such that for any
tuple 7 the sequent

@1} 7y -5 (@) my — (W) @)s -+ s (Wshm)

has a depth d size (max(7) + 2)‘Z LK-proof.

By Definition 7.1.1 all initial sequents have the form 4 — 4, A4 atomic, or
—> A, A an axiom of PA™. In the former case the propositional translation is
either 0 — 0,1 — 1, or p;; —> p;;. In the latter case the translation is of the
form — 1, where t is a true Boolean sentence (i.e., without atoms). Moreover,
the depth of t is constant (= the maximal logical depth of a PA™-axiom). Any
such sentence has a d p(r) LK-proof of size O(|7]).

The case when the sequent was obtained by structural or propositional rules or
by the cut-rule is obvious: The same rules of propositional logic should be applied
to the propositional translations of the upper sequents.

For the closed terms ¢ < s(#) is a formula of the form (5(¢))(5) one of the
disjuncts of (Ix < s, n(x))(5); thus 3 < : right rule is simulated by repeated
(polynomially many times) \/ : right rule of LK.

For the V < : right inference

a<t, I — A, A@)
I' — A,Vx <t A(x)

assume that for eacha = 0, 1, ..., val(¢) there is an LK-proof of the translation
of the upper sequent with the required properties. Then all a < ¢ translate to 1,
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and thus can be cut out with the initial sequent —> 1, and the sequents obtained
are joined by repeated applications of the A : right rule fora =0, 1, ..., val(z).
Hence the size of this translation is val(z)2(V = max(77)2("). The left quantifier
rules are treated analogously.

Finally, the IND-rule

A@), I — A, A(a+ 1)
A@©0),T — A, A@)
is simulated by applying the cut rule to the LK-proofs of the transiations of the
upper sequent fora =0, 1, ..., val(z) — 1. Q.E.D.

Corollary 9.1.4. Assume that T is a theory defined as I Ao(R) except that the
language of T might be richer than Lps(R) and that T contains finitely many
bounded axioms besides the induction axioms. Let f(n) be a non-decreasing func-
tion such that any term in the language of T can be majorized by some iteration
of f(n).

Then if 8(a) is a bounded formula in the language of T and

T+ 6(a)

there are d and € such that every propositional formula (6) ) has depth d LK-proof
of size < [ (n) (the £ iteration of f).

Proof. The argument is entirely the same as in the preceeding proof, estimating
the values of the terms in the axioms, in the quantifier rules, and in the IND-rule
by iterations of the function f(#n) rather then by the terms themselves.  Q.E.D.

We shall extend the simulation from Theorem 9.1.3 to the second order theories
Ul and V]

First we have to amend Definition 9.1.1 as the language of Ul1 and Vl‘ does
not contain symbol R(x, y) but has second order variables o’ and new atomic
formulas ¢’ = B% and s € o'.

For each variable /@ and u € w introduce new atoms pg, pi, ..., py where
v = val(z (u)), and define

L <aS(X) = :Bt(y))(n,m) = /\iss(n)(pi = qi) A /\s(n)<i <t(m) "9 Wwhere
s(n) < t(m). The case s(n) > t(m) is defined analogously.

qu fu=sh) <t(m)

e t(y =
{s(x) € B77) (n.m) 0  otherwise

where atoms p; and q; are associated with «* and p'.

A sequence of formulas 6y, ..., 6; is called an EF-sequence iff it satisfies
the conditions of Definition 4.5.2 to be an EF-proof with the condition that no
extension atom appears in 6y dropped.
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Theorem 9.1.5. Let A(x) be a Z&'b—formula and assume that
Vi VxA@).

Then the formulas (A(x)), have polynomial size EF-proofs.

Proof. We shall consider V formalized in the sequent calculus with the 2‘ b_
IND-rule in place of the )31 b—IND ax10ms and with the introduction rules for the
second order quantifiers replacmg 20 b_ca (cf. Lemma 5.5.4 and the discussion
of 20 *>_CA in Section 8. 3).

Assume that 7 is a Vl-proof of the sequent —> A(a), w.l.0.g. we may assume
that all formulas in 7 are strictZ 10 These are 2 b_formulas in which all second
order quantifiers precede all ﬁrst order quantlﬁers and all connectives (a notion
analogous to strith{’ from Lemma 5.2.15).

By induction on the number of steps in 7 above a sequent show that if

3‘#1 Bi(x, @, 1/’1), ceey Ehr//uBu(f’ a, Wu)
- 3§]C|(f, av gl)v crr HEUCU(Ev &_’ gv)

is a sequent in 7, then there is a constant £ such that for all m there is an EF-
sequence of size at most (max(m ) + 2)k ending with the sequent

(BU)w(P B, (BB V)
— (COR(P B, (C vm(p“,ﬁfv)
and such that in this EF-sequence none of the atoms p;’ or p;//" corresponding
to a free second order variable «; (resp. to a second order variable ¥;) from an
antecedent is an extension atom.

The construction follows the proof of Theorem 9.1.3 and we need to treat only
two new rules: the introduction of the second order 3 to the succedent and Ell‘b-
IND (the introduction of the second order 3 to the antecedent does not change the
translation).

Assume that in the former case the minor formula of the inference is

teét
C _’ _$ = . =~
(x “EE, tﬁ))
with both C, E € E and that the principal formula is £ C (¥, @, £). Introduce
a new atom p, = (E)#.,(DP%). Then the equivalence

Ptg £
Chsm 7Y, = Cm_a,_
() (p (E)m> (Cyw(P, P%)

can be derived from the new extension axioms by an F-derivation of size

O (Ol + By 1)?) = (max(7 +2)°0),
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as ¢ is implicitly bounded in E by a power of max(m ). This concludes the first
case.
Now consider the 2:‘b—IND inference

3 C (b, &p) > Fp1 1 CO + 1, 8p+1)
360C(0, §0) —> 36,C(n, &)
(the other free variables and the side formulas are omitted for simplicity). By

the induction hypothesis we have polynomial size EF-sequences ending with the
formulas

(O (P = (Chiugr (B5)

foru =0, 1, ..., n—1.Joining these sequences by n — 1 cuts gives an EF-sequence
ending with the implication

(Cra.0(PD) = (O (P

of total size polynomial in max(m, n).

As the formula 4 is Eé‘b, atoms in (A4),) correspond to free second order
variables in 4 and hence cannot be the extension atoms. Thus the final EF-sequence
is, in fact, an EF-proof. Q.E.D.

The proof can be modified to yield the following statement.

Theorem 9.1.6. Let A(x) be a Zé‘b—formula and assume that
Ul - VxA(x)

Then the formulas (A(x)), have F-proofs of size n(logm

Proof. By Theorem 9.1.5 there is an EF-proof of (4(x)), of size n O Moreover,
by its proof in these EF-proofs will be introduced only (log n)?() extension atoms
asthe U ,‘ -proof 7 uses Ell’b—PIND instead of ):ll‘b ~IND. There willbe O((log %)
extension atoms if there are k nested induction inferences.

Having such an EF-proof, replace in it the last introduced extension atom by its
definition: This yields anew EF-proofof size n 0. 0M with one less application
of the extension rule. Repeating this procedure until all extension axioms are
eliminated produces an F-proof of size n‘1°8 o Q.E.D.

9.2. Translation into quantified propositional formulas

We define a translation of Zgo-formulas of the language L into the quantified
propositional formulas.

Let A(ay,...,a;) be a Ego-formula. As all terms in L are polynomial time
functions there exists a polynomial p4(x) suchthat forn,, ..., ny the truth value of
A(ny, ...ng) can be computed in the interval [0, 2240m7] where m = max; (|n;|).
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Some canonical p4(x) is easy to define by induction on the logical complexity
of 4 and we shall assume that such polynomials are fixed. Any polynomial g (x)
majorizing p4(x) is called a bounding polynomial of A.

We shall also need to express the bits of numbers, and for better readability we
shall write the function bit(a, i) as a(i). Hence

n=Y n@)-2

i<|n|

Define a(i) := 0 fori > {a|.

For B a quantified propositional formula with atoms 7 = (po, p1,...), B(n)
denotes B with the bits n(i) substituted for p;.

Any term ¢ (ay, . .., a;) can be computed for |ai|, ..., lax| < m by a Boolean
circuit C; (by Theorem 3.1.4) with &k - (m + 1) bits of input and poly(m) bits of
output (the bits of the value of ¢ (a )). Moreover, the size of C, is polynomial in
m. If we introduce new atoms for every node of the circuit, the statement “C, on
inputs Py, ..., Py outputs g~ can be expressed by a Ef-propositional formula
(saying that there exists a computation of C;), which we shall denote

B[m(?]7--"?k’q)

Such a formula is defined precisely by induction on the complexity of the term ¢
and we leave it to the reader. Note that

|B™ (D), .- Pro ) = mOW

Finally, recall Definition 4.6.2 of the systems G, G;, and G}.

Definition 9.2.1. Let A(ay, ..., ar) be a bounded formula in the language L of
$». Let g(x) be a bounding polynomial for the formula A.
For every m we construct a quantified propositional formula
ANy
with the atoms p;, i = 1, ..., k where eachp; = (p?, ey p?(m)). We proceed by
induction on the logical complexity of A:
(a) For A the atomic formula t(a) = s(a) define

”A”:’n(m) = axOs e ,Xq(m), YOs s J’q(m)» Bt(ﬁl# e aﬁk» qj/xj)
AB{(Bps-- s P @i/ A\ xi=y
i<q(m)
where we define that tuples P, ..., Py, q in B have q(m) + 1 bits, with

pi’ for j > m not occurring and with not all g/ necessarily occurring.
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(b) For A the atomic formula t(a) < s(a) define

”A"Zl(’") = 3dxp, ..., Xg(m)» Y0s - - -5 Yg(m)» Bt(_[_)l, covs Dis qj/xj)
N Bs(Prs - Proqj/¥j)

A /\ <( /\ szyj>/\x,-—>y,-)
0<i<gq(m) i+1<j<q(m)

(the last conjunct defines the lexicographic order on X,y ).
(c) For A = —A define

“A”;(m) = _‘”Al”;n(m)
(d) For A= A0 Az, o =V, A, define
“A”:]"(m) =4 ”:In(m) o HA2||;n(m)
(e) For A(a) = 3Ix < |t|A\(a, x) define

NN = \/ 16 < lt] A 41 (@, D)7, (T/ )

and for A(a) = ¥x < |t|4(a, x) define
ANy = [\ 16 < 11| = A1(a, B, (T/E)
€
where € range over (q(m) + 1)-tuples of 0, 1 s.t. €; = 0 for i > [g(m))|.
(f) For A(a) = 3x < tA\(a, x) with t not of the form |s| define

NAN oy = 350, - Xgm 6 < £ A A1 (@, B) [y (G/ )
and for A(a) = Vx < tA\(a, x) with t not of the form |s| define

LAy 2= V20, . Xgmllb < £ = A1(@, B2y (7/F)

where q is the tuple associated with b.

Lemma 9.2.2. Let A be a bounded formula and q(x) its bounding polynomial.
Then it holds that
1. There is a polynomial r(x) such that for all m

| ”A”Z’(mﬂ <r(m)

2. IfAd e Zé’ then || A [I’qn(m) is A‘l’ in GY. That is: Provably in G the formula
|4 II;”(m) is equivalent to a Zil-formula and to a H‘l’-formula.

3. Ifde Ef’ then || A| Z’(m) is provably in G} a Z;’-formula.
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Proof. Condition 1 is obvious from the definition of || 4 IIZ'(m). For condition 2 it is

sufficient to verify the claim for atomic formulas, as translations of the 28 -formula

are formed from translation of atomic formulas by Boolean connectives only.
For A ofthe form¢ = s, ||4 ”Zl('n) can be expressed as

VXO’H.,Xq(m), yO,...,yq(m),Bt(-[—)l,...,ﬁk,qj/x]')
ABs(Prs-- Do @i/v) —~> N\ xi=u
i<q(m)
andford =t <s, ||A||;"(m) can be expressed as
VXO,...,Xq(m)» yo,...,yq(m),B,(_p],...,ﬁk,qj/xj)
ABS(?]""’?k’qj/yj)'_) /\ (( /\ x,~sy,~>/\x,~->y,~)
i<q(m) i+1< j<q(m)

That these formulas are equivalent to the original ones depends on the fact that a
circuit has a unique computation on an input, and the provability of the equivalence
rests on the provability of the formulas

VX0, ooy Xg(mys Yor -+ o Ya(m)s BeC D1y -+ s Prr 4 /%))
ANB(DP1s. s P qi/Yi) — /\ Xi =y
i<q(m)
(and similarly for By).

To see that this formula is provable in G} in size poly(m) assume that B, has
the form

B, :=3wy, ..., wemyDi(Py, ..., Pr, W, X)

where D; is quantifierfree, the bits wy, ... correspond to the nodes of the circuit
Cy, and Dy is a conjunction of < r(m) conditions saying that the value at the node
w; is computed from the values at the incoming nodes according to the definition
of C,, and that p;’s are the inputs and X’s are the outputs. Now assume w.l.0.g.
that C; computes w;’s in the order wy, wa, . ... Then by induction on £ construct
Go-proofs of the implications

D(Bis-. s P W XY A DU Bro -, P 0. F) = \wi = v
izt
This needs O(£) steps, each of which has size poly(m): That is, the total size is
poly(m). This proves condition 2.

Condition 3 follows from 2 by induction on the logical complexity of 4.
Q.E.D.
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Lemma 9.2.3. Let A € 23, t be a term and q(x) a bounding polynomial for A(t).
Then for every m there are size m9V G-proofs of

It =a = 4@ = 14O

Moreover, these proofs are constructible from m by a polynomial time function
definable in S21 .

Proof. The lemma is proved by induction on the logical complexity of the formula
A and the term ¢, and we leave it to the reader.
The definability of the proofs in 821 follows immediately. Q.E.D.

Lemma 9.2.4. Let A be an axiom of BASIC and q(x) a bounding polynomial of A.
Then for all m there are size m () G -proofs of the formula || A|| Zl(rn)' Moreover,
these proofs are constructible by a polynomial time function definable in 52'.

Proof. This lemma is a special case of a theorem of Cook (1975) . That theo-
rem says that the translations of all axioms of PV have polynomial size extended
resolution proofs and hence by Lemmas 4.5.8 and 4.6.3 also G}-proofs.

Such proofs are constructed in two steps: First find a PV-derivation of 4 (4

expressed as an equation) consisting of the equations Eji, ..., E¢, and then by
induction on i construct size poly(m) proofs of the formulas | E; ||;”(m), where
r(m) is a bounding polynomial for all Ey, ..., E;.

The first step is straightforward as the axioms of BASIC mostly state just the
recursive properties of functions that are used in their PV-definition by the limited
recursion on notation.

The second step is also simple. The only nontrivial part is a simulation of rule
RS in Definition 5.3.2, which is handled in the same way as the proofs of the last
implication in the proof of Lemma 9.2.2. That is: The equality || f1 = f2|]?(m) of
the new functions introduced in the rule is proved by induction on the length of y.
Q.E.D.

Theorem 9.2.5. Leti > 1 and A(a) be a Ef’ -formula. Assume that

T) + A(a)

Then there is a bounding polynomial q(x) for A such that for all m formulas
|4 II;”(m) have size m9V G;-proofs.
Moreover, these G ;-proofs are definable in Szl.

Proof. For this proof it is convenient to extend the system G by two derived rules
for introduction of implication:
Impl : left
' — A,B C,IT— A
B—>C,I'— A
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Impl : right
B,I' — A, C
' —-A,B—>C

Recall that B — C is an abbreviation of =B Vv C and the preceding rules just
abbreviate these two derivations, left : fromI’ — A, Bderive =B, — Aand
then B - C,I' — A, andright: from B, — A, C derivel’ — A, —B,C
and by two \/ : right rules and a contraction derive ' — A, B — C.

Assume that

T, - A(a)
By Corollary 7.1.5 there is an LKB-proof & with the Zf’—IND rule of the sequent
— A(a)

in which all formulas are in Ef’ U l'lf.’ .
Choose g (x) to be a bounding polynomial of all formulas occurring in the proof
7. The idea of the simulation of 7 by a G;-proof is to translate every formula B in
minto || B ||;”(m), and possibly fill in some derivations to obtain a valid G;-proof.
As usual we proceed by induction on the number of inferences above a sequent
in 7 of the form

r— A
to show that the sequent
1T — Al
has size m 9D G;-proof, where for ' = (41, ..., A;) the symbol ||| abbreviates
the cedent L4117y - -+ 14k I7my-

The case of the initial sequents, that is, the axioms of BASIC, the equality
axioms or the logical axioms of the form B —» B, B atomic, are obvious with
the exception of the axioms of BASIC, for which the statement follows from
Lemma 9.2.4.

The case of the structural or of the propositional rules or the cut-rule is handled
by the same rules of G;.

Consider now the V < : right rule

a<s,I — A, B(a)
I' — A,Vx <sB(x)

There are two possibilities: s is or is not of the form |¢|. For the former let the set
X be

X:={€e{0,1}|e; =0 fori> |g(m)|}
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and first derive the sequent

\Via=gre<it|| — lla < (S1)
eeX

and the sequent
| B@)li — I B(a)} ($2)
and from these two derive by the introduction of the implication to the left and to
the right
lla <itl > Ba)l — II\/a=?/\€S 1l = Ba@)ll (S3)
eeX
Then derive the sequent
Via=ere<itlll > 1B@l — \la=gAg<lt|—> B@| (S
€eX €ex

and by the cut rule applied to (S3) and (S4) derive

fla < |¢t] - B@)| — /\ la=€ne<it| > Blall (Ss)
€cX
Separately derive
N\ la=enre<itl > B@Il— [\ lla <ltl > B@I(p/e)  (So)
€eX ecX
and by the cut-rule applied to (Ss) and (Sg) also
la <ltl - B@)l(p) — /\ lla < it} - B@)ll(p/€) (57)
€eX
From the upper sequent of the simulated inference infer by Impl : right
I — Al fla <5 — Bl /\ la <t > B@)ll(p/€)
eeX

and by the cut with (S7) infer the translation of the lower sequent of the simulated
inference.

This shows the simulation if s = |¢|. Assume now that s does not have the form
|¢]. From the upper sequent by Impl : right derive

IT — {Al. lla <s — Bl

and by ¢(m) + 1 inferences V : right applied to P associated with a derive the
wanted sequent

1T —> 1Al IV < sBX)i
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Now consider the rule V < : left
B@®),T — A
t<s,Vx <sBx),[ — A
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Assume first that 1 = |r| for some term 7. In both cases we shall first derive the

sequent
iz < sll, IVx < sBx)| — I B@)Il
and by the cut-rule with the upper sequent obtain the wanted sequent
lr < sl IVx < sBIL T — 1Al
The cases differ as to the derivation of (Sp). If ¢ = |r| derive
le<irtl— \/lt=ana<|r|I(p/e)
€eX

and then
IVx < 11BN, Veex It =ana < |r I(p/€)
— \/ It =an B@I(p/?)
€eX
By the cut-rule applied to (S;) and (S;) derive
lz < irlll, IVx < |r| B —> \/ It =an B@)|(p/€)
éeX

By Lemma 9.2.3 applied to the formula B(a) derive the sequent

V it =a A B@)l(p/&) — |BO)I

€eX
and by the cut derive (Sp) from (S3) and (Sy).

Assume now that ¢ is not of the form |r|. First derive

it <sll — 3Ix lla <sAa=1|(p/X)

and

(So)

(S1)

($2)

($3)

(S4)

(S1)

IVx < sB(x)|.3X |la < sna =t|(p/X) —> X lla =tAB@I(P/X) (S2)

From (5)) and (S3) the cut-rule yields the sequent
2 <sll, IVx < sB(x)|| — 3% lla =1 A B(@)|I(P/¥)
Using Lemma 9.2.3 also derive
X lla =t A B@)(p/X) — IBOI

and the sequent (Sp) can be obtained from (83) and (S4) by the cut-rule.

($)

(S4)
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This concludes the treatment of the V < : introduction rules. The cases of the
3 < : introduction rules are dual and we leave them to the reader.
It remains to treat the X f’—IND rule

B(@),I' — A,B(a+1)
B0), I’ — A, B(®)

Assume that the atoms p are associated with the variable @ and the atoms § with
the term ¢. For simpler readability we shall omit the side formulas I, A.

The first idea would be to simulate the IND-rule by repeated cuts applied to the
upper sequent fora = 0, 1, ..., — 1. This would, however, have an exponential
size. We shall instead shorten the simulation by the substitution rule, which is by
the proof of Lemma 4.6.3 available in G.

Assume that we have the sequent

| Bla)l| — | B(a + DI ($)
Derive the sequents
IB@l — lIBa + 2| U

fori = 0,...,q(m). The sequent (Up) is just (S), and (U;4) is derived from
(Uy;) as follows: Let 7 be a (g (m) + 1)-tuple of new atoms. By substituting r;’s for
p in (U;) derive

IB@)I(P/F) — l|Ba+2)(P/F) )
Using the equality axioms whose translations are shortly provable derive
la +2" = bI(B. ), |1 Bla+2)I(P) — IB@I(P/7) (V2)

where 7 is associated with the variable b. By the cut-rule applied to (U;) and (V3)
get

la +2" = bli(B,7), | B@(P) — (| B@I(P/F) V3)
By the cut obtain from (V) and (V3) the sequent
lla +2' = bli(B, 7), I B@(P) — I1B@I(p/7) Va)

Again using the equality  :dioms derive
lla+2"=bI(B.7. B+ 2)(B/F) — IIB@+2*HI(P)  (Vs)
and by the cut from (V4) and (Vs) get
la +2" = b(P, 7). IB@I(B) — IB@+2*HI(F) (o)
Derive

— 3Xfa+2' =b|(P, %) (V7)
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and from (V) by (g(m) + 1) 3 : left rules
3% lla +2' = bI(B, %), IB@I(P) — IB@+2HI(P) (V)

and by the cut-rule from (V7) and (V3) the sequent (U;41).
The next idea is to derive the sequent

12" = BII(F), |1 B@I(F) —> Bl +b)I(F.F) (S

consecutively for i = 0, ..., g(m). The sequent (Sp) foliows from (Up), using
simple

12° > bI(F) — lla=bVa+1=b|(p,7)

Assume that we have (S;) and derive (S;4) as follows. Let ¢, d be new variables
with the associated atoms , v. By substituting u# for p and v for 7 in (S;) derive

12" = cll (@), 1 B@I(T) — IB@E + o)l(V, %) (Z))
From (U;) derive
I1B@I(P), la+2" =dl(F,7) — IB@I(V) (Z2)
and by the cut from (Z;) and (Z3) the sequent
12 > cll(@), lla + 2" = dl(P,0), |B@I(P) — IBUE+ (T, 7) (Z3)
From (Z3) get
12F > ell(@), b = 2 + cl|(F, @), | B@I(B) — |Bla+bI(B.F) (Za)
From the sequents (S;) and (Z4) infer by \/ : left
12" = BV(2' = enb = 2'+0)I(F, &), | B@(P) — | B@a+b)I(P.7) (Zs)
By (g(m) + 1)-applications of 3 : left to u get

X2 2bVv (2 Z=ecAb=2"+)|(F,3), |1B@I(P)

Z
— 1B +B)(F.7) (Z6)

Separately derive
12 > bI(F) — AT 120 = bV (2 > cAb =2 + )(F.T) (Z7)

and by the cut-rule applied to (Z¢) and (Z7) derive the sequent (S;11).
Having (S;(m)) substitute 0 for 7 and g for 7 to obtain

1299 > £li(F), 1B — 1BOI(F)
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Since the sequent
— 29 = 1])(7)

has a simple proof, the cut-rule applied to these two sequents yields the wanted
sequent
I BO) —> 1Bl
This concludes the proof of the theorem. Q.E.D.

Theorem 9.2.6. Leti > 1 and let A(a) bea El.b-formula. Assume that
S+ A(a)
Then there is a bounding polynomial q (x) for A such that for all m the formulas

|4 ||Z’(m) have size m°(M G} -proofs.
Moreover, these proofs are Ef -definable in Szl.

Proof. The simulations constructed in the proof of Theorem 9.2.5 are all treelike
except the simulation of the Zf’—IND rule where the sequents (U;) and (S;) are
used repeatedly. But in Sé the Ef’—IND is replaced by the Ef’—PIND rule
B(la/2}),I — A, B(a)
B0), ' — A, B(1)
which can be simply simulated by < (g(m) + 1) cuts. Let 7 be a G}-proof of

o2 — 1ot

Substituting in the whole proof for atoms p associated with a consecutively the
bits of ¢, [£/2],...,1,0 get < (g(m) + 1) proofs n;, Tgpseos TN, M0 each of
size mP(_ Joining these proofs by the cut-rule entails the wanted sequent

I B — 1B®
Q.E.D.

Corollary 9.2.7. Assume that the equationt = s in the language of PV is provable
in PV. Then there is a bounding polynomial q(x) for t = s such that for all m
Jormulas ||t = sll;”(m) have size m9() EF-proof.

Proof. From PV -t = s follows 521 (PV) - ¢ = s and by the preceding theorem
(trivially modified to the language of S21 (PV)) the formula ||t = S”Z,(m) has size
mOW G-proofs. The corollary then follows from Lemma 4.6.3. Q.E.D.

The rest of this section is devoted to the extension of the previous simulation
theorems to the theory U2' and to the full system G. Such a simulation is not un-
expected as U21 relates to PSPACE by Theorem 8.2.4 and the set of tautological
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quantified propositional formulas is PSPACE-complete (cf. Balcazar et al. 1988).
In fact, Dowd (1979) proposed an equational theory PSA related to PSPACE anal-
ogous to the relation of PV to P and showed a simulation of PSA by G. His trans-
lation, however, was not the || ... | translation. In his translation the quantifier
complexity of a Zf’ -formula was not 2;’ but increased with the length of the input
and with the space bound.

We shall prove the simulation using the || ... || translation.

Theorem 9.2.8. Let i > 1 and let A(a) be a bounded first order Ef’ ~formula.
Assume that

U + Aa)
Then there is a bounding polynomial q (x) for A such that for all m the formula

I ANG o) has size mOW® G-proof.
Morveover, these proofs are Ef’ -definable in Szl.

Proof. We shall prove, in fact, a stronger statement (the following claim), which
is a propositional version of the witnessing Theorem 8.2.4 for the case of U21 . First
we shall make some simplifications and conventions.

We shall assume that all )Sll‘b-formulas are, in fact, strictEll’b, that is, a block of
second order 3-quantifiers followed by a Z(I)’b-formula. This is achieved by adding
the pairing function (x, y) to the language and coding sequences of sets by

je@i=1,j)ca

and by enlarging BASIC by a few axioms implying 211 P_AC (over Zé‘b—PIND).
We shall also extend the translation || ... | from Eé’o- to 2(;’b-formulas by
stipulating that atomic formulas a € « are translated as

”a";n(m)(Pl s e ey Dg(m))

where ||| is a new metavariable for quantified propositional formulas. These
metavariables will actually never occur in a G-proof, but they allow convenient
notation. We shall manipulate them freely; for instance, || 4(a, «/B)| is the same

as || 4(a, ) || (lleli/UBID.

Claim. Let 3¢' A(a, o, ¢') and Iy " B(a, o, ¥") be strict):l]‘b-formulas such
that

U; - 3¢'A(a, @, ¢') — Y B(a, o, ¥")
Then for every m there is a £ -formula with the metavariables
W (ll’ 11, 19°11)

and a bounding polynomial q(x) for A, B such that for any two T.-formulas
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C, D without metavariables the implication
145y (2 11/ C, 111/ D)
—> 1By (P 1/ C YN/ W (1l /C, 19711/ D))

has a G-proof of size poly(m, |C|, | D|).
The formulas C, D have q(m) + 1 atoms and may contain the atoms p too.

Under the hypothesis of the claim there is a U21 -proof 7 in the second order LKB
with £"°~PIND in which all formulas are strictS,"®, ending with the implication.
Any sequent in 7 has the form

o, 3 di(a, b0, B, #), ..., T — A,..., 3B, b,a,B,¥)),...

where b, B are the other free variables different froma, a, and I, A are the cedents
of Eé‘b-formulas. For simplicity of notation we shall omit b, 8, and we shall write
[|...]|l instead of || ... IZ’(M).

A remark on the choice of polynomial ¢ (x): It is a bounding polynomial of all
formulas in 7; in the case of second order formulas with variables y* this means
that g (m) also bounds the length of all possible values of s needed in the evaluation
of the formula for first order inputs of length < m.

We shall also write

|4 1(C, D;)
instead of

I4: 1l Cleell/C il / Diy

(and similarly for B;), as there is no danger of confusion.

By induction on the number of inferences in = above such a sequent we construct
Ego-formulas without metavariables C, ..., D;, ... (with (g(m) + 1) new atoms
and with possible occurrences of other atoms free in the sequent) such that there
are size m %) G-proofs of

o I 4NCC, Dy, T — AL, IBIC, W/ (C, . Dy, ),

Formulas ¥, ,;' are called witnessing formulas.

We proceed now considering several cases according to the type of the inference
giving the sequent.

The principal formulas of all propositional inferences must be Zé'b, and the
only two nontrivial cases are Vv : left and A : right. ' '

Let a principal formula of an Vv : left inference be E| v E with le (resp. WZJ )
the witnessing formulas for the upper sequent with E (resp. with E»). Define the
witnessing formulas /¥ / for the lower sequent by the definition by cases

W= ("El A le) v (”“El A WZJ)
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If | E1 V Ez || is true, then W/ is correctly defined as a valid witness; otherwise W/
can be anything. Moreover, there are polynomial size G-proofs of the sequents

B — Wi =w]

and
I—E\l| — W/ =w)

Using these proofs one can construct from the corresponding proofs for the upper
sequents polynomial size proofs of the lower sequent with the witness W /.

The A : right rule is treated dually.

The structural rules are simple; in particular, the contraction : rightrule is treated
by the definition by cases again: If two occurrences of formula 3¢ B(a, e, ¥) inthe
succedent are contracted, and W{ , sz are the witnessing formulas corresponding
to these two occurrences, set

wi = (1Bl ) A W] ) v (I BIGal, 7)) A W)

Now let us consider the second order 3 : right inference (which in the sequent
calculus represents Eé’b—CA [cf. Section 8.3])
..— ..., Bla,a,¥/E(a,a))
Y Bla, o, ¥)

with E € E&'b. Then just define the new witness formula for new variable ¥ by

W= Elll)

The last nontrivial case to consider is L.b —PIND, where the induction formula
ApE(a, b, o, @) is El % and not 21 b (the latter case is treated as in the proof of
Theorem 9.2.5).

Assume that W (a, b, |||l ..., #ill, ..., l¢]) is the witness formula associ-
ated with 3¢ in the succedent of the upper sequent of the induction inference

L 30E@, 2], 0, ¢) — FPE@, b, @), ...
., 3PpE@,0,a,¢) — IPE(a,t,a,9),...

Define terms t9, ¢1, ..., t by to := ¢ and t;41 := |t;/2], for k = q(m). Note that
tx = 0. Using these terms then define
Vii=W (a,b/ti—t, lal, ..., I$ill, ... I¢])
and
Vert :=W (@, b/ti—e—1, lll, ..., il ..., @1/ Ve)

fore=1,...,q(m) — 1, and set

W = Ve
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It is clear, and easily G-proved, that ¥, witnesses the implication
3¢E(a’ 0? &, ¢) —_— 3¢E(a’ t—g, ¢)

and hence W witnesses the lower sequent of the induction rule.

There is one more requirement that is not obviously satisfied: namely, # has
to have a size of at most m (). Indeed, if ||@|| has at least two occurrences in W,
then the size of ¥, grows exponentially with £, whereas if ||| occurs in W only
once, the size of V¢ increases only proportionally. Hence a way to overcome this
obstacle is first to put ¥ into a G-equivalent form with only one occurrence of
l¢|l. For example, replace W by

Vx, x = ligll = Wlgli/x)

This will increase the quantifier complexity of #, but we do not care about that
as the complexity of W is greater than that of # in any case. Q.E.D.

9.3. Reflection principles and polynomial simulations

In this section we show that the provability of the reflection principles for proposi-
tional proof systems in bounded arithmetic implies polynomial simulation. As an
illustration of this idea assume that we can verify in S2l the soundness of a proof
system P. Then the simulation of Sé by EF (Corollary 9.2.7) allows to “prove” the
soundness of P in EF, and then to use this proofto simulate P-proofs by EF-proofs.
This idea is due to Cook (1975).

We shall apply the idea to systems considered in the first two sections of this
chapter, and we shall also derive some corollaries about bounded arithmetic, not
just about the propositional proof systems.

First we shall consider the language L, of VI , and the translation of Section 9 1
In this language we have finite sets and all basic operations with sets are 2
definable (in 7 Eo using Zl b—CA) In particular, recall that a sequence of sets
can be coded by a set by

je(a)iE(j’i>ea

and again such coding applies CA to the definition of the sequence; this will always
be 20 or A}‘b. Thus we can carry in / Eé'b some usual set-theoretic coding of
propositional formulas, say as finite binary trees with inner nodes labeled by the
connectives and leaves labeled by atoms or constants. Proofs are then particular
sequences of formulas, and for systems F or EF the definitions of F-proofs (resp.
EF-proofs) are obviously also Zé’b. A truth evaluation of a formula will be coded
a 0, 1-labeling of the nodes of the formula computed according to truth tables
of the connectives. Moreover, these definitions allow us to prove in / E(l)'b such
elementary syntactic properties as “A formula has unique immediate subformulas,”
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and so on. We leave the reader to design her/his own definitions and to apply them
to the following arguments. We just stipulate a certain notation.

Definition 9.3.1.

1. Fla(@)isa 20 -def nition of “a zs a propositional formula”

2. For P=F EF, Prfp(n, o) isa 20 -def nition of “m is a P-proof of «”’

3. Assign(n,a)isa 20 —def nition of “n is a truth ass:gnment to the atoms
of the formula o, and Assign(n, ) implies in I 20 Fla(a)

4. Eval(n,a,y) is a EO b-def nition of “y is the evaluation of the formula
o over the truth assignment 1 to its atoms,” and Eval(n, o, v) implies in
1 20 the con]unctton Fla(a) A Assign(n, o)

S. nkEaisa A1 -def nition in U, Lof “nisa satzsﬁzmg truth assignment to
the atoms of the formula «, and itisin I 2' -defined by

3y, Eval(n,a, y) A “y evaluates to 1”
6. TAUT(«) is a I'I{’b-formula defined in 1 Eg’b as

Vn, Assign(n,o) > n =«

Formula n =« is A}’b inU ,‘ aseven / Eé’b can prove the implication
Eval(n, a, y1) A Eval(n, @, 2) — y1 = 12

(by induction on the size of y1, y2), and by the following lemma, which is not
obvious.

Lemma 9.3.2. The theory Ul1 proves that every propositional formula can be
evaluated over any truth assignment to its atoms

Vn, a3y, Assign(n, o) — Eval(n, «a, y)

Proof. We would like to proceed by the induction on the logical depth of &, but this
would require Ell’b —IND, whereas we have only Ell’b—PIND. We shall therefore
make use of a proof of the Spira theorem 3.1.15, reducing the depth to a logarithmic
one.

Let o be a formula and 5 an evaluation of its atoms. Assume that  is a bound
to all nodes in « and for b < a let ap denote the subformula of o with the root b.
For B a subformula of o and § a set of some mutually incomparable nodes of ¢,
let B | & denote a formula consisting of those nodes of 8 not majorized by any
node of 8, with y € § aleaf of o | § labeled by a new atom gy,. Thus 8 | & has at
most |6 new atoms that do not occur in «.

Consider the formula

A(u) == [Vx < a¥8(j8| > |a| — u), Fla(ax | 8) A lax { 81 < (3/2)%]
— VE[Assign(nU &, ay | 8) = Iy, Eval(nU &, ay | 8, ¥)]
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As the size of § is bounded by |a}, & can be coded by a number bounded by a and
hence A(u) € Ell’b.

Foru = 0,]ay | 8] = 1so @, | § is just an atom or a constant and A(0)
clearly holds. The idea of the proof of implication 4(u) — A(x + 1) comes from
Spira (1971), where the following claim was stated.

Claim. Any formula oy has a subformula o such that |az2| < (2/3)|e1| and
far| — lazf < (2/3)eul.

This claim is easy to formalize (we have a A } 5_definition of the cardinality of
a set, by Lemma 5.5.14) and to prove by PIND on the size of the formula.

Assume A(u) and let ¢t | § fuifill the hypotheses of 4(u + 1). From the claim
it follows that there is anode y in oty | (= v) such that both ), | (= v2) and
oy | (8 U {y)) have size at most (3/2)*. By 4(u) then there is an evaluation y’
of @y | & over any n U & and an evaluation y” of oty | (§ U {y}) overnU& Uy,
where x assigns to ¢, the value computed by . It is then straightforward to Eé’b-
define from y’, y” the evaluation y of , | & over n U &. This entails A(u + 1).

ByZ 11 ’b—LIND, available in U, 11 , it follows then that 4(log; /2(@)): Thatis, there
is an evaluation y of @ over n. Q.E.D.

Theorem 9.3.3. The theory U 1‘ proves that F is a sound proof system

Vo, n, Prfp(r, o) = TAUT(a)

Proof. Arguein U]1 .Letmw, o satisfy Prfp (, @), and let (), . . ., (;m)x = a bethe
steps in 7. Assume that 7 is a truth assignment to the atoms of a: Assign(n, o). We
may assume that no other atoms occur in 7 (as otherwise they could be substituted
for by 0, for example).

Consider the formula A (u)

A(u) = n (1)

This formula is by Definition 9.3.1 A}’b in Ull. ByLemma 5.5.9 Ul1 admits A}'b—
IND; hence we have the induction for the formula A (u).

Clearly 4(1) holds (as (;r); must be a logical axiom), and A(u) - A(u+ 1)
(as all Frege rules are sound). Hence A (k) holds: that is, n = «.

This applies to any 7; hence « is a tautology. Q.E.D.

Theorem 9.3.4. The theory Vl1 proves that EF is a sound proof system

Vo, 7w, Prigr(r, o) = TAUT(a)

Proof. Argue in Vll. Let  be an EF-proof of o with steps ()1, ..., (T = «,
where (7)1, ..., (7T)m are the extension atoms used in, m < k.
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Let Assign(n, «) hold and w.l.0.g. assume that in 7 only the atoms from « or
the extension atoms occur. Take the formula 4(u)

A(u) := & “£ is a truth assignment to the extension atoms in 7"
ANYv=u, pUE E ()

This is a El"b-formula clearly satisfying 4(1) and A(u) — A(u + 1), giving
to the extension atoms truth values computed from n by their definitions, for
u=1,...,m. Hence Ell’b——IND implies A(k), and = « follows. Q.E.D.

There is no Zé’b -definition of the relation n = «. This is because such a
definition would allow us to express every Boolean formula by a constant depth
circuit {(n = «), of size polynomial in n = |e|, which is impossible (e.g., the
parity function @(x, ..., x,) has a formula of size n? but it has no polynomial
size constant depth circuits, cf. Theorem 3.1.10). Thus we cannot translate the
previous arguments into / Zé’b . The theory [/ 26’1’ does not even prove that every
formula can be evaluated

vn, a, Assign(n, ) — Iy, Eval(n, o, y)

The unprovability of this implication is shown as follows: Assume that / E(])’b
proves the implication. Then the witnessing argument of Theorem 9.1.5 would
give the witness formulas for ¥ in terms of the bits of 7, «, and these witness
formulas would be Z(l)’b . Hence again it would follow that formulas can be written
as polynomially larger constant depth circuits: a contradiction with Theorem 3.1.10
(and with the existence of small formulas for the parity function; see the end of
Section 3.1).

There is, however, a E(l)’b-definition of n = « assuming that the depth of « is
bounded by a standard constant.

Lemma 9.3.5. Let d be a constant and let Flay () be a Eé’b-deﬁnin’on of “wisa
depth < d formula.” Then

ITy® F Vn, a, Flag(a) A Assign(y, @) — 3y, Eval(y, &, y)

Proof. Prove the statement by induction on d showing that the evaluation y is
actually (for fixed d) Zé’b-deﬁnable from 7 and o (the implication then follows
by Zé‘b—CA). This is because / Zé‘b can prove (by the remark before Definition
9.3.1) that a depth 4 formula with the outmost connective A is a conjunction
of (arbitrarily bracketed) depth d — 1 formulas: That is, it is true iff “all these
subformulas of depth d — 1 are true.” Assuming that a truth definition for 4 — 1
formulas is already formed, this allows us to define the truth for depth 4 formulas
with the help of a V< quantifier; similarly when the outmost connective is V. If it
is — then first apply de Morgan rules to rewrite & so that all negations apply only
to the atomic subformulas. Q.ED.
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Theorem 9.3.6. Let d > 0 be a constant. Then the theory I Eé’b proves that any
Frege proof of depth < d is sound

Vr, o, Prfp(n, ) A “dp(m) <d” — TAUT (@)

Proof. The proof goes by induction on the number of steps in 7 as in Theorem
9.3.3, using the Eé‘b-deﬁnition of the satisfaction relation for depth < d formulas
provided by Lemma 9.3.5. Q.E.D.

Before turning to the quantified propositional proof systems and the translation
of Section 9.2 we formulate in model-theoretic terms a sufficient condition for a
demonstration of superpolynomial lower bounds.

Lemma 9.3.7. Assume that Ais a EA’b-formula. Then I Eé’b proves the equiva-
lence

A@) = (@ = (4)x(P))

where & is a truth assignment, Eé’b -definablein 1 Zé’b, assigning to p; the value 1
iffi € ™.

Proof. This is readily established by induction on the logical complexity of 4.
QED.

Recall that n® := | J, _, n* for n, an element of a nonstandard model of arith-
metic.

Theorem 9.3.8. Let A(a, @) be a EJ’b-j’ormula with a and a the only free vari-
ables. Let M be a nonstandard model of the true arithmetic T h(w) andletn € M\w
be its nonstandard element.
Assume that for every bounded set 1 C n® coded in M there is a family
X C exp(n®) of bounded subsets of n® and o € X such that
(i) TteX
() n°, X) = I1Z)?
(iii) (n®, X) = —-A(n, a).
Then the formulas (A(a))m, m < w, do not have polynomial size constant-depth
F-proofs.
If(n“, X) = Ul1 then the formulas {A(a))n, do not have polynomial size F-
proofs, andifeven (n®, X') &= V]‘ then they do not have polynomial size EF-proofs.

Proof. Assume that the formulas (4(a)),, m < w, do have polynomial size
constant-depth F-proofs. As M satisfies the true arithmetic there is £ < @ such
that for every element n € M, M codes a constant-depth F-proof of (4(a)), of
size at most n*. Let 7 € n* be such a proof.

Take X and @ € X satisfying the conditions (i)—(iii). Then (n“, X’) is a model
of I E(}’b in which the propositional formula (4(a)), has a depth d F-proof, some
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d € w. By Theorem 9.3.6 the formula {A4(a)), must be a tautology. However,
—A(n, o i~ true, hence the assignment & defined in Lemma 9.3.7 does not satisfy
’ ‘hat lemma. This is a contradiction.

o of U ]‘ and V,l follow analogously, using Theorems 9.3.3 and 9.3.4 in
p1ace of Theorem 9.3.6. Q.E.D.

Now we shall turn to the quantified propositional formulas and the translation
of Section 9.2.

Lemma 9.3.9. Therearea All’ in 521 definition w =0 A of the satisfaction relation
Jor Zg -formulas A, and a B(Ef’) definition w |=; A of the satisfaction relation
for E? 0] I'l? -formulas.
Moreover, SZ} proves Tarski’s conditions for truth definitions (i > 0):
L wEAVB)=(wkE AV Wk B)
L wEAAB) = ((wFE AN (w i B))
L wEA)=CwE A4
(i IxAX) = ((w i 4(0) vV (w = A(1))
o (w i VxA(x) = ((w i 40) A (w = A(1)))
In fact, 1 and 4 are provable in a stronger form
6. Wi Veexy A(€)) = (3€ € X, w k= A(E)), where X C {0, 1}"
7.

N LW N~

Wi Iy, .oy Xn, AXL, .. .4 Xn))
= (Jw’, “w’ is a is a truth assignment to atoms

Plocospn” AN w~uw = A(P))

Moreover, S2l proves (i > 0)

VAe ] ull! Yu, (w i 4) = (w Eip 4)

Definition 9.3.10. Fori > 0 define a Vl"[? 1 formula
Taut;(4) :=Vw(lw| < |4]), w = 4
It defines the set of the tautological T U T1!-formulas. The set is denoted TAUT;.

The following definition extends Definitions 4.1.1 and 4.1.3 to systems for
quantified propositional logic.

Definition 9.3.11.
(a) A polynomial time computable binary relation P(x, y) is a quantified
propositional proof system iff

@Ar, P(r, 4) - A € U TAUT;

i=0
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(b) Let P and Q be two quantified propositional proof systems and i > 0.
Then P i-polynomially simulates Q, P >; Q in symbols, iff there is a
polynomial time function f(x, y) such that

Y, 4, Q(n, A) A A € B} UTI] — P(f(n, 4), 4)

(c) Assume that a quantified propositional proof system P is All’ -defined in
Szl. Then we define the formula

i-RFN(P)
as
Va, A, P, A) A4 e TIUN! > Tauti(4)

Note that i-RFN(P) is V1§ for i = 0 and VE? fori > 1.
(d) Assume that a proof system P is All’-deﬁned in Szl. Then we define the
Jormula

Con(P)
as

VY, -P(m, 0)

We do not require in the definition of a quantified propositional proof system
that it is complete (with respect to all quantified tautologies). This is because we
want the definition also to cover systems like F, EF, G;, G f that are not complete
w.r.t. all tautological quantified propositional formulas.

Lemma 9.3.12.

(a) Leti > 0 and assume that ¢ (a) € Ef’fori > 1 and that ¢(a) is Al]’ in
521 Jori = 0. Let & be a truth assignment assigning to the atom p; the
bita(j), j = 0;itis A’I’-deﬁnable in Szl. Assume that q(x) is a bounding
polynomial for ¢(a).

Then

SiF¢@ =a ki I, (P)

(b) For any proof system that is All’-deﬁnable in 82' and closed under the
substitution rule, modus ponens, and that is complete for TAUTy it holds

S] F Con(P) = 0-RFN(P)

Proof. Part (a) of the lemma is proved by induction on the logical complexity of
¢; it is analogous to Lemma 9.3.7.
For part (b) it is enough to prove the implication

Con(P) — 0-RFN(P)
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as the opposite one is trivial. Argue in 52‘: Assume that P proves a Eg -formula
A(P) but w =9 —A4 for some assignment w.

The former implies that P - 4(p/ w ), and the latter implies P - —~A4(p/w),
from which P I 0 follows. Here we use the assumption that P is closed under the
substitution rule and the modus ponens. Q.ED.

The following lemma extends Lemma 9.2.4.

Lemma 9.3.13. Assume that ¢(a) € }3{’ and let q(x) be a bounding polynomial
Jor ¢. Then

S} @ — (G} F 181 @)
Proof. The statement is proved by induction on the logical complexity of ¢, treat-

ing general true equations similarly to the axioms of BASIC in Lemma 9.2 4.
Q.E.D.

Lemma 9.3.14. Let ¢ be a Eib-formula, i =1, and let q(x) be a bounding poly-
nomial for ¢. Assume that P is a proof system All’ -defined in Szl.
Then 521 proves the implication

G-RFN(P) A (P11l ) = Yy (31 < x> 6 ()

Proof. The lemma follows from the following claim.

Claim, S21 proves

Taut; (11174 ) A 11 < 1] > )

The claim follows from Lemma 9.3.12, part (a). Q.ED.

The following lemma is a useful, intuitively clear property of the formula Taut;.

Lemma 9.3.15. Leti > 1 and assume that q(x) is a bounding polynomial of the
Jformula Taut;. Then 521 proves

(AeZIAn>|AIAGiH]| Tauti (A, — Gi + 4

The same holds for i = 0 with G in place of Go.

Proof. We present the case i = 0; the general case is analogous. The formula
Taut; (A) is defined as

Yw(lw| < |4), w |=; 4
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We think of the formula w |=; A4 as being defined analogously to the formulas in
Definition 9.3.1 by formalizing

Vu, “u is the computation of the value of 4 over w”

— “‘u assigns to A the value 1”

The “computation” u is an assignment of values (u)1, ..., (4);, each 0 or 1, to the
subformulas of 4, and we assume that values of the subformulas of a subformula
appear in the sequence (1)1, ..., (u); sooner. Assume that (u); corresponds to the
subformula 4; of 4.

Let Comp(w, 4, u) denote the formalization of “u is the evaluation of A
over w.”

Let P be the atoms of A.

Claim, S2] proves
Vj < |Al; Comp(F, A,u) — (); = 4
and, in particular
Comp(p, A, u) — (u);, = A4
The claim is proved by PIND on j in the formula
Comp(w, 4, u) — (u); = 4;(p/w)

and taking w := p.
The theory Szl also proves that any formula can be evaluated by induction on
the length of the formula. Thus, in particular, Sz1 proves

Ju, Comp(p, 4, u)
and by Theorem 9.2.6 the last two formulas imply that S:} proves
G7 F 3%, |Comp||(P, 4,%)
and
G} + ICompll(B, 4,) = g: = A(D)
which entails the lemma. Q.ED.
Theorem 9.3.16. Fori > 1
T} - i-RFN(G))
and

S5 - i-RFN(G})
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Proof. Using the formula w k=; A one can define a I17, -formula STaut;(S)
formalizing that “the sequent S consisting of 2? U H?-formulas is satisfied by all
truth assignments.”

In Sé"'l then by Hf.’ +1—PIND on the length of a G;-proof = prove that any
sequent in 7 is tautological. Corollary 7.2.4 then also implies that

T; - i-RFN(G))

The proof of the second part of the theorem is more involved and we only sketch
it, leaving the details to the reader. Work in Sé. Assume that 7 is a G}-proof and
w.l.o.g. assume that all formulas in 7 are Z?. Then following the proof of Theo-
rem 7.2.3 define functions witnessing every sequent in 7. This is straightforward
except for the estimate of the time bound to the running time of the algorithm
computing the witnessing function. To obtain the polynomial bound one needs to
use the assumption that 7 is treelike.

We shall explain this on an example. If f(w) is a function witnessing a sequent
in a proof that is not treelike, then in the course of the construction of the wit-
nessing functions for later sequents we may iterate f polynomially many times.
That can, however, give an exponential time (e.g., a repeated squaring gives the
exponentiation in polynomially many steps). If 7 is treelike, however, then f will
never be iterated but only composed with the other witnessing functions.

The reader is invited to fill in the details, or see Krajic¢ek and Takeuti (1992).

QED.

The following theorem is the main application of the reflection principles and
it generalizes a statement from Cook (1975).

Theorem 9.3.17. Assume that P is a proof system, All’-deﬁned in Szl, and let
0 < j <. Assume also that

T; - j-RFN(P)
Then G; j-polynomially simulates P and, in fact, this simulation is definable in S2]
SI-Gi>; P

The same is true for Sé and G} in place of Tzi and G;.

Proof. From the hypothesis and Theorem 9.2.5 it follows that

st (Gi F 1 RENP) )

for some bounding polynomial g(x) for j-RFN(P). This implies (as G; is,
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provably in S}, closed under modus ponens) that
S (G F PG Iy (B D) A Gty € 1, (@)
- G; + | Tau; (V) (@)

Now argue in Szlz let ¥ be a P-proofof 4 € Z;’: That is, P(m, 4) holds. P(x, y)
isa All’-formula, so by Lemma 9.3.13 also

GT | P(x, I, 4)
holds, and so also
GiF 1P|, A)
The same argument applies to the true All’ -formula 4 € qu, SO
Gi Flly € B11(A)
Hence by the previous implication
Gi F || Taut; ()l (4)
By Lemma 9.3.15 then
G+ A4
This concludes the proof of
S5 Gi>; P

That the simulation is polynomial time follows then from Theorem 7.2.3.
An identical argument, using Theorem 9.2.6 instead of 9.2.5, proves the state-
ment for S} and G} in place of T, and G;. Q.E.D.

Corollary 9.3.18. Let P be a propositional proof system in the sense of Defini-
tion 4.1.1 that is All’-deﬁnable in SzI and closed under substitution and modus
ponens. Assume

S} - Con(P)
Then EF polynomially simulates P and, in fact
S\-EF>P

Proof. By Lemma 9.3.12 the hypothesis implies that
S) - 0-RFN(P)
which by Theorem 9.3.17 implies
S5 Gi>o P
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The statement then follows from Lemma 4.6.3, whose proof, as is readily veri-
fiable, can be formalized in ). QED.

The following corollary again states Lemma 4.5.5. The reason for doing so
is that this time it is obtained in a simpler way (though building on nontrivial
machinery). This proof was, in fact, chronologically the first one.

Corollary 9.3.19.
S} + EF > SF

Proof. By Corollary 9.3.18 it is enough to prove Con(SF) in S21 , which is straight-
forward: By induction on the number of steps show that every formula in it is a
tautology. This requires I'I’{—LIND available in Sz} through Lemma 5.2.5.

Q.ED.

The following corollary is a very important effective version of Theorem 4.1.2.
Its first version, for PV and EF, was proved by Cook (1975) .

Corollary 9.3.20. Let Tauty(a) bea 1'[’]’ -formula defining in 52‘ the set of tautolog-
ical propositional (quantifier free) formulas. Assume that there is a Elb -formula
o (a) such that

Tzi Fo(a) = Tauty(a)
That is
Tj - NP = coNP
Then tautologies TAUTy have polynomial size G ;-proofs. In fact, this is provable
in Sg
S} VA, Tautg(4) - (G - A)
The same is true for Sé and G} (resp. S21 and EF) in place of T. 2’ and G;.
Proof. Let
o(a) =3Ix <t(a),d(a,x)
with § € All’. Define a proof system P by
P(r, A) ;== <t(A)A(4, )
Then the hypothesis of the statement implies that
T} + Con(P)
That is by Corollary 9.3.18
SI-Gi=P
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But the hypothesis also implies that every tautology has a polynomial size
(< |t (A)]) P-proof, hence also a G;-proof.
For §) and G} (and S} and EF) the same argument applies. Q.ED.

Note that the condition of the previous statement can be strengthened as, in fact,
all 2? -tautologies will have polynomial size G;-proofs. This is because the hy-
pothesis implies that every Ego—formula, and hence the formula Taut; in particular,
is in T} equivalent to a £2-formula.

The following statement is a propositional version of the previous statement.

Theorem 9.3.21. Assume that all E‘li-tautologies (TAUT) have polynomial size
G ;-proofs.

Then all Zf -tautologies (TAUT;) have polynomial size G;-proofs.

The same is true for G} in place of G;.

Proof. The hypothesis implies that the following V):f -sentence 4 is true
A :=Vx, Tautg(x) = 3y, |y < |x* A Prfg, (y, x)

where Prfg, (v, x) isa A? -formalization of “y is a G;-proof of x.”
As T} + i-RFN(G)), by Theorem 9.3.16, we have

T; + 4 F Tauto(4) = @y, |yl < |4 A Prfg, (y, 4)
That is,
T;+A4 - NP = coNP
Define a proof system G ;" to be an extension of G; by new initial sequents

—> 141150
m =1,2, ..., whereq(x) is a fixed bounding polynomial for 4. Then analogously
with Theorems 9.2.5 and 9.3.16 we have that T. 2’ + A proves i-RFN(G f) and that
G;" simulates T. 2’ + A-proofs of the f’ -consequences. Hence Corollary 9.3.20 also
holds for G/ and T} + A4 in place of G; and T;.

Thus

T; +A4 - NP = coNP

established previously implies that all TAUT; have polynomial size Gl‘.“-proofs.
But all formulas ||Al!;’(m) € TAUT, (as 4 € Ef ), and hence they all have by the
hypothesis of the theorem polynomial size G;-proofs. So G; has a polynomial
speed-up (see Definition 9.1.3) over G i" and the statement follows. Q.ED.

We shall now prove a statement about the reflection principles of G in UZ‘.
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Theorem 9.3.22. The theory U2l proves that G is a sound proof system. That is,
Joreveryi =0

U, + i-REN(G)

Proof. The satisfaction relation for the quantified propositional formulas is A}’b-
definable in Uzl. A definition of

w k= A4

for general 4 € £, is constructed by formalizing the following:

if
Vx13dy...Yx,3y, B(X,Y,p) is aprenex normal form of A(p)
then there are Skolem functions
Fi(x1,p)-- .. Fo(x1, ..., X, P) st VX B(X, y;/F;, w ) is true

This works as the prenex normal form is A’l’ -definable in S}_, Fy, ..., F, can be
coded by set variables of the language of Uzl ,and the last formula is I ’1’ (Fy,..., F)).

By induction on the length of 4 (i.e., by Ell’b—PIND) U2l proves the Tarski
conditions for this definition of satisfaction.

This definition as stated is 2} ’b, but it can be made A}‘b by choosing functions
Fy, ..., F, in some canonical way.

Argue now in Uzl. Let m be a G-proof of 4. By induction on the length of =
show that all sequents in 7 are satisfied by all assignments; this needs l'I}‘b—LIND,
which is available in U2‘. Hence

Yw, w | 4

But w = A4 implies w |=; A4 (the formula from Lemma 9.3.9); this is provable
by induction on the logical complexity of A using Tarski’s conditions satisfied by
both = and ;. Q.E.D.

The next corollary summarizes all corollaries of the previous theorem obtained
analogously to the earlier ones for the system G;.

Corollary 9.3.23.
1. Let P be a propositional proof system AII’ -defined in 521 and assume that
Jor somei >0

Ujs + i-RFN(P)
Then G i-polynomially simulates P and, in fact
SS- G2 P
(after 9.3.17)
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2. If
U, = NP = coNP

then all tautologies from TAUT := | J; TAUT; have polynomial size G-
proofs and, in fact, for eachi > 0

Sy VA4, Taut;(4) — (G - A)

(after 9.3.20)

3. Assume that all 2?—tautologies have polynomial size G-proofs. Then all
quantified tautologies from TAUT 5, have polynomial size G-proofs.
(after 9.3.21)

We conclude this section by an important corollary of Theorems 9.3.16 and
9.3.22.

Theorem 9.3.24. Let P be any of the following proofs systems: EF, SF, G; or
G (i=1,0rG.
Then there is a polynomial p(x) such that for each n there is a P-proof of

I Con(P)II5x)

of size < p(n) (q(x) is a fixed bounding polynomial of Con( P)).

Proof. For G;, G}, or G the theorem follows from Theorems 9.3.16, 9.2.5, and
9.2.6, or from 9.3.22 and 9.2.8, respectively.

For EF and SF it follows from the statement for G} using Corollaries 9.3.18
and 9.3.19. Q.E.D.

In the proof we could also use Theorems 9.3.4 and 9.1.5 for the case P = EF.
Note that Theorems 9.1.6 and 9.3.3 imply a similar statement for P = F with
(log m)OM) .
n in place of p(n).

9.4. Model-theoretic constructions

In this section we give model-theoretic proofs for Theorems 9.1.3 and 9.2.7. I
believe that this side of the simulation results is important for understanding the
interplay between arithmetic and propositional logic, and the fundamental problem
of lower bounds for proof systems.

The following statement is a version of Theorem 9.1.3.

Theorem 9.4.1. Let M be a countable model of the true arithmetic T h(w) and let
n,t € M\ w be its two nonstandard elements. Let 0 (a) be a Ao(R)-formula with
a the only free variable.

Assume that in M there is no Frege proof of () () of depth < t and size < n'
(i.e., no element < 2" codes such a proof).



9.4 Model-theoretic constructions 173

Then it is possible to define R € M x M such that
(n?, R) E 1Ao(R)

and

(n®, R) = —6(n)

Before we give the proof we should understand that this theorem implies The-
orem 9.1.3. Assume that the formulas (8)(,), m < w, do not have polynomial
size constant-depth Frege proofs. This means that for any £ < w and any d < w
there are m <  such that (8) ) does not have a depth d size < m* F-proof. By
compactness there is a model of Th(w) and nonstandard d, £ € M such that for
some m € M, M thinks that there is no depth d F-proof of () (») of size < mF.
Take ¢ := min(d, k). By this theorem then there is a model of /Ao (R) in which
Vx8(x) fails: That is, Vx@(x) is not provable in /Ag(R).

Proof. Let M, 0, n, and ¢ satisfy the hypothesis of the theorem. Let Fle denote the
set of propositional formulas coded in M, having a standard depth, built from the
atoms p;;, and of size < n®. We shall form a set T C Fle satisfying:
1. —'(0)(,,) eT
2. forany i € Fle: v € T or -y € T, butnot both
3. if ¢ € Fle has the form \; ¢; then € T iff ¢; € T all i
4. if ¢ € Fle has the form \/; ¢; then ¢ € T iff ¢; € T some i
5. forall n(x) € Ag(R) with parameters from n® and x the only free variable,
either ~(n)) € T or (n)) € T forallu € n® or My A—(M@w+n €T
for some u € n®
having such set T' define a relation R C n® x n® by

R(i,j) iff pijET

Claim 1. For any Ag(R)-sentence & with parameters from n®
(. RE§ iff & eT
The claim follows by conditions 2—4 posed on 7.
Claim 2. (n®, R) = IA((R) + —6(n)

This follows from conditions 1 and 5.
It remains to construct the set T having the required properties. This can be done
by a completeness-type argument, but we shall cast it as a forcing-type argument.
Let P denote the class of subsets S C Fle satisfying the conditions
() ~O)m €S
(ii) forany k < w there is no depth k size < n* F-proof of contradiction (= 0)
from formulas in S
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(iii) S is definable (and hence coded) in M.

Note that for S € P there is s > w such that there is no F-proof of 0 from S of
depth < s and size < n®; this follows by induction as it is true for all standard s.

The next claim is obvious.

Claim 3. Let S € P and ¢ € Fle.
Then either SU (Y} e Por SU {—y} € P.

Claim 4. Let S € P and € S, and assume that ¥ has the form ¢ :=\/ j<r ¥j-
Then for some jo <r, SU{@;} € P.

Assume otherwise: That is, for every j < r there is a depth k; size < nki
F-proof of 0 from S U {¢;}, and hence depth £; size < n®i F-proof mj of =¢; from
S,kj,¢j <. Asy € Fle,r < |¢| < n*, some { € w.

Take s > w such that there is no depth s size < n® F-proof of 0 from S. Each
proof 7r; has depth << s and size < (n°/n*), so joining these < n* proofs gets a

depth < s size < n® proof of 0 from S, a contradiction.

Claim 5. Let S € P and ¢ € S, and let  have the form |\; ¢;.
Then SU {¢; | all i} € P.

This is seen analogously to Claim 4.

Claim 6. Let S € P and let n(x) be a Ao(R) formula with the parameters from
n® and with x the only free variable.

Then one of the following sets is in P too:

(@ SU{—(mw)

(B SU{(nw |uen®

(¢ SU{mwltY{—~mwsnl someuen®

To prove Claim 6 assume otherwise, so there is a depth kg size < nko proof m_;
of (n)(e) from S, a depth £, size < nku proof 7, of

(Ma = M@+

from S for all u € n®, and a depth k size < n* proof from S of the disjunction

\/ _'(77)(11)

ueX

for some X C n® of size < n*.

For any nonstandard s, joining proofs 7_1, 7o, . .., 7, for v = max(X) by cuts
entails all (7)), ¥ € X by a depth s size < »° proofs, obtaining thus a depth s
size < n® proof of 0 from S, contradicting S € P.

Now we are ready to construct the set 7. Let ¥, Y2, . . . enumerate the set Fle
and n1(x), n2(x), . .. enumerate all Ag(R) formulas with parameters from n*, and
with one free variable x.
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Construct a sequence Sp, S, ... € P such that
@) So:={—={0)m}
@) S € Siyy
(lll) Y; € S; or ~y; € §;
(iv) ify; € S; and ¢; = Vj5r ¢; then ¢, € S;, some jo < r
) ify; € S;and ; = /\er ¢jthenall ¢; € S;
(vi) either —=(n;}) € S; or (NiYw) A ~(Ni)w+1) € Si for some u < n®, or
(ni)(u) € S,' allu e n®.
Having §; satisfying the conditions, S;4 exists by Claims 3—6. Set

T .= US,'
i

The set T fulfills requirements 1-5. Q.E.D.

The reason for the particular forcing-type formulation of the argument is its
similarity with the following, more involved construction, which is conveniently
expressed by using forcing. Another reason is a later finite version of this con-
struction developed in Section 13.3.

Theorem 9.4.2. Let (M, X') be a model of V]l and let T(p, ..., pn) € X be a
propositional formula in (M, X).
Then the following two conditions are equivalent:
1. In (M, X') there is no EF-proof of T.
2. Thereisa Zé’b-elementary extension (M', X') of (M, X) in which —% is
satisfiable.

Proof. Assume that 1 fails, and let # € X be an EF-proof of ¥ in (M, X'). As
M, X)isa Z(')’b-elementary extension, 7 is an EF-proof of ¥ in (M, X’) as
well (see Definition 9.3.1). But by Theorem 9.3.4 ¥ must be tautologically true in
(M’, X'); hence 2 fails.

Assume now that | holds and assume also that (M, X') is countable. Construct
(M, X") as follows.

By compactness there is a countable elementary extension (M, Ap) of (M, X7}
satisfying Vll such that:

(i) thereist € Mp suchthatforallv e M,v < ¢

(i) in (Mp, Ap) there is no EF-proof of .

Let (M*, X*) be a substructure of (M, Ap) defined by:
() M*={ve My|3we M,v <w}

(i) X*=(Be Xo|B S M*).

We define in (My, Ap) several families. Let { 5} be the atoms of # and let
Fle(p) C &) be the formulas with the atoms among { 7 }. Further let 4 be the set
of the atoms { p} plus new atoms of the form gy, one for each ¥ € Fle(7), and
let Fle € A) be the set of the formulas with atoms among 4.
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Let C € Aj be the family of tuples of elements of 4 U {0, 1}. Let
C*:={BeC||Ble M¥)
where [(gy,, ..., 9y, )| = m, and let
Fle* := {¢ € Fle | |¢| € M*}

We will consider 8 € Xy simultaneously also as an element of C: the tuple of bits
of the characteristic function of B (so for such f: € C* = 8 € &™).

The following claim is established by induction on the logical complexity
of B.

Claim 1. Let B(B) bea Eé‘b-formula andlet B € X*.
Then

(M*, X*) = B(B) — 3n Prfp (n, (B)(q/ B))
where q are atoms corresponding to .

This is analogous to Lemma 9.3.13.

We will construct a set G C Fle satisfying the following conditions:

() ~ted,

(2) for all ¥ € Fle* exactly one of ¥, ~ is in G,

(3) whenever © € A} is an EF-proof of ¢ from the assumptions 1, ..., ¥y,
|m] € M* and all ¥; € G, thenalso ¥ € G,

@) ify € G,y € Flet, and ¢y = V,.;_, ¥i, then ¥; € G for some
1<j<r, o

(5) for any E(')‘b-formula H (¢, x) with the parameters from C* and any v €
M*, one of the following three conditions holds

(@) —(H(¢,0)),(8) € G,all € C* of length < t(v),
(b) (H(p,v))y(8) € G, for some § € C* of length < ¢(v),
(c) thereis v’ < v such that
(H(¢,v)(8) € G and —(H(p,v'+1)),(€) € G

forsome § € C* oflength < ¢(v) and for all &€ € C* of length < ¢ (v).

The term ¢ (v) implicitly bounds the size of the interval whose subsets can be
substituted for ¢ in H for x < v.
Assume for a moment that we have such a set G. Define a structure

(M*[G], X*[G]) by
M*[G]:=M* and X*[G]:=C*/~
where ~ is an equivalence relation defined by

B~ B iff (B = B2)u(B1, B2) € G
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(# the maximum of the lengths of 81, B,). Note that (M*[G], X*[G]) is an exten-
sion of (M*, X*) and hence of (M, X) too.

Claim 2. Let B(B) be any Eé’b-formula with parameters from C* and f € C*.
Then we have for all sufficiently large u

(M*[G), X*[G]) = B(B/ ~) iff (B)u(B) € G
In particular, (M*[G], X*[G]) isa Zé’b-elementary extension of (M, X).

The claim follows from conditions (2)—~(4) posed on G. For example, that all
Eé’b-sentences true in (M, X') also hold in (M*[G], X*[G}) follows from condi-
tion (3) and Claim 1.

Claim 3. Structure (M*[G], X*[G)) is a model of Vll‘

Condition (5) posed on G guarantees that the induction for every le'b—for-
mula 3¢ H(¢, x) holds up to every v € M*[G]. The other axioms hold in
(M*[G], X*[G]) obviously. In particular, the ):é‘b—CA is guaranteed by Claim 2.

Claim 4. There is & € X*[G] such that

(M*[G), X*[G)) E (@  —T)

By condition (1) posed on G and Claim 2, & is a satisfying assignment for —%
in (M*[G], X*[G]), where
a:=p% ~
It remains to construct the set G satisfying the preceding five requirements. We
shall use two simple technical properties of system EF.
Form a set T C Fle consisting of all formulas:
(i) gp; = pi, whenever p; € { P},
(ii) g-y = (—qy), whenever ¥ € Fle(p),
(iil) gy oy, = (qy, © qy,), Whenever ¥y, ¥ € Fle(p)ando = v, A.
A set of formulas S C Fle is said to £-entail formula ¥ iff there is an F-proof

of size at most £ of Y with the axioms from SU T. A set S is called £-consistent
iff S does not £-entail 0.

Claim 5. Let S C Flebea A}'b -definable in (My, Xp), and assume that ¥ has an
EF-proof from S of size £ in (My, Xp).
Then S also O(£2)-entails ¥ in (My, Xp).

This follows as every extension axiom of size ¢ in the EF-proof can be proved
(after suitably renaming the extension atoms) from T by an F-proof of size O(#2).

Claim 6. Let S C Fle be a A}’b- definable in (My, Xp) and assume that S is
L-consistent in (Mg, Xp), where € is nonstandard.
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Then for every formula s of size at most 2" one of the sets SU{¢¥} or SU{—Yr}
is 02~ -consistent.

Also, for every disjunction \/,; ., ¥ € Fle of size at most 27" one of the sets
SUAi<, Vil or SULV, o, ¥} U{Yy), some j <, is 3 consistent.

The first part is obvious. For the second part, assuming that all » + 2 sets are
-1, . . .
€37 -inconsistent would allow us to construct in an obvious way a proof of 0 from
S of size at most

r+207"+0 (| V W) <t

i<r

This is a contradiction.

Claim 7. Let S C Fle be a A}’b-deﬁnable Jamily of formulas in (Mo, Xp), and
assume that S is £-consistent in (My, Xp), where £ € (Mo\M™).

Let H(¢p, x) bea E(;'b-formula with parameters from C* and M*. Letv € M*,
and assume that a term t (v) bounds the size of the interval whose subsets can be
substituted for ¢ in H for all x < v.

Then one of the following sets is 37" consistent:

() SU{—(H(9, 0))v~(3) RXC ¢, 181 < t(v)},
(i) SU{{H(P,v))y(5)}, some s € C* of length < t(v),
(iii) SU{(H(¢, v"))y(B)}U{—(H (¢, v+ D)y(p) | p € C*, || < t(v)}, some
§ € C* of size< t(v) and V' < v.

To prove Claim 7 take the formula D(u)
Vw < udF, € C, S €3 -entails formula (H (¢, w))(Fw)

The formula D(u) is a Ef‘b-formula and witnesses 7, are actually from C*
(using the bound |7y, | < £(v)).

As (My, Xp) = V]l one of the two cases must occur:

(a) D(v) holds in (Mp, Xp)

(b) there exists minimal ¥ < v for which D(u) fails in (My, Xp).

In case (a) define

S = SU{{H(¢, v))(Fv))

where 7, is a witness to the existential quantifier of D(v). The set S’ is £/2-
consistent as otherwise one could £/2 + 83_] < {-entail 0 from S, which would
be a contradiction.

In case (b) let u < v be the first # such that D(u) fails. Take a set

§' = SU{(H(¢,u — D) (Fu-D)} U (~(H(@,W)(F) 1T € C, |7 < t(v))
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for u > 1 (and again 7, the relevant witness) or
8 :=SU{~(H(¢,0)(q) |7 €C, 7| <t®)

foru =0.

We claim that &' is €3~ -consistent. Assume otherwise and wlo.g letu > 1.
The set S + (H(¢, u — 1))(F,—1) then O(£2/3)-entails some disjunction of the
form

V (H (g, w))(7)
gel

where I C C*. But then (H(¢, u))(¥) can also be O(£2/3)-entailed from S +
(H(¢p, u — 1))(F,—-1), where 7 is a new tuple defined by extension atoms using a
case distinction considering which disjunct in the disjunction is true (cf. Claim 5).
Note that |7 | < ¢(v). This contradicts the assumption that D(u) fails; hence S’ is
¢~ _consistent.

Define now the family P of all H C Fle that are A}’b-deﬁnable in (Mg, X))
and that are £-consistent for some £ € (Mp\ M*); such £ exists by our assumption
about (Mp, Xp). Note that {—~%} € P.

Family P is partially ordered by the inclusion relation C. Class Q C P is dense
if

VHePIH ¢ Q HC H’

Class Q is definable if there is a formula W (X) in the language of Vl1 augmented
by new metavariable X such that

Q={HeP|M, X, H EV(H))

Class G C P is generic if it satisfies the following conditions:
(i) if He Gand H' C Hthen H € G,
(i) G intersects every dense, definable subclass of P.

Claim 8. Let G C P be a generic class and assume that {—~t} € G. Put

G:=Jg

Then G satisfies conditions (1)—(5) and hence (M*[G], X*[G]) is a model of
Vl1 in which the formula —% is satisfiable.

As model (My, Ap) is countable there are only countably many dense definable
subclasses of P; hence by the standard argument a generic class G exists. By
Claims 5, 6, 7 the classes of those X € P that fulfill condition (2) for ¢ € Fle*

YyeK or ek

are clearly definable and dense, as are the classes of K € P that fulfill condition
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(@) for y = \/,_, ¥ € Fle*, that is

N\-vieK or {y,¥;} K, somej<r
i<r
and the classes of K € P that fulfill condition (5) for H(¢, x) and v € M*, thatis
{(—(H(®,0),8) 15 €C, 18l <t} S K or
{(H(p,v)),(®)) € K, some § € C of length < t(v) or
{(H(ff): V)8 U {—(H@, v + D)(B) | 6 € C,|p| < 1)} € K,
some § € C of length < t(v) and v’ < v
Hence any G defined from a generic G satisfies conditions (1)—(5).
This concludes the description of the forcing construction of the model

(M, X') = (M"[G], X*[G))

Q.E.D.

We leave it as an exercise for the reader to give proofs for the preceding two
theorems by modifying the proofs of Theorems 9.1.3 and 9.2.7 and by working
with TAg(R) (resp. Vll) plus the Eé‘b-diagram of the original model.

9.5. Witnessing and test trees

A class of search problems comes from tasks to witness an existential quantifier in
a first order sentence valid over all finite structures. Let 3x¢ (X) be a first order
sentence in a relational language consisting, for simplicity, of one binary relation
R. Assume that 3x¢ (X ) is valid in every finite structure (i.e., in every digraph in
the case of the language { R}). The search task is, Given a digraph find its vertices
v such that ¢ (7) holds in the digraph.

A particular model for solving search problems is the test tree, defined as a
decision tree (cf. Definition 3.1.12) but allowing labeling of the inner nodes by
arbitrary formulas and leaves by tuples v.

A bounded formula of the form 3% < t(a)f(a, X ) defines for every natural
number »n a sentence 3X < #(n)0(n, ¥ ) whose validity is determined in a finite
structure: an initial interval of NV of the form [0, s(n)], s(a) a suitable term.

If3x < t(n)8(n,x) is valid for all » we obtain a sequence of search problems,
and if the formula 3x < ¢(a)f(a, X ) is actually provable in bounded arithmetic,
then by the results of Chapter 7 we have information in terms of the computational
complexity of the witnessing function. In this section we translate this into the
terms of the complexity of the test trees solving the associated search problems.

Call a propositional formula E,.S " iff it satisfies conditions (a)(d) of part 1 of
Definition 10.4.8. For example, & IS” -formulas are disjunctions of conjunctions of
S1ze < f.
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Lemma 9.5.1. Leti > 1. Let3u < aB(a,u) bea Ef_,_]—formula, 6 c I'If?. Assume
that

T3(R) F VYx3u < x O(x, u)

Then for every n there is a test tree T,, finding, given R, a valid formula from the
set

{0V nu | u <t(n)}

and satisfying the following conditions:
1. the height of Ty, is log(n)P(®
2. every test formula in T, is Eis !, where S = 2! and t = log(n)9®

Proof. The proof of Theorem 9.1.3 (based on Theorem 7.1.4) shows how to trans-
late the T2i (R)-proof of the formula Ju < (a)f(a, u) using the translation (.. .)
of Definition 9.1.1 into a constant-depth LK-proof =’ (cf. Definition 4.3.10). The
size of 7’ is now 21°8™°" a5 the term may contain the # function (cf. Lemma
9.1.2).

As the cut-elimination was applied first to the original Tzi (R)- proofall formulas
in 7’ or their negations are equivalent to a Zl.S *'formula (S and ¢ as earlier),
or equal to (Ju < t(a)d(a, u)),. This is because ES(R)-formulas translate into
formulas of size log(n)°" (Lemma 9.1.2) and can be written both as disjunction
of conjunctions of size at most ¢ and as conjunctions of disjunctions of size at
most z.

The IND-rule of Tzi (R) is simulated in 7’ by < S cuts that can be arranged
in a binary tree of height < 7. The V < : right and 3 < : left are simulated by
N : rightand\/ : left with A\, \/ of unbounded (< S) arity.

The proof 7’ is easily turned into a constant-depth LK refutation 7 of the set
of sequents

{— (—6(a, u))n,u | u < t(n))

Having the truth evaluation for the atoms (i.e., the relation R) construct a path
P(R) =&, ..., & of sequents of 7 satisfying

1. & is the end-sequent

2. all sequents are false for R

3. &4 is a hypothesis of the inference of 7 giving §&;

4. & is an initial sequent
Conditions 2 and 4 imply that §, must have the form

—> (") n.u some u < t(n)

Hence 6(n, u) is true for R. Thus the path P(R) contains an answer to the search
problem.

We need to define &;1 knowing &;. This is trivial in all inferences except the
cut-rule, A : rightand \/ : left.
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In case of the cut-rule let £;41 be the unique false hypothesis; to decide which
one it is one needs to query the truth value of the cut formula.

Incaseof A : right with the principal formula A; _,, 4i;,m < S, itisnecessary
to find A; false for R. This is done by binary search querying log(m) < ¢ truth
values of formulas of the form A _, . 4.

The case of \/ : left is dual to ﬂ . right. As the number of \/ : lefts and
/\ : rights on any path through 7 is bounded by an independent constant (e.g. by
the number of 3 < : leftand V < : right inferences in the original Tzi (R)-proof
that is independent of m) the total number of queries is O(¢) on any path P(R).

This shows that the test tree can be constructed from st by turning it upside down
and simulatingthe \/ : leftand A : right inferences as earlier (cf. Theorem 4.2.3).

Q.E.D.

Note that for the formula Ju < #(a)f(a, u) that is Zf’(R) this gives no infor-
mation as then the binary search for # works as well.

We shall state here without a proof a lemma relevant to the test trees but based
on ideas developed later in Chapter 11. The proof of the lemma is almost identical
with the proof of Theorem 11.3.2 (based on the proof of Theorem 11.2.5).

Lemma 9.5.2. Let 3x0(x) be a sentence in a relational language L' and assume
that =3x6(x) has an infinite model. Assume also that 3x0(x) is valid in every
finite structure.

Denote by X, the search problem to find in a given structure with n elements
some u satisfying 6(u).

Then there is no constant k such that each X, could be solved by a test tree of
height < log(n)* querying the validity of the 2?” ~formulas t = log(n)*, S =2".

Note that such test trees for X, are guaranteed to exist if 6(x) has the form
Vy¢(x, y) and the formula 3x < a¥Vy < a¢(x, y) is provable in T, (L').

Next we reexamine Lemma 9.5.1 for the theory S, (R) in place of T, (R). We
shall consider witnessing test trees instead of ordinary test trees. An ordinary test
tree inanode querying Ix < nyr(x) branches into two paths, one for the affirmative
answer and one for the negative one. The witnessing test tree will allow, besides
these nodes, nodes that branch into » + 2 paths: one for the negative answer and
n + 1 for all possible witnesses u < n for the affirmative answer. Hence we must
know a witness if we want to proceed. Such nodes are called witnessing.

Lemma 9.5.3. Leti > 1. Let Ju < aB(a,u) bea Ef’H-formula, 6 c l'lf’. Assume
S4(R) - Vx3u < ab(a, u)

Then for every n there is a witnessing test tree T, finding, given R, a valid formula
Jfrom the set

{(B)nu | u <t(n)}
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and satisfying the following conditions:
1. the height of T, is O(log(log(n)))
2. on every path in T, there are only O(1) witnessing nodes
3. every test formula in T, is Eis", where S = 2! and t = log(n)°(V

Proof. The proof of the lemma is similar to the proof of Lemma 9.5.1. We need
to notice only that as the PIND-rule is used instead of the IND-rule there are only
< ¢ cuts (arranged in a binary tree of height O (log(¢))) needed for the simulation
of the PIND-rule.

The A : right and \/ : left inferences are treated this time with the new
witnessing nodes of the tree. Q.E.D.

The reader may observe that Lemmas 9.5.1 and 9.5.3 are versions of the wit-
nessing Theorems 7.2.3 (for T 2’_' in place of Sé there) and 7.3.5.

9.6. Bibliographical and other remarks

The translation of Section 9.1 was first considered in Paris and Wilkie (1985)
for IA¢(R) in a model-theoretic context (Theorem 9.4.1). The proof-theoretic
presentation (and the extension to U ]1 and Vl') follows Krajicek (1995a).

The translation of 2 -formulas in Section 9.2 generalizes the translation de-
fined in Cook (1975) for PV-equations and was developed in Krajiéek and Pudlak
(1990a) and somewhat differently in Dowd (unpublished). Propositions 9.2.2—
9.2.6 are from Krajicek and Pudlak (1990a). Corollary 9.2.7 is from Cook (1975).
The relation between G and Uz1 was proved in Krajic¢ek and Takeuti (1990). Using
a different translation a relation between G and an equational system PSA was
proved in Dowd (1979).

The idea to use the reflection principles for simulations is due to Cook (1975)
and was extended to systems G;, G}, G, and subsystems of F and EF in
Krajiek and Pudlak (1990a), Krajiéek and Takeuti (1990, 1992), and Krajicek
(1995a). The underlying idea is always the same, but different systems often present
some nontrivial technical problems.

Corollary 9.3.19 was first observed in Dowd (unpublished). Corollary 9.3.20
is from Krajicek and Pudlak (1990a), as well as Theorem 9.3.21.

In view of the remark after the proof of Theorem 9.3.24 it would be interesting
to have a theory satisfying Theorem 9.3.3 and Theorem 9.2.6 with a polynomial
bound instead of bound n1%2M " This would entail (by the same proof) Theorem
9.3.24 for P = F. In fact, Theorem 9.3.24 for P = F was proved by a direct
construction in Buss (1991), and analyzing that construction Arai (1991) suggested
a subtheory of U 1‘ fulfilling the preceding requirements: It is an extension of / E(')’b
by a form of inductive definition. Another approach would be using the equational
theory ALV proposed in Clote (1992) relating to F similarly as PV relates to EF.
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However, Clote (1992) does not verify that the soundness of F is provable in the
theory.

The proof of Theorem 9.4.1 is a variant of the original proof of Paris and Wilkie
(1985) to allow generalization to Vl' (Theorem 9.4.2), which is from Kraji¢ek
(1995a), and generalizes an unpublished construction of Wilkie.

The content of Section 9.5 expands a bit on a remark in Kraji¢ek (1994).
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Finite axiomatizability problem

This chapter surveys the known facts about the
Fundamental problem. Is bounded arithmetic S, finitely axiomatizable?

As we shall see (Theorem 10.2.4), this question is equivalent to the question
whether there is a model of S, in which the polynomial time hierarchy PH does
not collapse.

10.1. Finite axiomatizability of S} and T}

In this section we summarize the information about the fundamental problem that
we have on the grounds of the knowledge obtained in the previous chapters.

Theorem 10.1.1. Each ofthe theories Sé andT. 2’ is finitely axiomatizable fori > 1.

Proof. By Lemma 6.1.4, fori > 1 thereis a 25’ -formula UNIV;(x, y, z) thatis a
universal £?-formula (provably in S}). This implies that 7} and Sé“ ,i > 1,are
finitely axiomatizable over ).

To see that S2l is also finitely axiomatizable, verify that only a finite part of S2l
is needed in the proof of Lemma 6.1 4. Q.ED.

The next statement generalizes this theorem.

Theorem 10.1.2, Let 1 < i and 2 < j. Then the set of the VEjl?-consequences
of T3

VEN(T) = {¢ €| Tk ¢]

is finitely axiomatizable.
The sets VEJI.’ (Sé) and V)Sjl.’ (U2') are also finitely axiomatizable.

185
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Proof. Let¢(a) € 2}’ . Assume
T, - ¢(a)
Then by Theorem 9.2.5

S21 [ (Vx G; - ||¢"llx(l|x|))

for some bounding polynomial ¢ () for ¢, and hence also

S} + j-REN(G)) - (Vx Tautj(||¢"£1x(llx0))

This implies by Lemma 9.3.12
S) + j-RFN(G;) - ¥x ¢ (x)

Hence every VEJl.’-consequence of T} follows from S] + j-RFN(G;). Note that
also j-RFN(G,) € YE!(T;) (by Theorem 9.3.16) and that S} has a finite VX.2-
axiomatization.
An analogous argument applies to VEJI.’ (Sé), using G} in place of G, and to
VEJI?(U;,}), using G in place of G;. QED.
The following statement is a separation of the theories Sé and T 2’ conditioned

on a combinatorial property.

Theorem 10.1.3. Leti > 1,i = j > 0 and assume that the proof system G} does
not j-polynomially simulate the system G;.
Then Sﬁ # Tzi and, in fact, T. 2} is not VE}’-conservative over Sé.

Proof. The VZJI? -formula j-RFN(G;) is provable in Tzi (by Theorem 9.3.16) and
(by Theorem 9.3.17) is provable in Sﬁ if and only if G} j-polynomially simulates
G; (provably in Szl). Q.E.D.

10.2. T} versus S;*!

Inspired by Theorem 7.4.1 we consider the following computational complexity
principle.

The principle is associated with an optimization problem (see Section 6.3) of
the type: R(x, y) is a binary relation satisfying

VXR(x,00 A Vx, ¥y (R(x, ) = |y| < Ix])
and the task is, given a find b such that
R(a, b) and |b} is maximal

In Section 6.4 we considered only polynomial time predicates R(x, y), but now
we allow higher complexity.
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Definition 10.2.1. For i > 0, the principle Q; is the following computational
principle:

For any relation R(x, y) € Hp there are O —functions

i+l
N@), fla,by)..., fila,bi,...,bk—1)

that solve the preceding optimization problem in the counterexample interactive

way described at the beginning of Section 6.3. That is, the following is true:

either VzR*(a, fi(a), z) is true, or ifbyiss.t. 2 R*(a, fi(a), b))

thenVzR*(a, fr(a, b1), z) is true, or ifbyiss.t. =R*(a, fa(a, by), by)
then ...

thenVzR*(a, fi(a, by, ..., bk—1), 2) is true
where the relation R*(x, y, z) is defined by

RGx, ) Ayl <zl < x| = —R(x, 2))

Recall the convention that [T = AY =P.

Lemma 10.2.2. The principle Q; is zmplted by El b= = AP |, and Q; implies

i+l
xl., € AFL /poly and hence also [, = T, ,.
Proof. That Q; is implied by )3 = AP iy follows from the fact that the binary
search for an optimal b can be performed (under the hypothesis El 11 =4 +1 ) by

a Df 1 -function. The principle €2; then holds with k = 1, in fact.

The proof of the second part is more involved. We show that the hypothesis that
2; is valid implies )Zp C A +1/poly That the latter implies E = H 42 18 by
Theorem 3.1.6 stralghtforwardly generalized to i > 0.

We shall treat only the case i = 0; the general case is completely analogous.

Let A(v)bea Zf’ -predicate and assume A(v) is defined

A@) :=3w < v Bv, w)

with B(v, w) a A} -predicate.
We want to show that there is a polynomially bounded advice function h(n) (cf.
Section 2.2) such that for some Df -function g(u, v)

Vv, @Qw < v B(v, w)) = (B(v, g(h(jv]), v)))
holds. Call w a witness for v ifw < v A B(v, w), and define a Af -relation

R(a,b):= ifa={(v,...,v,) and b= {(wy,...,ws) then

s<r and V£ <s:“wyisawitness for vy”
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Now we apply the principle 2p: We assume that there are Df -functions fi(a),
frla,br), ..., fe(a, b, ..., bi—1) interactively computing, given a, an optimal b
such that R(a, b) holds.

Fix length n. We shall describe how the advice A (n) is constructed. Let V' =
{lv]| = n{3w < v B(v, w)} and let w(v) denote a witness for v € ¥;. For a k-tuple

(the same £ as is the number of functions fi, ..., fr)a = (vy, ..., vg) of distinct
elements from ¥ consider the following algorithm constructing a pair (£, w):
Step 1 Compute fi(a).
Step 2

If fi(@) = (w),..., wj’.), j > 1,and R(a, f1(a)) holds

then put (¢, w) := (1, w}) and STOP.

Else compute f2(a, (w(v1))) and GO TO Step 3.

Stepm 2 <m < k)

If fno1@@ (w@)),.... (wD,...,wEm-2))) = (W},...,w), j =
m —1,and R(a, (wi, ..., w})) holds

then put (¢, w) := (m — 1, w, _,) and STOP.

Else compute f, (a, (w(vy)), ..., (w(v]), ..., w(vy-1)))and GO TO Step
m+ 1.

Step & + 1 If the algorithm reaches this step then it necessarily holds that

Si(a, (w(p), ..., (w@), ..., w_1))) = (w},..., w,) and

R(a, (wy, ..., wy)) is true

Put (£, w) := (k, w;) and STOP.

The idea of the algorithm is that from the witnesses w(v;), ..., w(ve—y) itis
possible to compute by a Df -algorithm a witness (namely w) for vy € V. Now
we utilize this for a construction of the advice 2 (n).

For O a (k — 1)-element subset of ¥y and v € V1 \ Q we say that Q helps v
if and only if there is an ordering {v1, ..., ve—1, vey1, - . ., Uk} of Q such that the
previous algorithm assigns to the k-tuple

(vl""ivl_l’v’ ve+]""7vk)

the pair (£, w), where w is a witness for v.

Put Ny = |V}|. The previous algorithm produces the pair (¢, w) from any k-
tuple of elements of V; this shows that the number of pairs (Q, v) such that Q
helps v is at least ().

On the other hand, there are only ( kAi‘l) (k — 1)-element subsets Q of V', and
so there must be one subset Q) € V| such that O, helps to at least

(I}/(I) _ Ni—k+1

(kAﬁl) k

elements v € V.
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Put
Vo =" \{veVi| Q1 helpsv}

and N; = |V2|. Analogously there must be a (k — 1)-element subset O, C V> that
helps at least
(D) M-k+1

(kN—zl) - k

elements v € V5.
Iterating this procedure we obtain a decreasing chain

Miavro...

and a sequence

SN, 0C,...

of (k — 1)-element subsets Q; of V';, such that Q; helps all elements v € V;\ V4.
A simple computation shows

k=1
Niyi < (T) -N1+k

and so we get N, < k after at most ¢ steps of the procedure for

1
t:=0 (]ng(k/Tl) . logz(N])) = 0(”)

Define the advice A (n) to be the sequence of all pairs
(v, w(v))
for all elements
ve Q1U...UQi UV,

The function g(u, v) for u = h(|v|) is then defined by the algorithm
1. try whetherv € Q[ U...U Q;_1 UV, and if so output w(v) (which is a
part of 2(|v])).
2. if 1 fails try consecutively whether Q; helpsv, j=1,...,¢ — 1. One of
them must, giving a witness for v (which g(u, v) outputs).
The second part of the lemma then follows, observing that, for example, the
problem of computing the maximal size of a clique in a graph, that is, optimizing
|b| in

R(a, b) :== “bisaclique in graph a”
is an NP-complete problem. QED.



190 Finite axiomatizability problem

The disadvantage of the construction of the advice in the proof of the previous
lemma is that it is not apparent how to formalize it within the theory S>. If one
had a construction that could be formalized in S, then Theorem 10.2.4 could also
be formalized in S>. The next lemma offers such a construction, albeit for a bit
weaker statement.

Lemma 10.2.3. Leti > 0 and assume that for every l'[f.’-predicate R(x, y) there
are Dl.”_'_]ffunctions N, ..., fila, by, ..., bx_1) such that for R*(x, y, z) de-
fined from R(x, y) as in Definition 10.2.1 Tzi proves

VX, Ve v RY(, A, i) VooV R, filx, piy ooy Y=1)s )
Then

Tzi H z::P+1 < l'[,.p+]/poly

This means that for every Z,{’ 1 Jormula A(v) there is a Hf 1Jformula C (v, u) for
which

T - Vx3u¥v; |x| = [v] = 4@) = C(v, 1)

Proof. Let A(v)bea Zf’+|-formula of the form Jw < v B(v, w) with B € Hf’,
and let R(x, y) be defined for B as in the proof of Lemma 10.2.2, where functions
N, .-, fi fulfill the hypothesis of the lemma.

Fix length »n and consider a formula E(z, u) that is the conjunction of the

conditions

) w= (vt ..., A L2 LA U] = = |l =n
(ii)
Vv17"'7vf7 w]v"-vwlveaw; /\ (wl S vl/\B(vlﬂwl))
I<i<t
A, w) =Dy, ..., v) > L=t

where D(a) is the algorithm described in the proof of Lemma 10.2.2 with w(v;) :=
wi,i=1,...,¢t

Let typ be the minimal ¢ < % such that for some u, E(¢y, ) holds. Such
exists as there are only finitely many possibilities for #; in particular, no induction
axioms are needed to assure the existence of .

Claim. Tzi proves that for |v| = n and
U= (Vg1 ..., Uk)

such that E(ty, u) holds the following conditions are equivalent
1. A(v) holds
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2. C(v, u) holds where C(v, u) is the formula

Yor, oo Ug—1 Ywi, ., w1 Y, w,

( A\ (vl =nAw; < v A B(vi, wi))
O<i<iy
A, w) = D((vo, ..., Vig—1, U, Urg1s - -+, Vk)))

— ((E<t0/\wSUgAB(vg,w))V(Zzto/\wSv/\B(v,w))>

To see the claim, reason in 7. 2‘ and assume first that 4(v) holds: that is, that for
some w < v the formula B(v, w) holds. Then the second condition is satisfied by
;, that is, by the definition of the algorithm D(a) from the functions f, ..., f,
and by the choice of 7y and u.

Assume now that condition 2 is satisfied but that 4(v) does not hold. That
means that (£, w) from 2 must satisfy £ < 7o, but then ¥’ = (v, vey41, ..., V)
would satisfy E(fp — 1, «'), contradicting the previous choice of #o as the minimal
¢t for which 3x E(z, x) is valid.

The definition of the algorithm D(a) is Af’ '+1 and the formula C(v, u) from
condition 2 is HS’H . Q.ED.

We can now employ these two lemmas to get a strong theorem about the relation
of theories T, and Sé“ .

Theorem 10.2.4 (Krajicek, Pudlak and Takeuti 1991). Let i > 1. Then the the-
ories T. 2’ and S;'H are distinct, assuming that Eip 1 € A,P +1/poly, or assuming
that the polynomial time hierarchy PH does not collapse to its (i + 2)"? level:
Bf# 00, |

In fact, the theories T. 2’ and Sé“ are distinct, assuming that Tzi does not prove
that ©f | < N7, /poly.

The same is true for i = O with PV in place of T,.

Proof. We shall show that Tzi = S£+' implies that the principle <; is prov-

able in Tzi, that is, that for every I'[f’ -formula R(x, y) there are Df’ +1-functi0ns

fi@). ..., fita,by, ..., be_1) AL, -definable in T} such that T; proves the dis-
junction
R*(a, fila),b1) V...V R*(a, fi(a, by, ..., bk-1), bi)

with R*(x, y, z) defined from R as in Definition 10.2.1.
Consider the formula

¥(x, y) ==yl < x| A R(x, y)
Itisa l'[f?-formula and ¥ (x, 0) holds (by the assumption that Vx R(x, 0) holds).
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By Lemma 5.2.7 S3*' admits the T’~-LENGTH-MAX principle: That is, S3*"'
proves that there is y of the maximal length satisfying ¥ (x, y)

vyl < IxD Vz(lz] < 1xD, R(x, ») Ayl < |zl &> —R(x, 2))
That is
Vx 3yVz R*(x, y, 2)
(with the bounds < x to y and z implicit).
Now use the hypothesis of the theorem to get

Tzi FVx3yWz R*(x, v, z)

Theorem 7.4.1 then applies (with ¢ = R*) and guarantees the existence of the
07, -functions fi, ..., fi with the required property

T} & R*(a, fi(a),b1) V...V R*(a, fi(a, b1, ..., bx-1), by)

ByLemma 10.2.2 thisimpliesthat £/, | € A’ /polyandhence 7 , = 17, ,,

while Lemma 10.2.3 implies that T; proves that £/, | € T17,, /poly. Q.ED.
Corollary 10.2.5. Let i > 1 and assume that Tzi = S£+'. Then Tzi = S. The

same holds for i = 0 with PV in place of T. 2’ .

Proof. We use the second part of Theorem 10.2.4 by which the hypothesis of the
lemma implies that T; proves =7, € I17, | /poly.

First we show that Tzi = T2i+1. Let o(x) be a Eip 1 -formula and, working in
T, assume that

o) AVX <v(o(x) > o(x + 1)) A—o(v)

By £/, € 1}, /poly we know that for every length n there is an advice u, such

that

Vx,|x|=n—> o) =C(x, u,)

where C(x, y) is a fixed l'l,.p 1 -formula. Joining the advice ug, .. ., ujy| into one u
we have

Vx <v,0(x)=C'(x,u)
where

C'(x,u) == C(x, upx)
is a 7, | -formula.
But then o (x) is provably Af’ +1 on the interval [0, v] and as Sé"’l admits Af’ i
IND (by Lemma 5.2.9), i (= S; ') satisfies the induction for o (x) on any interval

[0, v]. This shows that T} = T4+
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To show that, in fact, 7} = S, observe that
T kBl € 1Y, /poly

implies that any Ego-formula n(x) is in Tzi on any interval [0, v] equivalent to
a Hf’ 1 -formula (with parameters depending on v); this is proved by induction
on the logical complexity of . Hence the induction for any n(x) follows from
M2, ,—IND, and hence from T} as we have already established that T} = T; +
Q.E.D.

Corollary 10.2.6. To show that S is not finitely axiomatizable it is necessary and
sufficient to show the existence of a model M of S> in which the polynomial time
hierarchy P H does not collapse, that is, in which for every i the class Zf’ (M) of
subsets of M definable by Ef’ ' 1formulas with parameters is strictly larger than
the class Ef’(M).

Proof. S is finitely axiomatizable iff (by Theorem 10.1.1) $> = T, 2’ for some i iff
(by Theorem 10.2.5) T = Si™! for some i. This implies (by Theorem 10.2.4)

Tk 2, € T, fpoly

for some i.
We shall show that the last condition implies that
Iyt Eﬁm = I_Iip+3
which trivially implies Tzi B9, completing thus the proof of the corollary.
The inclusion £/, | C M7, | /poly obviously implies (in 7;)
Zﬁ‘_l/pOly - H,P_,_l/pOly

and in particular PH C H;" +1/poly. By analogy with Theorem 3.1.6 (for i + 2 in
place of 1) this gives (again in T} )

=’

PH =%/, i+3

i+3

QED.

We note that Buss (1993b) showed that £”., € I/, /poly implies even that

PH C B(X/,,): that every set in PH is a Boolean combination of X7, ,-sets. This
is not needed, however, for the previous corollary.

10.3. S: versus T}

This section presents a conditional separation of theories S£ and T 2’ .



194 Finite axiomatizability problem

Theorem 10.3.1 (Krajicek 1993). Let i > 1. Then the theories S’ and T2 are

distinct, assuming that the classes P [0(log n)] and Al 41 are distinct. In fact,
the assumptzon can be weakened to the assumption that S does not prove

PZ[O(logn)] = AP,

Proof. Leti > 1.By Theorem6.1.2 T, ! can Eb ,-define all mlg +]-funct10ns and, in
particular, all A/ 41 -predicates. By Corollary 7 3 6 the predicates X; +]-deﬁnable
in S’ are exactly those from the class P [O(Iog n)] and, in fact, Theorem 7.3.5
shows that the equivalence of a P [O(logn)]-predicate to a T?, , -predicate is
provable in Sz.

Hence S} = T} implies that any X2, | -definable predicate in T} (i.e., any A”

i+1

i+17
predicate) is in Sé' equivalent to a Pzz [O(log n)]-predicate. Q.E.D.

Note that it is open whether 2 [OQogn)] = Al + implies the collapse of
the polynomial time hierarchy PH. We thus cannot obtain a statement analogous
to Corollary 10.2.5.

Corollary 10.3.2. Assume that there is a model M of S» in which the classes
):b(Zb)(M) and A ](M) are distinct for all i > 1.
Then all theorles S2 and T2 are mutually distinct.

Proof. The class ):g(}:f’) is the class of formulas that are obtained by logical
connectives and sharply bounded quantification from Zf’ -formulas. These define
exactly the PE‘p[O(log n)]-predicates (cf. Theorem 6.2.3). Hence the hypothesis
implies, via Theorem 10.3.1, that S’ £ Tl alli > 1.
The inequality 2 [O(logn)] # A,Jrl implies, in particular, that Zp #x?
and hence by Corollary 10.2.6 also that PV, # S} and 7} # Si*!,i > 1.
Q.ED.

i+1°

10.4. Relativized cases

In this section we prove, using the results of previous two sections, that all theories
Si(R) and T} (R) are distinct.

Recall that these are the theories defined as Si and 75 but in the language
L U {R} extending L by a new binary relation symbol R. Equivalently we could
work with the theories Sé and Tzf in the language L of the second order bounded
arithmetic.

Lemma 10.4.1. Assume that there is an oracle A such that the relativized poly-
nomial hierarchy PH? does not collapse. Then the theories T2’ (R) and Sé“ (R)
are distinct.

Assuming that there is an oracle A such that all relativized classes LY ),
Af +1(A) are different, then the theories Sé(R) and Tzi (R) are distinct.
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Proof. Thelemma is a corollary of the proofs of Theorems 10.2.4and 10.3.1, which
both “relativize” to theories Sé' (R)and T. 2’ (R). This is because the definability and
the witnessing theorems from Chapters 6 and 7 readily relativize. Q.ED.

A construction of an oracle separating the levels of the polynomial time hier-
archy was proposed by Furst, Saxe, and Sipser (1984). It reduced the existence
of such an oracle to the existence of exponential lower bounds on the size of
depth d — 1 circuits computing Sipser’s function Sy(x;,,. ;) (cf. Section 3.1).
Such bounds were announced by Yao (1985) and proved by Hastad (1989). In the
following theorem we use similar combinatorics to construct oracle A for which
even

<u (Z/(4D) # A ((4)
foralli > 1. Recall the class <,, (£7) from Theorem 6.2.3.
Definition 10.4.2.
(a) Fori > 1 define the I'If’_l(oz)-formulas
1) Ynlx, ) =y =0Val(ix, y)
@) Y2 y) =y =0V ¥y < (xlog(e)'/? a((i, x, y1. 32))
()

Yi(x,y) =y =0
1/2

VVy» <x3yy <x...0i_1yi-1 < x @iy < (’—’%l)
xa({i,x, y1,..., %))
where Q;_1 (resp. Q;) is ¥ (resp. 3) iff i is odd.
(b) Fori > 1 define the predicate
Pi(x,@) ;= “the maximal y1 < x satisfying ¥;(x, y1) is odd”

The predicate P; generalizes the ODDMAXSAT problem.

Lemma 10.4.3. The predicate P;(x, A) is in the class Aip +1(4), foralli > 1 and
ACw.

Proof The algorithm finding maximal y; < x such that ¥; (x, y;) based on the
binary search defines a A’ (4)-function. Q.E.D.

The crucial idea allowing later combinatorial arguments is to fix in ¥;(x, )
values of x and y; and to think of such v; (m, ¥) as of a predicate defined for sets
A C w. Next we shall define the Boolean circuits ¥, (m, u) computing such a
predicate.
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Definition 10.4.4.
(a) The input variables of circuit ,(m, u) are of the form

DPuyvy,.yi_y.t

Jorevery (i —2)-tuple 3, ...,yi—1 <mandt < ({i-m log(m)/2)!/2.
b) The circuit?//—i (m, u) is the propositional translation (Yr; (x, y1))(m, u) with
the atomic formula a({i, x, y1, ..., y;)) translated as p,, ... (cf. Defini-
tion 9.1.1).
(c) The circuit C" is a disjunction of [m /2] conjunctions

Vimayn  J\ —im,v)

u<v<m

one for each odd u < m.
The following lemma is straightforward.

Lemma 10.4.5. Foranyi > | andm:
1. The circuit ¥ ;(m, u) computes the truth value of y;(m, u) under the as-
signment

Py. ..... Vi =1 lﬁ‘ (i’”hy],.-w}’i)eA
2. Under the same assignment the circuit C{" computes the truth value of the

predicate P;(m, A).

The next definition and lemma are crucial technical concepts in the method of
random restrictions in Boolean complexity.

Definition 10.4.6.
(@) Let (B)); be a partition of the atoms of the circuit C[" into m i=1 classes of

the form
i -mlog(m) 172
{py 't < (_Zg__)

one for every choice of yy, ..., yi—t < m.

(b) Let 0 < q < 1 be a real number. A probability space R[I" of random
restrictions (cf. Section 3.1) is a space of restrictions p determined by the
following process

(@)
%,  with probability q
sj =
! 0,  with probability 1 — q



10.4 Relativized cases 197
(b) forevery atom p € B;

sj,  with probability q
p(p) = . -
1,  with probability | — g

(c) A probability space Ry is defined as R;]F interchanging the roles of 0
and 1.

(d) Foranyp € R;, g(p) is a further restriction and renaming of the atoms
defined as follows (for all j):

(a) for js.t.s; = *let pj = py,, .. y_, beanatomfrom B; given value
* by p with the least t,

(b) g(p) gives value 1 to all p € B;, p # p; s.t. p(p) = *,
(c) g(p) renames pj to atom py,, .. y_,.
(e) Forp e R,, g(p)is defined as in (d) but again interchanging 0 with 1.
(f) For G a circuit with the atoms among those of the circuit C" , G* denotes
the circuit obtained from G by first performing the restriction p and then

also the restriction g(p). Note that the atoms of G® are among those of
cr ..
i—1

The following lemma is crucial. We refer to Hastad (1989) for full details of
the proof.

Lemma 10.4.7. Fix a valueq = (2 -1 - log(m)/m)‘/2 and assume that m is
sufficiently large. Then the following three conditions hold.
1. Let G be a depth 2 subcircuit of CI": That is, G is either an OR of ANDs of
size < (i -m log(m)/2)'/? or an AND of ORs of size < (i -m log(m)/2)"/2.
Pick a random p from R} if G is an OR of ANDs and from R if'it is an
AND of ORs.
Then with the probability at least

G? is an OR (rvesp. an AND) of at least ((i — 1) -m log(m)/2)1/2 different
atoms.

2. Leti = 3. Pick p random from R;‘ Jfor i even or from Ry for i odd.
Then with the probability at least

2
3

the circuit (C")” contains C" ,. That is, after some renaming of the atoms
(C")P becomes C" .
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3. Leti =2. Pick p from R;’ randomly. Then with a probability at least
2

3

the circuit (CJ' ) contains circuit CY, forn = (m log(m)/2)1/2.

Proof. We sketch the proofs of the parts of the lemma.

(1) Assume that G is an OR of ANDs and p is drawn from R;' (the case when
G isan AND of ORs and p € Ry is treated similarly).

An AND gate of G corresponds to class B; of atoms and takes after p the value
s; with the probability at least

12 (im l<>2g(m))l/2
2il 1 .
m 6

Hence with probability at least

1 — Zm —i+1
this is true for all ANDs in G.
The expected number of ANDs assigned the values s; in the definition of p and
not the value 0 is m - ¢ = (2im log(m))'/2, and thus with probability at least
1

1"3”1_

i

we can get at least ((i — 1)m log(m)/2)!/? s;’s assigned.
Hence with probability at least

1 — lm—i+1

3

the circuit G® is an OR of at least (i — 1)m log(m)/2)'/? different atoms.
(2) In C{" there are m'—2 different subcircuits G of depth 2. From (1) we have
that with the probability at least

Wi

1 — =m~
3

all of them are restricted by p as required in (1). So, after renaming the atoms,
(C")” becomes the circuit C}” ;.

(3) For i = 2 the circuit ; (m, u) is just an AND of size (m log(m))'/? corre-
sponding to the classes B;, and there are m of them. Hence (1) implies that with the
probability at least (5/6) they are all assigned the value s;, which is again with the
probability at least (5/6) equal to * for at least (m log(m)/2)'/? of these ANDs.

Q.E.D.

=
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Definition 10.4.8.
1. A Boolean circuit is called Zf ”', if

(a) ithasdepthi + 1

(b) its top gate is an OR and ORs and ANDs alternate in levels
(c) it has at most S gates inlevels 2,3, ...,i + 1

(d) its bottom (depth 1) gates have arity at most t

(e) its atoms are among those of C}".

2. Att-reducibility D = (f;, E\, ..., E,) of type (i, m, k) is a Boolean func-
tion f(wy,...,w,)inr < log(m)k variables and with r Zf;,’,-circuits
Ei,..., Ey, where S = 2198 aud 1 — log($).

3. Att-reducibility D of type (i, m, k) computes a function of the atoms of C[" :
First evaluate w; := Ej on the atoms and then evaluate f(wy, ..., w,)
onw;’s.

Lemma 10.4.9. Let G be an AND of ORs of size < t with the atoms among those
of CI*. Pick p randomly from R; or from R .
Then with probability at least

1 — (6q1)°

the circuit GP can be written as an OR of ANDs of size < s.
The same is valid for the probability of the switching an OR of ANDs into an
AND of ORs.

This is one of Hastad’s two switching lemmas. For the proof consuit Hastad
(1989).

Lemma 10.4.10. Let D be a tt-reducibility of type (i,m,k) and let ¢ =
(2i log(m)/m)'/2. Pick p at random from R;’ or from R;.
Then with the probability at least

1/2
Df .= (f; E,..., EF)
a tt-reducibility of type (i — 1, m, k).

Proof. Putt := s := log(m)* and apply Lemma 10.4.9. Then the probability of a
failure to switch one depth 2 subcircuit of any E; is at most

2il 1/2 log(m)¥ .
(6g1)' = (6( : (;f(m)) log(m)k)og < g~ %loglm)t

for sufficiently large m.
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There are < log(m)* 2'°2®" such depth 2 subcircuits, so with probability at
least

1 — log(m)y*2= 18" 5 1,2

all of them are switched. The switched subcircuits can then be merged with the
gates at level 3, to decrease the depth of circuits E; by 1. Q.ED.

The following lemma shows the nonexistence of a particular ¢¢-reducibility.

Lemma 10.4.11. Leti > 1 and k be fixed. Then for m sufficiently large there is
no tt-reducibility of type (i, m, k) correctly computing the predicate P;(m, A) for
all A C w.

Proof. The proof of the lemma divides into two claims.

Claim 1. Let D be a tt-reducibility of type (i, m, k) computing the predicate
Pi(m, A) for all A C w.

Then there is a tt-reducibility Dy of type (1, m, k) computing correctly the
predicate Py ((m log(m)/2)1/2, B) for every B C w.

Claim 2. For k fixed and m sufficiently large there is no tt-reducibility of type
(1, m, k) computing correctly P;((m log(m) /2)‘/ 2 B) forevery B C w.

We prove Claim 1 first. The predicate P;(m, A) is computed by the circuit C"
(Lemma 10.4.5). By Lemmas 10.4.7 and 10.4.10 (and the probability ¢ defined
there) a random restriction p (drawn from R; for i even and from Ry fori odd)
converts with probability > 1/6 simultaneously C}" into C" | and D; = Dintoa
tt-reducibility D;_; of the type (i — 1, m, k). Hence there exists such a restriction
o and clearly C]" | and D;_; compute the same predicate, that is, P;_i(m, 4).

Apply this conversion (i — 1)-times (with part 3 of Lemma 10.4.7 in the last
step) to prove the claim.

Now we prove Claim 2 by a direct diagonalization of any type (1, m, k) tt-
reducibility D.

Put n := (mlog(m)/2)"/? and ¢t := log(m)*. Let D = (f; E|,..., E,) bea
type (1, m, k) ¢tt-reducibility and for simplicity of notation denote C}* by C.

We shall construct a sequence of sets of numbers A;*, A7, I satisfying
Af N 47 = ¢ and any number in 4] U A is smaller than ¢.
|AF| < sand |4} U 47| < st.
at least half of the numbers < max(4;) belong in 4} U 4.

I, C{l,....r}and || = s.
for every B C w for which

AW N -

AYCB AA;NB=0
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and for every j € I; it holds that

E} =1

E jB denotes the circuit £; evaluated according to B.

Put A(‘,L = Ay =1y = @. Assume that we have Aj, A7, I satisfying the
conditions stated.

Put B := A} (hence E JB = 1 for all j € I) and consider three cases:

(@) D? = 1 but max(B) is even, or D? = 0 but max(B) is odd. In this case

STOP.
(b) D® =1 and max(B) is odd. Consider a set

S ={x <2 |max(4}) < x,x even, x ¢ AT} .

By conditions 1, 2, and 3, the set S is nonempty. Two subcases may occur:
(b1) We may add some x € S to B to form B’ := B U {x} such that

D =DpB=1.

In this subcase put A;"H = Af U{x}and 4, := 4 and STOP.
(b2) We cannot add any x € S to B with the property (b1).

Take x := min(S) and put A;"H = A% U {x}. As the circuit D

changes value, some Ej, for jo ¢ I; had to receive new value 1. Take
an AND of Ej, (containing x), which becomes true, and add indices
of all atoms negatively occurring there to A to form 4_, . Note that

this is correct as none of them is in 4.

Put /i1 := I; U {jo} and GO TO step s + 2.
(Note that the new sets A;"_H, A and Iy fulfill the conditions
1-5. For example, 3 holds as x was chosen to be the minimal element

of S.)

() D® =0and max(4}) is even. Take a set

s+1°

S ={x <2 |max(4}) < x,x odd, x ¢ 4]}

and proceed analogously with case (b).
If the sequence is not completed at step s, necessarily I 5+ and hence the
construction must eventually halt.
Take B := A for the final s. Clearly D? does not agree with C2; this proves
Claim 2 and hence also the lemma. Q.E.D.

Theorem 10.4.12, There is an oracle A such that for all i

<u (T (4)) # A (4)
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and hence also

27(4) # 1] (4)

Proof. We construct the oracle 4 € wsuchthat foralli > 1 the predicate P; (x, 4)
is not in <, (Zip(A)). This is enough by Lemma 10.4.3.

Let M;, j = 0, 1, ... enumerate all polynomial time machines. We shall con-
sider successively pairs (i, j) and build 4 in stages to assure that M; is not a
tt-reducibility of P;(x, 4) to X lp (4) (to some canonical Zip (A)-complete set).

Let A, be the approximation of 4 constructed in the first s stagesand let (i, ) be
a pair to be considered next. Choose number m := m; so large that all numbers
considered in the first s stages are small w.r.t. m. The machine M; outputs on m a
Boolean function f(w1,...,w,) and queries zi, ..., z, to Z,.” (A). Such queries
naturally correspond to the evaluations ofa X IS ;,llog(s)-circuit (a propositional trans-
lation of the instances of the Zf’(A)~formula defining the X ip (A4) complete set),
with § = 2logtm’,

In these circuits first evaluate the atoms “n € «” according to 4 and set to 0
all atoms “n € a” for n not of the form (i, m, y1, ..., ¥).

This leaves us with a ¢¢-reducibility of type (i, m, k), and by Lemma 10.4.11 it
cannot compute the predicate P;(x, 4) correctly forall 4 C w.

Take a finite A;y) 2 A4; in such a way that the reducibility fails, and hence the
machine M; does also.

Proceed to the next pair (i, j).

This completes the proof of the theorem. Q.E.D.

Corollary 10.4.13. Foralli
Sy(R) # T3 (R) # S, (R)
and

PVi(R) # S3(PV1, R)

Proof. The proof follows from Theorem 10.4.12 and Lemma 10.4.11. Q.E.D.

10.5. Consistency notions

This section is devoted to examining what can be achieved by Godel-type ar-
guments in the context of the problem of the finite axiomatizability of bounded
arithmetic.

That Peano arithmetic PA is not finitely axiomatizable was proved by Ryll-
Nardzewski (1952). Rabin (1961) strengthened this to show that PA is not ax-
iomatizable by any set of axioms of a bounded quantifier complexity. PA has
subtheories JAg C [ 2? clI Eg C ..., based on induction for the 2?-formulas,
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and each of them is finitely axiomatizable (utilizing universal E?-formulas, anal-
ogously to Section 10.1). Every theory 1 2?+l proves the consistency Con(/ E?)
of theory / 2?, which is, by Godel’s theorem, not provable in / E? itself. Hence
I 2? aE1 E?. We refer the reader to Hajek and Pudlak (1993) for information on
this topic.

Of course, we would like to apply the same idea in bounded arithmetic but
there are serious obstacles. First is a theorem of Paris and Wilkie (1987b) (for the

definition of Q see Section2.1; Exp is a l'Ig axiom Vx Iy, |y| = x).

Theorem 10.5.1. The theory Sy+ Exp does not prove the consistency of Robin-
son’s arithmetic Q.

It follows that we cannot separate the theories SZ" and 7. 2’ by statements of the
form Con(S;).

A natural notion to consider then is the notion of bounded consistency,
BdCon(T'), formalizing “there is no T-proof of 0 = 1 using only bounded formu-
las.” But Pudlak (1990) showed that S; does not prove BdCon(Szl) either.

However, we do not have to guess various modifications of the consistency
statements as Theorem 10.1.2 tells us that Con(G;), defined in Section 9.3, is
the strongest consistency statement (over Szl) provable in 7. 2‘ That is, every Vl'll]’-
consequence of 7. 2’ follows in S21 from Con(G ;). Thus the problem is to prove that
S, does not prove Con(G;). A problem in carrying out the usual diagonalization
argument is that the metanotion of provability (provability in S;) is different from
the notion (the provability in G;) to which the diagonalization is applied.

This obstacle can be removed to some extent. In particular, we define a notion
of regular provability in (fragments of) S> and show that RCon(7, { ), a regular
consistency of 7, 1’ , 1s in SZ} equivalent to Con(G;). However, we are unable to
prove that S, does not prove RCon(77).

Iinclude this material primarily to illustrate what cannot be achieved by Godel-
type arguments. Some corollaries are nevertheless obtained.

Definition 10.5.2. An i-regular proof of a #-free sequent
r—-A
of T formulas is a triple
(m,%,d)
satisfying
1. misan LKB proofof T — A using the Ef——]ND—rule

2. the function symbol # does not occur in w
3. all formulas in w are strictEf’
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4. proofw is in a free variable normal form: the eigenvariables (the variables
eliminated inV < : right and 3 < : left) are all mutually distinct and are
also distinct from all parameters

5. if @ are all parameters (i.e., the free variables in ' — A) and b =
(bo, . .., by) all other free variables in w then

(i) if the elimination inference of b, is below the elimination inference
of by thenu < v

(ii) the elimination rule of any b, is one of

E2-IND
Aby), 1 — Z, A, + 1)
A©0), 1 — Z, A(r(a, bo, ..., bu-1))
3 <: left
b, <r(a,by,...,by_1), A(b,), 1 — X
Ix <r(abp,....04—1) AXx), 1 —> Z
v <:right

bu S r(a, b09 veey bu—-l)» H — E’ A(bu)
M — X,Vx < (@, by, ..., bu_1) A(x)
6. Tisatuple of k + 1 terms t,(@) and it holds that

bo <t(a),...,by—1 <ty—1(a) — r(a, by, ..., by—1) < ty(a)
where r(a, by, ..., by—1) is the term from the elimination inference of b,
in 5.

7. d is a (k + 1)-tuple of proofs d,, such that each d, is a proof of the sequent
from 6 that is without the IND-rule, is quantifier-free and #-free, and the
only variables ind, are @, by, . . ., by—1.

RCon(TIi Yisa Vl'Ill’ -formula formalizing that “there is no i-regular proof of
the empty sequent.”

We only sketch the idea of the following statement; the details are in Krajicek
and Takeuti (1992).

Theorem 10.5.3. Fori > 1, T. 2’ is not Vl'l’,’ -conservative over Tli.
In particular, the formula RCon(TY) is provable in T; but not in T;.

Proof (sketch). First we shall discuss why RCon(T li ) is provable in 7. The idea
is to use a partial truth definition for the #-free strict® f’ formulas. Such a definition
isaX f’ -formula Tr; (x, y) in two variables that has the property that for any #-free
strictEf’ formula ¢ (@ ) and any tuple n = (ny, ..., ng)

Tri([¢1,n) = ¢(n)



10.5 Consistency notions 205

where [¢] is the Godel number of ¢: that is, a number coding formula ¢ as a
syntactic object. Such a definition is constructed by induction on i, and for the
induction step as well as for the case i = 0 a Al]’ -definition of a value of a #-free
term

val([¢],n) = t(ny,...,nx)

for any term £ (@) is needed.

The function val(x, y) is defined straightforwardly using a sequence of the
values of subterms (which is unique and hence the function is AII’ -definable) but
we have to, in advance, bound val(x, y) by a term of L.

Assume that the coding of terms and formulas is defined in a natural way (cf.
Section 5.4) such that, in particular

el = oeh
By induction on the syntactic complexity of the term # (@) one shows
1(7) < (max(7) +2)°0P
and hence the bound

val(x, y) < (x#y)00

is sufficient.

The partial truth definition Tr; (x, y) we obtain in this way isa f’ -formula, and
S2I proves Tarski’s conditions. We may extend Tr; to a partial truth definition STr;
for sequents consisting only of strict}:f’ -formulas. The formula STr; is then Aﬁ’ 1
in 5.

Now let the triple (rr, 7, d ) be an i-regular proof, where 7 is a sequence of the
sequents Sy, ..., S¢. Let @ be the parameter variables and by, . . ., b all other free
variables. Consider the I1 f’ ' -formula ¢ (s)

Vr < sVby < to(@),..., by < y(a) STr;(Sy)

where g, ..., t are the terms 7 provided by the i-regular proof.

The formula ¢ (1) holds as any initial sequent is trivially true, and the implica-
tion ¢(s) — ¢ (s + 1) holds as all inference rules are sound (and using Tarski’s
conditions S‘_} can prove it) and the terms #, ..., f; are correctly chosen, with
proofs of the correctness provided by the proofs dy, .. ., dx, which are a part of
the i-regular proof as well.

Hence I'lf’ +1—LIND implies ¢(£) and, in particular, that S is true and so S,
cannot be the empty sequent. Hence Sé“ proves RCon(T’ ]i ) and the first part of
the theorem follows from Corollary 7.2.4.

Take a diagonal formula 4(a) such that the equivalence

A(a) = (Yw < a", wisnot an i-regular proof of 4(@))
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is provable in T, li , where A(a) is a #-free l'l’l’ -formula and & formalizes the dyadic
numeral, and u is a constant to be specified later.

By the same argument Tzi proves that “A(&) is true,” that is, A(a). Assume for
the sake of contradiction that 4(a) is provable in Tli and we may take D to be
some i-regular proof of 4(a).

Let m be any number and m its dyadic numeral. As

a=m, A(a) > A(m)
can be proved substituting m for » in some fixed i-regular proof of
a=>b,A(a) - A(b)

and hence (by cut with — A(a))

and thus also

has an i-regular proof of size O(|Jm|) = O(log m). Trivially all sequents
- Ix<mx=m
have i-regular proofs of size O (log m) and consequently also all
- A(m)

have i-regular proofs of size O (log m), say < v - log(m), for all sufficiently large
m (the constant v is independent of m, # in 4 and D). We may assume that we
have v < u. Then for m large enough there is an i -regular proof w,, < qulogm) <
m¥ < m" of A(m ). But that implies —A4(m ): a contradiction. Hence the formula
A(a) is not provable in 7.

This proves that T. 2’ is not VI'I? -conservative over T Ii . To prove that, in fact,
RCon(Ty) is not provable in 7| one shows that its provability would imply that the
diagonal formula 4 is provable. However, this requires slightly more estimates to
the lengths of the proofs as we do not have a priori all L6b’s conditions sufficient
for the derivability of Godel’s theorem (cf. Smorynsky 1977). In particular, the
condition

Prf;(a, b) — 3x Prfi(x, [ Prf;[a, 5]1)

is not generally valid in T/, where Prf;(a, b) formalizes that “a is an i -regular
proof of b.”
We shall skip these estimates as we have no further use for them. Q.E.D.
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Recall that the theory T} is defined as T; but with the function symbols
w(x), ..., wt—1(x) in the language (cf. Theorem 5.1.6) and with the additional
axioms

lwjr1 ()| = w;(lx])

j=1,...,k =2, in BASIC. The theories S,i are defined similarly.

Corollary 10.5.4. Fori > 1 and k = 1 it holds that
1. The theory Tk" 41 Is not Vl'll]’ -conservative over T, kl .

2. The theory S,ii; is not VI'lll’ -conservative over S;CI{
Proof. Letk > 1. Say that a triple w is a restricted T} -proof of a #-free strictE{’ -
formula A(a) iff w is an i-regular proof of a sequent of the form

2 <1cl®, 1al® - 1a)® - jal® < 1el® — A(a)
where |a|®) appears j times and

j < |w'(k+l)

Symbol |a|*) denotes the k-times iterated function |x| on a.

The number j grows slowly but exceeds any standard number and thus the
compactness argument implies that any #-free strithIf’ -formula A4 (a) provable in
T} actually has a restricted T, -proof (note that the antecedent of the sequent stands
for “a),(cj ) (a) exists™).

Given a and w the number ¢ := wi(a - w) satisfies the antecedent of the
preceding sequent, and as Tzi proves that every i-regular proof'is also sound formula
A(a) has to be true. Hence T | proves that every restricted T}, proof is sound.

We show that T}/ itself does not prove that every restricted 7} proof is sound.
Take a #-free I'll]’ -formula A(a) obtained by a diagonalization such that

S) = A@@) = (Yw < a“, “w is not restricted 7T, 7 proof of A(a)”)

By anargument similar to the end of the proof of the previous statement 7, k‘  A(a),
but 7., | + Aa).

Part 2 of the corollary follows from the first part, as a simple consequence of
Corollary 7.2.4 is that S,ii; is VZf’ ', -conservative over Tk" - Q.ED.

We may use a similar provability notion to show that the theory U21 is not
Vl'l’l’ -conservative over I Ag (and U3' over 57, etc.). First note, however, that we
already know that Uzl is different from / E(l)‘b; for example, U2' can prove that every
Boolean formula can be evaluated, whereas / Eé’bcannot prove that (cf. Section
9.3, the discussion after Theorem 9.3.4).
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Calliatriple {m, 7, d ) aregular proofifitisi-regular for some i, and let RCon(77)
denotes a#-free Vl'[ll’ -formula (in the first order language L) formalizing that “there
is no regular proof of the empty sequent.”

Theorem 10.5.5. The theory U2l is not VI'[ZI’-conservative over Ty. In particular,
Uzl proves formula RCon(T) whereas Ty does not prove this formula.

Proof. Theidea ofaproofof RCon(T) in Uzl isthatonecanfinda A : *_definition
of truth for the #-free £ -formulas. This is somewhat similar to the truth definition
for the quantified propositional formulas (cf. Section 9.3, the proof of Theorem
9.3.22), and we leave the details to the reader.
The rest is shown similarly to the argument in the proof of Theorem 10.5.3.
Q.E.D.

We conclude this section by a technical lemma that we state for the completeness
of the presentation but shall not prove (the proof would follow the idea of the proof
of Theorem 9.2.5).

Lemma 10.5.6. Leti > 1. Then
S} + Con(G;) = RCon(T})

and

S+ Con(G) = RCon(Ty)

10.6. Bibliographical and other remarks

Theorems 10.1.2 and 10.1.3 are from Kraji¢ek and Pudlak (1990a). Definition
10.2.1, Lemma 10.2.2, and the first part of Theorem 10.2.4 are from Krajicek et
al. (1991). Lemma 10.2.3 is from Buss (1993b) and Zambella (1994) (based on
Kadin 1988), and it implies the last part of Theorem 10.2.4 and Corollaries 10.2.5
and 10.2.6.

The content of Sections 10.3 and 10.4 is from Kraji¢ek (1993) and the pre-
sentation of 10.4.2—10.4.12 closely follows that paper. Corollary 10.4.13 is from
Krajicek et al. (1991) and Krajicek (1993).

The content of Section 10.5 is from Kraji¢ek and Takeuti (1992), with the
exception of Theorem 10.5.1, which is from Paris and Wilkie (1987b), and Theorem
10.5.5, which is from Krajicek and Takeuti (1990). Paris and Wilkie (1987b) have
considered restricted provability notions.

There are several topics related to questions considered in Section 10.5, although
they do not seem to have some immediate implications for bounded arithmetic (or,
more accurately, for the questions about bounded arithmetic we study here). But
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these topics appear to me quite important so I shall at least mention three of
them: the truth definition for bounded formulas, in Lessan (1978), Dimitracopou-
los (1980), Paris and Dimitracopoulos (1988), and Takeuti (1988); interpretability
in theories of arithmetic in Pudlak (1985) and Wilkie (1986); and restricted con-
sistency statements in Pudlak (1986, 1987) and Paris and Wilkie (1987b).
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Direct independence proofs

From Section 10.4 we know that all theories S5(R) and T} (R) are distinct. In this
chapter we examine specific, more direct independence proofs for theories SZ‘ (R),
T. 21 (R), and S%(R), and we strengthen Corollary 10.4.3.

11.1. Herbrandization of induction axioms

In this section we shall examine the following idea for independence proofs: Take
an induction axiom for a Ef’ (a)-formula. It has the complexity VZ,{’ 1 (@). Intro-
duce a new function symbol to obtain a Herbrand form of the axiom, as at the
beginning of Section 7.3. But this time we reduce the axiom to an existential for-
mula. This allows us to use a simpler witnessing theorem (Theorem 7.2.3) than
the original form of the axiom would require.

Consider first the simplest case (which will turn out to be the only one for which
the idea works). Let a(x, y) be a binary predicate. Then the herbrandization of the
induction axiom for the formula 4(a) := u < a, a(u, a)

A AVx <a,(A(x) > Ax + 1)) —> A(a)
is the formula
(0,0 A (Vx,y<a,(¢x,y) Ax <)
= @(f(x, ), y+ DA fx,y)<y+1) - u<a,a,a)
Denote this formula IND 4 (A4 (a)).

Theorem 11.1.1. The formula INDg(A(a)) is provable in T21 (e, f) but not in
S2l (o, ). Hence T2‘ (a, f) is not VE{’(a, [f)-conservative over S2l (o, ).

Proof. The antecedent of the formula INDy(A4(a)) implies the antecedent of
the induction axiom for A(x) := Iy < x, «(y, x); hence T2I (a, f) implies the

210
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formula 3u < a, a(u, a). This shows
T) (@, /) F INDy(A(a)) .

Assume now that also Szl (o, f) = INDg(A4(a)). By (the relativization of)
Theorem 7.2.3 there must be a polynomial time oracle machine M/ computing
on an input a a witness for INDgy(A4(a)), forevery @« € w x w and f : @ > w
of a polynomial growth. We shall show, however, that for any such machine there
are «, f, and a for which M®/(a) is not a witness to IND (A4 (a)).

Let M/ be any machine and fix a sufficiently large (depending on the running
time of M® /). Start a computation of M®/ on the input . When the machine will
ask queries «(x, y) or ask for values of f(x, y), we shall determine the answer to
the query by the following rules:

1. Assign ¢(0, 0) the value TRUE.

2. To the query [a(x, y)?] assign TRUE (and answer YES) if for all 1 <
¥, t # x query a(t, y) was already assigned FALSE. Otherwise assign to
a(x, y) FALSE (and answer NO).

3. If the machine requests the value [ f(x, y) =?] consider three cases:

(a) a(x,y) isassigned TRUE. Then choose t < y+ I s.t. a(s, y+ 1) is
already assigned TRUE if such ¢ exists; otherwise choose arbitrary
t < y+ 1 such that «(z, y + 1) was not assigned a truth value yet.
Answer f(x, y) =t and assign to a(z, y -+ 1) the value TRUE.

(b) «a(x, y) is assigned FALSE. Choose some ¢ < y+ 1 s.t. a(f, y + 1)
is already assigned FALSE if such ¢ exists; otherwise pick arbitrary
t < y+ 1 such that a(s, y 4+ 1) has no truth value yet. Answer
f(x, y) =t and assign to «(¢, y + 1) the value FALSE.

(c) o(x, y) has no truth value yet. Assign to it some value following rule
2 and then define f(x, y) according to (a) or (b).

Claim. «(x, y) cannot receive the truth value TRUE during the answers to the
first y oracle queries.

The claim is verified by induction on y.

Now assume that a is large enough that for the running time 7%, |a|* < a. Then
no «(x, a) could receive the value TRUE.

Assume M/ (a) claims to output a witness to INDy(A(a)). If it is a pair
(x,¥),x < y < a such that a(x, y) is assigned TRUE, then either f(x, y) is
defined and < y 4 1 and a(f(x, y), y + 1) is also assigned TRUE, or undefined
(and then define f(x, y) following 3).

Take ap to be the relation consisting of those pairs (x, y) such that e(x, y)
received value TRUE and fp any total function extending the partial function f.

Clearly then the output of Mo Jo (a) is not a witness to IND 4 (A4(a)).

Q.E.D.



212 Direct independence proofs
A natural thing is to try to apply the same idea to the induction axioms for
formulas of the form
A(@) = Ix) <a¥y1 <a...0x; <a, a(X,y,a)

(with i alternating quantifiers). A herbrandization IND g (A(a)) of the induction
axiom for the formula 4(a) has the form

01(6,6,0)/\(Vb,xl,...,xm,tl,...,t,, <a,
a(x,y/fi,b) > az/g, £, b+ 1)) = Juy, ..., um < a, @&(u,ve/he,a)

where
(i) m=1Ti/21and n = [i/2] and & is the formula

X1<bAn=<b> (2<bA(..(x(X,7,b))...))

(ii) the function symbol f; has the arguments b, xy, ..., x;, 81, ..., tj—1
(ii1) the function symbol g; has the arguments b, x1, ..., Xk, £1, ..., tk—1
(iv) the function symbol A, has the arguments a, u, ..., u,.

Lemma 11.1.2. Leti > 1 and let A(a) be a Ef’ (a)-formula of the form
Ixy <av¥y <a...a(x,y,a)

« an (i + 1)-ary predicate.
Then the formula IND y(A(a)) defined earlier is provable in T2I (at, 7 g, n).

Proof. Consider the formula B(b)
By = 3uy,...,um <b,&(u,ve/he, b)

with 4, a function symbol depending on b, uy, ..., ug, £ =1,...,n.
Assume the conjunction in the antecedent of the formula IND y (4 (a)) is valid.
Then B(0) is valid as it follows from «(0, . .., 0). Also the implication

B(b) - B(b+1)
is valid for b < a, which is seen as follows. Assume B(b), that is
Juy, ..., um <b, a(u,ve/he,b)
which by the second conjunct of the antecedent of IND z(A(a)) implies
Vu,i, @(ze/g. t, b+ 1)

where gy = ge(b, uy, ..., Uk, 1, ..., ty—1). Substitute for ¢, the function h, and
existentially quantify the terms gy (#,/ h¢) on the places of z;’s. This gives B(b+1).

By Z%(a, 7 )-IND then B(a), which is the desired succedent of IND (4 (a)),
follows. Q.E.D.
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11.2. Weak pigeonhole principle

We have already considered the weak pigeonhole principle in Section 4.2 (Theorem
4.2.4) and in Section 7.3 (Theorem 7.3.7) but in both cases in slightly different
versions, so now we define the principle again, as it will be used in this and further
chapters.

Definition 11.2.1. PHP(R)}' is the following bounded L p4(R) formula
= (Vx <mIAly <nR(x,y) A Vy <nilx < mR(x, y))

It says that the relation R is not a graph of a 1-1 function fromm = {0, 1, ...,
m—1}onton=1{0,1,...,n—1}.

In the case whenm > n+ 1 the formula is called the weak pigeonhole principle;
most prominent cases of the weak pigeonhole principle are m = 2n, n2, and 2".
Later we shall also consider a stronger version of the principle saying that there is
not an injective map from m into ».

In the rest of the section we omit explicit reference to the relation R in the
formula PHP(R)}.

Lemma 11.2,2. The theory Szl (R) proves the weak pigeonhole principle PHP%".
In other words

S}(R) - PHP?

lal

Proof. Assume —-PHP‘l’aI for R C 2" x n, where n = |a|. Define the formula
“je RTYG)” iff 3x <2",bit(x, j) = 1 A R(x, i)
which is Al]’ (R)in S2l (R) as the witness x is unique, and consider a A’l’ (R)-formula
6‘1' ¢ R_l(i),,

As the bounded comprehension axiom CA is available in SZ'(R) for All’ (R)-
formulas (cf. Lemma 5.4.2), we have

3y < 2"Vi < n, (bit(y,i) = 1) =i ¢ R™'(G)”
and the usual diagonal argument applies to y. Q.E.D.
Theorem 11.2.3. Forall k
S3R) +3y, y=a" - PHP(R)?
where |a|® is k-times iterated function |x|.

Proof. We shall work in $p(R) first and later see how much induction we used
and how much we used the function #. Assume —-PHPZ2 with R C a? x a, and let
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F : a x a +> a be the bijection whose graph is R, that is
Fx,y)=z iff Ra@a-x+y,2)

Consider a complete binary tree of height . We identify its nodes with the 0—1
sequences of length at most ¢ and consequently with the numbers < 27,
Given i < a, we shall label the nodes of the tree by numbers < a by induction
on the height:
1. label £(i, €) = i, where € the empty sequence (i.e., € is the root)
2. if€(i, x) = u and x0, x 1 are the left and the right sons of x, and F(v, w) =
u, then set

£, x0)=v and £(i,x])=w

In this sense i < a codes a sequence of numbers < a of length 2’: the labels of
the leaves ordered lexicographically. Note that £(i, x) is AII’ (R)-definable from i
and in the definition one needs to code sequences of numbers < a of the length
O(|x]) = O(¢): That is, one needs that the number a’ exists.

On the other side let g : 2° — g be any map definable by a A’l’ -formula. Then
there is i < a such that

g(x) =L, x)
for all x < 2. This is proved by induction as follows. Consider the formula
Ag(ry:=r<t—->Vxe{0,1}7"3i <aVye{0,1},£G y)=gx ~ )

Then A,4(0) holds as for x € {0, 1} we can take i := g(x). Assume that Ag(r)
holds and let x € {0, 1}*~"~! be arbitrary. By the induction hypothesis there are
{0, i1 < a such that for all y € {0, 1}"

€ip, ) =g(x ~0~y) and £L(i;,y) =gx ~1~)

Take i := F(ig, i1); hence i < a. It is straightforward to verify that for all y €
{0, 1}r+l

€, y) = gx ~ )

The formula Ag(r) is Hg S0 Sl3(R) implies that 44(¢) holds, for ¢ < {a|. Take
i < a witnessing 4,(¢) (the quantifier Vx is void). Then

Vy e (0,1}, €G, y) = g(»)
We shall summarize the preceding arguments in a claim.

Claim. The theory Sl3(R) + - PHP;‘:2 proves that if a' exists, t < |a|, then there
isa All’ -definable map

£G,x) tax2 —>a
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such that for any A? -definable map
gx) : 2" —>a
there is iy < a such that
Vx <2/, £(ig, x) = g(x)

Now we are ready to obtain the contradiction from the existence of the map F.
Take ¢ := |a| and consider the A’l’—deﬁnable map i : 2' = a — a defined by

i, ifeU,i)#i
h(i)=10, ifé@,i)=i and i#0
1, ife@E,i)=i and i=0
By the previous observation above there is i < a such that
Vy <a, £p, y) = h(y)
and, in particular
L, in) = h(ip)

which is impossible by the definition.
This shows that Sl3(R) proves — PHPZ2 assuming a’ exists fort = |a|.
Assume now that a’ exists for r = ||a||. The claim implies that there is a All’ -
definable map £(i, x) enumerating for i < a all All’ -definable maps from 2/ to a,
that is, from |a| to a. Hence using this map we can encode sequences of numbers
< a of length < |a| needed in the definition of the function ¢’ enumerating all
AII’ -definable functions from 29! to a, and the contradiction is obtained as before.
Generally, ifr = |a|® then we use the claim k-times to obtain the contradiction.

As all maps £(i, x), £'(i, x), .. . constructed in the repeated use of the claim are
A’,’ (R), the formula 44 (r) used inits proof is I'lé’ (R) and hence the whole argument
can be formalized in Sl3(R). Q.E.D.

Theorem 11.2.4 (Paris, Wilkie, and Woods 1988).
TZ(R) - PHP(R)®
and
T7(R) - PHP(R)2*
Proof. The first part of the theorem follows from Theorem 11.2.3 and Corollary

7.2.4. For the second part let G be an injection of 2a into a. If we iterate G k-times
we get a map

GB 2k g5 q

which is A%(G)-definable.
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For k = |a] this gives an injection
F:a’—a
and Theorem 11.2.3 applies. Q.ED.

Theorem 11.2.5 (Krajicek 1992).
S2(R) i PHP(R)Y’

In fact, let f be a function such that a is eventually majorized by 2/, for any
€ > 0. Then

S3(R) i PHP(R)%(,

Proof. Assume for the sake of contradiction that
S2(R) - PHP(R)’

The formula PHP(R)Z2 is Eé’(R), and hence by Theorem 7.2.3 there is a polynomial
time machine M5 with access to a Zf’ (R)-oracle B that on input a outputs one of
the following elements:

(a) x <a?suchthatVy < a, —R(x, »)

(b) x1 <x2 <a?and y < a such that R(xy, y) A R(x2, y)

(¢) y < a suchthatVx < a?, —R(x, y)

(d) x <a?and y1 < y» < asuch that R(x, y1) A R(x, »).
We shall contradict this hypothesis by proving the following claim.

Claim. Let M® be a polynomial time oracle Turing machine with access to a
Ef(R)—oracle B.

Then there is R C a® x a such that M® on input a with the oracle B does not
output a witness to PHP(R)® .

To prove the claim assume that the oracle B(b) has the form
B(b) := 3w < t(b), N¥(w, b)

where N®(w, b) is a All’ (R)-formula formalizing (cf. Section 6.1)
“w is an accepting computation of machine N R with oracle R on input b”
where N R is a polynomial time oracle Turing machine.

Fix a large enough (we shall analyze the precise magnitude of ¢ needed later).
Start the computation of M% on a. As in the proof of Theorem 11.1.1 we shall
answer the oracle queries and construct the approximations Rgr , RI‘L, ...to Rand
Ry, R ,...10 (a2 x a) \ R. Put Ra" = Ry = . Assume that after i queries
[B®1)?],...,[B®:)?)wehave Rf S Rf € ...C Rrand Ry C Ry C--- C
R satisfying for j < i the conditions

L RFNR =0
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2. R}L is a graph of a partial 11 function from a? to a
3. |Rj?L U Rj_l < j-ty(tn(lal)), where tpr(n) and ¢ (n) are the time bounds
of the machines M and N.
4. Forany § 2 Rf', SN R, = () that is a graph of partial 1-1 function from
a’ to a, the oracle answer to the queries {Bs(bj)?], j=1,...,1i,are fixed
as given in the construction.
Let [ B(b;+1)?] be the (i + 1)-st query. Consider two cases:
(i) Thereis S D Ri"' , SN R, = (@ that is a graph of partial 1-1 function from
a’*toa,and w < t(b;;) such that N¥(w, b;;1) holds.
(i) otherwise.
In case (i) answer YES. Extend R,.+ (resp. R;) to RitLl (resp. to R, ;) by adding to
it all pairs (x, y) € a® x a such that [S(x, y)?] is a query in the computation w and
is in w answered affirmatively (resp. negatively). As there are at most 7y (¢tn (|a]))
such queries, the sets R;:_l, R; ., will satisfy condition 3.
In case (ii) answer NO and put R}", | := R} and R, | := R}
Clearly R;:_l, R, satisfy all four conditions 1-4.

Let R := R,.Jg , for ip the last query, and run the machine M® on input a. It
cannot output x) < x3 < a? and y < a such that

R(x1, y) A R(x2, ¥)

as R is a partial 1-1 function. Assume it outputs xo < a?, which should be a
witness to

Yy <a, =R(x,y)
But by condition 3
IRY U R™| < ty(lal) - tn((lal) = 1a]°V < a
so we can always find yp < a such that
R := RU{(x0, y0)}

is a partial 1-1 map disjoint with R; . This means, by condition 4, that M B(R)
would on input a output the same xp < a2, but now

Iy < a, R'(x0, y)

This shows that no output of such a machine can satisfy (a) or (b). Analogously
the output cannot satisfy (c¢) or (d) either. Hence the machine does not witness
PHP(R)?.

For the second part of the theorem note that earlier we needed only that

tn(n) -ty () = n°Y < f(a)
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where n = |a|, that is, that for any k¥ < » we can choose a large enough that
lal* < f(@)

That is
a <2/@"*

Q.ED.
Asthe formula PHP(R)g2 is VZ%’ (R), lasttwo theorems imply the next corollary.

Corollary 11.2.6. The theory T22(R) is not VES (R)-conservative over the theory
S2(R).
2

We shall improve upon this corollary. Let us consider now the weak pigeonhole
principle formalized with function symbols f for the bijection whose graph is the
relation R and g for its inverse function. The formula WPHP(q, f, g) is

Ix <2a f(x)=a v Iy<agy) =>2a
vax <2ag(f(x)#x v Iy<a fgy) £y

Note that the formula WPHP(a, £, g) is Dé’ (f, g)-witnessed as the binary search
looking for appropriate x or y asks only glp (f, g)-questions. Recall Definition
7.5.1.

Theorem 11.2.7. The formula WPHP(a, f, g) is not witnessed by a PLS-problem.
In particular, WPHP(a, f, g) is not provable in S22( 1, 9.

Proof. The second sentence follows from Theorem 7.5.3 and Corollary 7.2.4.

For the first part assume that WPHP(a, f, g) is witnessed by a PLS-problem
P = P/&:Thatis, the locally optimal solutions s from the solution space Fp (a) are
witnesses to WPHP(a, £, 2). W.l.o.g. assume that the solution space is Fp(a) :=
{0, 1)!9" and let C/2(a, s) and N/%(a, s) be the polynomial-time algorithms
with the oracle for the functions f and g computing the cost and the neighborhood
function.

Assume for the sake of contradiction that the local optima do provide witnesses
for WPHP(a, f, g): Whenever s = (w, f1,...) € Fp(a) is locally optimal, then
w witnesses one of the four existential quantifiers in the formula WPHP(a, f, g).

We shall show that for any C/& and N/-€ there are f, g for which a local
optimum fails to provide a witness.

Fix a large enough. Call a computation of a polynomial time machine with
the oracle for f, g good if the oracle answers form a partial 1-1 map from < 2a
to<a.

Let m € N be the minimal number such that there are s € Fp(a) and a good
computation of C/-8 yielding C/8(a, s) = m. Set s, to be one such s and f, to
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be the oracle answers in some good computation of cle (a, sm) = m. Note that
fo is a partial 1-1 map and | f,,| = log(a)?V.

Extend f;, to h by adding to f,, the oracle answers in some good computation
of N/8(a, s,,) consistent with fm. Hence |k} = log(a) 0 and by our assumption

N"(a, sm) = sm

as sy, is even globally optimal.
It follows that s,, is locally optimal in every problem P/€ for all £ 2 h and
2 2 A=Y and thus it has either the form

smo= {w,f,...)

in which case f(w) > a should hold forall f 2 & or g(w) > 2a forallg 2 h=D,
or the form

Sm = (<x7y)7t|"")

in which case x # y and f(x) = f(y) should hold for all f 2 & or g(x) = g(»)
forall g 2 A(-D,

In both cases it is, however, easy to find / 2 & and g 2 (=" not obeying the
required property, as || = log(a)°V « a. Q.E.D.

From this theorem and Theorem 11.2.4 we get the following corollary.

Covrollary 11.2.8. The theory T. 22(R) is not VE{’ (R)-conservative over the theory
S3(R).

Proof. The formula WPHP(q, f, g) is VE{’ (/. g) but in a language with the func-
tion symbols £, g. If we translate the formula naively into a language with a rela-
tion symbol R interpreting R as the graph of f we get only a VZS(R)-formula.
However, a better translation into a relational language is derived by interpreting
RC2ax (Jal+1)as

R(x,i)true iff bit(f(x),i) =1
and S Ca x (la]) as
Sy, j) true iff bit(g(y), j) =1

The relation R is called the bit-graph of f.

Then the formula translates into a VZ{’(R, S )-formula. Moreover, two relations
R and S can be easily All’ -coded by one relation.

It is a trivial corollary of Theorem 11.2.7 that this formula is not PLS-5-
witnessed either, and hence the corollary follows. Q.E.D.
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11.3. An independence criterion

S. Riis (1993a) obtained a nice sufficient condition (11.3.2) for a combinatorial
principle to be unprovable in S%(R). His original proof is model-theoretic but we
give another proof of a slightly stronger statement.

Theorem 11.3.1. Assume that ® = YXx3yp(X,y), ¢ open, is a sentence in a
relational language {R} consisting of one binary relation (the case of a general
relational language is completely analogous). Assume that ® has an infinite model.

Then there are no polynomial-time machine M and NP(R)-oracle A(u) (i.e., a
2]b (R)-formula) such that for every finite structure ([0, a], R) given as an input to
M the machine queries A evaluated in ([0, a}, R) and eventually outputsx € [0, a]

satisfying
([0,a], R) E VY= (X.)

In other words, the formula
Ix <a¥y <a, —¢(X,7)

is not witnessed by a polynomial time machine with an NP(R) oracle.

Proof. We shall follow the idea of the proof of Theorem 11.2.5. Let (K, Rg) be
an infinite model of ®.

Let M be a machine running in time < nt

, n = |al; let A(u) have the form
A(u) = Fw(w| < |u' A NR(u, w))

where N ®(u, w) formalizes that
“w is a computation of the polynomial-time machine N on the input u
working with the oracle R.”
For any w, |w| < |u|’, there are Dy, C [0,a] and R, € Dy, X Dy, such that
for every R C [0, a]? satisfying

Ry CR A (DE\R)NR=0

the truth value of N®(u, w) over the structure ({0, a], R) is fixed. We say that
Dy, Ry, forces that truth value. Note that | D,y < n’.

Start a computation of M on a, a sufficiently large. We claim that there is a
sequence of D; € [0,a]l R; € D; x D; and

Fi : (Dy, Ri) — (K, Rg)

fori =0,1,...,satisfying
1. |Dil<i-n'
2. D; € Diy1, R S Ript, (D2\R)NRiy1 =0

3. FiiDi=F
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4. F; is an embedding and
Vx,y € Di, Ri(x, y) = Rk (Fi(x), Fi(y))

5. forall R C [0, a]2, R; € R, and (Di2 \ R;) N R = 0, the truth values of
first i queries A(u1), ..., A(u;) in ([0, a], R) are fixed.
Set Dy = Ry = Fy = (. Assume that we have (D;, R;, F;) and that [4(u)?] is
the (i + 1)-st query. Consider two cases.

(i) There is w, |w] < |u|* such that
(@) (Dy, Ry) forces A(u) be true
(b) R = R; UR, satisfies (D?\ R)NR=0
(c) there is an embedding

F:(DiUDy, Ri URy) — (K, Rg)

suchthat F | D; = F;

(i) otherwise

In Case (i) set D; := D; U Dy, Riy) := R; U Ry, and Fjy := F, answer
the query affirmatively, and resume the computation of the machine.

In Case (ii) set

(Di+l» Ri+11 E+1) = (Div Ri’ E)

answer the query negatively, and resume the computation.

Conditions 1—4 are satisfied trivially; 5 is true as we prefer, by Case (i), the
affirmative answer to the negative one.

Let (D, R, F) = (Dy, Ry, F;,) be the last triple in this sequence, so iy < n'.
Let X be the output of M; w.l.o.g. we assume that X is disjoint from D. Letx’ be
any tuple from K disjoint with the range Rng(F') of F.

As (K, Rg) = @ there is a tuple ¥’ such that

(M, Ry) = ¢(3",5)

Again w.1.0.g. assume 3’ is disjoint with {x '}U Rng(F). Pick any ¥ disjoint with
{X} U D (this is possible as | D| < n®*" « a) and extend R to R’ such that the
embedding

(%, % D), R) — (¥, 7, Rng(F)), Rg)

extends F.

This R’ fulfills the hypothesis of condition 5 and so M outputs ¥ when the
queries are evaluated over ([0, a], R’). But ([0, a], R)) = ¢(X,¥), so X does not
witness Ax Vy—¢(x,y). Q.E.D.

Note that the same proof shows a slightly stronger (a nonuniform version) state-
ment with the Turing machine M replaced by a witnessing test tree satisfying the
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conditions of Lemma 9.5.3. Examples of the weak pigeonhole principle formu-
lated with a relation symbol and with function symbols show that the theorem is
not valid for formulas in language with function symbols (cf. the discussion before
Theorem 11.2.7).

Theorem 11.3.2 (Riis 1993a). Let ® = Vx3y ¢ (x, y) be a first order sentence
in a language L' (not necessarily relational) disjoint with L and assume that it
has an infinite model (we do not require ¢ to be open).

Then

S3(L'Y W 3Ax < a¥y < a, ~¢=9(x, y)

where ¢=° denotes ¢ with all quantifiers bounded by a.

Proof. Assume ¢(x, y) has the form
Yuidvy .. Vug3dvg, Y(x, y,u,v)
Let &g be the skolemization of ¢
s :=Vx,uy, ..., ux, ¥(x,y/Gla,x), @, vi/Hia, x, ul,... u))

For every r-ary function symbol f(zy, ..., z.) in ®g consider a new (r + 1)-ary
predicate symbol Ry and a formula Def(Ry)

VYzy,...,z.3dt, R(z1, ..., Zp, 1)

AVzZi, ozt ta, Rz, ooz, )AR(ZL, o 2 ) > =1

and replace in @ the occurrences of f using Ry without an increase of the quan-
tifier complexity to get a formula ®’. For example, replace a negative occurrence
of a formula like P(f(2)) in ®g by 3¢, Ry(z,¢) A P(t) and a positive one by
Vt, Rp(z,t) — P(r). Hence <I>:? is also universal.

Take a formula @, to be the conjunction

s A /\ Def(Ry)
!

/S ranging over the function symbols of ®g. The formula & is thus V3.

If ® has an infinite model, so does <I>g- and ®,|. By Theorem 11.3.1 the formula
(—®re1)=? is not witnessed by a machine with an NP(L") oracle, where L” lists
all relations of ®ey. Hence by Theorem 7.2.3 (—®yet) <? is not provable in S% .

Take a model M of S22(L”) in which

(M, L”) |= ((brel)<m

holds for some m € M. The relation symbols R, of L” satisfy in M the conditions
Def(Ry). Hence Ry is a graph of a unique function; denote it f.
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Expand M to M’ by these function symbols. Clearly then
M = (9s)™"
and hence also
M = (&)"

We have to show, however, that M’ is still a model of S? in the language L”
extended by the function symbols f. This follows from a simple observation that
any Zg-formula in this extended language is equivalent in M’ to the Eé’(L”)-
formula because an atomic formula f(z) = ¢ is equivalent to a A’l’ (L")-formula
(same as previously). Q.E.D.

Corollary 11.3.3. None of the following principles is provable in S%(L’ ):
1. the weak pigeonhole principle PHP(R)Z2
2. the modular counting principle MODy (R, S ), formalizing (for fixed stan-
dard k) that for each a at least one of the following properties must fail:

(@) Risapartitionofa = {0,...,a— 1} into k-element classes
(b) S is a partition of a \ {0} into k-element classes

3. no linear ordering R of [0, a] can be dense
4. every linear ordering R of [0, al has a least element

Proof. By Theorem 11.3.2 it is enough to construct infinite models for the nega-
tions of the principles. This is trivial for all of them (interpreting a2 as a x a).
Q.E.D.

Before the next theorem recall that in S» we can code sets of size < |a|f (cf.
Section 5.4).

Theorem 11.3.4. Let ¢(S) be a first order sentence in the language L' disjoint
with L, and let L' contain a unary predicate S. Assume that there is an infinite
structure K for L'\ {S} such that for every finite S € K

(K, S) = ao(S)
Then for every k
S3(L)y #3S [0, a), IS| < lal* A =p=(S)

Proof. We shall indicate how the proof of Theorem 11.3.1 can be extended and
leave the extension of the proof of Theorem 11.3.2 to this case to the reader.

We want to show that no polynomial time machine M with access to an NP(L")
oracle evaluated over an (L’ \ {S})-structure with the universe [0, a] can, given as
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input a, output S C [0, a] such that

(i) 18] < log(a)t

(i) —~¢=2(S) holds in [0, a].
Choose a large enough and construct (L \ {S})-structure on [0, a] as in the proof
of Theorem 11.3.1, utilizing the embeddings into the given infinite (L’ \ {S})-
structure XK.

Assume that M outputs S, that is, a list of < n* elements of [0, a], |a] = n.
Then ¢=9(S) cannot hold in [0, a] as the image F”S of S in the embedding into
K would be a finite set satisfying ¢, which contradicts the assumption. Q.E.D.

Corollary 11.3.5. None of the following true principles is provable in S%(L’ ):
1. every binary tree R C [0, a] has a path of length < [log(a)]
2. every vector space V C [0, a] over F2 has a basis of size < [log(a)]

Proof. The corollary follows from Theorem 11.3.4 as there is an infinite binary
tree without a finite path and no infinite vector space over F; has a finite basis.
Q.E.D.

The following statement is a bit surprising.

Theorem 11.3.6. Let ¢(S) be a first order sentence in the language L’ disjoint
with L and assume that for some £

L) F3SS[0,a], 18] < [a]® A =¢=4(S)

Then, in fact, for every k:

M E35 S [0,a),18] < 1a|® A =¢(S)
is true in every finite (L’ \ {S})-structure M on [0, a], a < w, where |a|® is the
length function k-times iterated.
Proof. Assume that the conclusion is not valid: That is, for arbitrary largea <
there is an (L’ \ {S})-structure on [0, a] such that

M EVS S [0,a) 18] < 1al® — ¢(5)

As |a|® eventually majorizes any constant, by compactness there is an infinite
(L' \ {8})-structure K such that for any finite set $ C K

(K,S) E ()

The theorem then follows as in the proof of Theorem 11.3.4. Q.E.D.
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11.4. Lifting independence results

In this section we develop a method, utilizing Sipser’s functions (cf. Section 3.1),
to lift the independence results for the theories Sg (a), Tzi (o), i = 1,2 to higher
i > 2. In this way we shall lift Theorem 11.2.5, a version of the weak pigeonhole
principle, but similar arguments work for the principles from Section 11.3.

The idea is the following. Formula PHP(R)Z2 isa VES (R)-formula provable in
T. 22(R) but not in S%(R) (Theorems 11.2.4 and 11.2.5). For technical reasons we
shall represent the numbers x < a? by pairs of numbers x, x» < a, and we take
the weak pigeonhole principle WPHP(a, R(x, y, z)) in the form

= (Vuj,up < aillw < aR(up, uy, w) A Yw < aluy < up < aRuy, uz, w))

formalizing that 3u, uy < a, a-u; +uz = x A R(uy, up, y) is not a graph of a
bijection between a?> = a x a and a.
If we replace the predicate R(x;, x2, y) by a formula wg(a, X, )

1/fg(a,x, y) =Vzi<adzp <a...Qzy_1 <a

12
Q'zq < (@29&) . alx, x2, y,Z)

where « is a (d + 3)-ary predicate (and £ a constant to be specified later), the
formula PHP( R)g2 becomes a Eé’ +q(@)-formula and just substituting wﬁ (a,x,y)
for R(x,y)inaT. 22(R)-proof of PHP(R)Z2 shows that it is provable in T. 22+d (o)
(as AII’(R)-formulas transform into All’ q(@)-formulas).

We want to argue that WPHP (v 5 (a,x, y))Z2 isnotprovable in S§+d (o). Assum-
ing otherwise, Theorem 7.2.3 implies that WPHP(Wﬁ (a, x, y))g2 is witnessed by a
Df +q(@)-function: by a polynomial time Turing machine M querying a Elp ra(@)-
oracle. For a fixed sufficiently large input a we want to find « such that M fails
to output the required witness. Using the partial restrictions from Section 10.4 we
collapse all possible E]” +q(@)-queries to something analogous to Z{’ ()-queries,
and at the same time the formula WPHP(]//j (a,x, y))g2 will almost cotlapse to
the original formula WPHP(R)Zz. finally an argument analogous to the proof of
Theorem 11.2.5 should give the wanted contradiction.

Now we present these ideas formally. We shall work with Boolean circuits with
atoms of the form

m log(m)>l/2

Pxy.x2.v,21. 00021 for xp,x3, Vo2l s Zicr <m, Z; < ( B

The set of all these variables is denoted B'*¢(m).
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Recall from Definition 10.4.6 the space of random restrictions R, R, with
B (m) partitioned into classes of the form

172

Dxy.x2,9,2) 000221t [t < (@) ]
and the deﬁmtlon of the restricted circuit C*, for p € R+ orp € Ry . Definition
10.4.8 of 2 -c1rcu1ts is used in the same form except that atoms of the circuit
are from B" ‘(m) now.

Hastad’s two Lemmas 10.4.7 (converting a depthd Sipser function into depth
d — 1 one) and 10.4.9 (switching a Z ClI'Clllt intoa Z 1 Circuit) hold literally,
with the same choice of the probablhty q.

Definition 11.4.1. Fix i and £. A circuit-oracle is a function C assigning to any
natural number u a Boolean circuit C,, with variables from B(m), m = m(u)
also a function of u.

For any @ C w**', the circuit oracle C defines a particular set C*

Co={u|Cy=1)
where C}; is the evaluation of C, under the evaluation of atoms
Px),x3,3,21,02i = 1 iff xuxyz1,...,z) €

For S, t, and m functions of u, a circuit oracle is called Ef ”'l iffCy € EIS,(:()“')(“)
for all u.

Note that the propositional translation (. ..) (Definition 9.1.1) of bounded for-
mulas into Boolean formulas provides a correspondence between a E,. (@)-oracle
and a Zf ' -circuit-oracle, with the functions S = log(m)O log(S), and
m = zlog(m)o(l)

Definition 11.4.2. Fixm and k, and let [m]* denote the set of k-tuples of elements
of {0,...m —1}.

A (k — u)-dimensional cylinder in [m]¥ is any set of the form
(Gtsex) € [ml 1 x =ar, X, = au)
foranyfixedi) < --- <iyanday,...,a, <m.

The notion of a cylinder is a technical one and its relevance comes from the
next theorem. Note that there are (*)m*~" many r-dimensional cylinders in [m1*.

Theorem 11.4.3. Let d > 1, let a be a (3 + d)-ary predicate symbol, and let
'//d (a,x,y) bea I’ g(@)-formula defined at the beginning of the section.
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Let A(a, R) be any Ego(R)formula with all quantifiers bounded by < a, in
which the only free variable is a, in which there are no function symbols, and in
which all variables in all occurrences of a are bounded.

Assume that M is a polynomial-time oracle machine with E]p aq-oracle B such
that M® computes on input a some witness to the formula A(a, 1//5 (a,x, y)).

Then there is a constant ¢ > | such that for any sufficiently large m there is
0C Manda Ef,tn —circuit oracle C' with variables from B%=4(m) satisfying
the conditions

1 forallu:m@u) =m, S(u) = 2M0g(m) 43y = log(m)©
2. foranyr =1, 2, 3 and any r-dimensional cylinder U in [m]?

U\ Q| =m""1/2

3. forevery R® C N> for which R® N Q = @ the machine M with the oracle
C lleo computes on input m a witness to the formula B(m, R[x1, x2, y]).

Proof. Choose m large enough so that Lemmas 10.4.7 and 10.4.9 hold with £ >
d + 4, and fix a := m. W.lo.g. we forbid as an element into any « any (3 + d)-
tuple (x1, x2, ¥, z1, . . ., zg) for which one of xy,x2, y, zy,...,z4—1 IS > m or
for which zg > (€m log(m)/2)'/2. Identify the formula 1/f§(a, X1, X2, y) with a
depth d circuit (w(f(a, X1, X2, ¥))(m) cOmputing wﬁ(a, X1, X2, y) from the atoms
of B4t(m).

Let B bethe 23 +1 (a)-oracle. Since M runs in polynomial time any u, for which
B is queried is bounded by < 21°8“"° some ¢ < w. Moreover, all quantifiers in
all such instances B(u) are bounded by numbers of the same magnitude. For
any u < 298" B(y) is computed by a circuit (B),) built from the atoms of
B%t(m); each such (B) is a T}, ,-circuit with m(u) = m, S(u) = 2'°80™°
and ¢ (u) = log(S(u)). Hence we may think of Basa 25;:1‘ -Circuit oracle rather
than a 25 4l (a)-oracle.

Choose randomly partial restrictions p; from RZ’m (gi) for i odd and from
R; . (qi) forieven,i =d,d —1,..., 1, where the probability g; is set to be

om (2(13 —d+i) log(m))'/2

m

Denote by C7 the circuit (- - - ((CP4)Pd-1) | )P,
By Lemma 10.4.9 any 25;:1, n-circuit collapses to a Zf,';l -circuit with proba-
bility at least

1=8-(6) Y gl = 1-8-(6 -d-q}
I<i<d

(as g4 > --- > ¢q1) and hence with probability at least

)('+l

1~ 8%-d-(6gq1) = 1 —27%logtm
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this happens for all S circuits {B) ) of the circuit oracle (for m large enough w.r.t.
cand £).

To see what happens with the circuits g[/ﬁ (a, x1, x2, y) we apply Lemma 10.4.7.
Restricting the circuit by random py, . . ., p1 produces circuits

Pd—1

(l/ff(a.xn,xz,y))pd’ ((‘/ff(a,xhxz,y))”")

which with the probabilities at least 1 — (1/3)m =4+~ contain ¥'5~! (a, x1, x2, y),

1//51% (a,x1,x2,),.... There is m? of such circuits; hence after the restrictions
Pd, - - -, p2 all these circuits contain
£—d+1
wd_dil (a,x1, x2, y)

with the probability at least
> 1— %(d _ l)m—f+d+2

We have to analyze what happens with these circuits 1//f_d+l (a, xy, x2, y) after
the random restriction p; more closely to be able to establish condition 2 of the
theorem.

Assume U is an r-dimensional cylinder, r = 1, 2, 3. Analogously with the
proof of Lemma 10.4.7 (part 2) we have that with the probability at least

1 — _l_m—l+d—]+r

6
there are at least

W)‘/2 >m /2
~ >

m” (

many *’s assigned to the m” circuits corresponding to (x, x2, ¥) € U. But at the
same time, with probability at least

| - lm—8+d—l+r

none of these circuits collapses to 1. Summing up these two probabilities, with the
probability at least

1— lm—€+d—l+r
all M” circuits corresponding to U collapse to either * (i.e., to atom py, x,,)) or to
0, and at most m — m”~(/2) of them collapse to 0.
There are 3m? 1-dimensional cylinders, 3m 2-dimensional ones, and 1 3-
dimensional, so the preceding holds for all of them with probability at least

> | — mtrd+l
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By the earlier computations the Ejil,m-circuit oracle B collapses to Ef_ ',;—
circuit oracle with probability at least

1 _ 2_% |0g(m)c+l

and by the preceding with probability at least

> 1t %(d _ DmmtHH 5 gm—l+d+]

all circuits 1//!15 (a, x1, x2, y) collapse to py, x,,  or 0 with the “cylinder property”
2 of the theorem holding.

Hence for m large enough this probability is at least 1/2 and hence there is a
combined restriction n satisfying all these conditions. Finally, for some such fixed

1 put
0 i={(x1, 32,30 | Whtx1, 32, 1)) = 0}
and define the EIS”-circuit oracle C! by
Cu = ({B)w)"
QE.D.

Now we apply the previous general theorem to a particular formula.

Theorem 11.4.4. Foralld > 0, the Zé’ +d(a)-formula
WPHP (a, v, xa, y))

where 1//5 (x1,x2, ¥) (and £) were defined previously, is provable in the theory
T22+d (a) but not in Sg“"d(a).

Proof. By Theorem 11.2.4 WPHP(a, R) is provable in T22(R). If we replace
R in the T. 22(R)-proof by wﬁ (x1,x2, y), the Zé’ (R)-induction formulas be-
come Eé’ +a(@) formulas, and hence the proof becomes a T22+d(cv)-proof of
WPHP(a, Y5 (x1, x2, ).

Let d > 1 and assume for the sake of contradiction that S% +d () does prove the
formula. By Theorem 7.2.3 there must by a polynomial time oracle machine M
with accessto a Zf +d (a)-oracle witnessing the formula WPHP(a, 1//5 (x1, x2, ¥)).
By Theorem 11.4.3 for any sufficiently large m there are

@ o< mP

(ii) =;"'-circuit oracle C'
with the properties stated there, such that M with access to C,'e witnesses
WPHP(m, R) forall R C [m)’, RN Q = 0.

Now construct a sequence Ry, Ry, R{, Ry, ... € [m]? such that

I. Rf :=0and Ry :=Q
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2. RFNR =0
Ri+ is a graph of a partial 1-1 function from m x m to m
4. IR,.+ UR;| < Q|+ j-log(m)°, where c is the constant from Theorem
1143
5. Forany S C [m]?, § 2 R,.+, and SN R; = ¢ that is a graph of a partial
1-1 function from m x m to m, the oracle answers to first i queries [C 15,-?]’
j=1,...,i,are fixed.

This sequence is constructed identically to the sequence in the proof of Theorem
11.2.5, noting that if a Zi ,’n -circuit oracle is true, its truth can be forced by < ¢
values of some atoms.

Let Rt = R;'(; and R™ = R be the last pair in the construction, so in
particular:

w

[(RTURT)\ QI <o - log(m)° < log(m)*
Hence the cylinder condition 2 of Theorem 11.4.3 implies that for every cylinder U
IUNRTURD| = m'? —log(m)* > 1

Now assume that M with the oracle C},2+ on the input m outputs u|, u2 < m
that should witness the formula; that is, it should hold that

Yv < m, -R(uy, uz, v)
Take the cylinder U
U:= [(xl,xz,y) € [m]3 txy =up, x3 = u2]
By the previous discussion there is at least one v < m such that
(uy,u2,v) ¢ R™
Hence for
R := RT U {(uy, u2, v)}
machine M with oracle C}e on input m also outputs pair (], u3), but now
Jv <m, (U, uz,v) € R

Candidates of witnesses for the other quantifiers of the formula WPHP are treated
similarly. This concludes the proof. Q.E.D.

Corollary 11.4.5 (Buss and Krajicek 1994 ). For any i > 1, the theory Tzi (@) is
not VZ;’ (a)-conservative over Sé (a).

Corollary 11.4.5 reduces the case i > 2 via Theorem 11.4.3 to the base case
i = 2. We could, however, also reduce it to the base case i = 1 and argue in
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the base case in analogy with Theorem 11.1.1. Or to use a more elegant version
of the herbrandization of the induction axioms for a ):f (a)-formula, the iteration
principle from Buss and Krajiéek (1994)

O<fOAYX <a,x < fx)—> fx) < f(fx)) — Ix<a, f(x) 2a

Theorem 11.4.3 has to be modified to be applicable to formulas with function
symbols. The main difficulty is that after the series of the restrictions the bit-graph
of a function is determined to such an extent that the values of the function are
determined for most arguments as well. That leaves no room for a diagonalization.

This technical problem can be overcome; we refer the reader to Chiari and
Krajicek (1994). Here we confine ourselves to stating without proof the main
application of the modified lifting method.

Theorem 11.4.6 (Chiari and Krajicek 1994 ). Foranyi > 2, the theory Tzi () is
notvVu l.b_l (a)-conservative over Sé (@).

11.5. Bibliographical and other remarks

Section 11.1 is based on Krajicek (1992); earlier Buss (1986) contained a separation
of S2I (f) and T22(f). Paris et al. (1988) prove WPHP in [ Ag + £21; the analysis
of the proof gives Theorems 11.2.3 and 11.2.4. Theorem 11.2.5 is from Krajiek
(1992); Corollary 11.2.6 was obtained independently by Pudlak (1992a). Theorem
11.2.7 and Corollary 11.2.8 are from Chiari and Krajicek (1994).

The content of 11.3 is essentially that of Riis (1993a), generalized and with new
proofs (the original ones were model-theoretic and applied to a language without
function symbols). One corollary of his approach that we do not derive in this way
was a construction of a model of T. 2' (R) in which S%(R) does not hold.

The content of Section 11.4 is based on Buss and Krajiek (1994), which ex-
tended a construction from Krajiek (1993). Theorem 11.4.6 is from Chiari and
Krajicek (1994).
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Bounds for constant-depth Frege
systems

Constant depth Frege systems, or equivalently constant-depth LK systems (re-
call Definition 4.3.11), are the strongest systems for which some nontrivial lower
bounds are known.

We present these bounds in this chapter. We shall start with the known upper
bounds, however, to get an idea of the strength of the systems.

12.1. Upper bounds
Theorem 9.1.3 and Corollary 9.1.4 can be used as sources of the upper bounds for
constant-depth Frege proofs: To assure the existence of polynomial size constant-
depth F-proofs of instances of a combinatorial principle (and generally of any
translation (A4), of a bounded formula), one only needs to prove the principle
in bounded arithmetic /A¢(R), or perhaps in /A¢(R) augmented by an extra
function. The results of Section 11.2 then imply the following theorems.

Theorem 12.1.1. There are constant-depth Frege proofs of size nC1°8") of the
weak pigeonhole principle PHP?" :

\//\ﬁpijv \/ \/(Pilj/\piz,i)

i<2n j<n i1<iz<2n j<n
VvV A-riv VoV iApin)
j<ni<2n 1< ja<n i<2n

Proof. By Theorem 11.2.4, I Ag(R) proves

a¥! < b - PHP(R)¥

232
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Hence by Theorem 9.1.3 the propositional formula

(a’”' < b - PHP(R)® )

a=n,b=n"

has n 080" size, constant-depth Frege proofs.
But this formula is clearly (shortly) provably equivalent to the preceding propo-
sitional version. Q.E.D.

Analogously as before, using Theorem 11.2.3 in place of Theorem 11.2.4, we
get the following theorem.

Theorem 12.1.2. For every k there are constant-depth Frege proofs of the weak
pigeonhole principle PHPZ2

\//\"PijV \/ \/(Pixj/\pigj)

i<n? j<n i|<iy<n? j<n
NAVAV AN T VARR VAV 7Y 73
J<n i<n? Ji<pp<n j<n?
O(log® (n))

of sizen

We shall mention a few more combinatorial principles: the Ramsey theorem
and the Tournament principle. We shall confine the analysis to the simplest cases
of these principles.

Ramsey theorem. Every graph with n vertices contains either a clique or an
independent set of size > (log(n)/2)

Tournament principle. In a digraph G = (V, E) with n vertices satisfying
Yo#weV,(v,w)e E=(w,v)¢ E
there exists a dominating set W C V
YveV\W3IweW,(w,v)e E
of size O (log(n)).

Note that as the sets whose existence is claimed in these principles are of a
logarithmic size, they are coded by a number of size n©(°8(") and hence, in fact,
these principles are expressible as Zgo(R)-formulas with the parameter ».

Theorem 12.1.3. The theory T. 25 (R) proves the Ramsey theorem:

IXC{0,....n~1),|X| > [%”—)J
A(Yx,ye X, R(x,y) Vv (¥x,y€ X, R(x, )
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Proof. The idea of the proofis to reduce the Ramsey theorem to the weak pigeon-
hole principle PHP(S )2" for S definable by a bounded formula from R.

Claim 1. For x, y < n define the function F(x, y) by

1, ifR(kx,y)
F(x,y)= )
0, if—-R(x,yp
Thentherearex) < x2 < -+ < xg < nandey, ...,€s—1 € {0, 1}, wheres = |n|,

such that
Vi<j<s, F(xi,x))=¢

We shall prove the claim in a sequence of steps. First we define the relation
EC{0,...,n—1}5° x {0, 1}55 by
E(x1,00 %), (€100, €0) i=x1 =0AX <X < - <X
ANk+1=jAYu <v < j, Flxy, xy) =€,

AVu < jVy <xyr v < u, Flxy, y) # €
The last conjunct means that x4 is the minimal x,,4.; such that
Yv <u, F(xy, Xy11) = €

Note that E € l'[ll’ (R) as u, v are sharply bounded.

We want to show that for some ¥ = (x1,...,xs) and € = (€1, ..., €5_}) the
relation E(X, €) holds. For the sake of the construction assume that there is no
such ¥ and €. We want to define a function

H:n— {0,151 (<n/2)

which will be 1-1 and hence will contradict the weak pigeonhole principle.
Define H by
1. H0):=0
2. for} < x < nput

H(x) =y
where y = (€1, ...,¢;) € {0, 1}/, j < s, is the lexicographically minimal
y (with minimal ;) such that
Iy <.ooxj <x, E((xy,...,x7,%), )

Note that H € B(Ef(E)): Thatis, H € B(Eé’(R)).

The range of H is included in {0, 1}*~! (that we identify via the dyadic rep-
resentation of numbers with n/2) so it remains to prove that H is defined on the
whole n and that it is 1-1.
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Let Hx) = H((') = y, where y = (€1,...,¢€j) and let it hold for

X=(1...,x,X) andf’:(x;,...,xj'.,x’)

E(X,y) A E(X', y)

Then we show x; = x,f by induction on i: It is true for i = 1 (as x| = x{ = 0)
and if x; = x{, ..., x; = x; then necessarily x; 1| = x;+, as x;4| is determined
by x1,...,x; and €1, ..., €;. This shows that H is 1-1.

To show that H is defined everywhere on n let x < n. If x = 0 then H(x) is
the empty word, that is, 0. Let 0 < x < n. We define the sequence x1, x3, ... and
€1,€2,...by

1. x1:=0, € = F(xy,x)
2. x;jy1 1s the minimal y > x; suchthatfor j = 1,...,{

F(xj, y) = ¢

3. €41 = Fxiqy, x)
Clearly forall i : E((xq, ..., Xj+1), (€1, ..., €)); hence if x; 41 = x it holds

H(x) = (€1,...,¢€;)
Assume thatx; £ x fori = 1,...,s — 1. That is,
X] < o< Xg] <X

Take x; < x to be the minimal z < x such that

X| < < Xg_] < 2Z
and
F(x;j,z) = ¢, i=1,...,s—1
Butthen E((xy, ..., Xs), (€1, ..., €s—1)) holds, thus contradicting our assumption

that there are no such X, €.
This means that in the construction x; = x, some i < s. That is,

H(x) =(e1,...,€), somei < s

Hence H is defined everywhere on n.

By Theorem 11.2.4, T22(H ) and so T25 (R) proves that such H cannot exist.
This proves the claim.

To prove the theorem take x|, ..., x; and €1, ..., €, such that

E(x,€)
and let

A:={x;|€ =0}, B:={x;|€ =1}
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Then either |A| > (s/2) or |B| > (s/2), and 4 is an independent set while B is a
clique in the graph ({0, ...,n — 1}, R). Q.E.D.

The propositional version of the Ramsey theorem is a formula built from (3)
atoms p; j, (i, j} € {0,...,n — 1},i # j and has the form RAM,;:

\/ ( /\ Piyiy Y /\ _'Piu,iv)

|<w<ig<n \USVES U<v<s

where s = L%"—)J. The length of RAM,, is O(n'o8™ . log(n)z).

Corollary 12.1.4. The formula RAM,, has constant-depth F-proofs of size
pOUog(®) _ IRAM,, |0(1)

Proof. From the previous theorem follows, via Corollary 9.1.4, the bound of the
form n'98™°" The bound n?108M) comes from the inspection of the proof of
the Theorem 11.2.4 showing that in the T Z,Z(R) proof of PHP(R)%“ we use only
numbers of size < O(a#a) = aP0og@) Q.E.D.

Despite the fact that proofs of the Tournament principle are similar to proofs of
the Ramsey theorem, it is open whether it is provable in bounded arithmetic. This
would be interesting to know in relation to the proof of Lemma 10.2.2.

12.2. Depth d versus depth d + 1

In this section we shall prove the exponential lower bound to the size of constant-
depth LK-proofs. We shall also show a superpolynomial speed-up of the depth
d + 1 system over the depth 4 system, which demonstrates that the depth d system
does not polynomially simulate the depth d + 1 system (w.r.t. to the proofs of the
depth d formulas). Note that by Theorem 4.4.15 constant-depth LK-proofs and
constant-depth F-proofs are equally efficient, though the depth in LK (resp. in F)
proofs might differ by a constant.

We shall begin with a slightly refined version of Theorem 12.1.2. In this section
we shall denote the propositional version of PHP by PHP(A4, B) to stress explicitly
the domain 4 and the range B of the map; this is because these will not always
have the form of an initial interval of numbers.

For technical reasons we shall work with set =PHP(A4, B) of the formulas

1. Vjep pij, foreachi € 4
2. —=pik vV —pji,foreachi # j, i, je Aandk € B
3. Viey4 pij, foreach j e B
4. —=p;j vV —pig,foreach j# k, j,ke Bandi € 4
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and we shall study the LK-refutations of — PHP(A4, B), that is, the LK-proofs of
the empty sequent from axioms of — PHP(4, B).
Recall that we identify n with {0, ...,n — 1}.

Lemma 12.2.1. Let0 < € < 1, and let A and B be two sets of sizes |A| = [n'*€]
and |B| = n.

Then there is an LK-refutation of = PHP(A, B) of depth 1 and length at most
n©0Ue™)  Moreover, every formula in the LK-proof is either a conjunction or a
disjunction of size at most O(log(n)).

Proof. By Theorem 11.2.4 the theory T, 22(R) proves PHP(R)ﬁZ. Assume that S is
a graph of bijection between n!*¢ and n. Identify n!*€ with the set n x n¢ and
n'+2¢ with n'*€ x n€, and for (i, j) € n'*€ x n¢ define the function S' by

S'G, j) == S(SG), ))

Then S' is a bijection between n'*2¢ and n.

Similarly define the maps S* between n'+2°€ and n. For k := Mog(e 1)1, §*
is a bijection between n? and n, and it is clearly Af (S )-definable.

By the preceding T22(S k), and so T22(S ), proves PHP(S );’,He.

Moreover, in the proof of Theorem 11.2.4 only numbers of size at most #0108
are used; in particular, all quantifiers in the 7. 22 (S)-proofare bounded by n Odlog(n))

By Theorem 9.1.3 and Corollary 9.1.4 there is a constant-depth LK-refutation
of =PHP(n!*¢, n) of size 9008 Moreover, the proof of that theorem gives a
depth 3, treelike refutation in which every depth 3 formula is a disjunction, and
the number of formulas in any sequent in the refutation is bounded by constant ¢
independent of n.

Claim. Assume that a sequent of the form
1 k 1 1
v¢il,~”,\,/¢ik’r_~)A,\./wjl’...,ij[
i 173 A Je

occurs in the refutation, where I', A are cedents of depth < 2 formulas, and other
formulas are depth 3.
Then for any choice of i1, . . ., iy the sequent

1 k 1 2 4
¢il,...,¢ik,r_)A, ‘/Il""’wl""’wl""

has a depth 2, treelike LK-proof m;, .. ;, from the axioms — PHP(n'*<, n), of total

size at most

.....

D] yeees i
The claim is readily established by induction on the number of inferences in
the original refutation above the sequent, utilizing the existence of the constant c.
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Analogously with Lemma 4.6.4 any depth d + 1 treelike proof (of a depth d
sequent) can be transformed with only a polynomial increase in size into a depth
d proof of that sequent (not necessarily treelike).

By the claim applied to the last sequent of the refutation there is a treelike,
depth 2 refutation of — PHP(n'*<, n) in which every depth 1 subformula has size
O(log(n)). Hence there is a depth 1 refutation (not necessarily treelike) of size
n9U0g) "in which every formula is of size at most O(log(n)): That is, it is a
conjunction or a disjunction of size O(log(n)). Q.E.D.

As in Sections 10.4 and 11.4, a formula & 1s 25", d > 0, if it is equivalent to a
formula v having the properties
L. dp(¥) <d+1,
2. ifdp(y¥) = d + 1 then the outmost connective of ¥ is \/
3. v has < S subformulas of depths 2,3,...,d + 1
4. all depth 1 subformulas are (conjunctions or disjunctions) of arity at
most ¢.
A formula is Hg" iff its negation is 25”. A formula & is Aj if both & and —§ are
expressible as disjunctions of conjunctions of arity at most ¢, that is, if they are
both T},
For d, n > 1 arbitrary and any atom p;;(i € 4, j € B) let Sl.‘ji.’” be the depth d

RO )

Sipser function built from the atoms p:;

d.n [ yeees i
Si,jn = /\ \/ Qid<n P,’} i
i\<n iz<n
where Q is /\ iff d is odd. Ford = 0, let Sifij‘.” be just p;;. Let Var(Si‘fj‘.” ) denote
the set of the atoms of Sifij’.".

Recall also that for a formula ¢ and a restriction p, ¢ denotes the restricted
formula.
We will make an essential use of the following technical proposition.

(/3

Lemma 12.2.2. Let c,d,n > 1 and |A| < n?, IBl < n Let§ < 2" and
t =log(S).

Assume that \ry, ...y, are formulas from 25” U 1'15” with the atoms from
v=Uy Var(Si‘j’”) such that

dolil<S

i<u

Assume moreover that Uy, ..., U, € A x B are any sets, r < n°.
Then there is a map p

p: V= 1{0,13U(pjlicd, jeB)

satisfying the following conditions:
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1. all formulas ¢F are A}, i <u
2. foralli € A, j € B, the formula (Si‘;’")p is either 0 or p;;
3. forevery Uy, s <r, forat least \Us| - n=/? pairs (i, j) € Uy it holds that

(S,f;’")p = pij

Proof. The proof of this lemma is almost identical to the combinatorial part of
the proof of Theorem 11.4.3 where sets Us are in place of cylinders. It utilizes
Hastad’s switching Lemma 10.4.9 analogously to the proof of Lemma 10.4.10.

Here is a brief sketch; the details are left to the reader.

Foreachi € A4, j € B, (By), partition the set Var(Si‘j’”) into 79! classes of
the form

{pll:;,...,id_hl

one foreach iy,...,iz—1 < n.

For each i € A, j € B, the probability spaces of random restrictions R,T; (),

It < n}

R,.; (q) are defined for restrictions of atoms from Var(Si‘ji.‘"). Hence for different
i, j these restrictions are independent.

The random restrictions that are applied to ¥y, . . . ¥, are disjoint unions of p;;
independently drawn from RI.J;/ ().
The rest of the argument is similar to that of Theorem 11.4.3. Q.ED.

Definition 12.2.3. The X.-depth of an LK-proof'n of length S = |r| is the minimal
d such that every formula in w is from )35" U Hg",fort = log(S).

Theorem 12.2.4 (Krajicek 1994). Letd > 0,n > 1,1 > ¢ > 0, and let A, B be
two sets of size |A| = n'*€ and | B| = n. For sufficiently large n the following two
statements are valid:
1. Every Z-depth d, treelike refutation of the set — PHP(A, B)(pi;/ Si‘j‘")
must have size at least

1/5
> on/

2. There are X-depth d, sequencelike, and Z-depth d + |, treelike refutations
of the set ~ PHP(A, B)(pij/Si‘Ji.‘") of size at most n©1og()

Proof. Fixd,n, € and A, B satisfying the hypothesis. We shall need the following
modification of the pigeonhole principle.
Let

r : A — exp(B)

be a function satisfying
@) |r@)| =n'/?, foralli € A4
) rCD()| = nit€ forall j € B, where REV(j):={i € 4| j € r(i)}.
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Then we define modified PHP, - MPHP(A4, B, r) to be the set of sequents
— —pik vV =pik, fori# jed, ker@nr())
—> Diji»--+s Dijp, forie€e A, r@ ={ji,...,Jjr}
— —pijVopi, forj#Fker(),icAd
—> Diyjs--es Piyjs forje B, rCOGY =iy, ..., is)

We shall prove the first part of the theorem now. Assume that 7 is an LK-
refutation of = PHP(A4, B)(Sl.‘j.'") that is treelike and has size S = |7 | < 2" '

Let 1, ..., ¥, be all formulas occurring in 7 (hence >_,_, [¥i| < 5) and let
Ui, ..., U, listall n'*€ 4 n 1-dimensional cylinders in 4 x 23, that is, sets of the
form {i} x Bor 4 x {j}.

By Lemma 12.2.2 there is a map p

p o Var(SE") = {0, 1, pij}alli, j

such that
(i) all yf are A%, t = log(S)
(ii) (Sd ")* is 0 or p;;
n =1
(i) 1{G, j) € Us | (S5™)° = pij}l = n™2 - |Us.
Define amap r : 4 — exp(B) by

r@) = 1 (S5 = pyj)

Note that the map r satisfies (a) and (b).

Proof”, with every ¥; replaced by llfp is arefutation of — PHP(A, B)((Sd ey,
This implies that there is a treelike LK-refutation 7’ of = MPHP(4, B, r) such
that:

1. |7’} < S4n°@

2. every formula in 7’ is A, ¢ = log(S)
This is because all formulas from —PHP(A, B)((S a, Py follow from
—~MPHP(4, B,r) by a treellke LK-proof of size n?@ m which all formulas
are A (just note that every (S, I. 1 ")# is proved to be either 0 or p;;, depending on
whether j ¢ r(i) or j € r(i)).

To finish the proof of the first part of the theorem it suffices to show that
-~ MPHP(A4, B, r) cannot be refuted by an LK-proof satisfying 1 and 2.

Claim. For n sufficiently large, r : A — exp(B) a map satisfying (a) and (b), and
7" a treelike LK-refutation of —~ MPHP(A, B, v) satisfying 1 and 2, it must hold
that

S>> 2n1/4<(l/2)

For a binary tree T labeled by formulas or sequents (proof trees are examples
of such trees) and a the node, denote by T¢ the subtree with the root a and with
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the label of a changed to 0, and denote by T, tree T \ T¢, with label of a (now a
leaf) changed to 1.

We shall use a simple combinatorial fact that in a binary tree T there is node a
such that

2 2
IT"IS§ITI and |T,| = 27|

where | T| denotes the number of nodes in the tree (cf. Lemma 4.3.10 or the claim
in the proof of Lemma 9.3.2 taken from Spira theorem 3.1.15).

To prove the claim we shall construct a sequence of binary trees 7' (1), T'(2), . ..
obtained from the original LK -refutation =’ satisfying the hypothesis of the claim,
and a sequence (R, Ry), (RT, R{), ... of pairs of subsets of 4 x B satisfying

1. RF¥NR; =0
2. |RFURS|<u-t
3. (i,j)e R — jer®

Put 7(0) := 7’. Assume that we have T(0)..., T(i). To construct 7( + 1)

find in 7 (i) a sequenta = I" — A such that

2 2
1T < §IT(i)l and |T(i)al < ng(i)I

Now distinguish two cases:
(i) thereis S C A x B such that

(@ SD2R'and SNR =0
(b) Sisa graph ofa 1-1 function from 4 to B
©) ,jeS—jer@
(d) the evaluation
1, if@,j)esS
Pi=Vo, ifG jes
makes the sequent I' — A true.

(i1) there is no such S.

In case (i), as I’ —> A is equivalent to a Zf"-formula (the disjunction of the
negations of the formulas from I' and of the formula from A), pick R,.J:Ll c S,
R;:_l 2 Rl.+ and R, NS =0, R, 2 R satisfying conditions 1-3 (in particular,
i (R,.“fH UR DN\ (Rl.+ U R;") | < 1) forcing one of the disjuncts of size < ¢ of the
T -formula to be true. Also set

TG+1):=T(®),

and label a by 1.
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In case (ii) define R,.JfH = R,.+, R;, | = R; and put
TG+ 1):=T3G)"*

and label a by 0.
We obviously have the following two properties:
4. the nodes of T(i) are labeled by the sequents of 7’ or by 0, 1
5. ITOI<G)-§
Let T'(£) be the last tree in the sequence: That is, T (£) is one node. We have
6. £ <logy/»(S) <t-logy;(2) <2t
7. the node T (£) is labeled by 0 and was an initial sequent [1 — X of 7’
8. forevery S C A4 x B satisfying (a)—(d) with i = £, the evaluation

1, if@,j)es
Pi=Yo, ifta j¢s

makes [1 — X false.

Condition 6 is obvious (from 5); 7 and 8 are proved by induction on i (the root
of every T (i) is labeled by 0 and any S satisfying (a)—(d) makes the sequent in
that node of 7’ false).

It follows that [T — X must be a sequent of the form

—> Diji» -+ Pijy
forsome i € 4, r(i) = {ji,--., jr} or of the form
—> Diyjr-+s Digj
for some j € B, r=V(j) = {iy, ..., is).
But
IR7I <€t
So for
€.t <n'/? <vr

if i ¢ dom(R;) we can find j € B such that (i, j) ¢ R; . This shows (as £ < 2¢)
that if

2.¢2 <nl/?

no RZ“, R, can force that all S considered make the first sequent false. Similarly
no S can force the second sequent to fail. Hence we get

a1

t>n
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and

s> 2n'/“.(1/2)

This proves the first part of the theorem.

To prove part 2 note that substituting S,.‘j.’” for p;; in the refutation guaranteed
by Lemma 12.2.1 yields a Z-depth d refutation of —PHP(4, B)(Sl.’j.’") of size
pOdogm) Q.ED.

Corollary 12.2.5. For any d > 0 there is a superpolynomial speed-up (m ver-
sus exp(exp(£2 (log]/ 2 m)))) between the sequencelike and the treelike -depth d
refutations of sets of depth d sequents.

We conclude this section by a problem.

Open problem. Is there a constant ¢ > 0 such that for every d > c there is a

sequence of sets (T, ,fi )n of depth < ¢ sequents of the total length n®) satisfying
(1) any X-depth d, treelike refutation of Tf must have the size exp(n®()),
(ii) Tnd has more than polynomially shorter L-depth d + 1, treelike refutations?

12.3. Complete systems

This section is devoted to the main technical notion in the lower bound proofs
for constant-depth Frege systems, the notion of complete systems. The complete
systems generalize the truth tables or, from a different point of view, the disjunctive
normal forms or decision trees. We defer the discussion of these connections until
the beginning of section 12.4.

We shall consider two combinatorial situations, related to the pigeonhole prin-
ciple and to the modular counting principle.

Let # be a natural number and D and R two sets of cardinalities » + 1 and n,
respectively. MPHP denotes the set of partial 1-1 maps from D into R. For a €
MPHP 14| denotes the number of the pairs forming «: That is, |a| = | dom(x)| =
| mg(er)|.

Let A be a set of the cardinality a -n + 1. A partial a-partition of A isaset of
disjoint a-element subsets of 4. Let MMOD« be the set of all partial a-partitions
of A. Fora € MMOD« || denotes the number of the equivalence classes of a.

Further M denotes either AMPHP or AMODa

Definition 12.3.1.
(a) For H C M, thenorm {|H|| of H is

Hl| := ma;
[|H| Lne;;lal
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(b) The set S € M is a k-complete system iff the following conditions are
Sulfilled:

1. Ya,BeS;a#B—>aUB¢M

2 VyeM; lylsn—k—> (FaecsS, yUaeM)
3 VaeS; ¢l <k

(Note that S # @ by 2 fora = @.)

Lemma 12.3.2. The following are examples of k-complete systems:
1. Letip € Dandlet S € MFPHP pe

S:= {00, )1 Jj€R)

Then S is 1-complete.
2. Letige D, jo € R, andlet S € MPHP pe

S .= {(o, jo)) U{{Go, /). G, jo)} lio #i €D, jo# j€ R}

Then S is 2-complete.
3. Let X C A be a set with at most k elements and let Sy be the set of all

partial a-partitions « of A such that
(@) X is contained in the support of & (= |J @)
(b) every equivalence class of « intersects X
Then S is k-complete.

Definition 12.3.3.
1. The set S € M refines the set H C M, H < S in symbols, iff it holds for

alla € §
Vye HaUy¢M or JyeH vy Co.

2. For S, T € M, acommon refinement of S and T, S x T in symbols, is
the set
SxT:={faUBeM|ae S, BeT)}
3. Aprojection S(H) of H C M on S C M is the set

S(H):={a|3y € H,y Ca}.

Lemma 12.3.4. Let H«S«T for H, S, T € M and assume that S is k-complete
and that ||T|| +k <n.
Then

HaT
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Proof. By the k-completeness of Sand by ||T||+ 4 <n
VBeTId € S,/ UBeM
hence by S <« T it holds that
¥YBeTdeeS,alB (%)

Assume now that y € H, 8 € T are such that y U 8 € M. By (%) there is
a € Sst.a C B. Thus y Ua € M too, and hence y’ C « for some &’ € H, by
H < §. Weproved y’ C B as it was required. QE.D.

Lemma 12.3.5. Let S, T C M be such that S is k-complete, T is £-complete,
ISH+€<n IT|+k<nandk+¢<n
Then the following two conditions hold:
1. §aSxT, TaSxT.
2. S x T is(k+ £)-complete.

Proof. To prove the first part let« € Sand @ U (8 U ¥) € M hold for some
element BUy € § x T. By k-completeness of Sthena = 8soa C SU y. This
shows S <8 x T.T «§ x T follows identically.

To prove the second part assume B Uy, Uy € MforguUy, g Uy’
two elements of S x T. Then either B # B’ in which case g U 8’ ¢ M by the
completeness of Sory # y’ (i.e.,, y Uy’ ¢ M by the completeness of T resp.). In
both cases thus (8 U y) U (8’ U y’) ¢ M. This proves condition (i) of Definition
12.3.1

To verify (ii) let |¢| + £ + € < n. Then, as |}S|| < k and ||T}} < £, by the
completeness of S, T thereare § € Sand y € T for whicha U (B U y) € M.

Condition (iii) holds too as clearly ||S x T|| < ||S|| + lIT{| <k +¢. Q.E.D.

Lemma 12.3.6. Let H,S, T C M, let S be k-complete and T be {-complete.
Assume that ||S|| + € <n, |IT||+k <nandthat H< S «T.
Then

T(S(H)Y=TH) and T(S)=T
and

S(HY=SifT(H)=T

Proof. T(S(H)) € T(H) is obvious from the definition of a projection.

Tosee T(H) C T(S(H))let 8 € T(H) and y C B for some ¥y € H. Then
from (x) in the proof of Lemma 12.3.4a C 8 for some @ € S. Hence y Ua € M
and, as H « S, we have y’ C o for some ¥’ € H. Thus also y’ C « C 8, that is,
B € T(S(H)).

T (S) =T follows by taking H := {@}.



246 Bounds for constant-depth Frege systems

Finally, to establish equivalence first assume S(H) = S. By the first part
T(S)=Tand T(S(H))=T(H),andsoT(H)=T.

For the opposite implication assume T(H) = T, and take o € S. By the £-
completeness of T (and by jo| + £ < ||S|| + £ < n) @ U B € M holds for some
B € T. By the assumption y C B holds for some y € H. Hence ¢ U y € M and

H < S implies that ¥’ € o some y’ € H. Thus & € S(H). Q.ED.
Lemma 12.3.7.,
1. Let 8, Hi € M, i € I be arbitrary sets.
Then:

()

2. Let S € M be a k-complete set and Sy, Sy < S its two disjoint subsets,
andletT C M.
Then it holds that

TSH)NTS)H =0

3. LetS, T € Mbetwosetssuchthat S<T, Sisk-completeand||T||+k < n.
Let Sy C S be any set.
Then

T(S\ So) =T\ T(S)

Proof. The first two parts follow straightforwardly from the definition of a pro-
jection. In the third part Lemma 12.3.6 implies

r¢$)=rT
By parts 1 and 2
T(S\ So) =T\ T(S)
Q.ED.

In the applications of the complete systems in the next section we shall move
from a situation with n, D, R, MFHP (orn, 4, MMODa)andsome H, S, T, ... C
M to a situation where some information about a partial map (resp. a partial
partition) will be available. The next definition and lemma formalize this.

Definition 12.3.8. Let o, p € M. Define the restriction a® of a by p

o al\p, faUpeM
af =
undefined, ifaUp ¢ M
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Further put H®° := {a” |« € H} for H € M, D? .= D\ dom(p) and
RP := R\ mg(p) in case of the PHP (and A" := A \ supp(p) in case of the
MOD,), and n? :=n — |p|.

Note that ¢ undefined is not the same as a” = @. The support supp(p) is the
set Ueep e. For p € MPHP this is dom(p) U mg(p).

Lemma 12.3.9. Let H, S, K C M and let p € M be arbitrary.
Then the following three conditions hold:
1. if H<Sthen HP « S°,
2. if S is k-complete and |p| + k < n then SP is also k-complete,
3. if K =S8(H)and H < S then KP = SP(HP).

Proof. Forthe firstpartlety € H, o € Ssatisfy y?Ua? € MP. ThenyUa € M
and thus y’ C « for some y’ € H. Clearly (y)? C a”.

For the second part assume that o} U ay € MP” for aj,a; € S. Then also
o Uz © M and hence o = a, that is, also o] = a5.

Now let |y + k& < (n)” for some y € MP C M. Since |p| = n — (n)? we get
|y Up)+k < n.Bythe k-completeness of S then forsome o € S: (yUp)Ua € M.
But as y = y” clearly then y Ua? € M?.

The inequality ||S?|| < ||S}| < k is trivial.

For the last part of the lemma let k° € K”, for some ¥ € K. Then we have
k € Sand y C « forsome y € H, which implies «” € $® and also y? C «”, and
thus «? € SP(HP).

Finally let «® € S?,y? € HP for which y? C of. Then y Uax € M and
y' C « for some y' € H,as H « S. Therefore, « € S(H), which entails ¢ € K,
and so a® € K®. Q.ED.

We will want an object o € M to have certain particular properties. It is difficult
to construct suitable p explicitly, and instead we shall show that such p exists by
a counting argument.

The following lemma is a crucial technical result, a statement analogous to the
switching Lemma 3.1.11 for this situation. See the discussion at the beginning of
Section 12.4 and also Lemma 15.2.2.

Lemma 12.3.10. Let Hy,...,Hy € M = MPAP such that for all i < N,
I|Hill <t <s. Letw < n. Assume that

wS

_ > N
n+1- w)4st3s =
Then there is p € M, |p} = w, such that for everyi < N there is S; C MP such
that
1. S; is 2s-complete (w.r.t. MP)
2. H <S8, alli < N.
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In particular, for 0 < § < € < (1/7), w=n-— n€ andt = s = n®, the preceding
inequality is satisfied for any N < 2" . If w = n — n€ and N = n%" then the
inequality can be satisfied witht = s = O(1) sufficiently large.

Proof. First we shall consider the case when N = 1. Denote H := H;. We shall
divide the proof into several steps.

1.

2.

Enumerate by 4!, k2, k3, ... the elements of H, where H C M, [|H]| <
t <s.

We shall define a game played by two players. They construct a sequence
ofmaps o €81 C..., 8 =0,8; e M.

Assume that during a play the sequence §o € &) € ... € &y is already
constructed.

(a) Player I plays k. : the first A’¢+! in the enumeration 4!, 42, ... such
that 2,41 U8y € M. Hence its move is completely determined by &,
and by the enumeration.

(b) Assume that hgyy = pj,j ... pi j,- Player II chooses an arbitrary
C-minimal §¢4+; 2 &8¢ such that {i;,...,i} C dom(d¢4+;) and
(1, ooy Je} © mgeq1).
The play is finished iff either player I cannot make a move or player II
constructed 8¢y 2 Aoyy.

. Define the set S by

S:={86ky1 | somedg C 8§ < ... C 8 is asequence
constructed in a finished play}

Claim.
(a) Sis||S||-complete.
(b) H<S.

Assume that § # &’ e S. Let 8, # &, be the first move of II that was
different in the two plays. Clearly (as 8;, &, are C-minimal) §, U 8, ¢ M,
sosUS ¢ M.

Take @ € M such that ja| + ||.S]| < n. Player II will follow the following
strategy: On supp(cr) answer according to «r; otherwise play arbitrarily but
consistently with «. The inequality || + ||S]|] < » implies that he can
always move. Clearly o U § € M for any output § of such a game.

To see the second part of the claim notice that S is a refinement of H by
definition when the play terminates.

In general it is not true that ||.S|| < 2s. We shall use map p € M and show
such an inequality for H°. By Lemma 12.3.9 the claim wiil remain valid
after the restriction by p.
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4. Let A1, ha, ..., hyy1 be the elements of H played by player I in a play
80 €81 S ... C 8g41. We shall call 4; the ith critical map.
Now we consider the game played with H” instead of H, but we shall use
the same ordering on H” induced by taking the first element of H among
all 4 identified by restriction p.

5. Suppose that in a play we obtained the critical maps &Y, ..., h},, and
8 C 81 C ... C &k41. The pairs of &Y \ §;—; will be called critical pairs.

6. We wish to show that for some p € M, |p| = w, in every play will occur
less than s critical pairs. That would imply ||S|| < 2s.
Assume, for the sake of contradiction, that for every such p there is a play
in which at least s critical pairs occur.
We assign a set of parameters for each such a play with > s critical pairs.
Denote by

5y =10
8 :=8; \ 8
8} = (dom(h;) x mg(h;)) N8, = (dom(h?) x mg(h?)) N8
Let
si=|h"\&i—1| forl<i<k
be the number of critical pairs in 4/ and put
Sk4l =S —Sl...— Sk

Also take d; = |§7| and note that

16;1 = 2si — di
The sets 11, ..., Try1 < {1, ..., ¢} are defined as follows. Leti < k be
fixed and let
hl = {e19 --'yeti}
Then

he\ 8io1 = {ej}jer;
The map 4; and the set T; thus determine the critical pairs of hf . We define
Ti+1 in a similar way, but we take only the initial part of hf +1\J) consisting
of the first s¢4.; pairs.
7. Let y1, ..., v be the partial one-to-one maps with the support contained
in {1, ..., ¢} defined by the following. For i < k fixed suppose

dom(h;) = {ay,...,a;} and a1 <--- <ay

mg(h,) - {b], "“bti} and b] < e < bt,’
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Then put
87 = {(ae, byey) | € € dom(y)} .

Hence &; and y; determine 8;“ foralli <k.

Let T be the union of p with the first s critical pairs. Hence t € M and
|t} = w + s.

We also define maps B, ..., B¢ from {1,...,2(s; —d;)}into {1,...,n+
1 —w — s} such that (fori = 1, ..., k) B; determines §; — §;. Let

{a),....a;_,) = (dom(8}) — dom(8})) N dom(h;),
with a] < --- < a;i_di and

{by, ..., by, _g) = (mg(8)) — mg(s;)) Nmg(h;)

: ’ ’
with b < -+ < bsi—d,"

Also let
D\dom(t) = {uy, ..., upt1~w—-s} and R\mg(r) ={vi,..., Up—w—s}
Then
§itap) =vgjy forj=1,....5 —d;
and

5,_](b;) =ug(s;—di+jy forj=1,...,5 —d;

The parameters 7 will be the pair (t, 7g), where 7y is the tuple consisting
of the following objects

Tiyoo s Thgrs Vs oo Vies Biseoos Br

The number of 71, .. ., Ty is bounded by
=) () =) () =

S1 Sk+1 S1 Sk+1

The number of yy, ..., vk is clearly at most
t di Y de _ 2

< N % <y

() (a) =
The number of 8, ..., B¢ is also obviously bounded by the product
m+1—w—s)2" Ml —w—5)2FW < (1 —w—5)°

Hence we get an upper bound to the number of tuples g

<. m+l1—w-—s%
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12. Take the parameters 7. We shall show that they, in fact, determine the map
p. This is done by the following process:

(a) Put 7y = t; 1) determines /; as the first 4'' consistent with it.
Knowing /) and T yields the set x; of the critical pairs in 4. From
«1 and the maps y and 8 we reconstruct the first move & of player I1.

(b) Put 75 := &; U (11 \ «1). The map 1, determines 4 as the first 42
consistent with it. Hence, as earlier, with the help of 7, we get the set
ico of the critical pairs in k7 and further from y, B> also the map §,.

(c) Repeating the process & + 1-times allows us to reconstruct the set of
the first s critical pairs | J; < 44 «i. But then

p=T1\ U Ki

i<k+1

13. As m defines p uniquely, the number of such parameters m cannot be
smaller than the number of possible p. Define

A:={pe M||p| =w}|
and
B={teM]||t|=w+s}|

and compute the number

A
B-t3m+1—w-—s5)2

which is equal to
(")

(n;w)(n+L—w)s! N t3s(n +1—-w-— S)ZS

as (1) is the number of p contained in one r while (*7") ("+'s_w)s! is
the number of 7 extending a given p.
By a simple calculation we get that this fraction is at least

wS

TS
which is
>N>1
by the hypothesis of the lemma. Hence the number of possible maps p is
bigger than the number of possible parameters 7. Thus there must be p for

which the assumption that there is at least one play with > s critical pairs
fails.
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Now return to the case N > 1. Assuming that for each p there is at least one
i < N such that there is a play on hf with > s critical pairs, we may reconstruct
p knowing i and the parameters z for such a play.

This shows that, in fact, the same argument works as long as

wS

n+1—wssN

1

QE.D.

We conclude this section by stating an analogous lemma for the case M =
MMOD: Tt proof follows identical lines.

Lemma 12.3.11. Leta >2.Let Hy,..., Hy € M = MMODa gych that for all
i <N, ||Hl] <t <s. Let w < n. Assume that

wS

Fo-wr

where ¢ > 1 is a constant depending on a only.
Then there is p € M, |p| = w, such that for every i < N there is S; C MP

such that

1. Siis (a - s)-complete (w.rt. M?).

2. HipqSi, alli < N.
Inparticular, for0 < § < e sufficiently small (depending ona) and w = n—n® and
t = s = n®, the preceding inequality is satisfied for any N < 2, Ifw=n—n¢
and N = n9D then the inequality can be satisfied witht = s = O(1) sufficiently
large.

12.4. k-evaluations

This section introduces the crucial notion of k-evaluation. First, however, we shall
discuss the notion of a complete system as promised at the beginning of the previ-
ous section. We shall confine discussion to the situation with the Boolean variables
X1, ..., X, and the notion of a complete system w.r.t. the set MV of all total truth
assignments to the variables. That is a simpler situation than those considered in
Section 12.3 but well explains the intuition behind the definitions and the state-
ments of that section. See Section 15.2 also.
A complete system w.r.t. M"Y is a set S of partial truth assignments to

X1, ..., Xy such that

1. any two o # B from S are incompatible

2. every total truth assignment @ € MV contains some 8 € S.
We identify the elements « € S with the blocks

)= {B.€ M™ o c )
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of total assignments extending «. Then S is a complete system iff the set of the
blocks [a], & € S, is a partition of MTIVi,

Let ¢ (xy, ..., x,) be a propositional formula. The truth table of ¢ is simply a
map assigning to every @ € M"V1 the truth value ¢ (). If § is a complete system
such that

PO = |Jll and V) = (o]

aeSy aeS|

for some partition So U S; = § of S then the truth table for ¢ can be abbreviated
by a map from S into {0, 1}: map @ € Sto 0 iffa € Sp.

Moreover, the formulas ¢ and —¢ are expressible in particular disjunctive nor-
mal forms:

¢=\ecx and -p=\/acx

acs) a€Sy

where ¢ C X abbreviates the maximal conjunction of literals made true by «. Note
that a complete system is just a particular disjunctive normal form of the formula
1, namely such a form in which the disjuncts are mutually incompatible.

Disjunctive normal forms for ¢ and —¢ with this property are obtained from
any decision tree for ¢ (see Section 3.1), and conversely, a complete system S
allowing the expression of ¢ and —¢ as earlier also yields a decision tree for ¢
(see Lemma 3.1.13). The depth of that decision tree will be < ||S||2. Hence it is
of interest to have complete systems of small norm.

If ¢ = x; then the complete system Sy, = {x; — 0,x; — 1} of the norm 1
allows the expression of ¢ and —¢ as previously. If we have such a system Sy
for ¢ then it obviously works for —¢ too. Hence the only difficult case in the
construction of a complete system Sy of small norm by induction on the depth of
¢ is the case when ¢ = \/; ¢;. A system S allows an expression of ¢ and —¢ as
earlier iff the sets ¢(~1(0) and ¢~V (1) are unions of some blocks determined by
S. However, having systems Sy, for ¢; allows an expression

oY) = el

acH

of ¢ as a union of blocks, where

H = U [0[ €Sy lae ¢,-(—1)(1)}

and it has the norm | H|{ = max; ||.Sy, || small. The problem is that H is not
necessarily a subset of a complete system. But if S is a system refining H

VeeS, (3BeH BCa) V(VBeH, B La)
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then
¢ = \/agf and —¢ = \/agf
a€S) aeSp
where
Si={eeS|3eH B}
and

S={aecS|VBecH 1a}

A lemma stating that there is a partial truth assignment o such that there is a small
norm S refining H” thus replaces the switching Lemma 3.1.11 in this situation
(see Lemma 15.2.2 and Lemmas 12.3.10 and 12.3.11).

Assume that we have for formulas ¢ complete systems Sy allowing the expres-
sion of ¢ and —¢ as earlier. This allows us to assign to ¢ the Boolean algebra
exp(Sy) of the subsets of Sy with a value Hy

Hy = [cx €Sy llal S ¢<—‘>(1)]

We may think of Hy as of those o € § forcing ¢ true (see Section 12.7). Hence ¢
is a tautology iff Hy = S, iff all @ € Sy force ¢ true.

Now, in the particular definition of k-complete systems w.r.t. MPHF no element
«a intuitively forces PHP true. Hence one expects to get an “evaluation” of formulas
in which PHP will not be true. The notion of k-evaluation formalizes these ideas.

Definition 12.4.1. Let T be a set of formulas closed under subformulas. The
atoms of the formulas from T are p;; if M = MPHP and py if M = MMODa,
A k-evaluation of T is a pair of mappings (H, S)

H:T - exp(M) S:T — exp(M)

satisfying the conditions
1. YoeTl', H,C S, S M
2. Yo €T, S, is k-complete
3. Hy=9, Hi={0}, S =5 = {0}
4. For M = MPHP .

Hp,;, = {G, H}}
Spy = {{G, J, G DU # 6, 7 # JE UG DY)
For M = MMOD, .
Hpy = {X}
Spy={ee M| XS (Ua) A (YY €a, Y N X # 0)}
5. V=9el', H.,=S,\H, and S-yp=35,
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Voel, o=\/oi > | JH, S, A H¢,=S,,,<UH¢i>

iel iel iel

Note that by Lemma 12.3.2 the system Sp,; (resp. Sp,) from 4 is 2-complete
(resp. a-complete).

In the sequel we denote by py the atoms of both forms p;; and py to sim-
plify the notation. In the former case X = {i, j}. The next lemma follows from
Lemma 12.3.9 and from the observation that the set {#} is refined by any other set.

Lemma 12.4.2. Let p € M and py be an atom. Define
1 fXCp
(px) =10 fXUpgM

Px  otherwise

For ¢ a formula define ¢f to be a formula obtained from ¢ by replacing all
atoms px by (px)? (but performing no further simplifications). For I' a set of
formulas, put I'? .= {p? | ¢ € T'}.

Then for any set of formulas ', any p € M such that |p| + k < n, and any
k-evaluation (H, S) of T, the pair (H?, S®) is a k-evaluation of T'®.

- The following is a crucial theorem.

Theorem 12.4.3. Letd > 1and0 < € besufficientlysmall, andlet 0 < § < ¢4~
Let T be a set of formulas of depth d closed under the subformulas, and assume
that |T| < 2.

Then thereexistp € M, |p| <n— ned_l, and k < O(n®) such that there exists
a k-evaluation of T'*.

Proof. For d = 1 the formulas in I" are atoms and constants, and we have their
evaluation by 2 and 3 of Definition 12.4.2. In this case p = @.

Assume now that the lemma is true for d > 1 and let I" be a set of formulas of
depth d + 1 that is closed under the subformulas. Let I' be the depth < d formulas
from I". Let 0 < (= €9+1~1) be given.

By the assumption we have p' € M, |p’| < n — n‘d_l, k < Om?%),and a
k-evaluation (H', ') of (I')*'. '

Letm = n — |p/|, that is, m > n’~" . We shall extend o’ by a suitable p”
to form p. By Lemma 12.4.2 the restrictions of M*" and S’ by p” will be < k-
evaluations of ((I")?")?" again; thus we only need to find p” so that we can extend
this evaluation to the whole I'.

Consider the case M = MPHP_ For a negation it is obvious for any p”. For a
disjunction ¢ = \/; ¢; apply Lemma 12.3.10 with n, D, R, and H replaced by
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m, D, R” and U qubi ,and taking t = s = n®, w = m — m*. The following
inequalities hold

d-1 d-1 d—1
nd = n O/ < /€D and -
pr=

By Lemma 12.3.10 then there exist p” € M* and § € M?*" such that

U(Hé,,.)p” <8 and |p'|=m —m¢
i
For such p” extend the evaluation (H’, §) to ¢ by defining

Sp=S§ and H,=5§ (U(H’l_)"">
i

From the hypothesis that [I"| < 27 it follows that there are < 2"° such disjunctions
and hence by Lemma 12.3.10 there is at least one p” with these properties satisfied
for all such ¢ € I'. This is enough as we also have

d
pl=1pUp | <n—m+m—-—mS=n—m<n—n.

The case of M = MMOD s treated analogously using Lemma 12.3.11.
Q.E.D.

Lemma 12.4.4. Let
yl EARAR IR yt
Yo

R:

be a Frege rule.
Then there is a constant r satisfying the following condition: Whenever

Wi ¥y W Ym)

y0(11/|9 MR | ‘//m)
is an instance of the rule and (H, S) is a k-evaluation of all subformulas occurring
in the instance with k < n/r, and if Hy, = Sg, fori = 1,...,t and 6; =
Yi(Yi, ..., Ym), then also
Hpy = Sg,

Proof. Let R be given and take r to be greater than the number of subformulas
in R,

Let (H, S) be a k = (n/r)-evaluation of the set I" of formulas of the form
y (i, ..., ¥m), where y is a subformula of some y;,i = 0, ..., . Suppose that
Hy = Sp forl <i <t

Take T to be a common refinement of all S,, y € I'. Such system exists by
Lemma 12.3.5 and is (n(» — 1)/r)-complete. Hence ||S, || + [|T|| < n for every
yerl.
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Assume first that =y € I'. Then
H-, =5,\ H,
and so by Lemma 12.3.7
T(H-y)=T\T(Hy)

Now suppose that a, 8, & v B € I" with & and g having the forms \/,. , & and
\/l-E p &i, respectively. Hence, using Lemma 12.3.7 again,

Hyvg = Savg (U Hgi) U Spvg (U HEi) .

i€ed ieB

From Lemmas 12.3.7 and 12.3.6 we obtain

T(Havp) =T (Sw,g (LJ‘ Hgi)> uT (swﬂ (L% H§i>>
T (,9, H,;i) ur (iGUBH&,)

T (Sa (U HE,.>) ur (Sﬁ (U H&.)) = T(Hy) U T (Hp)
icd ieb

Moreover, by Lemma 12.3.6

T(Hf’i) = T(SOi) =T

fori =1,...,r since Hy, = Sy, and Sy, is complete.
The mapping

y — T(H))

is thus a mapping of I into the Boolean algebra of subsets of T mapping — on the
operation of the complement, Vv on the operation of the unionand 6; i =1, ...,1)
on the whole set 7.

Because any Frege rule is sound, we must have

T(Hp)=T
Hence by Lemma 12.3.6 also
Hgy = Sgy(Hp,) = Sg,

This concludes the proof of the lemma. Q.E.D.
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12.5. Lower bounds for the pigeonhole principle
and for counting principles

In this section we obtain strong lower bounds to the size of constant-depth Frege
proofs of the pigeonhole principle formulas PHP, and the modular counting prin-
ciples Count?. First we shall define the formulas as we used some of them earlier
in various forms. Recall that [ 4] is the set of a-element subsets of 4.

Definition 12.5.1.
1. For|D|=n+1and|R| = n the formula PHP, is built from atoms q,,,,
ueDandv e R:

\/ \/(qulv /\quzv) Vv \/ \/ (quvl /\quvz)

my<ur<ntl v<n u<n+l vi<vr<n

vV \/ /\ “quv V \/ /\ “quv

v<n y<ntl u<n+l v<n

2. For |A| = a - n + 1 the formulas Count are formed from atoms py,
X e [A)°:

Count;, = V  exam v\ A-ex

X£Y, XOY#0 i<nieX

Note that PHP,, formalizes that there is no bijection between D and R and itis a
weaker statement than the often used statement that there is no injection of D into R
(and thus lower bounds will be stronger statements). The latter formula expresses
that no a-partition of A can be total and it is a tautology as | 4| = 1(mod a).

We shall obtain exponential lower bounds to constant-depth proofs of PHP,
and Count?. We shall also study the dependence among various instances of these
principles.

It is easy to see that PHP,, (g ) follows from Countfn (¢ x) by a constant-depth
size O(m?) Frege proof, where 4 = {0, ...,2m} and ¢y is q,,, for X = {u, v},
u<m+1l,m+1 <v<2m+ 1,and ¢y is O otherwise. In the opposite direction
Ajtai (1990) showed that there are no polynomial size constant-depth Frege proofs
of Countf,( px) from any instances PHP,, (¢,,,) of the pigeonhole principle, ¢,
formulas in atoms py (implicitly of bounded depth). We shall also give a proof
of a lower bound to the constant-depth Frege proofs of formulas Count, from the
instances of formulas Count?, for different primes a and b.

Lemma 12.5.2.
1. Let M = MPHP gndlet (H, S) be a k-evaluation of the set of subformulas
of the formula PHP, and letk < (n/2) — 3.
Then Hpyp, = 9 and hence

Hpyp, # SpHp,
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In particular, if p € M and k < ((n — |p|)/2) — 3, then
Hprp,y» # S(PHP,)»

2. Let M = MMODu gpq ot (H, S) be a k-evaluation of the set of subfor-
mulas of the formula Count, and let k < (n/2) — 2a.
Then Hcounis = 9 and hence

HCountﬁ a SCountﬂ
In particular, if p € M and k < ((n — |p|)/2) — 2a, then

H(Countﬂ)f) 75 S(Countﬂ )P

Proof. We shall prove part 2 of the lemma; part 1 is completely analogous.
Count{ is a disjunction of the formulas of the form

Px N\ py
where XNY #@, X#7Y,and

/\ —Px

ieX
We shall show that for any such formula n : H, = §. This will be enough as

HCountZ = SCountz (U Hn) = SCountﬁ(@) =0
n

Consider first the formula
—~(=pxV —py)

for XNY # @, X # Y. By Definition 12.4.1

Hopy=lae M| X Csupp(a) AVZ € o, ZN X # D)\ { X}
and

Hopy ={BeM|Y Csupp(B) AVZ € B, ZNY # B\ {Y}
(recall supp(e) := |J«). For 2a-complete set T

T'={laeM|XUY Csupp(e) AVZ e, ZN(XUY) # @}
it holds that

T(H-pyUH-p,)=T

By Lemma 12.3.5 there is k + 2a < n/2-complete system W refining both 7" and
S-pyv-py- Hence Lemma 12.3.6 implies

W (Hopy U Hopy) = W
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and then also
Hopyv-py = S-pyv-py (Hapyg U Hapy) = S-pyv-py
This gives
Hpynpy =9
Now take the other formula
N = Viexbx
The set
T:={Xe[d4]’|ie X}
is 1-complete and by Definition 12.4.1

Hy, = S,(T
By Lemma 12.3.6
Sy(T) =8,
hence
Hy,=0

The more general statement about the restricted formula (Count 4)” follows in
exactly the same way observing that for any # of the preceding form if one of its
atoms gets the value by p then all its atoms get a value and () = 0, that is,
Hyye = 8. Q.E.D.

Now we are equipped to prove a strong lower bound.

Theorem 12.5.3 (Ajtai 1988, Beame et al. 1992). Assumethat F is a Frege proof
system and d a constant, and let n > 1.
Then in every depth d F-proof of the formula PHP,, at least
n'! /61
different formulas must occur. 1
(1/6)4

In particular, each depth d F-proof of PHP, must have size at least 2" and
a6
must have at least 2 (2" ) proof steps.

Proof. Let F be a Frege system and d a constant, let n > 1 be sufficiently large,
and assume that = (6, ..., 8¢) is a depth d F-proof of PHP,,. Take T to be the
set of the formulas occurring in 7 as the subformulas.

Assume for the sake of contradiction that

ry<2”

for some § < (175971,
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Let f be a constant greater than the constant » assured by Lemma 12.4.4 for
all rules R of F. Let 0 < € < 1/5 such that § < €~!. By Theorem 12.4.3 there is
o € M = MPHP gych that

lol <n—n<"

and k = 2n®-evaluation (H, S) of (IN*. By Lemma 12.4.4,as (n”/f) > k
Hegye = Sy

for all steps 6; in 7. At the same time by Lemma 12.5.2,as k < (n”/2) — 3

Hpup,)» # SpHP,)»

This is a contradiction; hence
]
ry>2"

The lower bound to the size follows from trivial || > |I'|, and the lower bound
to the number of proof steps follows from Lemma 4.4.6. Q.E.D.

The following theorem follows completely analogously.

Theorem 12.5.4. Assume that F is a Frege proof system and d a constant, and let
a>2.

Then there is € > 0 such that for sufficiently large n, in every depth d F-proof
of the formula Count’, at least

d

2"
different formulas must occur.

&
In particular, each depth d F-proof of Count? must have size at least 2" and
4
must have at least Q2" ) proof steps.

Theorem 9.1.3 and Corollary 9.1.4 then imply the following independence result
for bounded arithmetic.

Corollary 12.5.5. None ofthe Ao(R)-formulas PHP(R) or Count®(R) is provable
in S2(R). In fact, the formulas are not provable in any Si(R), k > 1.

We now want to investigate the mutual relation of formulas PHP, and Count?,.
First note a simple lemma.

Lemma 12.5.6. For a > 2, the theory
TAo(R) + Vx Counté (Ag(R))

proves the formula PHP, (R). In particulay, there are constants c,d > 1 such
that any propositional instance PHPy, of the pigeonhole principle has a depth d
F-proof from some instances Count’, of size < n® (hence also m < n¢).
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Proof. Assume —PHP, (R) and define 4 := {0, ..., an} and
xi<---<x,}eS=3TFy<n+1,

xp<n A /\ xi=xi1+@F—-Dn Axs=@—-Dn+yAR(y x)
a>i>2
This clearly defines an a-partition of A.
The upper bounds to F-proofs follow from Theorem 9.1.3. Q.E.D.

Note that we used in an essential way that the pigeonhole principle speaks
about bijections between n + 1 and » rather than just about an injection of n + 1
into n. For the latter version it is an open problem whether it can be proved from
Count4 (Ap(R)).

The principle Count§ is, in fact stronger than PHP,, in the sense of the following
theorem.

Theorem 12.5.7. Let a > 2 and let d be fixed. Then there is € > 0 such that for
sufficiently large n in any depth d Frege proof of Count4(pyx) from the instances
of the pigeonhole principle PHP,, at least

e

2"

distinct formulas must occur. .

In particular, the size of alldsuch proofs has to be at least 2" and each such
proof must have at least 22" ) steps.

Proof. Assume for the sake of contradiction that there is a depth d F-proof 7 =
61, ...,6,) of Count? from some instances of PHP. Clearly we may assume
w.L.o.g. (possibly increasing 4 by a constant and the proof polynomially) that only
one instance

PHP, (Yuv)

of PHP is used as an axiom in 7r (use the definition by cases to combine several
instances into one). The formulas ¥, are built from the atoms py of Count?.

Let I" be the set of all subformulas occurring in 7; in particular it contains
formulas of the form

_'\/wuv and - \/ Yy and Yuvy A Vi, and Yurv A Ve

v<m u<m+1

As in the proof of Theorems 12.5.3 and 12.5.4 let p € MMODa_ |p| < n — ™",
be such that there is a & < an’-evaluation (H, S) of T'? (constants ¢, & are the
same as in Theorem 12.5.4).

Claim 1. For £ = PHP,(Yry)
He =8
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To prove the claim assume Hg # S:. We may assume then that, in fact, H; = 9
as otherwise we may restrict all formulas in (I')? further by some p" € S: \ H;
that would collapse (H)” to §.

We first note two claims:

Claim 2. Assume that Hy = 9, & from Claim 1. Then for every u < m + 1 and

every v < m the sets
U lell‘ and U HWIH.’

v<m u<m+l

are k-complete.

Claim 3. We may assume w.l.o.g. that all 2m + 1 complete systems from Claim 2
have the same cardinality, say M.

Assuming Claims 2 and 3, Claim 1 follows as we may then count the sum
> 1Y Hyl=m+ )M
u<m+1l v<m

also as

ZI U Hy, |=mM

vanm u<m+l

which is a contradiction.
So it remains to demonstrate Claims 2 and 3. Denote

S, = U Hy,.

v<m

and

Sv = U H‘pm,

u<m+l

As He =} we have for v) # v
Hyoy iy =9
which implies
Va € Hy,, VB € Hy,,, aUpgM
On the other hand, H; = @ also implies

H_'\/l. Ve = @

that is,

H\/l, Yur - S\/l Ve (U me,) = S\/l Vi
v
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Hence

Vae M, la| <n—k—3pe|JHy, aUpeM
v

This shows that S, is k-complete. Similarly for SV, and Claim 2 follows.

Claim 3 is demonstrated by a combinatorial construction of systems refining the
systems from Claim 2 (using the idea behind Lemma 3.1.13 explained in Section
3.1). These refined systems resemble decision trees with all paths of equal length.
Precisely, we say that a complete system is of the form of a depth i decision tree
if(withd=a-n+1and [XIF={¥Y C X||Y| =k}

1. fori =1, S has the form

S={{r}|lxevY, ¥ €[4’}

for some x € 4
2. fori > 1,thereis x € 4 suchthatforall ¥ €[4\ {x}]“ " the set

fe\N({x}Ju) eS| {x}UY eal

is a complete system over 4 \ ({x} U Y} of the form of a depth (i — 1)
decision tree.
Note a related example in 3 of Lemma 12.3.2.
Clearly all complete systems of the form of a depth i deciston tree have the
same cardinality.
Claim 1 implies with Lemma 12.4.4 that

Hy, =8i=1,...,r
which contradicts Lemma 12.5.2. This proves the theorem. Q.E.D.

The next corollary follows from the previous theorem by Corollary 9.1.4.

Corollary 12.5.8. Letk > | anda > 2 be arbitrary. Then the formula Count?(R)
is not provable in the theory

Si(R) + VxPHP, (Ag(R))

It remains to understand the relation of Count? and Count’, principles for
different a, b > 2. First a simple result in the spirit of Lemma 12.5.6. For it
we generalize Count}; to a conjunction of formulas saying that none of the sets
a-n+k,k=1,...,a—1,can be partitioned into a-element blocks. Denote this
generalized principle gCount$.

Lemma 12.5.9. Leta,b > 2 and assume that b divides a. Then the theory
IAp(R) + Vx g Count’(Ao(R))

proves the formula Count’(R).
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In particular, there are constants c, d such that for every n there is a depth d
F-proof of size < n€ of the formula Countﬁ Jfrom some instances of the formulas
g Count$,.

Proof. Work in I Ao(R) and assume that the R is a b-partition of the set B, |B| =
bn + 1. Let k := (a/b), put 4 := an + k, and let the partition S consist of the
classes X € [4]? such that

Y €R, X = U {y+®n+Di|yeY)
O<i<k
Then § is an a-partition of 4,butas | <k < a, |4| # 0(mod a); that is, g Count?
is violated. Q.E.D.

The case when b does not divide a is also understood. In the following we
confine discussion to the case when a, b are two distinct primes.

Theorem 12.5.10. Assume p, q > 2 aretwo different primes. Then for every depth
d and every ¢ > 1 it holds that for sufficiently large n, in every depth d F-proof
of the formula Countf from the instances of the Count?, formula at least

>n°
different formulas must occur.
In particular, the theory

IAG(R) + Vx Countl(Ag(R))

does not prove the principle Count® (R).

Proof. Let M := MMOD» and let 7 be a depth d F- proof of Count/ from one
instance

County, (¥ x)

X € [A)9,|A4] = 1(mod q) (as in the proof of Theorem 12.5.7 we assume w.lL.o.g.
that only one instance of Count/, is used in 7).
Take T" to be the set of all formulas occurring in 7 plus all formulas of the form

(i €A

\Vyx and \/ \/vx

ieX i€ed ieX
By the proof of Theorem 12.4.3 from Lemma 12.3.11 there are p € M, |p| <
n—n<! , and a k-evaluation (H, §) of (I')? where k is a constant depending on
¢ but independent of n (this is because if || < n¢ then Lemma 12.3.11 allows &
to be a large enough constant).

As in the proof of Theorem 12.5.7 it is then sufficient to establish the following

claim.
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Claim 1. For & = Count?, (Yrx) it holds that

Hy =S¢

In the proof of the claim we follow the strategy of the proof of Claim 1 in the
proof of Theorem 12.5.7, but in this case it is complicated.

Claim 2. Assume Hy = (. Then for everyi € A theset\ ). y Hy is a k-complete
system.

Claim 2 is established similarly to Claim 2 in the proof of Theorem 12.5.7.
We defer the proof of Claim 1 from Claim 2 after Theorem 12.6.2. Q.ED.

12.6. Systems with counting gates

The formula Count’ (R) formalizes a counting principle but it is natural to consider
also a situation when the language allows direct counting. This was, in the context
of bounded arithmetic, studied in Paris and Wilkie (1985). They extended language
Lpa by a quantifier of the form Q,x < ¢ with the meaning

Qax <tp(x)istrue iff |{x <?|¢(x)istrue}| = 0(moda)

Denote by Q,Ap the set of the bounded formulas formed by also using the Q,-
quantifier. It is easy then to extend /Ay to the theory 1Q,A¢ by adding a few
rules for handling the new quantifier (and allowing all new bounded formulas in
the induction scheme). We shall instead consider in greater detail the corresponding
extension of a Frege system by new connectives.

Definition 12.6.1. Leta > 2 be fixedandi =0, ...,a — 1. MOD, ; is a propo-
sitional connective of unbounded arity such that

MODg (@1, . ... d) istrue iff |{j| ¢; true}| = i(mod a)

MOD,-axioms are the following axiom schemes

(a)
MOD, 0(?)
(b
—~MOD, ;(@), fori=1,...,a—1
(©)
MOD, (T, ¢) = [(MOD,;(I") A —¢) vV (MOD, ;i (T) A ¢)]
fori =0,...,a — 1, wherei — | means i — 1 modulo a, and where T'

stands for a sequence (possibly empty) of formulas.
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The system F(MOD,) or LK(MOD,) is the system F (vesp. LK) whose language
is extended by the connectives MOD, ;,i =0, ...,a — 1, and that is augmented
by the preceding axioms.

The following theorem is straightforward, but, in fact, it is the only information
about the constant-depth F(MOD, )-proof systems. In particular, it is an open
problem to apply the methods leading to the results about constant-depth circuits
with MOD,, gates (see Theorem 3.1.14) to the lower bounds for constant-depth
F(MOD,)-proofs.

Theorem 12.6.2. Fora > 2, the formulas Count’, have polynomial size, constant-
depth F(MOD,)-proofs.

Proof. We shall denote by the symbol « F, 8 the fact that there are constant-depth
size n?) F(MOD,)-proofs of B from «. Thus we have

1.
F« MOD, 1 ((1)ica)
as 1 = |A|(mod a)
2.
—County, -« MOD, 1((px)iex)
for every i € A4 as —Count$, implies that J is in exactly one X
3.
F« MODy 0((px)icx)
any fixed X as | X| = 0 (mod «a)
4,
—Count§, . MOD, i ((px)icd,icx)
from 1 and 2.
S.
F+« MODg 0((px)icd.icx)
from 3.

6. From the last two steps we get
—Count% +, MOD, (%)

which contradicts an axiom.
Q.E.D.

The proof does not not really use propositional reasoning but rather only rudi-
mentary counting modulo a. This suggests formulation of the counting principles
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in the language of rings and consideration of an equational logic as a propositional
proof system.
Fixa > 2and n,and 4 := a - n + 1. Consider the equations

Zv,\f=1 (@)

ieX
vy -vy =0 (X,Y)

for each i € 4 and each X, Y € [4]? such that X | Y, which will be shorthand
for XNY #OAX#Y.

The equations imply, in any field, that each vy is 0 or 1. A particular solution
determines the set

@={Xe[d |vx =1}

and the equations force that « is a total g-partition of A, which is impossible.
Hence the system has no solution in any field. In fact, the system consisting of
equations (i) is not solvable in rings of characteristic a as the sum of the left sides
is 0 while the sum of the right sides is 1.

Now we resume the proof of Claim 1 from the proof of Theorem 12.5.10.
We continue using the notation from that proof.

For p and n take the system

Z ug =1 (e)

eckE

ug-urp=20 (E, F)

one equation (¢) foreache € B = p-n+1andoneforeach £, F € [B]?,E L F.
As earlier, the system expresses that { E | ug = 1} is a total p-partition of B and is
contradictory in every field. We shall reach the contradiction, however, by making
use of the alleged proof 7 of Count’ from Countf, (yx).

Let »(#) = 0 be an equation following from the (e) and (E, F) equations in
a particular finite field F,. As the system is contradictory, every equation is its
consequence, but for some such equations we will get a nontrivial information.

Denote by w, the polynomial
w, = Z ugp — 1

ecE

and by wg, r the polynomial
WEFI=UE - UF
Hence the system (e)’s and (E, F')’s is equivalent to the system

we=0 and wgr=0
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As it is contradictory, the polynomials generate in the ring F,[ # ] the trivial ideal,
and hence for every r(u ) there are polynomials ¢, and ¢g ¢ such that

Docerwe + Y cer-wpr = r(a)
[4 E.F

is valid in F, [ % ] (this is a simple consequence of Hilbert’s Nullstellensatz but has
a simple direct proof too). In general we are able to say nothing useful about the
polynomials ¢, and c g, r, but for some polynomials »( % ) there is extra information.

Lemma 12.6.3. For o € M\ {00} define the monomials & by
&:uEI C et cUE,

where o = (E\, ..., E;) and define § := 1.
Let S € M be a k-complete system, gk* < n, and rs the polynomial

rs(ﬁ):=2& -1
acS

Then rs can be expressed in the ring F,[u] as a linear combination

rs = Zce ‘We + ZCE.F “WE,F
e E,F

in which the degree of all coefficients ce, cg_r is at most < qk>.

Proof. The lemma is proved by induction on || S||. Pick @ € S and let S, be the
kg-complete system

[yeMIUagUy AVEey,EOUa;éQ]

Any 8 € S\ {«} is incompatible with . So for every y € S, either |87 | < k—1
or BY is undefined. Hence S,

Si=Jixs”

Y€Sy

is a kg + k — 1-complete system. Each S7 is k-complete (Lemma 12.3.9) and
|SY| < k — 1; hence we may repeat the same process with each S? separately.
In i steps this producesa (k + (k — 1)+ --- + (k — i + 1))g + (k — i)-complete
system ;. That is, a Sg is (%) - ¢ < gk?- complete system.

Call a complete system S ¢-supported iff there is Z C B of size ¢ such that

S=|a|Z§Ua /\VEea,EﬂZ;éﬂl

Define S to be i-good by induction on i
1. Sis 0-good iff it is £-supported, some ¢
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2. Sis (i + 1)-good iff there is a supported complete system T such that S
refines T and such that for every o € T system S¢ is i-good
Note that Sy is gk-supported and that S is k-good.
To simplify the notation we say that the degree of a linear combination L of w,’s
and wg, r’s is the maximum degree of its coefficients, and a “linear combination”

L3 1)

automatically means a “linear combination of w,’s and wg g’s.
The lemma follows from three claims.

Claim 1. If T is t-supported then there is a linear combination Lt of degree

< T such that
Y oa=Lr+l

aeT

Claim 2. If T is i-good then there is a linear combination Lt of degree < ||T ||

such that
Z& = Lr+1

aeT

Claim 3. If T refines system U and T is i-good then there is a linear combination
Ly of degree < ||T|| such that

Y a=Ly+l

aclU

The first claim is readily established by induction on ¢. To see the second claim
write

where T refines Ty and Ty is supported, and each 7¢ is (i — 1)-good. By the
induction hypothesis there are linear combinations Lre such that

Z B=Lra+1
BeT«
That is,
Y a= (Z&Lru)+ > a
aeT aeTy aeTp

and by Claim 1 the last sum is expressible as L7, + 1, L7, a linear combination.
Clearly the total degree is < || T'|.
The third claim is computed similarly:

Yi-3 = i-Ta( T)-(Ta )T
BeT aelU BeT, B2a ael/ peT ael aeclU
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where L7« are linear combinations of degree < || 7%} such that

Z B=1Lr«+1
BeT

(their existence follows from Claim 2 as all T¢ are clearly i-good if T is i-good).
But the first sum is by Claim 2 expressible as L1 + 1. Hence

da= (LT - ZdLTa) +1
aclU aelU
The alert reader noticed that L r« are linear combinations over B\ (|_j &) and not
over B. In particular, polynomials w, miss unknowns u p, for F intersecting | a.
However, if we add these missing terms, the difference it causes in the product
& - Lte is a linear combination of polynomials wr, g, and ug, — qui, E; € «. The
latter are themselves degree 1 linear combinations over B. Hence each @ L7« is a
linear combination over B, even if Lre is not. This proves the claims.
The lemma then follows from Claim 3 as Sy, is k-good refines S and ||y || < k2.
Q.E.D.

By Claim 2 in the proof of 12.5.10 each | J;. y Hyy is a k-complete system;
denote it S;. Then by the previous lemma there are linear combinations L; of w,’s
and wg, r’s of degree < gk? such that

Y a=Li+1
CtGSi
and hence
oY a=>Li+n= (ZLi) +1
ied a€s; ieAd ieAd
But the first sum can be also computed as

2.2 &= > ) &

i€ed aes; Xe[dY ieX acHy,

0

because |X| = 0(mod g). Hence there is a linear combination L = ) ; L; of
degree < gk*suchthat L +1=0inF,[#u].

The proof of Claim 2 from the proof of Theorem 12.5.10, and thus the proof of
the theorem itself, is concluded by the following lemma, taking d = gk?.

Lemma 12.6.4. Let p, q be different primes and d a constant. Then for sufficiently
large n and for any linear combination L of w.’s and wg r’s of degree < d there
is a partial p-partition « of B = pn + 1 such that

L(uy)=0
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where U o is defined by
I, fEea

Uug = )
0, otherwise

We shall not prove this lemma. The reader may consult Beame et al. (1994).
Note that a lower bound d on the degree of a linear combination L for which
L 4+ 1 = 0 holds generally implies a lower bound in Theorem 12.5.10 of the form
n@ _In particular, d = n*(") would yield an exponential lower bound in that
theorem.

Open question. Leta, b > 2 be two different numbers. When are there polynomial
size, constant-depth F(MOD,)-proofs of formulas Countﬁ ?

Theorem 12.5.10 does not yield any information about this problem.

12.7. Forcing in nonstandard models

In this section we reinterpret some of the previous material of this chapter as
forcing constructions. We shall begin with a simple but illustrative result.

Recall that 3;-formulas are the existential formulas; we shall consider them in
the form Ix¢(x, u ), ¢ open.

Theorem 12.7.1. The fragment of Peano arithmetic axiomatized by Q and by the
least number principle for existential formulas in the language L p 4(R) does not
prove the pigeonhole principle PHP(R):

L31(R) ¥ PHP(R).

Proof. Let M be a countable, nonstandard model of true arithmetic Th(V). Let
n € M be a nonstandard number.
LetP={geM|g :Cn+ 1> n, ginjective}. The symbol g € M means
that g is coded in M.
Enumerate all elements of n + 1: u1, 13, . .. and also all 3, (R)-formulas 8 (x),
9>(x), ... with one free variable x and with parameters from M.
We shall build a sequence go € g1 < ... € P such that
1. |J;dom(g;) =n+1
2. forg:=U; &
(@ (M, g) E L3i(g)
b) (M, @) &= “gis injective”

3. the cardinality of each g; is standard
(Step 0) go := 0
(Step 2i) Choose any gy; 2 g»;—1 such that u; € dom(gy;) and such that condi-
tion 3 is satisfied



12.7 Forcing in nonstandard models 273

(Step 2i + 1) Choose g2;+1 2 g of standard size such that forany F : n+1 — n,
F D gi41, injective, if R is the graph of F, then

(M, F) = least number principle for 6; (x)

To perform the odd steps we need the following simple claim.

Claim. Let 6(x) be a 3\ (R)-formula. Then there is standard k such that for every
gePandae Mif

dR 2 g, (M, R) =6(a)
then thereis h € P, |h \ g| < k such that
YR 2 h, (M, R) E6(a)

where R ranges over the graphs of the total injective maps from n + 1 to n in the
last two formulas.

To see the claim observe that in the open kernel ¢ (x, ) of 6 constantly many
atomic subformulas of the form R(s, t), where s and ¢ are terms built from x, u,
occur.

If some R O g makes 6(a) true in M we need to fix the truth value of only
constantly many such subformulas. To make R(i, j) true add the pair (i, ) to g;
to make it false add (i, j') to g for some j' # ;.

With the claim and g = g»; in an odd step, consider the formula

n(x)y=3h e P, |h\ gl <k A“R D hforces 6;(x) true”

where k is the number guaranteed for 8; by the claim.

Take a € M to be the minimal element satisfying n(x) in M, if there is any.
Such an element exists as M satisfies the least number principle for all formulas.
Let & be the map guaranteed for a by the claim. Put

iyl =h
QED.

Note that the same proof works for those Lpa (R)-formulas in place of 31 (R)-
formulas in which every universal quantifier is bounded by some m such that
m¢ < n for all standard c: A statement analogous to the claim holds with the
number £ being replaced by a number of the form m¢, some ¢ standard.

This is seen as follows. Let 8(x) be a formula of the form

Yvy < m3uy)Voy <m... Juep(x, v, %)
with ¢ open. Formula 6 (x) is equivalent (in M) to the formula

AH, ..., Ho:m > MVvy,...,vp <m @ (x,0,u;/Hi(x,vy,...,0))
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where H; are Skolem functions. The subformula
Yoi,...,ve <m@(x,v,u;/Hi(x,v1,...,0¢))
can be replaced by the conjunction

N\ BT u/ Hi(x, v, ve)

Ul Vo<

which contains < ¢ - m® distinct terms (in parameters x, 7 and also using the
symbols H;). Hence we may use this conjunction in place of the open kernel in
the proof of the claim.

Note that this shows that the theory Z{’ (R)-MIN (which is equivalent to T. 2‘ (R)
by Lemma 5.2.7) does not prove PHP(R): That is, it is an alternative proof of
Theorem 11.2.5. In fact, the proof of Corollary 11.3.2 from Riis (1993a) generalizes
the proof of Theorem 12.7.1.

The rest of this section is devoted to an interpretation of the method of k-
evaluations from Sections 12.3—5 as a forcing type of construction (we refer the
reader to Takeuti and Zaring 1973 for basic information on forcing).

Let M be a countable nonstandard model of true arithmetic Th(N),n €¢ M\ w
its nonstandard element and 7 €, M the cut in which the elements 2|”|i, { < w,
are cofinal. Hence [ is a model of $; (¢f. Lemma 5.1.2). Our aim is to find a
bijection f : n + 1 — n such that

, f) = S(f)+—~PHP(f)

The bijection f will be obtained by forcing. The set of the forcing conditions P
is defined by

1/¢

P::[aeMla:gn-l-l-»n,aisl—l,lalsn—n some£<w}

and partially ordered by inclusion.
Cali subset D C P dense iff

YVoePIBe D,alPB
and definable iff there is a formula ¢ (x) with parameters from M such that
D={aeP|ME=d(a)}

A subset G € P is called generic if it satisfies four properties:
1. G£9
2. Ve e GVBC a,BeCG
3. Vo, e Gy € G, aUB C y
4. DN G # B, for every dense definable subset D € P
The next lemma is standard and its proof is omitted.
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Lemma 12.7.2.
1. Let a € P be arbitrary. Then there is generic G such that o € G.
2. Let G be generic and define the map fc by

fe=JG
That is,
fex)=y iff JweG,alx)=y
Then fg is a bijection between n + 1 and n.

Let¢(f) bean L( f)-sentence with parameters from J. The notion of genericity
allows us to define the notion of forcing.

Fora € P:a forces ¢(f), @ [~ ¢(f) in symbols, iff for every generic
GCP,aecG

(U, f6) E ¢

This forcing notion satisfies the usual properties (cf. Takeuti and Zaring 1973).

We would like to find a generic G such that for every bounded L ( f')-formula
¢ (x) with the parameters from / and with one free variable x some & € G forces
that ¢ (x) satisfies in (/, f) the least number principle. It is, however, not at all
clear that such G exists and we will have to employ the restriction method from
Sections 12.3—5 to achieve this.

Consider the set F of such bounded L ( f)-formulas ¢ (x). Letm € M\ I be any
fixed element and d a standard number. Define (in M) the set I’y of propositional
formulas to be the set of formulas 8 € M that satisfy

1. dp®) <d

2. 18l <m

3. the atoms of 6 are among p;;,i <n+1land j <n
Note that for any ¢(x) € F there is d such that forallu € 7

(¢)u ely

where (¢) is the translation from Definition 9.1.1.

As M is a model of true arithmetic, Theorem 12.4.3 holds in M. Choose con-
stants € = 1/6 and 6 = 1/¢, some fixed £ > w. Hence in M it holds that for some
p€P,lpl<n—nl/6" there is k-evaluation (H, §) of (T)? with k < 2n°.

The following lemma is an important technical vehicle.

Lemma 12.7.3. Let ¢ be a bounded L( f)-sentence with parameters from I and
letd < w be such that (¢) € T'y. Let €, 8, and p be as earlier and let (H, S) be a
k = 2n8-evaluation of (T'y)".
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Then for a generic G containing p it holds that

Gl¢ iff dfoE= \/ «

acHg)e

where (I, fG) = a iffa € fG.

Proof. The proof proceeds by induction on the logical complexity of ¢. It is clear
for the atomic ¢ and for the negation. We shall consider only the case when
¢ = Ix < uy(x). For simplicity of notation we shall skip the reference to p.

By Definition 12.4.1 we have

Hipy = Sig) (U me)

v<u
and
Ve=V V5
aHg, v<u BeHy),
The second equality follows from
\/ o= \/ B
aeH BeS(H)
whenever a complete system S refines H, which in turn follows from the identity
\/ a=1
aes

valid for every complete system S.
Hence G | ¢ iff G |- 3v < uyr(v) iff

e\ V B

v<u peHy),

iff (7, £6) = Ve, @ QED.

We are equipped now to describe a construction of a generic G C P for which

U, f6) = S2(f)

Let ¢ (x), ¢2(x), ... enumerate set F so that each ¢; appears twice. Put pg := @
and construct pp € p) € - - € P in steps.

If we are in an even step, extend py; to some py; 1 from the i*# dense definable
set. If we are in an odd step pj; 41 consider the formula ¢; ;. There are two
possibilities:

1. forsomed < ws.t. (§;4) € [y there is k-evaluation (H, S) of (Fy)#%+!
such that k¢ < n,all¢c < w
2. otherwise.
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In the first case pick in M the minimal ¥ < m such that
ME3p 2 pniv, I\ p2iv1l Sk Ap ePAp - dit1(u)

This is definable because of the bound |p \ p2;+1] < k and because p |- ¢;+1(u)
iff p = \/O‘EH(d’,-H)u o, which is clearly definable.

Pick py;+2 2 p2i+1 any p witnessing the validity of the formula for the mini-
mal u.

In the second case take any d < w such that (¢;+1) € 'y and any pp;-»
extending 07;+1 for which there is a k-evaluation of (I';)~2+2,

Take

G:={eeP|p 2a somei < w}
By Lemma 12.7.2

(I, f6) & — PHP,( fG)
and by Lemma 12.7.3

(I, f6) B Ixp(x) — FuVv < u. p(u) A —p(v)

That is, also

(1. f6) = S2(f6)

12.8. Bibliographical and other remarks

Theorem 12.1.3 and Corollary 12.1.4 are due to Pudlak (1992a). Section 12.2 is
after Krajicek (1994): Theorem 12.2.4 was the first exponential lower bound for
the constant-depth systems. Earlier bounds (Ajtai 1988, Bellantoni. Pitassi, and
Urquhart 1992) were slightly superpolynomial.

Sections 12.3 and 12.4 contain material from Krajiéek et al. (1991). Lemma
12.3.10 was proved there using a probabilistic argument based on an unpublished
work of Woods, who, in turn, built on Yao (1985), Cai (1989), and Hastad (1989).
The present proof recasts the original as a counting argument; see Lemma 15.2.2
for a similar argument.

Ajrai (1988. 1990) investigated the lengths of proofs of PHP and CountfZ studied
earlier in connection with the bounded arithmetic in Paris and Wilkie (1983) and
Woods (1981). His arguments showed that there are no polynomial size constant-
depth proofs of PHP. and of Count,z, from the instances of PHP. Bellantoni et
al. (1992) extracted from Ajtai (1988) an explicit superpolvnomial lower bound
to PHP. The exponential lower bound was obtained independently in Kraji¢ek
et al. (1991) and Pitassi. Beame. and Impagliazzo (1993). and the exponential
separation of PHP and Count; was obtained by Beame and Pitassi (1993) and Riis
{1993b). The proof of Theorem 12.5.7 in part follows Riis (1993b). The separation
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of Count?” and Count? for p, g primes (Theorem 12.5.10) was announced by
Ajtai (1994a) and Riis (1994). The proof presented here is from Beame et al.
(1994), where the dependence of the principles is completely characterized also
for composite p, q.

Paris, Handley, and Wilkie (1984) and Paris and Wilkie (1985) characterize
some of the classes Q,A¢ in terms of Bel’tyukov’s machines (see Bel’tyukov
1979), and Gandy (unpublished, see Theorem 11 in Paris and Wilkie 1985) char-
acterized class 2 Ay in terms of a limited primitive recursion.

Nothing is known about the proof systems with the counting gates. The construc-
tion of i-good refinement in the proof of Lemma 12.6.3 is similar to a construction
of “canonical systems” in Riis (1993b), and it is based on the idea behind Lemma
3.1.13. The bounded arithmetic systems with the counting quantifiers are also not
understood.

Theorem 12.7.1 is due to Paris and Wilkie (1985), and it is the first forcing
argument in the context of weak arithmetic. Later forcing constructions of Ajtai
(1988) or Riis (1993a,1993b) are based on the same principle, although technically
more complicated. Our presentation is slightly modified from Riis (1993b).



13

Bounds for Frege and extended Frege
systems

In this chapter we shall discuss the complexity of Frege systems without any restric-
tions on the depth. There is some nontrivial information, in particular nontrivial
upper bounds, but no nontrivial lower bounds are known at present (only bounds
from Lemma 4.4.12).

13.1. Counting in Frege systems

Theorems 9.1.5 and 9.1.6 are useful sufficient conditions guaranteeing the exis-
tence of the polynomial size EF-proofs and of quasipolynomial (18 m° size
F-proofs, respectively. For example, U, 11 proves the pigeonhole principle PHP(R)
and hence there are quasipolynomial size F-proofs of PHP,. A subtheory of U 11
corresponding to the polynomial size F-proofs, based on a version of inductive
definitions, was considered by Arai (1991); see Section 9.6. Its axiomatization
however, stresses a logical construction, whereas we would like a theory based on
a more combinatorial principle.

The most important property of a Frege system relevant for the upper bounds
is that it can count. We shall make this precise by showing that F simulates an
extension of / Ag(a) by counting functions, and that F p-simulates a propositional
proof system cutting planes.

Definition 13.1.1.
(a) Let Lo be the language of the second order bounded arithmetic but without
the symbol #. The language L;.\ is obtained from the language L; by
adding for every bounded L;-formula

9(x|9'-~’xk$yl’-~'vy£)

279
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with k + £ free variables a new function symbol Fg +(X; 7). The language
Ly, is the union | J; L;. '

(b) Thetheory I Ag{a)°"™ is a theory in the language L, axiomatized by P A~
(see Definition 5.1.1), the induction axioms for all bounded L -formulas,
and by all axioms of the form

F;;(ﬁ;bl,...,bg) =0
andfor j=1,...,k

Fé‘,;(al,...,aj_l,a+ Lajr1,....ak3 by, ..., be)
= F;;(al,...,aj_l,a,aj+1,...,ak;b],...,bg)
£ TIUNE SERTE S TN 73 .
+F9.?.X,'/ ! @, ....,a;_1,aj11,...,ak; b1, ..., bg,a)

The meaning of the function Fg ;(Y; y)is
Fs(@b) = |[[Teaix...xax|6(%,b)|
We note a simple logical property of 7 Ag(a)®°U",

Lemma 13.1.2. Let T be the theory IEé'b (Definition 5.5.2) in the language of
I Ao(@)"™ (i.e., without the # symbol, in particular), plus the axiom

VYedu, f, Enum(f, u, a)

where Enum is the formula from Lemma 5.5.14.
Then the theory T is conservative over the theory [Ag(a)“®*" wrt. all
YV Ao(a)-formulas.

Proof. Note that any model of 7Ap(x)®°"™ can be expanded to a model of the
theory T, leaving the first order part unchanged. Q.E.D.

The following lemma is not surprising.

Lemma 13.1.3. The theory IAg(a)°“™ proves the pigeonhole principle
7y 14 Pig P P
VxPHP(R, x).

Proof. Assume — PHP(R, a), thatis, R(x|, x3) is a graph ofa 1-1 map froma + 1
into a.
By induction on y and z the theory 1 Ag ()" provesfor y <a+1landz <a

Fp'(y,a;)=y and Fp™a+1,z)<z
and hence
a+1=F"%a+1l,a;)<a

which is a contradiction. Q.E.D.
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Next we define the cutting planes proof system.
Definition 13.1.4. A CP-inequality in x1, ..., x, is an inequality of the form
axy+...apxy > b

where ay, ..., ap, b are integers.
CP-inference rules are the following four rules allowing us to infer a CP-
inequality from other CP-inequalities:
1. initial

x>0 —x; = —1
2. addition
Yjaixi=b  Ycxi>d
Yilai+cxi=b+d

3. multiplication

Zi ajixi>b
>oi(cai)x; = cb
where ¢ is a nonnegative integer
4. division
Zi aix; >b

Y iai/k)x; = [b/k]
whenever k is a positive integer dividing all a;

A cutting plane refutation (a CP-refutation, shortly) of CP-inequalities I, . . . , Iy
is a sequence Jy, ..., J; such that each J; is either one of I, ..., Iy or derived
from the previous inequalities Jy, ..., Ji_1 by one of the CP-rules, and such that
the last inequality J; is 0 > 1.

The size of a CP-inequality y_; ajx; > bis |bl+Y"; |a;|. The size of a CP-proof
is the sum of the sizes of its steps.

The proof system CP is complete, meaning that any set of CP-inequalities
without a 0—1 solution has a CP-refutation (cf. Cook, Coullard, and Turan 1987).

For the following lemma define thataclause C = {x;,, ..., xi,, =xj. ..., =%}
is represented by a CP-inequality /(C):

in—' ZX/Z]—b

ieU\V jev\u
where U = {iy,...,i;}and V = {ji, ..., jb}-

Lemma 13.1.5. The cutting planes proof system p-simulates the resolution sys-
tem.

Proof. Letxy,...,x, be all atoms. If a clause contains both x; and —x; then the
CP-inequality representing the clause can be inferred from 0 > 0 (which follows,
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e.g., from x; > 0 by multiplying both sides by 0) by adding to it some initial
inequalities x; > 0 and —x; > —1.

Let C and C> be two clauses such that x; € Cy and —x; € C3, and let C be
the resolvent of Cy and C; wirt. x;

C=(C\ 5} U(C2\ [=x)))

By the preceding material we may assume that for any £ # j, at most one of the
literals xy, —xx occurs in Cy U C;. Moreover, we may also assume that —x; ¢ C;
andx; ¢ C;asotherwise (C) canbe obtained from 1(C3) if —x; € C) (resp. from
1(Cp) if x; € C,, by adding to it suitable initial inequalities x; > 0, —x; > —1.

Let I(Cy): Y aix; > 1—band I(Cy) : Y c¢ix; = 1 —d. Note thatall a;, ¢;
are 0, 1 or —1. Add to the inequality 7(Cy) + 1(C2)

Y @i+e)xiz2-b-d

all initial inequalities x; > O ifa; + ¢; = land all —x; > —1ifg; +¢; = —1to
get an inequality J

D uixi 22-2b—2d +1

where all u; are 0,2 or —2. Note that u; = 0 as a; + ¢; = 0. Apply to J the
division rule with k = 2

Z%xizlrl—(b+d)+%-|=1—(b+d—l)

It is easy to verify that J represents the resolvent of Cy, C; w.r.t. x;. Hence one res-
olution inference has a size O(n) CP-simulation. This readily implies the lemma.
Q.E.D.

Lemma 13.1.6. Let PHPCY be the set of CP-inequalities representing the clauses
of = PHP,. That is, PHPST consists of

X4+ xip > 1, Jorl <i<n+1
—xik—xppz—1,  forl<i<j<n+l,  andl<k<n.

Then there is a polynomial size CP-refutation of the set PHP,?P .
Proof. Summing up all first inequalities gives
Z Xij = n+ 1
ij

For a fixed k derive the inequalities (» =2, ...,n+ 1)

=Xk — X2 — = Xk = —1
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For » = 2 this is just an inequality of PHP$P. The inequality for » + 1 is obtained
by summing » — 1 copies of

—Xlk =Xk = — Xk 2 —1
with all inequalities of PHPSY of the form
—Xik — Xr+1k = —1, I<i<r
obtaining the inequality
—rXipg = —FXpp1 gk 2 1= 2r

which after division by r entails the inequality for » + 1.
Sum up all inequalities

—Xie = = Xnpl k2 1

fork=1,...,ntoget
Z —Xij Z —n
ij
and adding this to the first inequality of the proof yields

0>1

The length of any inequality is O(n - logn) and there are O(n?) steps: That is,
the total size is 0, Q.ED.

Note that the lemma together with Theorem 12.5.3 implies that the constant-
depth systems do not p-simulate CP. The following theorem is the main result of
this section. Recall Definition 9.1.1.

Theorem 13.1.7. Assume that 6 (x) is a bounded Ao(«)-formula in the language
L, and that

TAg(a)"™ | ¥x0(x)

Then there is a polynomial p(x) such that all formulas (6), have size < p(n)
F-proofs.

Proof. The simulation is constructed as in Theorem 9.1.3. We only need to show
how to simulate the new axioms from Definition 13.1.1, that is, how to define the
formulas p; 7 j of the translation of formulas (F;‘T ;(f; y) = Z)E,B,j and how to
prove the translations of the axioms. To simplify the notation we shall consider
the formulas 6(x) with one free variable only (parameters implicit) and we shall
use the atoms p; instead of the formulas (6);.
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For any fixed n we need to define the formulas g;; representing Fy (i) = j. A
naive approach would be to use the inductive property of F to define goo := 0 and

gi+1 j = qij AP Y (4i j~1 A i)

This, however, gives g,; of size 2(2"). A slightly less naive method would be to
define F on subintervals of n of the form [u - (n/2Y), (u+ 1) - (n/2Y)), u < 27,
and proceed by induction on v = logn, logr — 1,..., 0; this yields formulas of
size n90ogn) oply.

We resolve this problem by using the carry—save addition. That is a technique
allowing us to compute the sum of n numbers with 7 bits each by a Boolean formula

of size 9. Thinking about py, ..., p, as n numbers with one bit each we shall
find size n0() formulas computing the logn bits 2, ..., 7 %" ' of 3,_, pi in
terms of pq, ..., pp and then put

qkj ‘= /\ r,';/\ /\ —|r;;

=1 jo=0

where j(0), ..., jlogn — 1) are the bits of j. From the construction of r} it will
be apparent that the system F can verify the inductive property

qkj = (qk-1,j A= Pk=1) vV (Gk—1,j—1 A Pk~1)

We define the formulas (in p1, ..., pn) ay, and b, , whereu =0, ..., £ — 1,
v=0,....(n/2) -1, w=0,...,£ — 1,and £ = [logn]. Denote by a,, the
¢-tuple (@2, ..., als D), similarly byy.

Put

a¥ = py ifw=0
=10 ifw>0

and by, := 0, and then define
Ay, = A(ay2v, bu v, Au2v+1, bu2ve1)
and

buti,v = B(ay2v, bu2v, u 2041, by2v41)

where 4 and B are {-tuples of propositional formulas in 4¢ atoms defining the
carries and the sums in the sum of the four £-bit-long numbers a,, 2y, by, 20, a4y 20+1,
by 2u+1, and are defined by

A = Ag(Ao(ay,2v, bu2vs Au,2041), Bo(@u2v, by 20, Gu20+1)s bu2041)
and

B .= BO(AO(au,Zv’ bu,2v» au,2v+l)» BO(au,Zv’ bu,2v, au,2v+l)» bu,2v+1)
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where
AJ (X, 3.2y =x"® )y ez”
and Bg(f, ¥,z) :=0and

w—1 A yw—l) v (xw—l A Zw—l) v (zw—l A yw—l)

BY(%,7,Z) := (x
if0<w<?.

The formula ¢ @ s is a shorthand for (1 A —s) v (= A s5). Note that 47 is the
sum modulo 2 of the wth bits of X, y, Z and that B’ is the carry on the wth place.
Hence the sum (modulo 2¢, but all our numbers are smaller than 2¢) of numbers
X, ¥, z is equal to the sum of 4¢(X,y,Z) and Bo(X, ¥, 2).

We shall use some fixed formula C(&, f) in 2¢ atoms representing the sum of
two £-bit-long numbers. We take for C the disjunctive normal form ofthe associated
Boolean function. Such a formula has size 209 = n%() and F can prove all the
usual properties of the addition by simply considering all assignments.

Define

cyy = Clayw, byy)

Hence ¢,y are the bits of 3, yu; (4 1).2¢ Pi>and cg—y o are the bits of the wanted
sum ) ; p;. This allows us to put

rki=ce—10(Pts ..oy Pk—1,0,...,0)
The inductive property of g;; then follows from

Pk —=> C(ri,0...0,1) = rge

TPk = Tk = Tk+1

which is verified by induction on u in
P = (Cley(pr/0), 0...0,1) = cyy)

where v is chosen to be the unique number such that k£ € [v - 2¥, (v + 1) - 2¥).
All these verifications rest only on the F-provability of the basic properties of
the addition for formula C that are available by our choice of C. Q.E.D.

The theorem and Lemma 13.1.3 entail the following corollary.

Corollary 13.1.8 (Buss 1987). There are polynomial size Frege proofs of the pi-
geonhole principle PHP,,.

From Theorem 12.2.4 we know that constant-depth systems cannot p-simulate
system F. Note that the last corollary and Theorem 12.5.3 are also proof of this
fact.
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A CP-inequality with variables xy, ..., x, can be coded by an (n + 1)-tuple of
numbers, each of them represented by a set of its bits. So the whole inequality is
represented by a set, as is any CP-refutation. Recall a similar situation with the
coding of F- and EF-proofs in Section 9.3.

Theorem 13.1.9. The theory IAg(a)*™" proves the soundness of the cutting
planes proof system CP.

Proof. 1t is enough to show that the theory T from Lemma 13.1.2 can define the
addition, multiplication, and division of numbers coded by sets of their bits and
prove the basic properties, say PA™. This is done similarly to the proof of Lemma
5.5.4; there we used A}‘b‘induction to verify the basic properties, but we may
replace that by a Z(;‘b-induction with the parameter (the multiplication table, etc.)
witnessing the Ell’b-deﬁnition of the operation. These witnesses are definable by
a Zé‘b-formula with the help of the new counting functions. We leave the details
to the reader. Q.ED.

The following corollary is obtained from the previous theorem and Theorem
13.1.7 analogously with 9.3.17 followed from 9.2.5 and 9.3.13.

Corollary 13.1.10. Frege system F p-simulates cutting planes proof system CP.

13.2. An approach to lower bounds

This section points out an open problem rather than presenting results.
The only known lower bound to the size of F-proofs is provided by Lemma
4.4.12. Its general form, with an identical proof, is the following lemma.

Lemma 13.2.1. Let T be a tautology that is not a substitution instance of any
tautology of a smaller size. Denote by s(t) the sum of the sizes of all subformulas
of t.

Then every F-proof m of t must have size at least

|| = Q(s(7))

The weakness of the lemma is not so much in the poor bounds it provides (as
always s(t) = O(|t}?)) as in the fact that the value of s(t) depends on a syntactic
form of 7 rather than on the meaning of t. For example, a disjunction o of  literals
has the value s(o) = Q(n?) if the brackets are associated to the left but only the
value s(o) = O(n - logn) if the disjunctions are arranged in a balanced binary
tree.

We would therefore be interested in obtaining a lower bound of the form at
least n!*€ but robust w.r.t. to the distribution of brackets and similar syntactical
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questions. In particular, we would like to obtain such a bound to the F-refutations of
an unsatisfiable formula represented by a set of small clauses. Such a formulation
seems to depend least on the syntactic form.

Tautologies that might be useful in this respect were considered by Tseitin
(1968) . Let G be an undirected graph with »n vertices labeled by 0 and 1 such
that an odd number of vertices get label 1. Let each edge of G have an associated
atom. Consider »n sets of clauses {C,’;},-, one set for each vertex v, representing in
the conjunctive normal form A; C! the formula

e1®---de =4,

where ey, ..., e are the atoms associated to the edges incident with v and ¢, is
the label of v. Clearly i < 2'.

Denote by C(G) the set of all clauses Cf,, for all v and i. The set is unsatisfiable
(as the sum of the labels of the nodes has to be even but is odd by the hypothesis).

There is a relation of the formula C(G) to the instances of the counting principle
Count,z,. Let G = (V, E) be a graph with labeling « of its edges satisfying C(G).
We may assume that G has exactly one vertex v labeled by 1 and that for that
vertex deg(v1) = 1 (a graph satisfying this can be defined from G in a simple way,
e.g., by a Ag(G)-formula). Then the labeling « of the edges defines a complete
pairing on the set

A= {{{u, v}, u) |ueV, {uv}e E}\{(e, v1)}

where e is the unique edge incident with vy: pair ({u, v}, ) with ({u, v}, v) if
a({u, v})) = 0and ({u, v}, v) with ({s//, v}, v) if {u, v} and {«’, v} are the (2i 4 1)st
and the (2i 4+ 2)nd edge incident with v and labeled 1 by «. The set 4 has an odd
cardinality, however. This shows that C(G) can be refuted from an instance of
Countf,. Note that this refutation is polynomial size and is bounded depth if the
degree of G is bounded.

The opposite implication also works. From any equivalence relation R falsi-
fying Countf, one can obtain a Ag(R)-definable labeling @ of the edges of the
complete graph K>, .1 whose exactly one vertex is labeled by 1, such that o sat-
isfies C(K2,+1)-

Assume that G has the degree bounded by an independent constant, then
[C(G)| = O(n). Urquhart (1987) showed that bounded degree expanders yield
sets of clauses with exponential size resolution proofs. On the other hand, the
clauses have polynomial size F-refutation for any graph G, utilizing the counting
in F from the previous section. We would like to find bounded degree graphs for
which any F-refutation of C(G) must have the size n!+t¥®,

Next we consider a possible approach to showing such a lower bound (for
suitable graphs). Consider the following search problem. Given a labeling « of the
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edges of G find a vertex v for which the parity condition
e1P---De =¢,

is violated. We want to solve the problem by using a modification of decision trees
(cf. Definition 3.1.12) where at a node the tree branches into 2’ subtrees depending
on the labels of the edges incident with a vertex v.

Denote by D(G) the minimal height of such a tree solving the search problem
for all labelings of the edges of G (labels of vertices are fixed: a part of the
specification of G).

For example, if G is a complete graph with just one vertex labeled by 1 then
D(G) = n — 1. If G is a circle (again with one vertex labeled by 1) then D(G) <
log n, by the binary search.

Assume we have an F-refutation 7 of C(G). Knowing the truth values of ail
formulas in 7 allows us to construct a path vy, ..., ¥, through & (similarly to
the proof of Lemma 9.5.1) and to solve the search problem in this way. Define
newsize(yr) for the formula  to be the minimal number & such that there is a set
W of k vertices such that the truth value of iy can be determined knowing only the
labels of the edges incident with a vertex from W . Hence

D(G) < newsize(r) := Z newsize(y)
¥

where ¥ runs over steps of 7.
We would like to find a type of graph G and a space of random partial evaluations
p leaving ~ p-n edges unlabeled and having with a high probability two properties
1. D(G*) =Q(pn)
2. newsize(r”) = O (p'** - newsize(r))
where € > 0. Choosing p ~ n—!*3 gives

Q(pn) = D(G”) < newsize(r”) = O (p“" newsize(rc))
and thus
Q(p~n) =Q (n1+[1_8]5) = newsize(r) < |7|

This is motivated by the method of Subbotovskaja (1961), which showed that the
expected shrinking of a formula ¥ in atoms x|, .. ., x, under random restrictions
from Lemma 3.1.11 is by a factor O(p3/?). We would need therefore a type of graph
G for which the decision complexity D(G) is €2 (n) and such that the restricted
graphs G* are of the same type (which would yield condition 1) and for which
the shrinking of the formulas w.r.t. the newsize occurs with factor p' () Again,
expander-type graphs might be good candidates.
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13.3. Boolean valuations

In this section we define the concept of Boolean valuations, which was introduced
inKrajicek (1995a). It aims at describing a framework for proving the lower bounds
to £ (recall the measure {r from Section 4.4: the number of distinct formulas in
a proof). In the rest of the section we consider a Frege system F in the language
{0, 1, =, v, A}. We have to start with three rather formal definitions.

Definition 13.3.1. Let T be a set of formulas. We say that a formula t can be
proved within ", -1 in symbols, if there is an F-proof of T in which only formulas
from the set I occur as subformulas.

Definition 13.3.2.
1. A partial Boolean algebra is a structure

B(O’ 1’ /\’ \/9 _')

in the language of Boolean algebras {0, 1, A, v, —} but in which the oper-
ations N, V, = are only partial; in which the elements 0 and 1 are distinct;
and that satisfies those axioms t = s of the theory of Boolean algebras B4
Jfor which both t and s are defined. For definiteness we take as the axioms
of BA the instances of the following identities:

(@ 0=1-1=0,0vu=u and lAu=u

(b)) uv-u=1, un-u=>0

(c) uvv=vVvu, UAV=VAU

d uvvw)y=uvv)vw, uAn@Arw)=WmAV)AW

(e) uvivaw) =uvVuo)Auvw), uA(vvw) = WwAV)V(UAW)

2. Ahomomorphism h : By — B; of apartial Boolean algebra B into By isa
map h of the universe of By into the universe of By such that h(0g,) = 0p,,
h(13|) = 132, and

(a) —h(u) is defined and equal to h(—u), whenever —u is defined in B,
(b) h(u)oh(v) is defined and equal to h(u ov) , whenever uov is defined
in By (o = A, V)
3. A congruence relation on a partial Boolean algebra B is a partition = of
the universe of B such that
(@) u = vimplies (—~u) = (—v), provided both —u, —v are defined in B,
(b)) u=vandu' =V imply (uou') = (vov'), provided both u o u’ and
vo v aredefinedin B (o = A, V).

See Gratzer (1979) for details on partial algebras. The following definition is
crucial.
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Definition 13.3.3. Let I" be a set of formulas. A Boolean valuation of I" is a map
v:L-> B

of the formulas from T into a partial Boolean algebra B(0, 1, A, Vv, —) satisfying
the following conditions:
1. v(0) =0gandv(l) = 1p,if0 €T (resp. 1 € )
2. —v(yr) is defined and equal to v(—yr), whenever i, - € T’
3. v(y¥r) o v(@) is defined and equal to v({r o ¢), whenever yr, o, Yy o € T,
Joro =V, A

Lemma 13.3.4. There are ¢ > 0 and an assignment x assigning to any finite set
" of formulas and any F-proof 7t of v within T a set of formulas T 2 T such that

ITx| <ell| and max {dp(®)| ¢ € T}} < c+ max{dp($)| ¢ € '}

and such that there is no Boolean valuation v : T'), — B in which v(1) # 1.

Proof. For R(and p= (pi, ..., pn))
... v (p)
yo(p)

a rule of the system F let Tz (p) be the set of all Boolean terms occurring as the
subterms in some fixed equational proof ez of the equation

vo(p) =1
from the equations

yi(p) =1, i=1,...,r

in the theory BA. Such a derivation exists as R is sound.
Letm = 6y, ..., 6 be an F-proof of v within I'. Define the set '} to be the
smallest set satisfying
1. I'xr2or
2. whenever
Vl(‘//l’ ---al[/n)’ ~~syr(‘l/l’ -~'»¢n)
Yo(Wi, ..o ¥m)

is an inference in 7 using the rule R then

TR(‘//I,---"/fn) g r;;

Itis clear that the depth of ", increases by a constant over d p(T") and the cardinality
of I'¥ is proportional to T".
Construct an equational derivation of

T=1
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constructing consecutively the derivations of
6 =1

using the derivations eg if §; was inferred by using rule R. As the valuation v
preserves the connectives on I'}, clearly

v(6;) =18
all 7, and so also
v(t) = 1g
That is a contradiction. Q.ED.
The following construction is a converse to the previous lemma.

Lemma 13.3.5. There are a constant ¢ > 0 and an assignment + assigning to
any finite set T of formulas a set of formulas Tt 2 T such that

IT*| <ITI° and max{dp(¢)| ¢ € T} < c + max{dp(@)| ¢ € T}

and such that for each t € T, if there is no F-proof of t within T'" then there
exists a Boolean valuation v : T — B in which v(t) # 1.

Proof. For t; = 1, an identity of the language of BA define the set of formulas
F 1, in the following way:

1. for every subterm s of ;, i = 1, 2, introduce a new atom q£

2. foro =V, A, i =1,2,and s1 o sy a subterm of #; put the formula

0505, = (@5, ©45,)

into the set 4,, »,
3. fori = 1,2 and —s a subterm of ¢; put the formula

gl = (—q})

into the set A;, ,,
4. set Fy, ;, is the set of all formulas occurring in a fixed F-proof n;, ;, of the
formula

/\ Any — qtll = qr22

(/\ bracketed to the left, say). Recall that we use = as an abbreviation.
Define the set I'* to be the smallest set I't O T closed under subformulas and
satisfying the following conditions:
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1. forany «, B, y € I', all formulas

a=8->pB=q, a=—->B=y—->a=y)

0=1-0, a=1—-a«
areinI"t
2. whenever t1 = 1 is one of the identities —a = —~a, avb=avh, anb =
a A b then

Fin(aje,b/f) ST

forallo, BT’
3. whenever #| = 1, is one of the axioms of BA and oz§ € I then

Funlgl/ehy cTt

Clearly dp(I't) < ¢ +dp(') and [T'F| < |T'| for some constant ¢ > 1.
Define the relation ~ on I" by

¢~y iff bFrio=y

Condition 1 implies that ~ is an equivalence relation and 2 implies that it is even
a congruence relation. From 1 it also follows that 7 is not ~-equivalent to 1 as by
the hypothesis of the lemma t has no F-proof included in I"'*.

From ~ define a partial Boolean algebra 13 and a valvation v : ' — B by

(a) the elements of B are the congruence classes from I'/ ~

®) 0g=0/~,1p=1/~

(¢) ma =—-a/ ~,whenevera e "and e € a

(d) aob=(aoB)/ ~, whenevereaofelanda €a,f b, 0=V, A

(e) via) ==/ ~
It is straightforward to verify using 2 and 3 that the operations —, Vv, A are correctly
defined and that v is a Boolean valuation. As v(t) # 15, we are done.  Q.E.D.

We shall state the main theorem on Boolean valuations.

Theorem 13.3.6 (Krajicek 1995a). Let T be a propositional formula and let n.
be the maximal number n such that for every set A of < n formulas containing t,
there is a Boolean valuation v : A — B in which v(t) # 1.

Then

ne = O(r(1))

and

o)

Lr(T) =n;

The same is valid if we restrict F to the depth d systems and consider for A only
the sets of depth < d + ¢ formulas, ¢ a constant depending on F only.
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Proof. Let w be an F-proof of t with £z(7) distinct formulas. Take I" to be the
set of the formulas occurring in 7 and put A := I'¥. By Lemma 13.3.4 there is no
Boolean valuation v : A — B in which v(t) # 1g. Also |A| = O(|T)).

For the second inequality take I" a set of n; + 1 formulas containing t for which
there is no Boolean valuation v in which v(t) # 1. By Lemma 13.3.5 there must
be an F-proof of t within ', hence

Lr(r) < TF| = 0190 = (n,) 0D

The generalization to the constant-depth systems holds because of the bounds
to the depth of '}, 't in Lemmas 13.3.4 and 13.3.5. Q.ED.

The reader should find modifying the concept of Boolean valuations to the
extensions of F by a set A € TAUT of extra axioms straightforward; require that
v(a) = 1p for all @ € A. This gives nontrivial information, as we shall see in the
next chapter that for any propositional proof system P in the sense of Definition
4.1.1 there is a polynomial time subset A p C TAUT such that the minimal size of
P-proof of t is bounded by O(£p(4,)(1)), where F(4 p) is F augmented by Ap
as extra axioms.

It is apparently quite difficult to construct a Boolean valuation v giving to 7 a
value different from 1. This is because a nontrivial lower bound to n, implies by
the previous theorem and by Lemma 4.4.6 a nontrivial lower bound to the number
of proof-steps (in F), and by Lemma 4.5.7 also to the size of EF-proofs of 7. No
nontrivial lower bounds are known for these two measures.

However, in the case of constant-depth Frege systems there are nontrivial bounds
(cf. Sections 12.3-5), and, in fact, there is a general construction allowing us to
construct a Boolean valuation from a k-evaluation. It is a modification of the
algebraic direct limit construction (see Gratzer 1979). We first describe a general
setting and then the particular case arising from k-evaluations.

Let (1, <) be a partial order that is decomposed into three levels /1, I, I3 such
that for any eight a;,...,ag € Ij there is b € > such thata|,...,as < b, and
such that for any two by, by € I there is ¢ € I3 for which b1, by < ¢. Assume that
for every a € I there is a fotal Boolean algebra B,, and that for every a < b there
is an embedding h,p, of B, into By, such that the whole collection (By)4, (hab)ab
forms a commutative diagram. That is

hab © hpe = hac

whenevera < b <c.
Let the set X be the disjoint union of the universes of algebras B, fora € /;.
Foru € B, and v € Bp, a, b € I; define

u=v iff hg(u) =hp.(v), somecelp
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The following observation follows from the condition that for any two by, b2 € I»
the algebras B, and By, can be jointly embedded into some B, ¢ € I.

Lemma 13.3.7. Leta),a; € I} and by, by € I such that ay, a» < by, by, and let
Uy € By,, up € By,. Then

ha|b| () = hazb] (u2) ﬁ halbz(ul) = hazbz (u2)

Lemma 13.3.8. For any collection (Bg)q, (hab)ab Satisfying the preceding condi-
tions, the relation = is a partition of the set X.

Proof. Tt is clear that = is reflexive and symmetric. The transitivity follows from
Lemma 13.3.7 as any three By, Ba,, Bay, a1, a2, a3 € 11, can be simultaneously
embedded in some By, b € 1. Q.E.D.

Definition 13.3.9. Denote by [u] the =-equivalence class of u € X. A partial
structure B is defined as follows (u € B;,v € By, w € Be, anda,b,c € I)):

1. the universe of B is the quotient X/ =,

2. 0p=1[0p]and 15 =[13]

3. =[u] = [v], provided —hgq(u) = hpa(v) for some d € b,

4. [u] o [v] = [w], provided hye(u) o hpe(v) = hee(w) for some e € b,

o= A, V.

The partial structure B is called the limit of the collection (Bg)a, (Rab)ab-

Lemma 13.3.10. The limit B of the collection (Bg)a, (hab)ab Satisfying the con-
ditions in Definition 13.3.9 is a partial Boolean algebra.

Proof. Take an identity of BA, say the distributivity law
i A (U2 vVuz) = Aug) v (U Aus)

Assume that in B it holds

(2] v [u3] = [ua],  [w1] A [ua] = [us]
and
(1] A [uz] = [uel, (1] A [uz] = [u7], [ue] v [u7] = [usg]
foru; € By, a; € I1,i = 1,...,8. We need to show that [u5] = [ug]. Assume
otherwiseandletb > ay, ..., ag be such thatall B,, can be simultaneously embed-

ded in By. Then by Lemma 13.3.7 the preceding equalities hold for A4,5(4;)’s in
place of [u;]’s too but also A4, (us) # hgaep(ug). That is impossible as By, satisfies
all identities of BA.

An analogous argument applies to all other identities of BA as they all contain
at most eight different subterms. Q.E.D.
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The following theorem is then clear.

Theorem 13.3.11. Let T be a set of formulas and assume that (I, <) and the
collection (Bg)a, (hab)ap Satisfies the preceding conditions. Let B be the limit of
the collection (By)a, (hap)ap as defined. Assume that Iy = T and that there is a
map f: T — X suchthat f(¢) € By forallp € T.

Moveover assume that for any collection {¢1, ¢2, ¢3} C T thereis b € I, such
that the map

hopo from hep(f(P))

is a Boolean valuation of (¢, ¢2, ¢3} into Bp.
Then the map

vigel > [f(PleB

is a Boolean valuation of T'.

Theorem 13.3.11 can be used to obtain Boolean valuations from complete sys-
tems. As an example we shall show that a k-evaluation of a set of formulas con-
structed in Section 12.5 gives rise via the limit construction to a Boolean valuation
of that set.

The next lemma follows from Lemmas 12.3.6 and 12.3.7. M = MMOD« in the
rest of the section.

Lemma 13.3.12. Let S and T be a k-complete system (resp. an £-complete sys-
tem), and let Bs and Br be the Boolean algebras of the subsets of S and T, ve-
spectively. Assume that T refines S and that k + £ < n. Define map h . Bs — Br
by
h(H) =T(H)

Then h is an embedding of By into Br.

Letapair (H, S) be a k-evaluation of the set I" of formulas built from the atoms
of the form pyx, X € [4]%, and assume that 24k < n. Let [[']=' denote the set of
< t-element subsets of . Set [ := T, [ := [[']=%, and I := [[]=16.

Fora e I;andb € [; definea < biffa Cb. Toeverysetb = {Y, ..., Ye} €
I; assign the Boolean algebra of the subsets of the k-complete system Sp

Sl//| X-uXS,/,(

defined as the minimal common refinement of all systems Sy, u = 1,..., ¢
Such a system exists by Lemma 12.3.5 and is £k-complete. Define further the map
hap : B, — Bp by

hap(H) = Sp(H)
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By 13.3.12 these maps are embeddings and by Lemma 12.3.6 the collection
(Ba)a, (hab)ap forms a commutative diagram. The next lemma is obvious.

Lemma 13.3.13, For any three formulas Y\, Y2, ¥3 € I thereisa € I such that
the composite map

¥ = Hy = hiya (Hy)
is a Boolean valuation of the set {1, {2, ¥3}.

Let Bbe a partial Boolean algebra that is the limit ofthe collection (B,)a, (Aap)ab-
Define the map v of formulas from T into B by

v(¥) = [Hy]

That is, the value of ¥ is the congruence class of Hy,. The following lemma now
follows from Theorem 13.3.11.

Lemma 13.3.14. Themap v : ' — B is a Boolean valuation of T". If Hy = @ for
some ¢ € I then v(¢) = 0p.

Theorem 12.4.3 implies the following lemma.
Lemma 13.3.15. For every d there are € > § > 0 such that for every sufficiently

large n and every set T of at most 2n? depth d formulas built from the atoms py,
X € [A), there is a partial a-partition p € M such that

lol <n—n¢
and there exists a Boolean valuation

v:I'" - 8B
in which v([Count31P) # 1.

Note that the proofs of lower bounds from Theorems 12.5.7 and 12.5.10 consist
of showing that the instances of PHP, (resp. of Count} (a = p in this case))
receive by v the value 15 (cf. the remark after Theorem 13.3.6).

Let us close this section by giving an explicit description of the Boolean value
in B assigned to ¢ € " by the limit construction applied to k-evaluations, and by
reexamining the role of the k-complete systems.

A formula ¢ gets the value

V() = {(H,5) | (S x Sp)(H) = (S x Sp)(Hp)}
where (H, S) runs over all H C S and S a k-complete system.

Lemma 13.3.16. Let B, for some a € I| be the Boolean algebra of the subsets
of the k-complete system S; = {a), ..., ¢} € M. Let b; := [{a;}] € B be the
values of {«;} in B.
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Then by, ..., b, form a partition of unity in B:
1. biAbj=0gfori#j
2. Vici<,bi =15

The proof is omitted.

13.4. Bibliographical and other remarks

The proof of PHP from the counting (13.1.3) was noted in Woods (1981) and Paris
and Wilkie (1985). The proof system CP was defined in Cook et al. (1987), where
Lemmas 13.1.5 and 13.1.6 are observed. Counting in F was developed in Buss
(1987), where Corollary 13.1.8 was proved directly. Theorem 13.1.7 was noted in
Krajicek (1995a) and we have followed Buss (1987) in the use of the carry-save
addition. Corollary 13.1.10 is from Goerdt (1990). When the size of an inequality
is measured by the sum of the absolute values of the coefficients, an exponential
lower bound for CP was proved in Bonet, Pitassi, and Raz (1995) (see Krajicek
(1995b) for an alternative proof via interpolation). Pudlak (unpublished) extended
this to ordinary size. Cook et al. (1987) suggest that Tseitin’s graph formulas based
on bounded degree expanders are candidates for not having short CP-proofs.

For topics related to Lemma 13.2.1 see Bonet (1993). A communication com-
plexity approach to the lower bounds for F is briefly discussed in Krajicek (1995a)
(as are other related search problems). The graph tautologies were introduced in
Tseitin (1968) and studied in Urquhart (1987). Hastad (1993) improved the shrink-
ing factor to p?—°(),

The next chapter is devoted to the question of hard tautologies. No natural
combinatorial principles (like PHP or Count? of Chapter 12) are known that would
form plausible candidates for having only long proofs in F (but see Kraji¢ek and
Pudlak 1995). Arai (unpublished) suggested a principle of linear algebra

A"'¥ =0 4"x =0

(A ann xn 0—1 matrix, ¥ a 0—1 vector), and Karchmer (unpublished) suggested that
the Graham and Pollak theorem (saying that no » — 2 complete bipartite subgraphs
of the complete graph K, can partition the edges) may be hard for F as all its
known proofs utilize the linear algebra operations not known to be definable by
polynomial size formulas. Both these principles are, however, provable in U ,' and
thus admit quasi-polynomial size F-proofs (Theorem 9.1.6). This author suggested
earlier (see Clote and Krajicek 1993) that a theorem of Bondy (1972) might be
a good candidate, but Bonet, Buss, and Pitassi (1995) constructed its polynomial
size F-proofs.
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Urquhart (unpublished) posed the question whether the set C(G), for G bounded
degree expanders, must have exponential size constant-depth F-proofs. An affir-
mative answer might allow one to prove for constant-depth systems a result in the
spirit of Chvatal and Szemerédi (1988).

The content of Section 13.3 is from Kraji¢ek (1995a); the limit construction
and Theorem 13.3.11 are new.



14

Hard tautologies and optimal proof
systems

We shall study in this chapter the topic of hard tautologies: tautologies that are can-
didates for not having short proofs in a particular proof system. The closely related
question is whether there is an optimal propositional proof system, that is, a proof
system P such that no other system has more than a polynoniial speed-up over P.
We shall obtain a statement analogous to the NP-completeness results character-
izing any propositional proof system as an extension of EF by a set of axioms of
particular form. Recall the notions of a proof system and p-simulation from Sec-
tion 4.1, the definitions of translations of arithmetic formulas into propositional
ones in Section 9.2, and the relation between reflection principles (consistency
statements) and p-simulations established in Section 9.3. We shall also use the
notation previously used in Chapter 9.

14.1. Finitistic consistency statements and
optimal proof systems
We shall denote by Taut (x) the 1'[’,’ -formula Taut ¢(x) from Section 9.3 defining
the set of the (quantifierfree) tautologies, denoted TAUT itself.
Recall from Section 9.2 the definition of the translation

$0) = 1111y (P - Pr)

producing from a I'I’l’ -formula a sequence of propositional formulas (Definition
9.2.1, Lemma 9.2.2). Also recall that a number a (or a formula, . ..coded by a
number a) is represented by a tuple & of 0, 1: the bits of a. We use the notation >,
for p-simulation from Definition 4.1.3.

299
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Definition 14.1.1.
(a) Let P be a propositional proof system. Function cp(t) : TAUT — N is
defined by

cp(t) := minf{|r|| 7 is a P-proof of T}

(b) Let P, Q be two propositional proof systems. Then system P is better than
Q, P > Q in symbols, iff there is a polynomial p(x) such that

VT € TAUT, cp(t) < p(co(v))

(¢) Propositional proof system P is optimal iff it is the greatest element of the
quasi-order >.

Observe that P is better than Q iff Q has a polynomial speed-up over P and
that P >, Q implies P > Q but the converse does not necessarily apply.

Problem. Does there exist an optimal propositional proof system?

Any proof system P that proves all tautologies in polynomial size is optimal;
thus NP = coNP implies the affirmative answer to the problem (cf. Theorem 4.1.2).
It is unknown, however, whether the converse implication is also true.

Nontrivial information about the problem is provided by Theorem 9.3.17 and
Corollary 9.3.18: Relative to any theory Sé or T, there is an optimal proof system.
That is, there is a >-greatest proof system among those whose consistency is
provable in the theory. We use the idea of the proof of these results to obtain a
particular representation of a general proof system.

Recall from Definition 9.3.11 the formula 0-RFN(P)(x)

vy(ly| < 1xDVz(z| < |x]), P(y, 2) A Fla(z) — Taut(z)

where P(u, v) and Fla(v) are A’l’ -formulas defining the relations “u is a P-proof
of v and “v is a propositional formula,” respectively.
Denote by ||0-RFN(P)|| the sequence of the propositional formulas

10-RFN(P)|| := {II0-REN(P) ()l | 1 < ]
where g(x) is a fixed bounding polynomial of formula 0-RFN(P)(x).
Theorem 14.1.2. Let P be a propositional proof system. Let
EF + ||0-REN(P)||

be the proof system obtained from EF by adding tautologies from ||0-RFN(P)|| as
extra axioms.
Then:

EF + ||0-RFN(P)|| =, P
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In particular:

EF + ||0-RFN(P)|| = P

Proof. Letw bea P-proofof t. By Lemmas 9.3.13 and 4.6.3 there is a polynomial
size EF-proof 1 of

PG, 0)II" (G, T) A || Fla@)|I™ (T)

where m = max(|x|, |t|) (we skip the explicit reference to particular bounding
polynomials, similarly as in Section 9.3). From this formula (and 1) and the new
axiom

[I0-REN(P)||"
we get by substitution a polynomial size (EF + ||0-RFN(P)||)-proof 12 of
|| Taut(v)||™ (%)

There is a polynomial size EF-proof 53 of the implication (analogously to Lemma
9.3.15)

[| Taut() || (%) =

From n; and 53 one obtains by modus ponens a polynomial size (EF +
[J0-REN(P)||)-proof n4 of 7.

Note that 771 and 3 are actually constructible by a polynomial time algorithm,
and so this gives a p-simulation of P by (EF + ||0-RFN(P)|}). QE.D.

For P sufficiently strong (simulating the modus ponens and the substitution
of constants in polynomial size, e.g., P O EF) we could replace the reflection
principle ||0-RFN(P)|| by a bit more elegant consistency statement Con(P) (cf.
Lemma 9.3.12).

Note that a narural P (like the systems SF, G, G;", G,...) 1s, in fact, p-
equivalent to EF +{| 0-RFN(P)||. This is because such a P admits a polynomial
time construction of proofs of the formulas || Con(P)||” (cf. Theorem 9.3.24).

Now we link the problem of the existence of an optimal proof system to two
questions, one from logic and one from structural complexity theory. The logical
question deals with the lengths of first order proofs of the so-called finitistic
consistency statements. Let 7 be a consistent theory extending 521 and with a
polynomial time set of axioms. Then there is a A’l’ -formula Prfr(y, z) expressing
that“yisa T -proof of formula z.” Consider a formula Conyz (a) naturally expressing
that no T'-proof of length < a is a proof of 0 = 1:

vy, Iyl <a— —Prfp(y,[0=17)

Note that Conr (a) is not a bounded formula.
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It is a fundamental problem to estimate the length of the shortest proof of the
sentence Conz(7) in a theory S; see Pudlak (1986, 1987) for more background.
The length of the numeral 7 is O(logn); hence the only a priori lower bound
to such proofs is the length of the formula: Q(logn). The next theorem sharply
estimates the length of the shortest S-proofs in the case when S = T'.

Theorem 14.1.3 (Pudlak 1986, 1987). Let T 2> S2l be a consistent theory with a
polynomial time set of axioms and let Cont(a) be the formula defined previously.

Then there are constants € > 0 and ¢ > 1 such that for all n the minimal size
my, of a T-proof of the sentence Conr (7i) satisfies

n¢ <my <n

Note that |Conr (%)} << n¢ and hence the lower bound is nontrivial. The upper
bound is also nontrivial. To see this take, for example, S = 52‘ and T = ZFC.
There does not seem to be another way to prove Conr (/) in S than to list (in S)
all T-proofs of length < » and check that none of them is a proof of 0 = 1. This
gives, however, only the estimate 200,

The question whether there is S admitting size 2! proofs of Conr (##) for all
T can be linked to the problem posed earlier.

Theorem 14.1.4. The following two propositions are equivalent:
1. there exists an optimal propositional proof system
2. there exists a consistent theory S 2 S21 with a polynomial-time set of axioms
such that for every consistent theory T 2 521 with a polynomial-time set of
axioms there is polynomial p(x) such that for each n the sentence Conr (it)
has S-proof of size < p(n).

Proof. Assume that P is an optimal proof system. Define the theory Sp by
Sp := S} + 0-RFN(P)

Nowlet T 2 Szl be a consistent theory with a polynomial-time set of axioms.
Define the formula ¢ (x)

¢ (x) := Conr(ix])
Then ¢(x) isa H’l’-formula. Consider a proof system Q
0:=P+{ligl" | m < o}

The formulas ||¢]|™ are tautologies as T is consistent.
Because P is optimal, there is a polynomial ¢(x) such that each {|¢||™ has
P-proof of size < g(m). Hence the theory Sp admits proofs of

Taut(J[¢]|™)
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of size m@() and, similarly with the proof of Theorem 14.1.2, also size m (1
proofs of

x| </ — ¢(x)

Hence ¢ (/1) has Sp-proof of size log(n) 9D, and consequently Conr (), equiv-
alent to ¢(27), has Sp-proof of size N9, This proves that the first statement
implies the second.

Now let S be a theory satisfying the second statement. Define the propositional
proof system Ps by

Ps(m, 7) iff Prfg (, [Taut(£)])

Let Q be an arbitrary propositional proof system. By Theorem 14.1.2 Q is p-
simulated by the system EF +||0-RFN(Q)|}|. As § D Szl, Pg p-simulates EF (by
Corollary 9.3.18). It is thus sufficient to construct polynomial size Ps-proofs for
the tautologies

[10-REN(Q)|I™
Consider the theory Tp
Tg = S} + 0-RFN(Q)
By the hypothesis there are polynomial size S-proofs of
ConTQ )

Assume that rr is the size m = || Q-proof of 7. As —Taut € T2, there is k < w
such that the implication

=Taut(¥) — Iy(|y| < m* A Prgi (7, [~ Taut{#]])

is provable in S21 and hence also in S: This is an instance of a general statement
proved by induction on the logical complexity of ¢ (x).

Claim. Let ¢(x) bea 2{’ -formula. Then there is k < w such that for every u <
NE W) > S byp d(@)

where -, is an abbreviation for ‘provable by a proof of size < m.”
In fact, this itself is formalizable in Szl. That is, S21 proves

¢ ) > Ay(yl < lal) Prfy (v, [$@1)

where P?fsg isa A‘l’ -formalization of “y is an S21 -proof of ¢ (u).”
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For the same reason there is a size < m¥* Tg-proof of Q(&, t), and by the
axioms [|0—RFN(Q)|| Tp also admits size < m* proofs of

Taut(%)
and hence there are size m©(" S-proofs of
3z, |zl < |n ¥ A Prfr, (z, [Taut[#]])
This formula and the last but one entails that there is a size m (" S-proof of
—Taut() — —Conr, (m%)

some fixed £ < w.
By the hypothesis there is a constant # <  such that all Conr, (%) have size
< n' S-proofs; hence there are size < mt S-proofs of Taut(%).
By the definition of Ps this proof is also a Ps-proof of T of size < m% < |z |¥.
Q.E.D.

One may speculate about a construction of a theory 7 for which given S does
not admit size n 9D proofs of Cony (7). Possible candidates are 7 := S + Cong
or a theory formed from S by adding to the language a truth predicate for formulas
in the language of S, Tarski’s conditions on this predicate and the statement (using
the new predicate) that all axioms of S are true (such theory is called “jump” of §
in Buss 1986). However, if for S one can find 7 without short S-proofs of Conyz (71)
it follows that S does not prove that NP = coNP. This is because the formula ¢
considered in the preceding proofis l'Ill’ and NP = coNP would allow us to express
it also as a E{’ -formula and so its instances (and consequently the instances of
Conr(x)) would have polynomial size proofs by the claim in the previous proof.

The next theorem links the problem of the existence of an optimal proof system
to a problem in structural complexity theory.

Theorem 14.1.5. The following two propositions are equivalent:
1. there exists an optimal propositional proof system
2. for every coNP-set X there exists a nondeterministic Turing machine M
accepting exactly X and such that for every polynomial-time, sparseY C X
there is a polynomial p(x) such that every u € Y is accepted by M in time
< p(lul).

We refer the reader to Krajicek and Pudlak (1989a) for the proof.

14.2. Hard tautologies

The first definition formalizes a notion of hard tautologies. Recalil the definition
of the function cp(t) in Definition 14.1.1.
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Definition 14.2.1. A sequence {T}n <. of tautologies is hard for a propositional
proof system P iff the following three conditions are fulfilled:
1. there exists a polynomial time machine computing from 1) the formula
Tn
2. n<|tl, foralln
3. there is no polynomial p(x) for which

cp(ta) < p(lTal)
would hold for all n

Note that |t,| = #n°D. Conditions 1 and 2 imply that set {tr, | n < w} is
polynomial-time recognizable and so we may add it to P as extra axioms to form
a new proof system Q := P + {1, | n < w}. Adding extra axioms to a general
proof system precisely means that 7 is a Q-proof of 7 iff itisa P-proof ofo — T,
where ¢ is a conjunction of substitution instances of new axioms. P is then not
better than Q (in the sense of Definition 14.1.1). Hence the task to construct a hard
sequence {7, }, <, for P is the same as the task to find proof system Q such that
P # Q and its axiomatization over P by a polynomial-time set of tautologies.

Assume P > EF. Having Q for which P ¥ Q we may take the proof system
Q' := EF + ||0-RFN(Q)||. By Theorem 14.1.2 Q' > Q; hence P # (' and the
sequence {||0-RFN(Q)||"}n<w 1s hard for P. This gives the following simple but
useful statement.

Theorem 14.2.2. Let P be aproofsystem and assume that P > EF. The following
three statements are equivalent:
1. there exists a sequence of tautologies {t,} <. hard for P
2. there exists a proof system Q such that P is not better than Q : P # Q
3. there exists a proof system Q such that the sequence {||0-RFN(Q)||" }n< w
is hard for P

The quasi-ordering > (Definition 14.1.1) of proof systems induces a reducibility
among sequences {Tn}n<w» {Tn Jn< » OVer a given system P:

{(thln<w 2P Oulncw Iff PH{tmyin<owlzp P+{o,|n <w)

that is, formulas o, can be deduced by polynomial size P-proofs from substitution
instances of some t,,’s.
For example, by Lemma 12.5.6 and Theorem 12.5.7

{Count2}, >p {PHP,),

but not the converse for P being the depth d Frege system (d > 5).
The question whether there exists a > p-complete sequence (i.e., a maximal
element of the quasi-order > p) is obviously equivalent with the main problem
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of Section 14.1 whether there is an optimal proof system. If one restricts to the
sequences with polynomial size proofs in some system Q, then among those there
will be a > p-complete one, provided @ has a polynomial-time axiomatization
over P.

We are interested in natural sequences {1, }, < that would be hard for systems
from Chapter 4, such as F or EF. We would like to find a Ag(«)-formula ¢ (x, o),
expressing a natural combinatorial principle for finite structures, such that the
sequence

{{@)nln<w

is hard for F or EF (recall Definition 9.1.1 for translation (¢),). For example,
the formulas ¢ representing the pigeonhole principle or the modular counting
principles of Section 12.5 give rise to tautologies hard for constant-depth Frege
systems but not for F (by Theorems 12.5.3 and 12.5.4 and Corollary 13.1.8).
Similarly the Ramsey theorem from Section 12.1 is not hard for F.

In fact, if VxVa, ¢ (x, o) represents a scaled down I1 : -form of a combinatorial
principle whose usual proof depends on the existence of large numbers (like various
modifications of Ramsey theorem), then it is actually likely to have polynomial size
F-proofs. This is because the T1 { -version takes the large number as a parameter;
hence the length of the tautologies is also large.

Take a coNP set defined by a combinatorial property, for example, the set of
graphs without a large clique where large means of size greater than n¢, n the
number of vertices and € > 0 fixed. For fixed n let p;; be (}) atoms for the
possible edges in a graph with » vertices and ¢,,p, | <4 < [r°], 1 < v < n
another n'*¢ atoms. Consider the formula An (P, q)

/\\/CIUU AN /\ /\(ﬁqmvv—‘q:/zv)
u v

uyFuy v

- \/ \/ (q”lvl A qllzvz A _'pv|v2)

vFE v F Uy

expressing that if {(u, v) | g,, = 1} defines a 1-1 map then its range is not a clique
in the graph {(i, j) | pi; = 1}. Note that any coNP-property can be represented
in a similar fashion as it can be defined by a l'I’l’-formula (use the translations of
Sections 9.1-2).

For a particular graph H of size n let A y(g ) denote the instance of 4,,(p,q)
with p;; replaced by 1 iff the edge (i, j) is in H. Then Ay is a tautology iff H
has no large clique, and such tautologies cannot have polynomial size proofs in
any proof system unless NP = coNP (cf. Theorem 4.1.2). Our aim is, given a
particular proof system P, to find a sequence of graphs H, without large cliques
such that the sequence {4 g, }» < is hard for P; in particular, the graphs H, will
be constructible by a p-time function.
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Theorem 14.2.3. Let P > EF be a proof system that is not optimal. Then there
exist graphs H, such that the formulas { A, }n< » form a sequence of tautologies
hard for P.

In particular, there is a p-time function f constructing H, from 1™ and the
set {H, | n < w} is itself p-time.

Proof. Let X denote the set of graphs without a large clique and ¢ (x) be its 1'111’-
definition in Szl. The theory Szl obviously defines the usual reduction of TAUT
to X (cf. Garey and Johnson 1979); that is, there is a p-time function g (All’-
definable in Szl) such that 52' proves

Taut(a) = ¢(gla))

Take a proof system Q such that P is not better than EF +-||0-RFN(Q)||; we may
assume the existence of such Q by the hypothesis of the theorem and by Theorem
14.2.2.

The function f defined by

7(1®) = g (10-RENOI")
has the required properties. Q.ED.

We remark that if P = EF and, for example, EF # G; then H, can be found that,
in addition, the formulas 4 g, have polynomial size G;-proofs. This is because G;
admits polynomial size proofs of the instances of ||0-RFN(G;)||, by Theorems
9.3.16 and 9.2.5.

14.3. Bibliographical and other remarks

The question whether there is an optimal proof system was studied in Kraji¢ek and
Pudlak (1989a) and the statements of Section 14.1 are from there, except Theorém
14.1.3, which is due to Pudlak (1986, 1987).

Pitassi and Urquhart (1992) show how to translate non-three-colorable graphs
into tautologies, and vice versa, such that the minimal size of an EF-proof of  is
polynomially related with the minimal number of steps needed in a construction
of the associated graph G, using the rules of the Hajos calculus. A corollary
to Theorem 14.1.2 is that any nondeterministic acceptor of non-three-colorable
graphs can be p-simulated by the Hajos calculus augmented by a p-time set of
extra initial graphs (associated to the formulas from || 0—RFN(Q)||, for suitable Q).
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Strength of bounded arithmetic

The previous chapters dealt mostly with the metamathematical properties of the
systems of bounded arithmetic and of the propositional proof systems. We studied
the provability and the definability in these systems and their various relations.
The reader has by now perhaps some feeling for the strength of the systems. In this
chapter we shall consider the provability of several combinatorial facts in bounded
arithmetic.

In the first section we study the counting functions for predicates in PH, the
bounded PHP, the approximate counting, and the provability of the infinitude of
primes. In the second section we demonstrate that a lower bound on the size of
constant-depth circuits can be meaningfully formalized and proved in bounded
arithmetic. The last, third section studies some questions related to the main prob-
lem whether there is a model of S; in which the polynomial-time hierarchy does
not collapse.

15.1. Counting

A crucial property that allows a theory to prove a lot of elementary combinatorial
facts is counting. In the context of bounded arithmetic this would require having
Ego-deﬁnitions of the counting functions for Ego-predicates.

The uniform counting is not available.

Theorem 15.1.1. There is no Ego(a)-formula 6(c, a) that would define for each
set o and each n < w the parity of the set {x < n | a(x)}.

Proof. Assume 6(«, a) defines the parity of the sets. Then the propositional for-
mula (9),, provided by Definition 9.1.1, is of size < 2008 W% « 27®" ang of
constant depth (Lemma 9.1.2) and computes the parity of {i < n | p; = 1} for
pi = {a);. This contradicts Theorem 3.1.10. Q.E.D.

308
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We may still hope for a nonuniform counting. That is, the definitions of the
counting functions would not be instances of one Zgo(a)-fonnula, but each z’;o-
definable set would require a special Zgo-deﬁnition of its counting function.

As mentioned at the end of Section 2.2, Toda (1989) puts a strong block to such
a hope. Recall the definitions of the function # R and of the class #P from the end
of Section 2.2 and define the function &R by

@D R(x) := the parity of the set {y | R(x, y)}

and let @ P be the class of the functions § R with R € P satisfying the condition
R(x, y) = |y] < |x|2M. Note that the counting function for a predicate 4(x) is
the function #R for R(x, y) := (A(x) A y < x).

We state Toda’ s result explicitly; recall that 0%, denotes the class of the func-
tions computable by a polynomial time machine with an oracle from PH.

Theorem 15.1.2 (Toda 1989). Assume that PH does not collapse.
Then

#P ¢ 05, and even @ P ¢ 0OF,

A form of the counting that is available in S; is provided by the next simple but
useful lemma.

o

Lemma 15.1.3. Let g(x) be a function with a Ego—graph and majorized by 2*
Then there is a function f(a, b), Zgo-deﬁnable in S, such that S; proves

f(@,0)=0AVi <|al, fla,i + 1) = f(a,i)+ g@)

In particular, if A is a Zgo-deﬁnable set then there is a function h(a, i), Ego—
definable in S>, such that S proves h(a, 0) = 0 and that for all i < |a|

h(a,i)+1 if AG)

h(a,i +1) =
@i+ h(a,i) if —~A®)
Proof Fori < |a| the length |g(i)| is bounded by i9) = |al9M Hence the
sequence

(0, £(0), g(0) + g(1), ..., g0+ --- + g(la| — D))

consisting of the values of f(a, i) fori < |a} is coded by a number < 2/41°" and
bounded induction can be applied to prove the existence of such a sequence for
all a.

The second part follows, applying the first part to a particular g, the character-
istic function of A4. Q.E.D.

Note that the lemma implies that all £ -consequences of S (ar)*°"™ (cf. Sec-
tion 13.1) are provable in the theory S21 + 1—Exp of Section 5.5.
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Although the counting is not available within PH, an approximate counting is
available.

Theorem 15.1.4 (Sipser 1983b). Let A be a Zgo-deﬁnable set and let € > 0 be
fixed. Then there is a function f(x) with a Ego-graph such that for any a

l[4Nal < fla) < (1+e€)i4Na]

Proof. Fix a of the form a = 2" and identify a with the #n-dimensional vector
space over F. Denote 4, := 4 Na and assume that 2'~! < |4,| < 2. Take U to
be the set of (1 + ¢) x n, 0—1 matrices.

Claim 1. For any x € A, there are at least > |U|/2 = 2'*" matrices M € U for
which

Vy€ da\ {x}, Mx # My

For any y # x, mx = my holds for 2"~ vectors m; hence Mx = My holds
for |U|[/2/*! = 2" matrices M (as they have ¢ + 1 rows). Hence the number of
matrices satisfying the formula from the claim is at least

Ul U|
2 U] = 5y (dal = 1) 2 == = 2%

using 271 < |4,] < 2.
Claim 2. There are M € U and B C A, such that |B| > | A|/2 and such that
Vx € BYye€ A, \ B, Mx £ My
The claim follows as by Claim 1 there are at least > (|U|/2)| 4, ]| pairs (M, x) €
U x A, satisfying Claim 1, whereas the failure of Claim 2 would imply that there

are < |U||A4,4|/2 such pairs.
Iterating Claim 2 < log(]4,|) = t-times yields

Claim 3. There are matrices My, ..., M, € U and sets B =3 < By C ..- C
B, = A, such that

Biy1=BiU{x €A, \ Bi |Vy€ A\ Bi,x #y > Miy1x # M1y}

Defineamap F :a = 2" — 2049t < 2|4,| log(|44]) by
F(x) = Mx,..., M;x)

The map F is 1-1 on the set 4,. To make F X" -definable take such F for the
minimal ¢t < n = |a| and for the lexicographi: My....,M; € U for
which it is 1-1 on A4,.
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Take & minimal such that
2kn) < (1+€)*

Clearly k < O(n) = O(|a|) and so we may define a set A’ of the sequences of
elements of A4, of length k, identified with elements of a®. Hence |4'| = |A,%.

Applying Claim 3 to the set 4’ we getamap F' : A" — 2|A’| log(]4'|) that is
1-1 on A’. By the choice of k we have

Q14| log(| 4K = @[ 4al*k log(|4a D) < |4alkn)¥ " < (1 + €)] 4]

This allows us to define a function f(a) to be the kth-root of the supremum of
the range of F’. Then

[dal < fla) < (1 +€)|4q]
as required, and f is 22 -definable. QE.D.

The inability to count in bounded arithmetic can sometimes be replaced by
the bounded PHP, which was pioneered by Woods (1981). To ensure that the
presentation is unambiguous we define the principle once again.

Definition 15.1.5. The L5 PHP? is the set of axioms of the form
Ax < bVy <a,—0(x,y) VvV 3Ix1 <x32 <bIy <a,0(x1, y) AO(x2, »)

where 6 € Zgo and may contain other parameters (different from a, b).
AoPHPg is the same scheme but for Ag-formulas 6 only.
25 PHP and AoPHP denote the scheme for b = a + 1.

Note that we formulate the pigeonhole principle as a statement about injective
functions rather than about bijections as earlier.
We shall state explicitly an important open problem.

Problem. Does the theory S; prove Eé’oPHP? Does the theory IAg prove
AogPHP?

By (the proof of the) Theorem 11.2.4 the theory S; proves T2 PHP? for b =
a2, 2a; this is open for the Ag-case. On the other hand, S;(«) does not prove
PHP?+! (@) (Corollary 12.5.5).

Lemma 15.1.6. Assume that S is not finitely axiomatizable.
Then no theory S§ proves all formulas from EgoPHR

Proof. Assume that 6(x) is a formula for which the induction fails.

0O0)A(Vx <a,8(x) > 6(x + 1)) A —8(a)
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Define a 1-1 function f :a + 1 — a by

X if6(x)
fx) = .
x—1 if-6(x)
Hence Eé’oPHP proves S. That is, Sé [ EgoPHP would imply Sﬂ = $; and the
lemma follows by Theorem 10.1.1. Q.E.D.

An important case when the counting (or the existence of exponentially large
numbers) could be replaced by EgoPHP is the proof of the existence of infinitely
many primes. The usual proof of the existence of a prime bigger than a requires
us to take a! + 1, which is not definable in $; (by Theorem 5.1.4).

Theorem 15.1.7 (Woods 1981, Paris et al. 1988). The theory S proves that there
exist unboundedly many primes

Vx3dp > x, Prime(p)
where Prime(p) is a l'[ll’ -definition of primes
Vy.z<py-z#p
In fact, the theory Sy proves Sylvester’s theorem
Vx> 1Vy>xdz,y<z<y+x A 3p <z, Prime(p) A p > x A plz)
where p|z denotes the divisibility
Ju<z,p-u=z
The reader may find the proof of the first part in Paris et al. (1988) and of the
second part in Woods (1981).
It is an open problem whether the theory 7 Ag can prove the infinitude of primes.
It is also unknown which of the basic elementary number-theoretic theorems, such
as Fermat little theorem or Lagrange’s four-square theorem, can be proved in / Ag;

see Berarducci-Intrigila (1991). Woods (1981) conjectured that the theory / Ag ()
can prove the infinitude of primes, where the formulas 7 (0) := 0 and

an)y+1 ifn+1isaprime
an+1)=

w(n) otherwise

are added to PA™.

15.2. A circuit lower bound

In this Section we show that a weaker form of Theorem 3.1.10 can be proved in a
subtheory of ;. Recall from Section 3.1 the relevant definitions.



15.2 A circuit lower bound 313

We shall adopt the following framework. The input 0—1 vectors are coded by
numbers a, b, ..., hence the number of the input bits is a lengthn = |a|, .... The
set of the input vectors of a given length is thus definable, but it is not coded by a
number.

The circuits are also coded by numbers. This implicitly indicates that we cannot
define circuits of a superpolynomial size as numbers of length 2141 are not defin-
able (Theorem 5.1.4). Clearly the size and the depth of a circuit are AII’ -defin-
able, as is the function computed by a circuit (the circuit is a parameter in the
definition).

Boolean functions are identified with subsets of 2" = g and thus are not coded
by numbers. But all interesting functions, in particular all characteristic functions
of the sets from PH, are definable by a bounded formula (by All’ - resp. E{’ - in the
case of P-resp. NP-sets; cf. Theorem 3.2.12).

This framework does not allow us to prove (even to formulate) Theorem 3.1.7
or to prove an exponential lower bound. It allows us, however, to rephrase such
bounds as the nonexistence of polynomial upper bounds. By Theorem 3.1.4 the
existence of polynomial size circuits for NP-functions is the chief problem and
that is perfectly formalizable in the framework.

We begin by proving (a weaker form of) Theorem 3.1.10. The notions from the
following definition occurred in a slightly different form in Section 12.3 and in
the discussion at the beginning of Section 12.4.

Definition 15.2.1. Let x,, ..., x, be Boolean variables and let M be the set of
partial truth assignments to xy, ..., Xp.

1. Acompletesystem is a subset S © M such that every total truth assignment
extends exactly one o € S.
2. For H,S € M, Srefines H if

VaeS, (Vhe Hh Llayv(@he HhCoa)

where h L « means that h, o are contradictory.
3. For HC M, the norm of H is | H|| := maXxcy | dom(h)|.

For « € M denote by [«] the set of the tuples a for which a; = «(x;),
if x; € dom(e). Then |, s[e] partitions 2" if S is a complete system. If fis a
Boolean function such that for some complete system S and a partition SoUS; = S
of § it holds that

o=k, i=01
a€eS;

then both f and — f are expressible in a disjunctive normal form whose conjunc-
tions are of size < ||S||. Assume f =/, f, and

S = Jl

aesy



314 Strength of bounded arithmetic

where ||.S*|| < ¢ for all . To express f and — f as a disjunction of conjunctions
of size < s it is sufficient to find a complete system S refining H := | J,, S} and
satisfying || S|| < s as then

=i

BeS
where
Si:={peS|u3acS acp)

Hence the following lemma substitutes the switching Lemma 3.1.11 in this ap-
proach to collapsing circuits.
ForXC Mandp e M

X ={a\p|laUpeM, ae X}
In the next proof we follow the strategy of the proof of Lemma 12.3.10.

Lemma 15.2.2. Let Hy C M be sets for which |Hy|| <t <s,€=1,...,m.
Assume 2m < (n'~€ — 1/8t), some fixed € > 0.

Then for sufficiently large n there is p € M for which |dom(p)| = n — n€ and
such that

3 a complete Sy € MP, ||Sell <s and Sy refines Hy

holds for all €.
Proof. First fix £ and denote H, simply by H. Also fix p € M.

Let H = k', ..., h" beafixed listing of H. Construct the following two-player
game.

Step 1: Player I picks | := the first 4/ consistent with p; player II picks

assignment o) on dom(k) \ dom(p).

Step i: Player I picks A; := the first 4/ consistent with pUo U...Ud;_1;

player II picks o; an assignment on dom(#;) \ (dom(p) U J i< dom(a;)).
The game ends when either all h/’s are exhausted or h; € p U U i<i 0.

The following claim s analogous to the claim in the proof of Lemma 12.3.10.
Claim. The set of all
orJ---Uoy
in a finished game forms a complete system refining H”.

We would like to show that for some p, in no game can Il assign > s values.

A marked value sequence is v € {0, 1}° together with jo =0 < j; < -+ <
Jk = s. We think of a marked value sequence as of a coding that I played j; — ji—
values v;_ 41, ..., v;, when facing ;.
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The history of the game (specifying it uniquely) is the list of Ay, . .., Ay that 11
faced plus the sequence D = (Dy, ..., D) s.t. D; is a j; — ji_j-element subset
of ¢, specifying the positions of the atoms in 4; that II had to evaluate.

Notice that because by definition #; is the first 2/ not given 0 by p U Uj<ios
instead of knowing the history of the game it is enough to know the (unique)
assignment 7 with the domain dom(p) U Uis « dom(o;) that extends p and s.t.

pUoiU---Uoi—1 U(t | dom(o;))

makes #; true, all i < k. Then from 7, using the marked value sequence v and D,
it is easy to reconstruct all 4, oy, ..., Ay, o4, and p.
Thus the triple v, D, v determines p and hence a map

Fr(p) = (v, D, T)

where v, D are associated to a fixed game in which II assigns > s values is a 1-1
map.

Assume that [dom(p)| = k. Thenthereare (})2* such p’sand at most k"+s)2" +s
partial assignments t. Clearly there are < 4° marked value sequences and < *
sequences D. Hence Fp isa 1-1 map from 4 := (})2% into B := (|} [)2%+<(4r)".
An elementary computation shows

A s E+10 0\ kU N (kY
5200 (mitm) 2o (55) = (s —p)

Choosing k = n — n® we get
A nl=¢ — 1\’
o ——
B~ ( 8¢ )

that is 2"°" for ¢ < s < n®suchthate +§ < 1, and is > n®©, for ¢ a fixed
constant.

Thus the map Fy violates the weak PHP in both cases.

Now assume that for every p, |dom(p)| = k, there is H, for which player 11
assigns in a game on H[p at least s values. Define

F(p) := (¢, Fu,(p))

Then F is a 1-1 map from A4 into B - m and by the hypothesis of the lemma
(4/Bm) > 2. Hence F violates the weak PHP and there must be p for which it is
undefined, that is, for which player II assigns < s values in any game on any H; .

Q.E.D.

Now we use the lemma to formalize a lower bound to the constant-depth circuits
in the theory PV, + WPHP(PV)); recall PV, from Section 5.3 and WPHP(PV)
from Section 7.3.
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Theorem 15.2.3. Let d be a constant and p(x) a polynomial. Then the theory
PV + WPHP(PV)) proves that for sufficiently large n there are no depth d size
< p(n) circuits computing the parity function ®(xy, ..., Xp).

Proof. Work in a nonstandard model M of PVy + WPHP(PV)) and let n €
Log(M) \ w. Let C € M be a depth d size < p(n) circuitin x|, ..., X,.

Asinthe standard proof of Theorem 3.1.10 we show that for some p, | dom(p)| >
n— n‘d, the function computed by the restricted circuit C* has an associated com-
plete system of the norm < s <« n€ . Such a p is obtained by iterating Lemma
15.2.2 < d-times (as outlined before that lemma). Hence we only need to show
that the lemma holds in M with m = p(n).

We shall take ¢+ = s a large (w.r.t. d and p(x)) but fixed constant. Then the
AII’ -definable subsets of M of norm < s are coded by numbers < 2" )’ < H(O), ¢
an L-term. Elements of M are also coded, and there are only finitely many (< w)
marked value sequences and tuples D; specifically, a quantification over them is
sharply bounded. Taking in the definition of Fy(p) the first v, D (7 is unique) for
which it is defined makes Fy All’ -definable.

As we cannot count in M the domain and the range of F, we cannot follow the
proof of Lemma 15.2.2 in demonstrating that F violates WPHP. Instead we shall
certify such a violation by constructing a All’ -definable 1-1 map G of two disjoint
copies of (a set containing) Rng(F) into Dom(F). Dom(F) is supposed to be the
setof all p € M, |dom(p)| = k = n — n*. The composed function F o G violates
the WPHP.

Assume we have a AII’ -definable 1-1 map G¢ of 2 - (8¢)° - m copies of [n]¥**
into [n]*. Construct the map G (we use the notation from the proof of Lemma
15.2.2) as follows

1. identify the elements of the form (£, (v, D, t)) with m - (4¢)° copies of T

2. identify the set of T € M, |t| = k + s, with 2° copies of the set of
pairs (X, ), where X € [n]¥** and n € M with || = k (thinking of
X = dom(z) and n the restriction of 7 to the first £ elements of X, and
s-tuples of the values of T \ n determining one of the 2* copies)

3. map the pair (X, ) to p, where dom(p) = G¢(X) and such that the values

of p are given by
Map G is 1-1 and clearly All’ -definable. It remains to construct Gy, which is
simple and left as an exercise. Q.E.D.

15.3. Polynomial hierarchy in models of bounded arithmetic

In this section we study the complexity classes within the models of bounded
arithmetic systems and we show some connections among various open problems
mentioned earlier in the book.

We begin with a definition; see also Section 7.6.
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Definition 15.3.1. Let M be a model of PV.

1. P(M), the class of the polynomial-time subsets of M, is the class of the
subsets of M definable by an open PV-formula with parameters from M.
TF(M), the class of the ! -subsets of M, is the class of the subsets of M
definable by a Zf’ -formula with parameters from M.

n f (M), the class of the T1 f -subsets of M, is the class of the subsets of M
definable by a H? -formula with parameters from M.

The classes Zf’ (M) and l'I{J (M) are also denoted NP(M) and coNP(M).
PH(M) is the class of the subsets of M definable by a Zgo-formula with
parameters from M.

2. The classes PS™"(M), (ZP)**" (M), (T1Y)*"*"(M), and PH*""(M) are
defined analogously to the classes in 1 but allowing no parameters.

3. The classes (P/poly)(M), (EF/polyy(M), (17 /poly)(M), and
(PH/poly)(M) are defined analogously to the classes in 1 but allowing
different parameters for every lengthn € Log(M) of elements of M.

For example, X € (P/poly)(M) if there is an open PV-formula 6(x, y) such
that for every n € Log(M) there is ¢, € M such that foranya e M, |a| =n

ae X iff ME®6(,c,)

The following is one of the main open problems.

Fundamental problem. Is there a model M = S such that PH(M) does not
collapse? That is: such that PH(M) # Eip(M), alli < w?

The problem is equivalent, by Corollary 10.2.6, to the fundamental problem
whether 5, is finitely axiomatizable. A little is known about the problem, but there
are some surprising connections with the bounded PHP. We first prove two results
about end-extensions. K 2 M is an end-extensionof M if Misacutin K. Kisa
proper end-extension of M if, moreover, K \ M # (.

Lemma 15.3.2. Let M, K be two models of 1 Ay and assume that K is a proper
end-extension of M. Then M = BE?.

Proof. Recall the collection scheme B from Definition 5.2.11. Let 0(x, y, z) be
a Ao-formula with parameters from M and assume

M E=Vx < ady3azo(x, y, z)
As Misacutin K, Lemma 5.1.3 implies that forallb € K \ M

KkEVx <ady,z<bb(x,y,z2)
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K satisfies the least number principle for Ag-formulas; hence there is the minimal
b with this property and clearly » € M. Then (by Lemma 5.1.3 again)

M EVx <a3dy < b3z6(x, y, 2)

QE.D.

The following lemma constructs a particular end-extension.

Lemma 15.3.3. Let M be a model of IAg and a,t € M \ w such that there is
be M, M=b=a' Assume that for some R(x, y) € Ao(M)

M &= — PHP(R)*

That is, the function F with graph R violates the weak PHP.
Then there is an end-extension K of M, a model of I Ay, such that for some
ceK,Kl:c:a’z.

Proof. Assume a’ : ¢ M as otherwise we could take K := M. Similarly, as in the
proof of Theorem 11.2.3, we may find a function

H:ax2' > a

with a Ag(M )-graph such that forany G : 2' — a, G € Ag(M), thereis g < a
such that
ME Vx <2, H(g,x)=G(x)
Thinking about g < a as about a “number”
gi=) H(gi) d
i<2

we may Ap-define in M the structure My with the universe {g | g < a} and
define the operations +, - and relations =, < on it, simulating the construction
from Lemma 5.5.4.

In My there is a largest element. We take a cut / M such that t> € I but
2" ¢ I, closed under addition, and then define K to be the substructure of My with
geKiffmax{i | H(g i)#0} e I.

The model M itself embeds in K as a cut, and a’ * € K is the element g with

1 ifi=12

H(g, i) =
& 0  otherwise

Q.E.D.

We are now ready to prove a theorem with an interesting proof.

Theorem 15.3.4 (Paris et al. 1988). Assume that I Ao does not prove AOPHPgZ.
Then I Ay is not finitely axiomatizable.
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Proof. Assume that [ A¢ does not prove AOPHsz. By a compactness argument
it follows from Theorem 11.2.3 that there isamodel M = IAganda,t € M\ w
such that

1. a' existsin M

2. d" k=1,2,..., are cofinal in M

3. M = —~PHP(R)?’, some R € Ag(M).

By2a' ? is not in M and so Lemma 15.3.3 implies that M has a proper end-
extension and hence satisfies by Lemma 15.3.2 the collection scheme BZ?.

Now assume that / Ag is finitely axiomatizable. We use this to construct a model
M satisfying 1-3 but not satisfying BX?, which will be a contradiction.

From the finite axiomatizability assumption it follows that in any model of 7 Ag
there are finitely many Skolem functions fj, ..., f, Ao-definable in M, such that
any substructure closed under them is a model of /A too.

Take some M satisfying 1-3 and define a function Z : N — M by

i) Z() := {(a,t,a',b),
where b are all parameters in the definition of R
(1)) Z(i,u)) = filZw),fori=1,...,r
(i) Z((r + 1, u)) == Z(uy) + Z(u2), foru = (uy, uz)
(v) Z({(r +2,u)) := Z(uy) - Z(uz), foru = {u, uy)
V) Z({s,u)):=0,fors >r+4+2
Let M C M, be the subset of My defined by

ceM iff ¢c=Zk), someke N

Then M is, in fact, a substructure of My (by (iii) and (iv)), is a model of 1 Ag (as it
is by (ii) closed under the Skolem functions), contains a, ¢, a’ (by (i)), and hence
R is Ag-definable in M too and therefore violates PHP(R)ZZ. But also '’ é M.

Toseethat B E? fails in M note that the function Z hasa Z?—deﬁnition (commmon
for My and M) and that

M ¥x < a3k, y, (Z(k) =x Ay =a*')

But by 2 there is no bound in M one could put on y. Q.E.D.

The idea behind the proof of Lemma 15.3.3 can be used to prove another
interesting result. Recall Definition 3.2.1 of the classes E;. The symbols E7*" and
A3™ indicate that again parameters are not allowed.

Theorem 15.3.5 (Paris and Wilkie 1985). Let M be amodel of [ Ag, a,t € M\w
such that a' exists in M and assume that R € Ao(M) violates PHP(R)ZZ.
Then the hierarchy A%’”"(M ) does not collapse. That is, there is no i such that

Agtan(M) — E;_ftan(M)



320 Strength of bounded arithmetic

Proof. Denote by Ef and Ag the classes of E;- respectively of Ag-formulas with
parameters among u.

Without loss of generality we may assume that all parameters in the definition
of R are smaller than a'. As in the previous propositions let G : a’ — a be
an injective Ag-definable map; we may assume that it is Agl'a-deﬁnable as the
minimal parameters in the definition of R that yield a 1-1 map G are definable
from a’, a.

Claim 1. Yor any j there is a Agl’a-formula Trj(x, y) such that for any E;.’""-
Sformula 6(x) there is n < w such that

Vx <a',0(x) = Trj(x,n)

Any E}’"" -formula 6 is for x < a’ equivalent to a formula of the form
I,k <alVyl, L yf <d Q;7; < a' 6o(x,7,a',a)

where 6 is an open formula with atomic subformulas of the form#; = £, 61+ =
f,ort -t =3 withy, 1,13 € {0, 1, @*, a, x, y}. We shall simply assume that 8
is of this form.

Letn(x, 7, u)bea Agl'a -formula, a partial truth definition, such that for every
formula 6y of the preceding form there is £ < w such that forx, y < a'

6 (x,¥,a",a) =n(x,7,£)

Such a formula is constructed easily.
Using the map G we may rewrite 8 (x) in the form

El(z}, .. ,z{‘) < a' AzZ; € Rng(G),
V(z;,...,zg) <a',z; CRng(G) - - ¥(x,z,a’,a)
where v is a ASI'”-formula obtained from 7n(x, ¥, £) by replacing variable y by
(the A% “-definition of) G (z).
In this way we constructed a Ag”a-formula Tr;(x, v) such that every J

formula 6(x) is for x < a' equivalent to Tr;(x, ), suitable n encoding both k
and £.

Claim 2. There is no j such that

AG (M) S EJ (M)

!
The claim follows from the previous claim as, for example, the Ag *“-formula
!
—Tr;(x, x) cannot be expressed as an Ef “_formula.
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Asany Ag(M )-set of the form {x | ¢ (x, % )} can be retrieved from the A" (M)-
set {(x,¥) | ¢(x, )}, the assumption that for some i

A(s)tan(M) g Eistan(M)
would imply that for some j
AG(M) C EX(M)
But this contradicts Claim 2, and the theorem is proved. Q.E.D.

We conclude the first part of the Section by stating a proposition relating the
PHP and consistency statements. It rests upon two facts: that S + Exp proves
%5 PHP and that S, - NP = coNP allows us to express each bounded formula as
Ef and apply the provable Zf -completeness (cf. the claim in the proof of Theorem
14.1.4).

Theorem 15.3.6. Assume that the theory 5>+ Con(S») does not prove EgOPHP.
Then Sy does not prove that NP = coNP. That is, there is a l'lll’ -formula not
equivalent in S to any Zlb-formula.

We turn our attention to the simplest case of the fundamental problem.

Problem. Does there exist a model M of PV in which NP # coNP, that is,
NP(M) # coNP(M)?

Further we say that a theory proves NP = coNP if NP(M) = coNP(M) holds
for each model of the theory, and similarly for other classes. We shall also freely
move between the languages of PV and S!; note that the All’ -formulas in L are
equivalent to the open PV-formulas (cf. Section 5.3).

Theorem 15.3.7. Consider three propositions:

1. NP = coNP

2. P=NP

3. EF is a complete proof system
Then if S21 proves one of the propositions, it proves all three, and then also PV
proves all three propositions.

Proof. S) proves 1 iff it proves 2 by Corollary 7.2.5. If S} proves
Vr, —Taut(t) v EF ¢

then there is, by Theorem 7.2.3, a polynomial-time function deciding whether —1
is satisfiable or t a tautology (as by Theorem 9.3.16 and Lemma 4.6.3 S2l proves
that EF is sound). That is, S} - P = NP.

Assume that S2l proves NP = coNP. That is, Taut(a) = (3y < t(a), 6(a, y)),
for some 6 € All’ . Then we may think of b < t(a) A 6(a, b) as a proof system
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P (b a proof of a) whose soundness (and completeness) is provable in Sz'. Hence
by Corollary 9.3.18 S2I proves that EF polynomially simulates P and so it is also
complete.

The provability of the propositions in PV follows from Corollary 7.2.4 as they
are all VEIA?. Q.ED.

A simple corollary to Corollary 7.2.5 is the following.

Corollary 15.3.8. Assume that P # NP. Then there is a model of 52l in which NP
# coNP.

We link the completeness of EF in a model of PV to the extendability of the
model. First we need a technical lemma. Recall Definition 9.2.1. To simplify the
notation we shall not show the bounding polynomials explicitly.

Lemma 15.3.9. Let M be amodel of PV and let ¢ (a) be a l'lll’—formula. Letm € M.
Then the following two conditions are equivalent:
1. there is an extension N of M (necessarily A’l’ -elementary) such that

N = PV 4 —=p(m)
2. M & EF ¥ ¢)™ (i)

Proof. Assume that condition 1 holds while 2 fails and let = be an EF-proof of
¢l () in M. Then = € N and it is an EF-proof in N too. As EF is sound in
models of PV, ||¢|{"”"!(#) is a tautology in N and hence by Lemma 9.3.12 ¢(m)
holds in N. That contradicts the assumption.

Now assume that 1 fails. This implies that the theory PV + Diag(M) in the
language with a constant for every element of M, where Diag(M) is the diagram
of M, proves the formula ¢ (m). That means that PV proves an implication

o(m,u) - ¢(m)

where u are some other constants and o is an open formula. By Theorem 9.2.6 in
M there is EF-proof of

o I G, ) ~> (1™ (i)

As o is true in M, by Lemma 9.3.12 | o ||"™"[4! (s, 1) has in M an EF-proof and
thus also || ||| (/) has (by modus ponens) an EF-proof in M. This shows that 2
fails. Q.E.D.

We get the following corollary.

Corollary 15.3.10. Let M be a model of PV. Then the following two conditions
are equivalent:
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1. The system EF is complete in M.
2. Any extension of M is 2{’ -elementary.

Proof. Let ¢p(m) be a Hll’-sentence. Then by Lemma 9.3.12 it holds in M iff
llp|I1™! (##2) is a tautology in M. The rest follows by Lemma 15.3.9. Q.E.D.

The last two statements demonstrate that a way to show that EF is not complete
in a model M is to find a suitable tautology t and an extension N of M containing
a new truth assignment not satisfying r. A forcing-type construction of such an
extension is provided (in the context of the theory V| related to S} by the RSUV-
isomorphism) by Theorem 9.4.2. Such a construction can be also viewed as a
construction of a particular Boolean valuation v (outside the model) of the set
of the propositional formulas coded in M that gives 7 a value v(t) # 15 (cf.
Section 13.3). The problem is to produce such an evaluation without assuming
that EF is not complete in M.

Another possibility how to prove that PV does not prove NP = coNP would
be to demonstrate a superpolynomial lower bound to the size of EF-proofs. The
following lemma is a direct corollary of Parikh’s Theorem 5.1.4.

Lemma 15.3.11. Assume that the theory Sy proves that the system EF is complete.
Then all tautologies have polynomial size EF-proofs.

We shall show at least that PV itself does not prove such superpolynomial lower
bounds. Let Bound( /) be the formula

Vx3t > x, Taut(z) A EF Frep T

where t#,, means “not provable by a proof of size < m.”
We say that f is provably in PV superpolynomial if for every polynomial p(x)
PV proves

Vxdy >x3z < y, f(2) =y A p(z) <y

Theorem 15.3.12. Let f be a function definable in PV and provably in PV super-
polynomial. Then

PV t Bound( /)

Proof. Let M be a countable nonstandard model of PV such that for some element
a € M the numbers |a|*, k = 1,2, ..., are cofinal in Log(M).

We shall construct a countable chain of cofinal extensions of M : My = M C
M, < ....Fix in advance a countable language L’ with names for all elements
of all M; and let ¢y, ... be an enumeration of L’ with infinite repetitions. Put
My := M and assume that we have M;. Consider two cases:
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1. ¢; € M; and M; = Taut(c;) A EF H ¢
2. otherwise.
In the first case take an extension N; of M; in which —¢; is satisfiable and put

Miri:={la e N;|3be M;, N; =a < b}

hence M;. is a cofinal extension of M;.

In the second case put M, := M;.

Note that if ¢ € L’ is a propositional formula in some M; then in some M;
either it has an EF-proof or its negation is satisfiable. Hence M’ := | J; M; is a
cofinal extension of M in which every tautology has an EF-proof of size < |a|¥,
some k < w. This implies that M’ = —Bound(f) whenever f is PV-provably
superpolynomial. Q.E.D.

In the model M’ in the previous proof the exponentiation is not a total function.
It would be interesting to improve the construction to obtain a model of 52l +—Exp
in which EF is complete. Such model would exist, in particular, if any countable
model of S21 would admit a Alf -elementary extension to a model of S2l in which
EF is complete. This is because we could take for the ground model a model
satisfying the negation of some Vl'lll’-consequence of S21 + Exp (such formulas
exist as Szl + Exp is not Vl'[1|’~conservative over Szl; cf. Section 10.5).

Another direction in which it would be interesting to improve the construction
is to find a model of PV +—Exp in which EF is complete and that satisfies
the collection scheme BZ{’ (Definition 5.2.11). This would eliminate a possible
pathological property of M’ in which the shortest EF-proofs of tautologies < a,
for some a, are cofinal in the model. It would also imply that the function f(n) :=
max|r|<» cEF(7) is total in M’ and subexponential (see Definition 14.1.1 for the
definition of cgr(7)).

We conclude the Section recalling that a nonuniform version of the problem,
a construction of a model of PV in which NP/poly # coNP/poly, would imply
that PV # 82‘ (PV) (Theorem 10.2.4, second part). Hence even the very first step
toward the fundamental problem has important consequences. Indeed, I believe that
a construction of a model of PV in which EF is not complete would yield a hint
of how to construct Boolean valuations of sets of polynomially many formulas
and how to prove the nonexistence of a polynomial upper bound to the size of
EF-proofs.

15.4. Bibliographical and other remarks

Theorem 15.1.1 follows from Yao (1985) and Hastad (1989); the superpolynomial
lower bounds of Ajtai (1983) and Furst, Saxe, and Sipser (1984) imply only the
nonexistence of a Ag(a)-counting.



15.4 Bibliographical and other remarks 325

Paris and Wilkie (1985) show that f in Lemma 15.1.2 canbe Ag if 4 is Ag. The
proof of Theorem 15.1.4 follows an unpublished presentation of Sipser (1983b)
by A. Wilkie; Paris and Wilkie (1985) show by another proof that for 4 € Ag a
function £ satisfying a weaker inequality |4,| < f(a) < {A44|!*¢ canalso be Ag.

Bounded PHP was studied in Woods (1981), where Sylvester’s theorem is de-
duced by using AgPHP2%.

The proof of Lemma 15.2.2 follows to a large extent an unpublished proof of
Woods of the switching lemma 3.1.11. He estimates the probability (over p) that
in a game player II assigns > s values and that that game follows a given marked
value sequence v, splitting the computation further according to the history of the
game. Prior to our presentation Razborov (1994a) found a similar presentation of
Hastad’s original proof of 3.1.11.

Razborov (1995) considers a framework in which Boolean complexity is for-
malized in second order bounded arithmetic systems. Input vectors are still coded
by numbers, but Boolean functions and circuits are coded by sets. This allows us,
in particular, to speak directly about exponentially large circuits. He shows that in
such formalization all main known lower bounds can be proved in the theory Vl1
(and often in a weaker theory). By Lemimna 5.5.14 there is no problem with direct
counting arguments. The only potential problem may arise in formalizing proofs
where Boolean functions are quantified (e.g., in various conditional probabilities
as in the original proof of 3.1.11 in Hastad 1989), which could increase the com-
plexity of induction formulas. Razborov (1994a) overcomes this in the case of the
switching lemma by a new proof; another option is to replace the original quanti-
fication over arbitrary functions by a quantification overa A : *®_definable sequence
of functions.

Razborov (1994) complements this by a result in the opposite direction: namely
that the theory S% (o) does not prove a superpolynomial lower bound to the circuits
computing the satisfiability predicate unless a standard cryptographic assumption
fails; see also Krajicek (1995b) for an alternative proof. This assumption, say-
ing that strong pseudo-random number generators exist, implies in particular that
NP & P/poly.

Lemma 15.3.2 is due to Paris and Kirby (1978). Lemma 15.3.3 and Theorem
15.3.4 are from Paris et al. (1988); Theorem 15.3.5 is from Paris and Wilkie (1985).
Theorem 15.3.6 is from Paris and Wilkie (1987b) and relates to the interpretability
questions; see also Hajek and Pudlak (1993) for details and related topics.

Lemma 15.3.9 is from Krajicek and Pudlak (1990b); A. Wilkie (unpublished)
gave a model-theoretic proof. Theorem 15.3.12 is also from Kraji¢ek and Pudlak
(1990b); Cook and Urquhart (1993) proved a similar result for the intuitionistic
version of 52I , and Buss (1990b) showed that the two results are actually equivalent.

A research program some reader may contemplate is to show that a statement
like NP # coNP is not provable in PV, for example. This is a task to construct a



326 Strength of bounded arithmetic

model of PV in which NP = coNP and it is somewhat interesting. Theorem 7.6.1
is in this spirit.

I shall close the book, however, recalling the Preface: In my opinion, instead of
constructing a model in which NP = coNP and thus confirming what we already
know, namely that the problem is not elementary and that the available methods
are insufficient, it would be far more interesting to construct a model M for which
one could prove NP(M) # coNP(M) by an argument using the underlying idea
behind our belief that the conjecture NP # coNP is true. Results in the opposite
direction, as well as many oracle-independence results, have less to do with the
problem and rather exploit technical details of the definitions.
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