5.4 Coding of sequences 79

PV, consists of all equations ¢+ = u provable in PV but has also a form of
induction axiom: For an open formula 1 (x) define a function k2 (b, u) by

(a) h(b,0) = (0,b)

(b) if h(b, L(u/2)}) = (x,) and u > 0 then set

(Mx+y/DL, yy if[x+y/2T <y A¥(x+y/2)D)
hb,u) :={ (x, [(x+y/2)1) ifx <[(x+y/DI A=Y+ y/2)])
(x,») otherwise

Then PV, contains the axiom
WO A YD) ARB,) =(x,p) > X+ 1=y AP AY(p)

This axiom simulates the binary search and is thus related to the PIND scheme.
The logic of PV is the usual first order predicate calculus.

Theory PV, contains PV and has inductively defined characteristic functions
of all Zf’ - predicates in its language, in particular universal axioms of the form

B =<1(x), (X, =1-8X) =t(X)A f(X,8x) =1

where g are new function symbols introduced inductively for all formulas of the
form

Iy =tx), fZ, =1

Furthermore, PV, is closed under definition by cases, composition, and limited
recursion on notation (i.e., has function symbols for all functions introduced by
these processes) and also contains the preceding axiom for every open v in its
language. The logic of PV, is also the first order predicate calculus.

Note that each PV; is a universal theory. We state a theorem that will be proved
in Section 6.1 (cf. Corollary 6.1.3).

Theorem 5.3.5. For everyi > 1, PV;yy is fully conservative over the theory Tzi .
The theory PV is conservative over PV.

5.4. Coding of sequences

In this section we sketch a way to code finite sets and sequences in Sz‘. This is
necessary in order to be able to formalize various syntactic and logical notions and
computations of machines in subsystems of 5.

For the language Lpa (and 7 Ag + £21) this is quite nontrivial as one must first
find a well-behaved Ay-definition of the graph of exponentiation, in order to speak
about lengths of numbers and their bits. The existence of a Ag-definition of the
graph of exponentiation follows from Bennett (1962) (cf. Theorem 3.2.6), but the
theorem does not imply that there is such a definition about which / Ag or I A9+ £,

80 Basic bounded arithmetic

could prove the basic recursive properties

1L x%=1

2.)l =xV . x
Such a bounded definition was constructed by J. Paris (in Dimitracopulos 1980)
(see also Pudlak 1983).

Another crucial function whose well-behaved bounded definition is needed is
Numones(x): the number of ones in the binary expansion of x. The function is
clearly computable in logarithmic space, and thus its graph is Ag-definable by
Corollary 3.2.9, but proving the basic recurrence properties

1. Numones(0) =0

2. Numones(2x) = Numones{(x)

3. Numones(2x + 1) = Numones(x) + 1
again requires some work. In / Ag + 27 this is easier. Theorem 3.2.7 is a general
tool showing that all usual concepts defined by inductive properties can be defined
in a well-behaved way in / Ag + §2;.

With these two definitions in hand one defines the basic relations and functions
on finite words, identifying a number with its dyadic representation and the coding
of sequences then follows the development of rudimentary sets in Bennett (1962).
In 7A¢ + 2 the formalization of syntax and logic is then smooth.

If one wants to formalize logical notions in /Ag only, there are other compli-
cations. For example, the term resulting from substitution of a term u into a term
v for a variable x will not in general have length proportional to |u| + |v|; hence
its code will not be bounded by a polynomial in #, v and by Theorem 5.1.4 Ay
cannot prove that the substitution is always defined.

In some situations one can restrict the syntax, for example, to terms and formulas
with only one occurrence of each variable (or to their representation with this
property), but the formalizations obtained in this way are unnatural.

We refer the reader to Paris and Wilkie (1987b) or Hajek and Pudlak (1993) for
detailed development of coding, sequences, and syntax in /Ag and /Ay + €2;.

With the language L of S; the situation is much simpler because we have the
length function |x| in language allowing us to define the graph of exponentiation
immediately by

V=y=3Fz<yz+l=yAlzl=xAlyl=x+1
which is equivalent to
=y=Vz<ypz+l=y->|zl=xAlyl=x+1

We want to define the basic notions of rudimentary sets and of coding of sequences
by means of All’-formulas in Szl , in such a way that S2‘ can prove the basic properties
and, in particular, the properties of Lemma 5.1.5. This is done in great detail in
Buss (1986). Another approach is to follow the development of Paris and Wilkie
(1987b) and Hajek and Pudlak (1993) in 52l and to verify that all notions that are

5.4 Coding of sequences 81

only Ag there are A? in Szl. To illustrate these topics we outline a way of coding
sequences, but we shall proceed rather swiftly, leaving details to the reader.
First we define the pairing function

(a+b)(a2+b+ I)J +a

{a,b) := [

It is defined by a term (hence is A’l’) and 821 can prove the basic property

(a,by={(u,v) = (@a=unb=v)
Then we define the predicate “a is a power of 2”

Pow(a) =3x <a,x+1l=aAn|x|+1=|a|

which is provably in S} equivalent to

Vx <a,x+1=a— |x|+1=]al
Next define the function the ith bit of a

1 ifdu,v,w<a,u+v+2vw=an Pow@)A |v|=i+1

bit(a, i) := AU<UV
0 otherwise

which is also A‘l’ as bit(a, i) = 1 is also equivalent to
Yu,v,w <a,ut+v+2vw=aA Poww) Alu|<i - jv=i+1
Using this function we define the elementhood predicate
i€a = bit(a,i) =1
Clailm 1. Functions and predicates (a, b), Pow(a), bit(a,i), and i € a are A’l’
ins$,.

We want to code arbitrary 0—1 words. This cannot be done just by binary
expansions of numbers that always start with 1. So we think of a word as pair
{u, v}, coding the word consisting of first right |v| bits of ». With this interpretation
in mind define the equality of words a =,, b by

Ix,y<adu,v<b,(x,y)=a A {(u,v) =b A

AVi<pyliexs=(cuni<|WANi<||,icus@Fexni=<ly])
which is again A‘l’ as x, y and u, v are unique. We also define the function the ith

letter in word a

1 if3u,v<a,(uv)y=aAricuni<|v|
Letter(a,i) := .
0 otherwise

82 Basic bounded arithmetic

The idea of coding sequences of words is that a sequence will be coded by a
pair (a, b), where the ith bit 1 in b marks the end of the ith subword of a: That

is, a sequence wy, ..., w; of ¢+ words will be coded by number @ whose binary
expansion is w; —~ ... —~ w; and number b, which has bit 1 in positions |w1],
lwil + w2l ..., w1 +--- + |we| = |a].

This idea requires that we must be able to define the function counting the
number of ones among the first i bits of a

Numones(a, i) := [{j|j<iAjea}
Define
Numones(a, i) = k iff
Ix < (afta)taVu < lal,(l,u)ex =@ eanVYv<u,véa
AVt u,v<lal,t,u)exAu<vAvear(Vs<v,u<s—séa)
- {4+ LvyexA u<ilkuyexAVu<ilk+1lu)édx

In words: x codes an increasing map from {1, ..., k} onto the 1’s of a. Such an x
is unique; hence the definition is A’ and the inductive character of the definition
of x allows us to prove basic inductive properties of Numones(a) (see previous
discussion).

We are ready to define sequences and the function (w);

Seq(w) =3x, y S w, {x,y) = wA x| = |y
and for w a sequence
(wyi=u= Ix,y<w,{x,y) =wAVt < |ulvj, k< |x|,

Numones(y, j) =i — 1 A Numones(y, k) =i — k= j+ |u|
ANteu=(j+tex

Lemma 5.4.1. The function (w); = u is All’ -definable in S21 and 521 proves the
conditions of Lemma 5.1.5.

We shall conclude this section by a lemma stating that some predicates can be
in a sense coded in S5. It extends Lemma 5.2.12.

Lemma 5.4.2. Let A(a) be a Eg(Ef’) -formula, that is, a formula obtained from
z lb -formulas by logical connectives and sharply bounded quantification. Leti > 1.
The theory Sé' proves

VxIyVe < |x|, At)=(t € y)

That is: Any bounded set of lengths defined by a 23(25’)-formula can be coded
by a number.

5.5 Second order systems 83

Proof. Itis enough to show that for 4 € Ef’ , which also implies that any 28 (= f’)-
predicate can be (on any interval [0, |x]]) expressed as All’ whose coding follows
from the case i = 1.

Considera X f’-formula B(s) with parameter x

dy<xVe<|x|,tey—> A A |yl=s

Clearly B(0) holds as y corresponds to the empty set, and so by the Ef’ -LENGTH-
MAX principle available in S, by Lemma 5.2.7 there is maximal s < |x| satisfying
B. 1t is straightforward to verify that y corresponding to this s codes 4 on interval
[0, [x|]. Q.E.D.

Corollary 5.4.3. Fori > | the theory Sé proves the 28 (2{’)-PIND scheme.

An interesting topic related to coding are partial truth definitions; see Paris and
Dimitracopoulos (1982).

5.5. Second order systems

In this section we shall introduce some second order systems of bounded arithmetic,
most from Buss (1986). We shall, however, proceed by model-theoretic reasoning
rather than by direct proof-theoretic investigations. This will allow us to give simple
model-theoretic proofs for the so-called RSUV isomorphism and translate several
results from the previous section directly to these systems. It also allows us to
relate the use of a second order object to the limited use of exponentiation.
Consider M a nonstandard model of S, and define a particular cut 7 C, M by

foraeM:ael iff ME3Ix,a=|x|

For the obvious reason we shall denote this cut by Log(M). This cut is closed
under addition and multiplication (as |a| - |b| + 1 = |a#b|), but it is not necessarily
closed under # (that would require that M is closed under w; (x), which we do not
assume).

Take a collection X of those subsets of Log(M) coded in model M, that is,
those o € Log(M) such that for some a € M

Vi € Log(M), (M =i € a) = (bit(a, i) = 1)

We shall denote such an « by a.

Consider now the two-sorted first order structure (Log(M), Xs) with all sym-
bols of L \ {x#y} defined for elements of Log(M) by restricting the operations
and relations from M, with = defined on Xy and with the relation i € « defined
for pairs from Log(M) x X by the preceding condition. We call elements of the
second sort Xy sets.

