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Preliminaries

In this chapter we briefly review the basic notions and facts from logic and com-
plexity theory whose knowledge is assumed throughout the book. We shall always
sketch important arguments, both from logic and from complexity theory, and so a
determined reader can start with only a rough familiarity with the notions surveyed
in the next two sections and pick the necessary material along the way.

For those readers who prefer to consult relevant textbooks we recommend the
following books: The best introduction to logic are parts of Shoenfield (1967);
for elements of structural complexity theory I recommend Balcalzar, Diaz, and
Gabbarr6 (1988, 1990); for NP-completeness Garey and Johnson (1979); and for
a Boolean complexity theory survey of lower bounds Boppana and Sipser (1990)
or the comprehensive monograph Wegener (1987). A more advanced (but self-
contained) text on logic of first order arithmetic theories is Hajek and Pudlak
(1993).

2.1. Logic

We shall deal with first order and second order theories of arithmetic. The second
order theories are, in fact, just two-sorted first order theories: One sort are numbers;
the other are finite sets. This phrase means that the underlying logic is always the
first order predicate calculus; in particular, no set-theoretic assumptions are a part
of the underlying logic.

From basic theorems we shall use Godel completeness and incompleteness the-
orems, Tarski’s undefinability of truth, and, in arithmetic, constructions of partial
truth definitions.

A prominent theory is Peano arithmetic (PA), in the language of arithmetic
Lpa = {0, 1, +, -, <, =} axiomatized by Robinson’s arithmetic Q

l.a+1#0
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2.a+l=b+1—>a=b
3.a+0=a

4. a+b+1)=(@+b)+1
5.a-0=0

6.

a-b+1)=(@a-b)+a
7. a#0—-3Ix,x+1=a
see Tarski, Mostowski, and Robinson (1953), and by the induction scheme IND

(¢(0,3) AVX(¢p(x,@) > ¢(x +1,3))) > Vx¢(x,a)

for every formula ¢ (x, @) in the language Lpa.

We shall use the letters x, y, z, ... mostly for bounded variables; the letters
a,b,c,... will be reserved for free variables (also called parameters). Free vari-
ables in axioms are assumed to be universally quantified; for example, the first
axiom given is equivalent to the formula Vx, x + 1 # 0.

There are other schemes that can equivalently replace the induction scheme,
for example, the least number principle LNP scheme

¢(b,a) > IVy(P(x,a) Ay < x —> —=p(y,a))).

The standard model N of PA is the set of natural numbers with the symbols
of Lpa interpreted with the usual meaning. A crucial fact about PA is that there
are nonstandard models (models not isomorphic with N) of PA and indeed of
the theory of N, Th(N). Natural numbers N are isomorphic to a unique initial
substructure of any nonstandard model M and we shall usually simply assume
that VC M.

A cut in a nonstandard model M is any nonempty / C M satisfying

l.a<bAabel -acel,alla,be M

2.ael »>a+lelallae M.
For example, N is a cut in every nonstandard model. Cuts in nonstandard models
of PA closed under both addition and multiplication have special prominence as
they are particular models of bounded arithmetic I Ay: They satisfy induction for
all bounded arithmetic formulas Ag, which are formulas in the language Lpa with
all quantifiers bounded (Section 3.2 is devoted to bounded formulas).

Nonstandard models of PA and even of its proper subtheories are difficult to
construct; it is a theorem of Tennenbaum (1959) that there are no countable re-
cursive nonstandard models of PA (and, indeed, of a weak subtheory IE; with the
induction just for bounded existential formulas, cf. Paris (1984). In particular, these
results show that every nonstandard countable model of IE; has a nonstandard cut
that is a model of whole PA; hence, in a sense, the model theory of bounded arith-
metic is as complex as that of PA. Consult Hajek and Pudlak (1993), Kaye (1991),
or Smorynski (1984) for the model theory of PA.
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From proof theory we shall use theorems of Gentzen and Herbrand in various
versions. The reader is advised to refer to Takeuti (1975) for Gentzen’s sequent
calculus.

We close this section with some remarks on notation. Logical connectives we
shall use are the standard —, v, A, —, and = with the usual meaning — negation,
disjunction, conjunction, implication, and equivalence — and the constants 1, 0 for
truth and falsity.

The symbols C and C are used in the sense of proper inclusion and inclusion.

The symbols f(n) = O(g(n)), f(n) = Q(g(n)) and f(n) = ©(g(n)) denote
that eventually f(n) < cg(n), f(n) > cg(n), and c1g(n) < f(n) < c2g(n)
where ¢, ¢, and ¢; are positive constants, and f(n) = o(g(n)) means that

f(n)/gn) — 0.

2.2, Complexity theory

I assume that the reader is acquainted with such notions as Turing machine, oracle
Turing machine, and time and space complexity measures. We adopt the multi-
tape version of Turing machines with a read-only input tape and with a finite but
arbitrarily large alphabet.

The basic relations between classes of languages Time( /) and Space( /) rec-
ognized by a deterministic Turing machine in time (respectively space) bounded
by f(n), n the length of the input, and their nondeterministic versions NTime( /)
and NSpace( f) are

L. Time(f(n)) € NTime(f(n)) < Space(f(n))

2. Space(f(n)) € U, Time(c/ ™)

3. (Hartmanis and Stearns 1965) Time(f(r)) = Time(c - f(n)) and
Space( f(n)) = Space(c - f(n)) whenever n = o(f(n)) and n < f(n)

4. (Hartmanis and Stearns 1965, Hartmanis, Lewis, and Stearns 1965)

Space(f) C Space(g)
and

Time( f) C Time(g log(g))

whenever f = o(g(n)).
5. (Savitch 1970)

NSpace( f) C Space(f2)

whenever f(n) is itself computable in space f(n)
6. (Szelepcsényi 1987, Immerman 1988)

NSpace(f) = coNSpace(f)

for f(n) > log(n) and f itself computable in nondeterministic space f(n).
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7. (Hopcroft, Paul, and Valiant 1975) Forn < f(n)

Sf(n) )
log f(n)

Particular bounds to time or space define the usual complexity classes

Time( f(n)) € Space <

LinTime = U Time(cn)
C
P = J Time(n*)
c
NP = | JNTime(n°)
c

L = Space(log(n))

PSpace = U Space(n©)
4

LinSpace = Space(n)

E = U Time(c")

EXP = | J Time(2")
[

Oracle computations allow one to define hierarchies of languages, the most
important of which are the linear time hierarchy LinH of Wrathall (1978)

Ti" = LinTime and £/ = NLinTimeZ'"
and the polynomial time hierarchy PH of Stockmeyer (1977)

=P and TF,, = NP¥
The class of complements of languages from class X is denoted co X, and special
classes of this form co 2,'.“‘ and coZip are denoted 1'[}*" and I f’ , respectively.

The class O +1 is the class of functions computable by a polynomial-time
machine with access to an oracle from the class X ,.p .

Some important facts about these classes include the following: E,'.i“ C E,.p (and
generally more resource in the “same” computational class properly increases the
class; see Zak 1983 fora general diagonalization technique), and LinH contains L
and is, in fact, equal to the class of rudimentary predicates as defined by Smullyan
(1961) (cf. Wrathall 1978). It is also known that LinH also equals the class of
predicates definable by Ag-formulas; we shall prove that in Section 3.2. Also note

that either LinH # PH or LinH does not collapse (i.e., LinH # Z}i" for all 7).
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The notion of NP-completeness, Cook’s theorem, and the P versus NP problem
are central to complexity theory, as well as to the connections with logic, and
in Section 3.1 we shall review more basics, in particular some facts from circuit
complexity.

Many interesting problems and notions arise in connection with counting func-
tions. For R(x, y) a binary predicate with the property that for every x there are
only finitely many y’s satisfying R(x, y) defines the function

#R(x) := the number of y’s such that R(x, y)

Class #P consists of all functions # R(x) with the polynomial time computable
relation R(x, y) and satisfying the preceding finiteness property in a stronger form
(cf. Valiant 1979):

R(x, y) — |yl < |x|OD

An important result of Toda (1989) is that every language in PH is polynomial-time
reducible to a function in #P.

Nonuniform versions of the preceding classes are defined with the help of
advice functions. Polynomially bounded advice is a function f : N — {0, 1}*
such that:

[f(n)| =nO®

The class P/poly, a nonuniform version of P, is the class of all sets 4 such that
there are a set B € P and a polynomially bounded advice function f for which it
holds

x € Aiff (x, f(Jx])) € B

The classes NP /poly, L/poly, and so on, are defined analogously (see the paragraph
after Theorem 3.1.4).



