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Proof. Let¢(x)bea Zf’ -formula in prenex normal form. We want to show that ¢
is in Sé equivalent to a formula ¥ in prenex form, in which all sharply bounded
quantifiers follow after all bounded but not sharply bounded ones. Let

Vi < |t3y < 5,600, y)

be a subformula of ¢: That is, 6 is a Ef’ -formula too. By the sharply bounded col-
lection BBZ;” available through Lemma 5.2.12 in S:';_ this subformula is equivalent
to

Fw < t#sYi < |t], 0, (w);)

This demonstrates how to switch a pair of sharply bounded/bounded quantifiers.
Repeating this yields .

To get from y a strict Zf’ -formula we only have to replace two consecutive
occurrences of the same bounded, but not sharply bounded quantifier by one;
but this is easily achieved by a pairing function that can be defined by using the
function (w);. Q.E.D.

Lemma 5.2.15. The theory S; is a conservative extension of the theory I Ag+ 2.
That is: Any formula in language L p 4 provable in S is also provable in [ Ag+2).
In fact, every model M of I Ay + 21 can be expanded to a model of S>.

Proof. The theory S, defines the function w;(x) and proves the axiom €2{: This
follows from a trivial bound

w1(x) < ((x#x) +2)?

This shows that /Ag + 27 C 5.

Let M be a model of 1A¢ + £21. By Theorem 3.2.6 there is a Ag-definition of
the graph of exponentiation and by the remark before Lemma 5.1.5 there is such
definition for which /A can prove the recursive equations. It follows that / Ag
can also Ag-define the graph of the function a#b, and from the bound

atth <wj(a-b+2)

it follows that /Ag + 2; proves the totality of a#b. The axioms of BASIC pose
no problem; nor do the Ag-definitions of |x| and [ (x/2)]. This demonstrates that
M can be extended by functions to obey BASIC, and from the fact that they are
Ay- definable in M it follows that induction will hold for all bounded formulas in
the expanded language. Q.E.D.

5.3. Theory PV

Building on an earlier work of Bennett (1962), Cobham (1965) characterized the
class of polynomial time functions in the following “machine independent” way.
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We say that a function f is defined from functions g, ko, 41, and ¢ by limited
recursion on notation if:
1. f(x,0) =g(¥),
2. f(x,5i(y) = hi(X, y, f(F, ), fori =0,1,
3. (X, ) U, ),
where so( y) and s ( y) are two functions adding 0, respectively 1, to the right of
the binary representation of y

so(y) =2y
si(y)=2y+1

Theorem 5.3.1 (Cobham 1965). The class of polynomial time functions is the
smallest class of functions containing constant 0, functions so( ), s1( y) and x#y,
and closed under:

1. permutation and renaming of variables

2. composition of functions

3. limited recursion on notation

We might note at this point that it is possible to enlarge basic functions by finitely
many polynomial time functions such that requirement 3 becomes redundant in
the theorem: That is, the class of polynomial time functions has a finite basis (cf.
Muchnik 1970).

Building on this theorem Cook (1975) defined formal system PV (for poly-
nomially verifiable). There are two motivations for considering a system like that:
One is its relation to the extended Frege system (Corollary 9.2.4); another is more
philosophical, to define a system in which instances of general proofs can be
verified by constructive, computationally feasible procedures.

Definition 5.3.2. We simultaneously define function symbols of rank k and PV-
derivations of rank k, k = 0, 1, .... The language of PV will then consist of all
function symbols of any rank, and a PV-derivation will be a PV-derivation of any
rank.
(a) Function symbols of rank 0 are constant 0; unary so( y), s1( ), and Tr(x);
and binary x ~ y, x#y, and Less(x, y).
(b) Defining equations of rank 0 are:
70) =0
Tr(s;(x)) = x, i=0,1
x~0=x
x ~(si(y) =si(x ~ y), i=01
x#0 =0



