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1 Introduction

The aim of these notes is to explain how games can provide an intensional seman-
tics for functional programming languages, and for a theory of proofs. From the
point of view of program semantics, the rough idea is that we can move from mod-
elling computable functions (which give the ‘extensional’ behaviour of programs)
to modelling ‘intensional’ aspects of the algorithms themselves. In proof theory,
the tradition has been to consider syntactic representations of (what are presumably
intended to be ‘intensional’) proofs; so the idea is to give a more intrinsic account
of a notion of proof.

Three main sections follow this Introduction. Section 2 deals with games and
partial strategies; it includes a discussion of the application of these ideas to the
modelling of algorithms. Section 3 is about games and total strategies; it runs
parallel to the treatment in Section 2, and is quite compressed. Section 4 gives no
more than an outline of more sophisticated notions of game, and discusses them as
models for proofs. Exercises are scattered through the text.

1 very much hope that the broad outline of these notes will be comprehensible on
the basis of Jittle beyond an understanding of sequences (lists) and trees. However
the stalements of some results and some of the exercises presuppose a little knowl-
edge of category theory, of domain theory and of linear logic. The main categorical
ideas used in the notes are explained in Appendix A. 1 have tried to give references
for other background information. I ask those unfamiliar with category theory not
to be put off by the fact that occasionally category theoretic language is used to give
succinct expression to a collection of (hopefully plausible) phenomena.

The ideas of games and strategies are very intuitive, indeed that is a strong
point in favour of their use as a basis for semantics. The disadvantage of course
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is that compelling intuitions can be misleading. There may well be mistakes in this
account, and a critical attitude is recommended.

1.1 Precursors

The well-established denotational semantics for (functional) programming lan-
guages, which makes use of domain theory, is a theory of functions in extqnsion:
the interpretation of programs is via certain ‘extensional’ functions which they
may be regarded as computing. This point of view is already apparent in classical
recursion theory: the notion of partial recursive functions is independent of any
specific machine, but the notion of effective algorithm is apparently machine-
dependent. It would be reasonable to conclude that the notion of algorithm is
inevitably machine-dependent (or language-dependent or syntax-dependent).
Hence the very idea of modelling algorithms naturally in some sufficiently abstract
way is a brave one. The pioneers in this endeavour were Kahn and Plotkin (1978)
(in English, Kahn and Plotkin (1993)) and Berry and Curien (1982). A succinct
account of the main ideas! in the tradition of concrete data structures is given in
Curien (1993).

A game theoretic approach to proof (or at least to provability) was suggested
by Lorenzen (Lorenzen and Lorenz 1978). His ideas have been developed and
made precise by a number of people, and form the basis for a distinctive tradition
in philosophical logic. For a good survey of work in this area, see Felscher (1986).

Structured (or compositional) approaches to games and strategies trace their ori-
gins back to work of Blass (1972) and Conway (1976), though neither were moti-
vated by semantical questions. Joyal gave a compositional account of Conway’s
work, defining a compact closed category of games. (For an introduction to com-
pact closed categories see Kelly and Laplaza (1980).) Joyal’s observation inspired
me to think of games in connection with program semantics; but we still have no
good understanding of (or applications of) the category of Conway games, and it
will not play a role in these notes. Blass himself drew attention to the semantic pos-
sibilities of his ideas (Blass 1992). Fora compositional approach see Abramsky and
Jagadeesan (1994).

1.2 Categories of Games: ldeas

1.2.1 The protagonists

The games we consider involve two players, P ( Player, Jloise, Left, Us) and
O ( Opponent, Ybelard, Right, Them) who play moves alternately. 1 adopt the
uncontentious nomenclature: Player vs Opponent. As the contrast between the

1Similar ideas were developed by Kleene in a series of papers; Gandy modified Kleene'’s ideas
10 the continuous case, and he together with his student Pani have recently obtained a number of
intcresting partial results which have yet to be published.
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respective pairs of names suggests, it is a crucial feature of (the use of) our intuiti

about games that our attitude to the two participants should be quite differgotl-]
we favour Player (Us, Left) over Opponent (Them, Right). Some aspects of t]?
preference may be indicated by the following series of dichotomies?. *

Player Opponent
Strategy Counterstrategy
Actor Environment
Programmer Computer
Operating system Users
Program Data
Proof Refutation
Event Cell
Output Input

l\:/.l:h\yorth str}assin g that the conceptual tools described here are not intended to deal
ith interaction between many agents, as considered for example in concurrency

theory. There is no obvious isati
. generalisation of the theory of two-person
considered here to many-person games. K P s

1.2.2 Perspective of categorical logic

From the point of view of categorical logic, the important aspect is compositional-
ity. Hence our preference for Player and for things on the left. We wish to compose
programs and proofs; or in alternative jargon we desire modular tools of prograrp;x or
proof construction. It will turn out that it is Player’s strategies for games which we
shall be able to compose in an appropriate way, and hence we focus on Player’s role

What we shall do is in the mainstream tradition of the categorical interpretation of.

zg]ees. theories and of proof systems, and I indicate the connections in the following

Object Map Categorical Composition
Type Term Application in context
Proposition Proof Composition via Cut rule
Type Algorithm | Composition plus hiding
Game Strategy | Scratchpad Composition

:I(;his table incor!)orates ‘wilhin it both the Curry-Howard isomorphism and basic
ideas of categorical logic (here proof theory). Good general background in cate-

gorical logic can be found in Lambek and Scott (1986). F i .
. For ¢
type theory see Crole (1993). ). For a view of categorical

2 . .
o l(l’)o not gl;l' cap‘ncd away by duality! There are similar seeming dichotomies which it is as well
put in this Jist, as they can bc used to refer 1o aspects of games which are independent of the

dic i
Nch::'omy PIayef vs Opponent. Examples are: Question vs Answer, Aclive vs Passive, Positive vs
gative. Questions and Answers play a substantial role in Scction 4. '
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1.3 Fundamental structures

1.3.1 Simple games

In this introductory survey, we write G, H for the kinds of two-person games in
which we are interested. It is a consequence of our interest in composition that in
standard play, O starts the play. In the simplest form, the game will be completely
determined by the succession of moves with O playing first. I call such games
simple; they are called negative in Abramsky and Jagadeesan (1994).

There is something like a natural duality for games: one interchanges the roles
of the two players. Of course the dual of a simple game is not a simple game since
P has to start: indeed it is best not to regard it as a game, but rather as a ‘co-game’.
We write G* for the dual of the game G.3

1.3.2 Playing games in parallel

In the cases we are interested in, there are the following two operations on games,
each involving interleaved plays from the two component games:

Tensor product G ® H: in this game, G and H are played in parallel. For simple
G and H, it will automatically happen that P can only move in the game in
which O has just played; however O is allowed to switch games. There is
usually a unit J for the tensor product, namely the ‘empty game’ in which no
player can move.

Linear maps G —o H: in this game the dual G* of G is played in parallel with H.
For simple games G and H, it will automatically happen that O must start
in H: P can play in either G+ or H, and thereafter P is allowed to switch
games; on the other hand O can only now move in the game in which P has
just moved.

Note that the switching behaviour in G — H is dual to that in G ® H. This reflects
the duality between tensor and par in linear logic (Girard 1987).*

1.3.3 Strategies

The crucial notion is that of strategy; it will be interpreted computationally as an
algorithm, and logically as an argument. Intuitively a strategy is some means for

3There are more complex possibilities. In the games which concern Abramsky and Jggadf,esan
(1994), the possibility that P could start a game G plays a role: while it cannot be realised in the
standard play of G, it may be realised in the standard play of games conslr_ucled'from G. The same
phenomenon arises in the context of Conway games. Such situations which will not be treaied in
these notes; but with them one has a genuine duality. o

41y the case of more complex games, O may switchin G®H, and P may switchinG — H. The
*Blass Convention’, in the spirit of linear logic, is that the other player cannot switch. The ‘Conway
Convention’ allows the other player to switch as well.
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determining the next move in a game, but a natural question arises.
What is the next move determined by?

Here are some possible answers.

o The easy answer is ‘everything’: this gives rise to what are called history-
sensitive strategies.

e A surprising answer is ‘the last move’; then one has what might best be
described as a game of stimulus and response (a rally in tennis perhaps). This
has been studied by Abramsky and his coworkers (Abramsky and Jagadeesan
1994; Abramsky, Jagadeesan, and Malacaria 1994).

¢ A natural answer is ‘the current position’, perhaps identified with the suc-
ceeding game. This is the basis for much work in traditional logic, but
presents problems with regard to compositionality.

o A further (not quite obvious) answer couched in terms of ‘views’ will be
discussed in Section 4.

Note again that the thrust of these notes is that we want a good notion of compo-
sition. We want to be able to compose strategies in a disciplined way, so as to be
able to argue effectively about the behaviour of composed strategies in a structured
fashion. (We are rather far from this ideal!) We give mathematical expression to
the idea of a good composition by forming categories of games; then we can exploit
their rich structure.

1.3.4 Categorical structure

Let us review the structure which we extract from consideration of the notion of a
simple game. (The relevant categorical definitions are given in Appendix A.) We
can identify the following significant ideas.

A notion of game Two-person games A, B, C, ... played between Opponent O
(who plays first) and Player P. The games will be the objects of a category
G of games.

A notion of strategy in a game A P-strategy o : A for the game A (for O going
first) will become a map o : ] — A (or element of A) in the category G.

Tensor products of games The tensor product A ® B of two games A and B is
obtained by playing them in parallel. It gives rise to a symmetric monoidal
structure on the category of games. The unit / for the tensor product is the
empty game.

Linear function spaces of games The linear function space A — B of ‘maps’
from A 1o B is obtained by playing B in parallel with the dual A* of A. It
gives rise to the closed structure on the category of games.
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Copy-cat strategy For each game A, there is a P-strategy in A — A which si‘m-
ply copies moves by Opponent in A (respectively A1) as the corresponding
moves for Player in A* (respectively A). This acts as the identity in the cat-
egory.

Composition of strategies > We can compose P-strategies o : (A — B) and
7 : (B —o C) to obtain a strategy o;7 : (A —o C). This gives the
composition in the category.

From the above we derive the following general result.

Theorem There is a symmetric monoidal closed category G of games and strate-
gies.

The import of this is that the category G is a model for the multiplicative fragment of
intuitionistic linear logic. The models which we shall consider all have the property
that the unit I for the tensor product is the terminal object of the category: I & 1
In the language of linear logic, the multiplicative and additive units coincide, so in
fact we have models of affine linear logic.

We have further structure in the cases we shall consider.

Products on the category The terminal game 1 is the empty game. (We already
noted the problem J = 1.) In the product A x B of games A and B, Opp9nent
gets a choice as to which game to play. (In fact we shall have arbitrary
products in G.)

Monoidal comonad A symmetric monoidal functor ! : ¢ — G, and monoidal
natural transformations € :! — 1g, 6 : ! —!!, forming a comonad.

Comonoid structure Monoidal natural transformations e :! — Iandd :! —
I®! giving (free) !-coalgebras the structure of a symmetric comonoid. Thls
comonoid structure is compatible with the comonad in the sense that it is
preserved by coalgebra maps: thus, whenever f : ('A,84) — (!B,dp) is
a coalgebra map, then f is also a comonoid map.

We make some remarks about this additional structure. First, it is a quite general
phenomenon that a symmetric monoidal closed category (SMCC) together with the
structure of a monoidal comonad equipped with discard and duplication as above
gives rise 10 a cartesian closed category (CCC) of coalgebras with objects the prod-

ucts of free coalgebras.

Theorem Suppose that a SMCC C is equipped with a monoidal comonad, itself
equipped with a commutative comonoid structure as above. Then the category of
Eilenberg-Moore coalgebras has products; and the full subcategory on objects iso-
morphic to finite products of free coalgebras is cartesian closed.

5As stressed by Abramsky, composition of strategics has a natural reading in process terms as
‘paralle] composition plus hiding’.
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For a fuller discussion of these points see Benton, Bierman, de Paiva, and Hyland
(1992), Bierman (1993) and Bierman (1995). The general result does have appli-
cations, but the categories of games which we consider have products. It follows
that they satisfy Seely’s axioms for a model of linear logic extended as in Bierman
(1995), that is, they are new-Seely categories. This means that the Kleisli category
of the comonad is equivalent to the one introduced in the last theorem. Thus we
can give very concrete descriptions of the CCCs derived from our SMCCs of games.

Theorem The Kleisli category G for the comonad ! on G forms a cartesian closed
category of games and strategies.

The simply typed A-calculus lies at the heart of (typed) functional programming,
and is more or less the static proof theory (in the sense of Girard) of the (=)-
fragment of intuitionistic logic (minimal logic). The two interpretations of the A-
calculus give the Curry-Howard correspondence. It is natural and changes little to
include products in a typed language, to include conjunction in the logic giving the
(A, =)-fragment, and so to add pairing to the A-calculus. (See for example Girard
(1989b).) The simply typed A-calculus under fSn-equality corresponds exactly to
CCCs. (See Lambek and Scott (1986).) It follows that any CCC models proof theory.
The primary aim in these notes is to consider the CCCs arising from games either as
models for a functional programming language or as models for a theory of proofs.

1.3.5 Intensionality

We may contrast the notion of an algorithm which has a definite intensional com-
ponent with that of the function which it computes regarded as determined by its
extensional behaviour (its graph). It seems that this distinction can be reflected to
some extent in a standard categorical notion.

Definition A category C with terminal object 1, is extensional if and only if C has
enough points, that is, if and only if whenever f,g: A — BinC,

a;f =a;gforalla:1 — A, implies | = g.

(One also says that 1 is a generator in C.)

Suppose that a category C, typically a carlesian closed category (CCC), is being used
1o model computations or proofs. We shall take the fact that C is not extensional
in this technical sense, as indicating that it has intensional aspects.® Caution is
indicated here. The converse looks worse than suspect as one can always add points,
as in the Capitalisation Lemma of Freyd and Scedrov (1990). (This reference
contains an interesting discussion of points in categories; and a forceful treatment
of many other aspects of category theory.)

SThis question of extensionality of models has nothing to do with the question of the #-rule in
the A-calculus. This automatically holds in cCCs.
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1.4 Notation and prerequisites

In our formulation, a game A is determined by a tree of moves, so we start with
some notation for finite sequences (lists) infinite sequences (streams) and trees.

Sequences For finite (and occasionally for infinite) sequences p and ¢ we .w'ri‘tc
g =< p for the prefix relation (equivalently p extends q or g is.an m:f:al
subsequence of p); ¢ <X P is the corresponding strict order relation (g 1§ a
proper prefix of p). We Jet juxtaposition or an infix dot denote concatenfztzon
of sequences or elements (moves): pa or p.a (respectively pg or p.g) is the
sequence p followed by element a (respectively sequence g).

Trees A tree T on a set X is a prefix closed collection of finite sequences of
elements of X; a subtree S of T is a subcollection of finite sequences of T
which itself forms a tree. A tree on X is a subtree of the full tree X* of all
finite sequences on X .7

Projections Suppose first that X = Y + Z is given as a coproduct (or disjoint
union). If p € X", then we let the projectionof pon Y, py € Y™ be the
sequence whose elements in order are those elements in order o_f the sequence
p which lie in (the image of) Y. We extend projections to trees 1n the obvious
way. If T is a tree, then the projection of T on Y is

Ty ={pv|p€T};

clearly Ty isatreeon Y.

Secondly suppose that X = Y x N is given as an N-indexed copower (sum)
of Y. If p € X", then we let the kth projection of p,px € Y™ be the sequence
whose elements in order are those elements in order of the sequence p which
lie in the kth copy of Y. We extend projections to trees in the obvious way.
If T is a tree, then the kth projection of T is

Ti={plp€T};

clearly Ty isatreeon Y.

Infinite sequences For a set X, write XS¥ = X* U X for the set of finite and
infinite sequences of elements of X.
Suppose that T is a tree on a sel X. Write

T° = {pe X"| geTforallg=<p}
for the collection of infinite sequences generated by T', and

T={peX¥|geX" impliesg € T forallg X p}

. 7Some readers will be acquainted with concurrency theory, and the use made in that SPb.JCF'
of various notions of Jabelled tree; it may help to stress that our trees correspond 1o deterministic

labelled trees.
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for the complete set of all finite and infinite sequences determined by T'. (IN
game-theoretic terms, this will be the set of all plays in T.) Finally define the
set of maximal finite or infinite sequences from T as follows

T = {p € T| whenever g € T then p < g implies p = g}.
(This will be the set of all completed plays.)

1.5 Acknowledgements

Much of the material in these notes was discussed in a series of lectures in Cam-
bridge in Lent Term 1994. I owe a lot to my eclectic audience of computer scientists,
logicians, mathematicians and philosophers. 1 owe a particular debt to Gavin Bier-
man and Luke Ong, with whom I have discussed models for linear logic in general
and games in particular on numerous occasions. (They also allowed me to steal
some of their TgXto help create these notes!) Finally I acknowledge use of Paul
Taylor’s diagram macros.

2 Games and computation

2.1 A monoidal closed category of games
2.1.1 Games and strategies

This section gives simple notions of game and of strategy from which to construct
a category. The games are determined by trees of moves.

Definition 2.1 A game for fun or fun-game A is given by a set M = M4 of moves
together with a non-empty tree To on M called the game tree.

The elements p, q, .. of T4 are called positions or plays.

In a play ag.a,;.....an, the moves ag, a, ... , of even parity are moves played by
the Opponent O; and the moves a,, as, ... , of odd parity are moves played by the
Player P.

Ifaplay ay.a;.....a,, is of odd length then O has just moved and it is P to move; we
let O 4 be the set of such odd positions in Ta. On the other hand if a play is of even
length then P has just moved and it is O 10 move; we write Py for the set of such
even positions in T4. (Note that in an odd position, an even move has just been
played, and vice-versa.)

T4 is the disjoint union of the odd positions O 4 and even positions Py.

Throughout Section 2 we shall use games to refer to fun-games; but later we shall
need to distinguish them from other kinds of games.
Player moves second and hence we can compose Player’s strategies (P-

strategies) to give a category structure on games. We give first a technically
smooth definition.
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Definition 2.2 A P-strategy in a game A is given by a non-empty subtree S of Ty
satisfying the following.

Ifp € SN O, then there is a unique move a withp.a € S.

Remark It is probably more intuitive to present a strategy by means of a partial
map® ¢ : Oy — M., giving moves when Player is to move. We then stipulate
that the domain dom(¢) C O, is a prefix closed collection of odd positions, and
that ¢ satisfies

(i) if p € dom(¢), then p.¢(p) € P,, and
(i1) if p, ¢ € dom(¢) and ¢ < p, then ¢.¢(qg) < p.

The two notions of strategy determine one another via bijections ¢ — S, and
S — ¢g given as follows.

S = {<>}U{qlq = p.¢(p) for some p € dom(9) };
¢s(p) =aifandonly if p.a € S.

We refer to the equivalent notions of strategy® as being either in subtree mode or in
function mode. Greek letters o, 7, ... will denote strategies without regard to mode
of representation.

Exercises 1

1. Show thar a strategy S given in subtree mode is determined by S N Py4.

2. Show that for any partial map ) : O4 — M4 there is a maximal partial
map ¢ : O — My contained in <) which is a strategy in function mode.

3. Show that a strategy is also determined by a subtree S of T, such that (i)
Jorp € SNO4, p.a € Sandp.b € Simplya = b, and (ii) forany p € SNPy,
p.a € Oy impliesp.a € S.

4. Formulate notions of non-deterministic partial strategy, and of determin-
istic and non-deterministic total strategy as functions and as subtrees along
the lines of Definition 2.2.

2.1.2 Tensor product and linear function space

The idea behind the tensor product and linear function space of games was ex-
plained in Section 1.2, so we just give the formal definitions.

8Note that since stralcgies are given by partial functions, we arc here dealing with partial but
deterministic strategies. Other choices are clearly possible.

YGlynn Winskel drew 1o my attention that one can also think about stratcgies in terms of Perri
nets. Regard the positions in O 4 as conditions (or places), and those in Py as events, where the
initial position is a unique starting event. Then a strategy corresponds exactly 1o a possible state of
the net.
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Definition 2.3

The unit game 1 is defined by setting M; = &. This determines the game tree which
consists only of the empty sequence. (Thus I is a game in which no moves can be
made.)

Given games A and B, the games A ® B and A — B are defined as follows.
Moves The moves are M aop = Ma_p = Ma+ Mp, the coproduct (disjoint sum)
of My and Mp.

Game tree The game tree Tagp is the subtree of (Magp)® consisting of those
sequences p whose projections psy = pa,, and pg = pu, preserve parity of moves
and are in Ty, Tp, respectively.

The gume tree Ty is the subtree of (Ms_.p)* consisting of those sequences p
such that the projection py = pp, reverses, while pg = pp, preserves parity of
moves uand the projections are in T4, Tp, respectively.

It is helpful to think of A —o B as the result of playing the cogame AL, which
is A with the parity of moves reversed, in parallel with B. Suppose that we write
pas for the sequence p,4 with the parities of moves notionally reversed. Then in
the definition of A — B, we would say that p4. and pp preserve parity of moves
and are in T41, Tp respectively. This reformulation is helpful conceptually and
technically (particularly in the case that A = B).

Exercises 2

1. Show that it is indeed a design feature of these definitions that
e in A® B, O may switch between the games A and B, but P may not;

e in A — B, P may switch between the cogame A* and the game B, but
O may not.

2. In a game of the form (A — B) —o C, which of O and P can switch
between which of the (co-)games (and when)? Do the same for a game of
the form A — (B ® C). Explore a few more complicated examples!

3. Using the obvious intuitive notion of isomorphism of games, establish the
Jollowing isomorphisms.*®

s AR (BRC)=(A®B)®C.

e IRA A AQI.

e AR B B® A

e A—(B—-C)=(A®B)—C.

4. Write S for the game which ends after a unigue initial move.
(i) Give concrete descriptions of the games S ® S and S — S.

19Why do we not get identities in place of isomorphisms? In what sense is the coproduct + of
sels associative and commutative?
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At A

Figure 1: Identity strategy.

(ii) Suppose that a game has just one initial move. Show that it is isomorphic
to a game of the form B — S for some game B.

5. (i) For which games A do we have A= A® A?
(ii) For which games A do we have A= A — A?

2.1.3 The category LFG of linear games of fun

As explained earlier, the form of compositionality which we expect will give rise
to the structure of a category with games as objects and strategies as maps. We now
describe the relevant structure on the strategies.

Definition 2.4 For any game A we define a strategy 14 in A —o A in subtree mode
as follows.

p € Ly NPyifand only ifforalleven g X p, gaL = ga.

Suppose that we have strategieso : A — Band 7 : B —o C, in subtree mode.
Their composite 0; 7 is defined as follows.

p € 037N Py_op ifand only if
g € 6N Pawop.3r € TN Ppoc-gar = Par andqp = tgr and Tc = Pe.

The definitions of the identity maps and of composition are based on very simple
ideas. The identity strategy simply copies moves from the copy of A to that of
A and vice-versa as in Figure 1. Composition can be understood by imagining
that when playing o;7 in A — C, P keeps a scratchpad on which to record
(corresponding pairs of) moves in B and BL. A representative play is shown in
Figure 2. The opponent starts the game A —o CinC,and PplaysinB — C a
move according to 7 which happens to be in B1. (The situation where the move is
in C is clearly straightforward.) P copies this overto B and regards that move as the
start of aplay in A — B. Playing according to o gives amove in B, which is copied
over to B+, where it is regarded as a move of O. P responds to that according to
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Figure 2: Composition of strategies.

7 getting in the case illustrated a move in B*. This in its turn is copied over to B
where it is regarded as a response of O. P responds to that according to o, getting
amove in A*. At last P is able to play a move ‘for real’ in the game A — C. In
the illustration O responds (necessarily) in AL, and the game continues. (Further
‘real moves’ in C are shown.)

Let us now record the properties which say that we have a category.

Proposition 2.1 Suppose that A and B are games witho : A —o B; then 14;0 =
o =0;tg.

Suppose that A, B, C and D are gameswithp : A — B,o : B — C and
T:C —o D; then p; (0;7) = (p;0); 7. 0

In view of this proposition, we can define a category of games.

Deﬁniti?n 2.5 The category LFG of linear fun-games has as objects, games as
deﬁm'zd. in definition 2.1; as maps from A to B, strategies in A —o B as defined in
definition 2.2; and identities and composition as in definition 2.4.

We let LFG(A) denote the set of strategies in the game A and LFG(A, B) the set
of maps from A to B in LFG. So LFG(A,B) = LFG(A — B).

Exercises 3

1. Show that the strategy 14 can be defined in function mode by stipulating
t.hat LA(p‘t'l) = c(a) forall p.a € Opop. (¢: Ma_pg — Ma_., is the twist
isomorphismon Ma_.p = My + My = My + My which interchanges
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MA.L and MA) u
2. Show that the composite o; T can be defined in function mode as Sfollows.

o, 7(p) = d if and only if there are (necessarily unique) positions
q consistent with ¢ and r consistent with T with qg = rp and with
either o(q) = dor 7(r) = d.

3. Suppose that games A and B are isomorphic in the categorical sense that
therearemapso : A — Bandt : B — Asuchthato;T = 14 andT;0 =
vg. Are they isomorphic in the naive sense described above? (Just stop
to think a minute. Maybe it would be worth going back and reformulating
something?)

4. Characterise the monomorphisms and epimorphisms in the category LFG.

2.1.4 Elementary structure on LF§G

This section contains a brief sketch of some elementary categorical structure on
LFG.

Symmetric monoidal closed structure on G Here is a brief indication of why
LFG supports the structure of a symmetric monoidal closed category (SMCC).!?
First we have a choice of ‘unit’ J; and we have the construction 4 ® B which is
functorial in A and B. Secondly the isomorphisms from Exercises 2 give natural
isomorphisms: associativity, aagc : (A®B)®C — A® (B® C) ; identities
l,: I®A — Aandry : A®I — A;and symmetry cap : A® B —
B ® A. These satisfy the coherence conditions detailed in Appendix A, so that
G has the structure of a symmetric monoidal category. Finally we have a natural
isomorphism LFG(A® B,C) = LFG(A,B —o C) derived from the isomorphism
(A® B) — C = A —o (B —o C) and hence a closed structure on LFG.

Categorical products The definition for finite products in LFG is given below; the
extension to infinite products is obvious.

Definition 2.6

First define the terminal game 1 by stipulating that M, = @. Thus the terminal
game 1 is just the unit game 1. (The game tree consists only of the empty sequence,
and no moves can be made in 1.)

Now suppose that A and B are games; the product game A x B is defined as

1] matrix notation one can write the map ¢ in the definition of ¢4 as

01
10
_Those who know the Geometry of Interaction (Girard 1989a) will recognise this matrix.

12This notion is explained in Appendix A, but if the reader just has in mind that the various
isomorphisms given in Exercises 2 are intuitively natural, that will probably be enough.
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Sfollows:

Moves The moves are Maxpg = M + Mp, the coproduct or disjoint union of M 4
and M B.

Game tree The game tree Taxp is the subtree of (Maxp)* consisting of those
sequences p with either p = py, € Tp orp = py, € Tp.

Proposition 2.2 The object 1 is a terminal object in LFG.
For games A and B, there are mapsfst : Ax B — A,snd : AxB — B
exhibiting A x B as a product in LFG.

Enrichment in domains We can regard LFG as a category enriched in some
category of domains. We make do with an intuitive account of enrichment, but
for more on this important topic see Kelly (1982). Here we presuppose some
knowledge of domain theory. It is clear that the collection of all P-strategies
LFG(A) in a game A forms a poset under inclusion (in either mode). We expect it
to be some kind of domain or complete partial order (CPO).

' inel} an even position p € P4 of a game A, we define the least strategy o/[p)
giving rise to the play p by o[p] = {glg < p}. (In function mode o[p)(g) = a if
and only if g.a = p.)

Lemma 2.3 (i) For any subset X of LFG(A), the supremum | | X exists if and
only if |J X is a (partial) function, (in which case | |X = |JX). Hence each
LFG(A) is a consistently complete CPO. A

(ii) A strategy ¢ € LFG(A) is compact if and only if o is a finite partial function
if and only if o is a finite subtree. Hence each LFG(A) is algebraic and satisfies
the finiteness axiom (I).

(iii) A strategy o € LFG(A) is prime if and only if it is o[p) for some position
p € Py (that is, if and only if as a subtree, it consists of a single path). Hence each
LFG(A) is prime algebraic.

It follows at once that the collection LFG(A) of P-strategies in A ordered by
inclusion is a dI-domain.

Now we know that each LFG(B,C) = LFG(B —o C) carries the structure of a
di-domain. To show that LFG is enriched in some category of domains, we should
consider how the operations of LF @ as a structured category are reflected in maps
of dl-domains. Examples of such operations are the composition LFG(A, B) x
LFG(B,C) — LFG(A,C) and tensor product LFG(A, B) x LFG(C,D) —
LFG(A®C, B®D). Since strategies are determined by the prime strategies which
they contain, it follows that all the relevant maps are affine (that is, preserve all non-
empty sups) or biaffine as in the examples above. Hence we have the main result
of this section.

Theorem 2.4 The category LFG of games and strategies is a SMCC with products,
enriched over the SMCC of dl-domains and affine maps.
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This result on enrichment suggests that we think of the category of games as a kind
of generalised (linear) domain theory. This perspective is useful in a nun-lber of
ways. For example, one can present LFG as acategory indexed over .|tself in such
a way as to obtain a model for polymorphism (along the lines of Girard (1986),
Coguand, Gunter, and Winskel (1989), Taylor (1986), and others). For another
approach to polymorphism see Abramsky (1997). :

Exercises 4

1. Recall the game S with just one initial move after which the game is over.
(i) Show that any game is isomorphicto a (possibly infinite) product of games
with just one initial move.

(ii) Establish the following decomposition.’® For any game A we can find
games B fori € 1 with A= [[{B; — S[i € I}.

(iii) Identify the least collection W of games containing S, closed under
isomorphism and under finite products, and such that if W € W then W —o
S € W. Show that the full subcategory on such objects is a SMCC.

2. Establish the following facts.
(i) The contravariant functor (=) —o S is self dual on LFG: we have

LFG(A,B — S) = LFG(B,A— 5)

naturally in A and B. o
(ii) The game A —o S can be identified with S(A), the game which is

obtained from A by adding a fresh initial move, ® say, for Opponent, and
then letting play continue as in A*.
(iii) The self duality is enriched in the closed structure:

A —o S(B) = S(A® B) ¥ B — 5(4)

3. Amapp: A — B in LFG is strict ifandonlyif Lyip= 1 :1 — B.
Write LFG,(A, B) for the set of strict maps from A to B. On the basis of
this definition establish the following facts. o
(i)Amapp : A — Bis strict just when p’s response to an initial move
(necessarily) in B is always a move in AL, .
(ii) Let L = S? be the square of the functor S above. Show that Lis
the lift for our notion of strict map: that is, there is a natural isomorphism
LFG(A,B)= LFG,(LA, B). . o
(iii) Let na : LA — A be the strict map corresponding to the identity 14
in the natural isomorphism. Show thatp : A — B is strict if and only if
Lp;ns = na; p-

4. Show that LFG does not have a coproduct, but that it does have a weak
coproduct.

“130ne can read this deccomposition as follows. A game con do an O-move and become o cogame.
Similarly a cogame can do a P-move and become a game. You may detect echoes of The Expansion

Theorem for CCS in this question.
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5. Consider the category of games with history-free strategies in the sense of
Abramsky and Jagadeesan (1994). Does this category have finite products?

2.2 A cartesian closed category of games
2.2.1 The exponential comonad

The simple intuition behind the so-called exponential ! A of a game A is that it is an
infinite ordered tensor product of (versions of) A.1* We imagine that we are givenr
instances Ag, A, Ay, - - - of the game A, and we play their infinite tensor product
subject to the stipulation that O may not open (that is make the first move in) an
instance A4, until all the 4; for ¢ < k have been opened. The formal definition is
as follows.

Definition 2.7 Suppose that A is a game for fun. Then the game A is defined as
follows:

Moves The moves are M4 = M4 x N, the countable copower of M 4.

Game tree T4 is the subtree of (Mi4)" consisting of those sequences p such that
(i) all the projections py. are in T, and (ii) the first move in the k+ 1st copy is made
after the first move in the kth.

We devote this section to an explanation of that structure associated with the
exponential which gives rise to a cartesian closed category of games.

! as a monoidal comonad It is routine to check that !4 is functorial in A; so
that we have a functor ! : LFG — LFG. In addition we can define mediating
natural transformations m; : I —!'J7 and mp :'A®!'B —!(A ® B) making ! a
monoidal (endo)functor on LFG. The axioms for monoidal functors are explained
in Appendix A; here we just describe the maps involved.

The map m; This is uniquely determined since !J = J =1,

The map m 5 This is more interesting; we have (!4)* and (!1B)* in parallel with
(A ® B). Player Hoes the natural thing; moves in the successive versions
of A ® B are copied to moves in the successive versions of A* or B as
appropriate, and then also vice-versa. (This requires careful bookkeeping as
which version corresponds to which is not determined in advance of a play.
Figure 3 illustrates the case where O starts by playing in A in the first version
of A ® B, then plays in B in the second version and then continues in A in
the second version.)

We can further define the counite 4 : '!A — A and the comultiplicationé, : 14 —
1A for a comonad as follows,

Y Curien has considered in detail a more sophisticated exponential, which is already implicit in
his early work on sequentiality, and which gives rise to the category of sequential algorithms. This
underlies the recent treatment of full abstraction for extensions of PCF given in Cartwright, Curien,
and Felleisen (1994). Curien’s exponcntial is a retract of our crude exponential.
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Figure 3: Mediating strategy.

Counit ¢4 In the game !A —o A we play (!A)* in parallel with A. In the strat-
egy €4 Player only makes use of the first copy of At in (!4)%, and simply
copies moves across as in the identity (copy-cat) strategy. (The picture is like
Figure 1, but with further unused copies of A+ on the left.)

Comultiplication 6, In the game !A —o!!A, we have (!4)! in parallel with !'A.
In !'A, Opponent has in effect an N x N-indexed collection of copies of A
in which he may choose to play (of course with restriction on the legitimate
order). In the strategy 8,4, Player makes use of his N-indexed copies of A+ in
(1A)+, to imitate the behaviour of Opponent; whenever O opens a new copy
of A, P opens a corresponding new copy of AL, thereby instituting a link
between the respective copies; and thereafter whenever O plays in the one,
P copies in the other. The idea is indicated in Figure 4. Moves from the first
two versions of A in the first version of 4 and moves from the first version
of A in the second version of !A are shown copied.

1t is routine to check that that € 4 and & 4 are the components of natural transforma-
tionse :! — 1.5 and & : ! —I; and that they are monoidal natural transforma-
tions in the sense explained in Appendix A. We can sum up this discussion in the
following proposition.

Proposition 2.5 The data (!, ¢€,8) together with the ancillary structure m, and
map form a monoidal comonad on LFG.

Comonoid structure on ! Now let us see how ! supports the operations of weaken-
ing and contraction associated with the ‘exponential’ of linear logic. The discard
maps e, : A — I and duplication maps d, : !4 ~—!A®!A are as follows.

. Discard e4 The game !4 —o I is rather disappointing; it has no starting moves for

O and so is isomorphic to I. Thus we have to let e4 be the unique ‘empty
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Ay At Ay - (Aoo (Aor --+) (A1 (An--)

o

Figure 4: Comultplication strateéy.

strategy’ in!A — I.

Duplication d4 The game (!4 —!A®!A) is more interesting. It amounts to play-
ing (14)* in parallel with two copies of | A. Opponent can switch between the
copies of !4, while Player can switch between (14)* and whichever copy of
IA is current. In the strategy d 4, Player systematically sets up a correspon-
dence between fresh versions of A started by O in either of the two copies
of !4, and fresh versions of A+ in the copy of (1A)*; he simply copies O’s
moves from any version to the corresponding one. So the picture is as in Fig-
ure 4 save that there are just the two (rather than countably many) copies of
A on the right.

It is straightforward to check the desirable properties of discard and duplication.

Proposition 2.6 The components of the natural transformations e, :'A — 1
and ds :'A —'A®!A give each free coalgebra 6,4 :!A —VA the structure of a
commutative comonoid. This structure is compatible with the comonad in that it is
preserved by coalgebra maps: whenever f : (1A,8,) — (1B, ép) is a coalgebra,
then [ is also a comonoid morphism.

We could deduce at once that the category of Eilenberg-Moore coalgebras has
products; and that the full subcategory on objects isomorphic to finite products of
free coalgebras is cartesian closed. Fortunately, the category £LFG has products.
It follows that it satisfies Seely’s axioms for a model of linear logic extended as in
Bierman (1995), that is, it is a new-Seely category. Hence the Kleisli category of
the comonad is the CCC in which we are interested.
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Figure 5: Play in the function space A = B.

Exercises 5
1. Is the counit €4 :'A — A ever an isomorphism? Is the comultiplication
54 :'A 2N A ever an isomorphism?

2. Forwhich games A do we have an isomorphism A =\A? For which games
A do we have an isomorphism '\A =147

3. Give an example to show that 'A®'B and (A ® B) need not be
isomorphic.'®

2.2.2 Description of the ccc FG

Definition 2.8 The category FG of fun-games (without qualification) is the Kleisli
category for the comonad ! on LFG

The comonoid structure on the comonad (!, €,48) together with the existence of
products in our category LFG ensures that the Kleisli category for ! is cartesian
closed.

15The question why these objects are not isomorphic arose at the summer school. Nick Benton
immediately gave a computational intuition. In (A @ B) there are always the same number of
versions of A and B in which Opponent could be playing without having to call up” a fresh copy.
But that is not truc of 'A®!B.
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(Ag At

Figure 6: Compositionof g : A= Band7: B = C.

Proposition 2.7 The category F§ is cartesian closed. The categorical product is
the product A x B and the function space B = C is defined by

B=C=!B—C.
The standard adjunction induced by the comonad ! is a monoidal adjunction.

We write FG(A) = LFG(A) for the elements (points) of A in FG; then
FG(A,B) = FG(A = B) = LFG(!A — B).

Explicit description of 7G The category G of fun-games and (non-linear)
strategies has the following description. The objects of the category are games as in
Definition 2.1. The maps from A to B are strategies in the game!A — B = A= B
obtained by playing a countable sequence of versions of A* in parallel with B. A
typical play is illustrated in Figure 5, with a strategy for Player indicated by the
arrows. The identity on a game A is given by the map e, !4 — A. Finally we
describe how to compose twomaps o : A => Band7 : B = Cin FG. The
strategies o :!A —o B and 7 :!B — C in LFG compose to give the composite

b g g T ..

A play according to a composite strategy is indicated in Figure 6. Opponent opens
in C and T gives Player a move in the first copy Bg-. This opens a scratchpad, and a
few of Player’s moves are shown given by o. Eventually Player copies overa move
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as an O-move in By, and 7 gives a response in Bi-. This opens a fresh scratchpad,
and calls up a fresh version of ¢, and P-moves are made in accord with o then with
7 and then with o again. In Figure 6 two scratchpads are shown, but more could be
opened, and Player may well return to earlier scratchpads.

Enrichment The category LFG is enriched in the SMCC of dI-domains and affine
maps. What about FG? As FG(A, B) = LFG(!A, B), we can again regard the
hom-sets as dI domains. So we need to look at the maps giving the structure of the
cartesian closed category. It is easy to see (for example in the case of composition)
that we lose affineness; but the maps remain continuous. (The category of dI do-
mains and continuous maps has products, and thus a symmetric monoidal structure;
but it is not cartesian closed.)

Proposition 2.8 The category FG of fun-games is a CCC enriched over the cate-
gory of dl-domains and continuous maps.

One can regard the CCC F @ as as an intensional model of the typed A-calculus in the
sense explained in the Introduction: it does not have enough points. Asindicated in
the Exercises, one can see this by considering the object £ whose unique maximal
play consists of an O-move o followed by a P-move o. In the next sections we shall
consider FG as a model PCF, and on the basis of that try to tease out the intuition
that the category models intensional behaviour.

Exercises 6

1. Recall the game S with just an initial O-move. Show that the linear and
general function spaces coincide: S = S = S — S.

2. (i) Show that (S = S) = L, the game with a unique maximal play
consisting of an O-move e followed by a P-move o.
(ii) Show that T has just two points.
(iii) Show that there are infinitely many strategies in G (3, L), and deduce
that such strategies are not distinguished by the points of L.

3. Can you construct games A with
(i) A AXxA;
(i) A= A= A
() AZAXAZ A A?
4. If games A and B are isomorphic in 7§, are they isomorphic in LFG?

5. Recall the lift functor L = S? on LFG. Does L act as a lift in the category
FG?
2.3 Games as a model for intensional computation

We show how strategies for games provide a notion of algorithm'® by explaining
how our category provides a model for PCF. (A brief overview of PCF is given

16 A better case is made by recent work of Abramsky modelling idealised ALGOL.
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in Appendix B.) What is commonly called a denotational semamic§ for PCF is
essentially an interpretation of (or model for) the type theory presented in Appendix
B. The usual form of a model for PCF is that the types are interpreted as domains
and the terms as continuous (or stable continuous) maps between domains. Here
we describe a model in which the types are interpreted as games and the terms as
strategies.

2.3.1 Interpretation of PCF types

First we define games B and N to model the ground types. These games are of
a simple kind. In each game there is a unique opening move for O; in B, P has
two possible responses ¢ and f, and then the game is over; in N, P_has a countable
number of possible responses n for each natural number n, and again then the game
is over. The following is a formal definition.

Definition 2.9 The boolean game B has moves Mp = {o, t, [}, and game tree

Ts = {plp X etorp=e.f}
The natural number game N has moves My = {e,0,1,2,3, -}, and game tree

Tx = {p|p X ®.n for some natural number n}.

Now for any PCF-type A we define the interpretation [ A ] as a game recursively as

follows: ot
[o] = B,

[.] €N
[A= 4] & [A]=[4]

where B and N are the boolean and natural number games just defined.

Exercises 7

1. Show that the domains of strategies FG(B) and FG(N) are the traditfonal
flat domains of booleans and natural numbers respectively. (Thus, our inter-
pretation of PCF is standard in the sense of Plotkin (1977).)

2. Show that the function space domain FG(B = B) is infinite.

3. What possibilities are there for the first four moves in a strategy in the
domain FG(B x B = B)?

4. Construct a game whose domain of strategies is the traditional domain of
lazy natural numbers.

2.3.2 Interpretation of PCF: arithmetic and conditionals

Arithmetic The basic arithmetic constants are straightforwardly intergreted as
strategies. The interpretations of n : ¢ and t,f : o are the corresponding total
strategies in the games B and N. We consider the interpretation of the successor
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function succ for illustration. The game in question [ (¢,¢) ] = (N = N) has as set
of moves

My + My = {(0,),(0,n) |n € N} U {(1,9),(1,n) |n € N}

and an inﬁnite: game tree which we need not describe in detail. The strategy
fsucc: (¢,¢) ] is best defined by giving the maximal plays in the subtree; these are

{(1,#).(0,#).(0,).(L,n + 1) |]n € N}.

Conditionals We deal with the conditional at ¢«. The game in question
[(0,¢,¢,¢)] = (B = N=N=N) has as set of moves

MB + MN+ MN + MN = {(07 .)1(01t)7(0’ f)}U
{(1,0),(1,n)[ne N}U{(2,¢),(2,n) |n € N} U{(3,0),(3,n) |n € N}

and anL infinite game tree which we need not describe in detail. Again the strategy
[cond’ : (o,¢,¢,¢)] is defined by giving the maximal plays in the subtree; these are

{(3,).(0,0).(0,t).(1,).(1,n).(3,n) [In € N} U
{(3,¢).(0,#).(0,f).(2,¢).(2,n).(3,n) | n € N}.
Exercises 8

1. Define strategies for predecessor, pred, and test for zero, zero?, by giving
the maximal plays in the subtree as above.

2. (A misleading question!) What is wrong with the strategy whose maxima!
moves are

{(1,).(0,).(0,1).(0,).(0,n).(1,n+ 1) |n € N} 7

3. Show inductively that the conditionals cond' and cond® enable one to define

conditionals at all types. The resulting conditional cond™ is (probably)
given by

cond™) = Az : 0.0f,g: (1,1). w : t.cond (z, f(w), g(w)).
Describe the strategy which is defined by this.

4. (i) Define a sirategy for a non-standard function test for one, one?, and
compare what you give with the interpretation of

Az : w.cond*(zero?(pred(z)), cond*(zero?(z), f,1),f).
(ii) Describe the strategy which interprets the term

Az : t.cond*(zero?(z), cond*(one?(z), 0, "), cond*(zero?(z), 0, £2)) .
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2.3.3 Fixed points

For any game (not just those which interpret PCF-types) A we shall describe a
strategy in (A = A) = Atointerpret Y. First we need to understand the structure
of the game (A = A) = A. The game amounts to a sequence of cogames
(A = A)} played in parallel with 4, in such a way that P can switch games,
but O cannot. We call the indicated version of A (in which O starts the game)
the main O-component. Each (A = A); amounts to playing a sequence Aijin
parallel with A7, in such a way that O can switch games, but P cannot. We call
the A}, in which P starts, the P-components, and the games A;; the subsidiary O-
components. We list the components which we use to structure a discussion of play
in(A= A) = A.

o The main O-component.
o The P-components.
e Subsidiary O-components.

We now proceed to describe a strategy Yin(A = A) = A Inaplay
according to the strategy we describe there will be a correspondence between O-
and P-components. The first P-component to occur Ag is the dual of the main O-
component. The others in order they are started are the duals of the subsidiary O-
components in order they are started. At any even position the duals will be copies
of each other. The strategy can be succinctly described as follows: suppose O has
just moved:

e Case 1. Opening move: P copies this to start the first P-component.

e Case 2. O starts a new subsidiary component: P copies this to start a new
P-component.

e Cuse 3. O moves in some existing O-component {(P-component): P copies
the move in the dual P-component (O-component).

Arguing inductively it is easy to see this makes sense as a strategy.

Now we aim to show that Y is a fixed point operator. (In what follows, we
shall not bother to distinguish between the strategy Y € FG((A = A) = A),
themapY : 1 — ((A = A) = A)inFG, and ils exponential transpose
Y : (A = A) — A.) Externally (or pointwisc), that Y is a fixed point means
just that the equation

o(Y(0)) =Y(0)
holds for all ¢ : A = A. But as FG does not have enough points, this is not
sufficient to provide a good model for PCF. Rather we need to show that

Ji(A ARFY(N)=Y
holds in FG. The expression f(Y (f)) is interpreted as the composition

A
(A=>A)—~(A=>A)x(A-*;A)-lLX(A:A)xALA,
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Figure 7: Copying paths in the composite A;1 x Y;ev.

where 1 is ¢4 4. This composite is pictured (three times) in Figure 7 where “copy-
ing paths” are drawn to help explain the behaviour of the composite.!”

In our discussion of the composite A;1 x Y; ev we use the terminology (main
O-component, P-components, subsidiary components, the dual of a component)
already introduced. We can tie down the behaviour of the composed strategy by
making the following observations.

1. Afier the opening O-move in the main O-component, P copies along path (1)
in Figure 7 to give a reply in the first P-component Ay (the dual of the main O-
component). Thereafter any O-move in either of the two components is answered
by copying along path (1) (in either direction) to give a P-reply (which is just a
*“copy”) in the dual component.

2. After the first O-move (if any) in the first subsidiary O-component Agp, P
copies along path (2) to give a reply in the second P-component Aj (its dual).
Thereafter any O-move in either of these two components is answered by copying
along path (2) (in either direction) to give a P-reply (just a “copy”) in the dual
component. Furthermore exactly the same applies mutatis mutandis in the case of
any subsidiary O-component Ay;; after an opening move in Ay, P opens the next
available Ay, say, (its dual). [Perhaps it is worth noting that each of these further
O-components involves P opening a fresh version of Y on the hidden scratch pad
i.e. the “returning” portion of path (2) involves a fresh version of Y in each new
case.]

!71( does not seem accidental that the three paths in Figure 7 “cover” the whole picture.
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3. After the first O-move (if any) in a subsidiary O-component A(;+1);, P copies
along path (3) to give a reply in the next available P-component A, say,(its dual).
Thereafter any O-move in either of these two components is answered by copying
along path (3) (in either direction) to give P-reply (just a “copy”) in the dual com-
ponent.

It follows from the three observations above that the composed strategy behaves
exactly like Y: that is

1xY
(A= A)x (A= A) ——~ (A= A) x A
A ev

A=A - A

commutes.
Exercises 9

1. Show that
f:A= B,g:B= AF f(Y(Xag(f(a))) = Y(Xb.f(g(b))).

2. Show that
f:Ax A= AEY()af(a,0)) = Y(Xa.Y(Ad'f(a,0)).

3. Show that
f:A= AEY()=Y(a.f(f(a))-

4. Recall that FG is enriched in a category of CPOs. For a game A consider
the map FG((A = A) = A) = FG((A = A) = A) taking a strategy p to
the interpretation of \f : A = A.f(p(f)). Let Y : (A= A) = Abethe
least fixed point of this map.

(i) Show that Yisa fixed point operator.
(ii) (For the more experienced.) Show thatY =Y.

2.3.4 Catch

We wish to consider a revealing strategy in the game (N x N = N) = N. In
the spirit of Cartwright, Curien, and Felleisen (1994) we extend PCF by'a conslfmt
catch : ((¢x¢,t), t), whose interpretation will be this strategy. The game in question
has as set of moves

My + My + My + Mn = {(0,9),(0,n)|n € N}U
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{(1,0),(1,n) [n € N} U{(2,¢),(2,n) [n € N} U{(3,0),(3,n) |n € N}
and an infinite game tree which we need not describe in detai
. : . ¢ etail. The strategy
E }:::stgl;re( (¢ X t,¢),¢) ] is again defined by giving the maximal plays in the subtree;
{(3,9).(2,0).(2,k).(3,k+2) |k e N}U
{(3,9)-(2,9).(0,0),(3,0)} U {(3,0).(2,9).(1,0).(3,1)} .

This a!gorithm inspects its argument, the algorithmo : N x N = N say, in a non-
extensnt?na! way. If o outputs a value k at once, then the algorithm returns k + 2
Otherwise if o starts by ‘looking at its first argument’ it returns 0, and if it starts by

‘looking at its second argument’ it re i
turns 1. If o does nothing, then the algori
returns nothing. ¢ fgorithm

Letus e?(plain the sense in which [ catch ] is a non-extensional strategy. Consider
the follownﬁng two algorithms +; : Nx N = Nand 4, : N x N = N for addition.
Ihe game in question has moves My + My + My, and the maximal plays are for

b
{(2,0).(0,0).(0,7).(1,8).(1,m).2,n + m) |n,m € N},
and for +,,

{(2,9).(1,9).(1,m).(0,#).(0,n).2,n + m) | n,m € N}.

The two a}]gorithms +; and +, are extensionally equivalent: the composites with
any algorlthms n : Nand m : N are the same. On the other hand, [ catch J(+,) =
0 : Nwhile [ catch J(+,) = 1: N, so catch is sensitive to the intensional difference.

One of the central results of Cartwright, Curien, and Felleisen (1 994) js that the
category of sequential algorithms (Curien 1993) is fully abstract for an extension
of PCF by catch. One can obtain the category of sequential algorithms as a kind
of retract of 7@, but the details are not simple. In any case the algorithms which
are the strategies of FG are of much wider scope; in functional terms, they allow

notice to be taken of arguments which vary accordi i
: ing to the circumstances
which they are called. under

Exercises 10

1. Qeﬁne an extended form of catch, catch, : (7, ¢).c) so that catch = catch,
(i) What are catchy and catch, ? Are they extensional? .
(ii) Show that catch, can not be modelled in the standard Scott domain model
ﬂ.).r PCF, and hence is not PCF-definable. Is catch, stable?

(iii) Is catch, PCF-definable from catch?

2. Consider the following strategy [lin0?] in (N = N) = B. [1in0?] inspects
the algorithm o : N = N which is its argument. If o outputs a value at once
then [1in0?} returns f. Otherwise if o starts by ‘looking at its argument"
[1in0? ] asks for the value of o at O; then if o at once gives a value [ IinO?j
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returns t; on the other hand if o continues by again ‘asking about its argu-
ment’, [ 1in0? ] returns f. If at any point o does nothing, then the algorithm
returns nothing.

(i) Write down the maximal plays for { lin07 ].

(ii) Describe what [1in0? | does? In what sense is it intensional?

(iii) Is lin0? PCF-definable from catch?

3. Consider the strategy in the game (N = N) = N whose maximal plays are
of the form

(2,0).(1,).(0,9).(0,0).(0,).(0,1) ---(0,¢).(0,n).(1,m).(2, 2 + m)..

What does this strategy do?

3 Games and logic

In the previous section we presented a category of games as an intensional model
for computation. Now we want to present a corresponding model for constructive
proof theory.

It is worth reflecting briefly on the contrast between traditional models of com-
putable (programmable) functions and models for proofs. The point is that the
Curry-Howard isomorphism between types and propositions (programs and proofs)
has its limitations. A CCC which models the most general forms of computation
will in some way involve partial functions. Thus in a category of domains, all the
domains are inhabited (by the bottom element L). So under the Curry-Howard iso-
morphism, all propositions are provable. To avoid this, we think of ccCs which
model proof theory as involving total functions, and accept that the Curry-Howard
isomorphism is most convincing in the context of programming in a language (such
as Martin-Lof Type Theory) in which all functions are total.

This suggests at once that in order to model constructive proof theory we should
consider total strategies. But care is needed to get a composition. In terms of the
discussion of Section 2, the problem is that one may stay in the scratchpad of Figure
2 for ever, and so the next move may be undefined. Somehow one has to force a
conclusion to the computation of the next move. This is fine if all games are ‘well-
founded’; but such a restriction presents problems for any simple-minded form of
the exponential.’® The good general way round the problem is to have a notion of
winning, and only to compose winning strategies. In the simplest formulation we
incorporate into the structure of a game a decision, for each infinite play of the game,
as to whether that play is winning for Player or for Opponent. (Our presentation is
definitely non-constructive. A constructive version of the material is possible, but
its formulation requires care.)

1BFor finite games, an cxponential in the style of Curicn can overcome this problem.
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3.1 A monoidal category of games and total strategies

In this section we define a specific category of games and total strategies.

3.1.1 Games and total strategies

We need to consider infinite plays, and shall use the notation for infinite sequences
given in the Introduction.

Definition 3.1 A game to win or win-game A is given by a set M = M, of moves,
a non-empty tree Ty on M called the game tree, and a function [=la=|-]:
Ty™ — {W, L} giving for all infinite plays in T4 the result which is either W, a
win for Player, or L, a loss for Player, in the game A.

Extend the function | — | at once from T4 10Ty by setting
L ifpe Py

The elements p, q, .. of T4 are again called positions or plays, and we adopt from
Definition 2.1 the notions of moves of even and odd parity and of the sets O 4 of odd
positions and P4 of even positions in T4.

The definition of the function | — | for all finite plays is the normal play convention
in Conway (1976). Variations lead to interesting pathologies.

As before, we aim to compose strategies for Player, the P-strategies, but now we
want total winning strategies. In this section we refer to these simply as P strategies.
As before, we give the definition in subtree mode, just adding clauses to ensure that
the strategy is total and wins.

Definition 3.2 A P-strategy ina game A isa non-empty subtree S of T, satisfying
the following three conditions.

(1)Ifp € SNO, then there is a unique move a with p.a € S.
(2)Ifp € SN Py then forany a, p.a € O, impliesp.a € S.
(3)Ifpe S, then|p| = W.

Remark Again we can present a Strategy as a partial map ¢ : O, — My,
with domain dom(¢) C O, a prefix closed collection of odd positions, that is,
dom(¢) = {g € O|3p € dom(¢). ¢ < p} . We require that

(i) if p € dom(), then p.¢(p) € P,,

(i) if p, ¢ € dom(¢) and g < p, then q.¢(q) < p,

(iii) if d)(p)’\: aand p.a.b € Oy thenpab e dom(¢), and
(iv)if p € T and if ¢ < p odd implies 9.6(q) X p, then |p| = W.

The two notions of strategy'® determine one another as in 2.1.1.

'Our strategies are now total and deterministic,
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Exercises 11

1. Show that one can replace the total condition in the tree definition of strat-
egy by the condition S C T.
2. Supposethat S is a set of positive integers and t a positive integer. Consider

the following game. ‘
Opponent starts by choosing a number ng € N with ng 2 t; Player chooses

n, € Nwiths, = (ng — ny) € S; Opponent then chooses n; € N with
s2 = (ny — np) € S; and so on. o
(i) Show that while the game is infinite, there are no infinite plays.

(i) Who wins the game? o ,
(iii) Vary the game by allowing 0 € S but insisting that we never have
Sk—1 = Sk (Where conventionally s, = 0). What happens now?

3. Consider the strategy for the fixed point operation Y ];gom Section .2. This
is a total strategy as is the identity stratégy 1 : A = A.°® Now consider the
interpretation of Y (1) which is the composite

1Y)

1 (A= A)x (A= A) = A) —— A

(where ev is the evaluation map). What is this strategy?

3.1.2 Tensor product and linear function space

Inevitably conditions on wins must come into the deﬁnition'of operaliqns on gamesf.
We first give full definitions of the tensor product and linear function space o

games.

Definition 3.3 '
The unit game I is defined by setting M; = @; this delen.nines.thc game tree whxzh
consists only of the empty sequence. (Thus I is a game in which no moves can be
made.) There is a unigue maximal position in I, which is automatically a win for
Player.

Given games A and B, the games A ® B and A —o B are defined as follows. .
Moves The moves are Magp = Ma_op = Ms + Mp, the coproduct of M, an
Mp. ) o

Game tree The game tree Tyagp is the subtree of (Mags) cons:sn.ng of those
sequences p whose projections py = pm, and pp = puy, preserve parity of moves

and are in T,, Tg, respectively. o
The game tree Ta—.p is the subtree of (Ma_p)" consisting of those sequences p

such that the projection py = py, reverses, while pg = pyy preserves parity of
moves and the projections are in Ty, Tp, respectively.

20However (A = A) = A is not a logical truth, though A = A is one!
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Winning positions The (maximal) winning positions®' in Tagp are determined by
Ipl =W ifand only if [ps| = W and |pg| = W .
The (maximal) winning positions in T4_.p are determined by
[p| = W ifand only if |ps| = W implies lpel=W.

:Again it may be helpful to think of A — B as the result of playing a cogame A+
in paralle] with B. The cogame A is 4 with the parity of moves reversed, and
with outcomes W and L interchanged. So we write p4. for the sequence p ’with
the polarities of moves notionally reversed, and with |[pas]| = W if and :n]y if
L{;ﬂt= ? Then in t(};e deﬁn?;ion of A — B we could say that p 4. and pg preserve
y of moves and are in Ty., T re i ; = i i
i A aolaied 4+, I'p respectively; and that [p| = W if and only if

Exercises 12

1. Establish the following isomorphisms.

A®(B®C)=(A®B)®C.
IRAZA=AQI
A®B=B®A
A—(B—C)=(A®B) —C.

(The fresh point is that the winning positions correspond.)

2. (i) Show that a maximal play p in A ® B need not have both its projections
pa and pg maximal. Do the same for A — B,
(ii) Suppose that p is a maximal position in Tyep, but that Pa is not maximal
inT 4. Show that pg is maximal in T, and that Pa is even (so that necessarily
|pal = W). If pg is a finite play is it odd or even?
(iii) Suppose that p is a maximal position in T4_. g, but that Pas is not max-
imal in Ty1. Show that pg is maximal in Tg, and that PaL is odd (so that
necessarily |ps.| = L). If pg is a finite play is it odd or even? Repeat the
other way round.
(iv) Deduce that the definition of winning conditions given above accords
with the normal play convention.

3. .?’how that one can reformulate the condition for P winning in A® B purely
in terms of the notion of winning on maximal plays in A and B as Sfollows:

{’ wins a maximal play p in A ® B if and only if P wins each p,, PB which
is maximal,

211t is worth noting that i i ition p i
| g that in a maximal position p in Tagp (respectively in T
. . " '8
pa and pg is maximal, g i Ta—m). atlcastone of
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4. Let S be the game with just one initial move, after which the game ends as a
loss for Player. Give concrete descriptions of the games S ® S and S — 8.
SetT = (S —o S). Give concrete descriptions of the games ¥ ® ¥ and

T —oZL

5. Let R be the game in which there is just one infinite maximal play which
(regrettably) is a loss for P. Describe the maximal plays in R ® R and
R— R

3.1.3 The category LWG of games: elementary structure

We adopt the definition of identity strategy and composition of strategies from 2.4;
but since we now require winning strategies, there is something to prove.

Proposition 3.1 For any game A, the strategy.., is a winning strategy. And if
o: A —o Band1 : B —o C are winning strategies, then so is their composite

o;T.

We indicate briefly how insisting on winning strategies ensures that composed
strategies stay total.22 The problem when composingo : A — Band7: B — C
is the possibility of making an infinite play on the scratchpad B with B+, out of
which we do not emerge to play a further move in the game A — C. Let us see
roughly why this cannot occur. Suppose for simplicity that neither of the resulting
plays in AL or C is maximal. Then we know that the values of the positions in At
and in C are both L. But the value on the scratchpad will be

either L for B and W for B, so the value of the play in B — C is L,
or W for B+ and L for B, so the value of the play in A — Bis L.

In the first case we have a play according to 7 which is not winning, and in the
second case we have a play according to ¢ which is not winning.

It is now straightforward to check that we do as before have the structure of a
category; winning works out well.

Proposition 3.2 Suppose that A and B are games witho : A — B; then 14,0 =
0 =0;tp.

Suppose that A, B, C, and D are games withp : A — B,o : B — C and
7:C —o D; then p; (0;7) = (p;0); 7.

Hence we can define a category.

Definition 3.4 The category LWG of linear win-games has as objects, win-games
as defined in Definition 3.1; as maps from A to B, winning strategies in A— B
as defined in Definition 3.2; and identities and composition as in Definition 2.4.

22This is a bit misleading, as in a suitable formulation Proposition 3.1 is constructive.
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We let LWG(A) denote the set of (total winning) strategies in the game A and
LWG (A, B) the set of maps from A to B in LWG. Then we have LWG(A, B) =
LWG(A — B).

Now consider the elementary structure on LWG. Naturally this parallels the
corresponding structure for LFG in Section 2 closely.

Symmetric monoidal closed structure on LWG This is exactly as in the case of
LFG from Section 2, and presents no difficulties.

Categorical products in LWG We now have to deal with winning and losing, but
otherwise the definition is as in Section 2. So we just display the clauses concerned
with winning.

Winning positions The terminal game 1 is again the unit game I, with no moves
and with the empty position winning for Player.

Forp € Taxp, |plaxs =W ifand only if |p|a = W or |p|g = W .

It is easy to see that all this works just as before.

Proposition 3.3 The object 1 is a terminal object in LWG.
For games A and B, there are mapsfst : Ax B — A,snd: Ax B — B
exhibiting A x B as a product in LFG.

We sum up what we have so far.

Theorem 3.4 The category LWG of games and strategies is a SMCC with prod-
ucts.

Enrichment in spaces Recall that the collection of all P-strategies LFG (A) of a
fun game A forms a dI-domain. For a game to win A, there is a corresponding fun
game F(A) in which we forget about winning. Each LWG(A) is a subset of (the
maximal elements in) LFG(F(A)) and so inherits the structure of a topological
space. The spaces which arise are rather special, but it is clear that all the hom-sets
LWG(B, C) are naturally spaces of some kind. So we should consider how the

operations of LWG as a structured category are reflected in maps of spaces. This
has been set as an exercise.

Exercises 13

1. Any win-game A can be thought of as a fun-game, F(A) say, simply by
Sorgetting about winning.
(i) Show that F gives rise 10 a functor F : LWG — LFG.
(ii) Is the forgetful functor F a monoidal functor?
(iii) Does the forgetful functor F : LWG — LFG preserve products?
2. Establish the following facts.
(i) The contravariant functor (=) —o S is self dual on G.
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(ii) The game A —o S can be identified with S(A), say, the game which. is
obtained from A by adding a fresh initial move o say for O, and then letting

play continue as in A+.
(iii) The self duality is enriched in the closed structure:

A —o S(B) = 5(A® B) = B — S(A)

3. Does LWG have coproducts? Does it have weak coproducts?

4. Find an appealing monoidal closed category of spaces in which to enrich

LWG.

3.2 A cartesian closed category of games
3.2.1 The exponential comonad and the CCC

Again we take the exponential !A of a game A to be in effegt an inﬁ{\ite orderfcd
tensor product of (versions of) A. We now have to deal with winning, and for

completeness give the full definition.

Definition 3.5 Suppose that A is a game to win as above. Then the game A is
defined as follows:

Mj(i)’\l'es The moves are Mig = M4 x N the countable copower of M 5.

Game tree T4 is the subtree of (Mi4)" consisting of tht.)se sequences p Su.(.‘h th;u
(i) all the projections py are in Ta, and (ii) the first move in the k + 1st copy 1s made
after the first move in the kth. . . o
Winning plays For a maximal play p € Tia, we set |p| = W ifand only ifpr=W
for all k.

The monoidal structure m; : I —!J and mas 1AQ'B ——>.!(A®B),' the corr}ona:
structure 4 :'A — Aand 64 : 1A ——11 A, and the operations €4 : A — . an2
ds 1A —!A®!A of discard and duplication, can all be deﬁnefl as in Secuc;:] .
One can check that all the strategies given there are in fact total winning ones. Thus
the structure satisfies the same crucial properties as the corresponding structure on

LFG.

Proposition 3.5 The componenis of the natural transfomrau"('ms es VA = 0;
and dsy 'A —'A®!A give each free coalgebr.a 54 1A VA the structure /
a commutative comonoid. And this structure 1s preserved b?r coalgebra map.?‘.i
whenever [ 1 (14,84) — (\B,8p) is a coalgebra, then f is also a comonoi

morphism.

As before this means that there must be a cartesian closed category of gamelzi arsl;.‘:
(as before) the existence of products means that we can concentrate on the Klel

category.
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Deﬁ.ni'tion 3.6 The category WG of win-games (without qualification) is the
Kleisli category for the comonad ! on LWG

Again general considerations show what we want.

Proposition 3.6 The category WG is cartesian closed. The categorical product is
the product A x B and the function space B = C is defined by

B=C=B—-C.
The standard adjunction induced by the comonad ! is a monoidal adjunction.

A concrete description of the CCC is as in the case of partial strategies, and now the
hom-sets in W@ are naturally spaces. We do not go into details.

Exercises 14

1. (i) Show that a maximal play in | A can involve starting only the first version
Ao of A and then playing a maximal play.
(ii) Show that a maximal play in |A can involve starting all of the ordered
sequence of versions of A in term, but completing none of them.
(iii) Suppose that there is an infinite play in A. Show that there are infinite
plays in 1 A which involve finishing all the versions Ay, with the chosen infinite
play. (How many of them are there?)

2. (i) Sup;?ose that we have a play in A = B where P infinitely often starts a
new version of A, none of which are finished. Who wins?
(ii) Suppose that we have a play in a game of the form

(A=B)=C)=D

in wlfich (i) O opens in D, (ii) P replies by starting C*, (iii) O responds by
starting B, (iv) P responds by starting A and (v) thereafter P responds to
every move of O by starting a fresh version of A. Who wins?

3. -Recall the game S with just an initial O-move. Show that the general and
linear function spaces coincide: S = § = S — S.

4. Show that the category WG is not extensional.

3.2.2 WG as a model for constructive proofs

The category WG is a cCC in which not all objects have points, so prima facie it is
a reasonable mode) of proof theory, and we ask how good it is.

Wri?e. @(p) ar}d U(p) for propositional formulae in the (A, =>)-fragment of
propositional logic with free propositional variables among the list 7' = p,,...p,

' ic w C ¢ ye o Dp
?:‘.vcry mlerpretauon in WG of i = p,, ... pn as games A=A,,...A, givesriscto
interpretations written ®(A) and ¥(A) of ® and ¥ as games. It is this int i
which we wish to assess. : s imerpretation

Ideally we would look for a ‘full completeness’ theorem in the sense of Abram-
sky and Jagadeesan (1994). This would take something like the following form.
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Strong completeness for C Every sequence <I>(ff) — \I!(Z) of maps
uniform in A, is the interpretation of a unique (up to Bn-equality) proof

of ® - . (Equivalently, it is the interpretation of a unique (up to fn-
equality) A-term.)

To make this precise in the case of WG would require us to elucidate a suitable sense
of ‘uniform’ in terms of some form of polymorphism. Let us concern ourselves only
with a weaker question.

Weak completeness for C If there is a map ®(A) — ¥(A) inC for
every A, then ® - ¥ is provable in intuitionistic logic. (Equivalently,
there is a A-term of type ®(p) — ¥(p).)

Let us consider the question of whether WG is weakly complete for the (A, =)-
fragment of intuitionistic logic. The answer seems a little delicate. We start by
considering determined games, that is games in which one or other of the players
has a winning strategy. Suppose that A and B are determined games. Then so is
A = B, indeed the conditions are obvious. '

P wins A = B if and only if P wins B or P wins AL
O wins A = B if and only if O wins B and O wins At

It follows that if ® - ¥in classical logic, then for all determined games A there is
a map &(A) — ¥(A) in WG. But the converse is equally trivial. Suppose that
@ I/ ¥ in classical logic. Take an interpretation of 7 making & true and ¥ false; set

A= { I if p; is set true;
1T § if p; is set false.
J and S are determined and are wins for P and O respectively. Arguing inductively,
we see that @(A) is a win for P, and ¥(A) is a win for O. Hence the game
o(4) = T(A) is a win for O, and there is no map B(A) — ¥(A) in WG.

If we restricted to games which are determined, then WG would be an exces-
sively complicated model, weakly complete for classical logic. (The two-valued
semantics seems a bit simpler.) But there are non-determined games (Mycielski
1964), and the general situation is not clear. Under the assumption of the Axiom
of Choice, I believe that one can adapt and extend arguments from Blass (1972) to
show the following conjecture.

Plausible Conjecture Assuming the Axiom of Choice, the category WG is weakly
complete for intuitionistic conjunctive-implicational logic.

The dependence on set-theoretic combinatorics here is quite unsatisfactory, and it
seems better to take uniformity seriously. That is not a topic for these notes, but see
Abramsky (1997).

Exercises 15
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1. Check explicitly that some propositional Jormulae of your choice are not

validated in the model WG.

2. Show directly that the strategy Y 4 is not winning for some specific game

A. Is there a game A for which Y , is a winning strategy?

3. Check the claim made in the discussion about winning A => B when A and

B are deterministic. (There are a couple of trivial points to make.)

4. Takel the games ((A = B). = A) = A corresponding to the Pierce

fl;nng a. Fm;! winning strategies in the case of some specific games A and
- Lan you aetect a sense in which your strategies d

wniform Steomtecy gles are not produced by a

5. {I;lass 1972) Fix U a non-principal ultrafilter on N. Consider the game A
Z’n My =NandTy = {p € N|py < p, < p2 < ---}. Forp € ... set
(p) = {n|pax < n, poxy, for some k}.
{ J ) Show that Opponent has a winning strategy for the game A ® A.
( i ) R.ecall S(A) = (A — S) from Exercises 13. Show that Opponent has a
winning strategy for the game S(A) ® S(A).
(iii) Deduce that the game A is not determined.

4 Dialogue Games

A fez}ture of the main strategies considered in Section 2 is that a disci line of
questions and answers ran through the resulting plays. This is obvious in :)he case
of the games N and B in which an initial question e is answered by an appropriat

value; but that is a trivial instance of a more general feature of all slrategials:l?ierfjotine
PCF-.terms. In this part we explain in rough outline how making this intuiliof
precise leads to a richer notion of game (a dialogue game) and to a restricted notion

4.1 Categories of Dialogue Games

4.1.1 Moves in dialogue games

Questl,ons and answers In a dialogue game, the moves are of four distinct kinds:
Player’s question which we represent generically as *(”, Opponent’s answer “)”‘
Opponent’s question*[” and Player’s answer “)”. The representation of queslions:
gnd answers'as left and right matching parentheses respectively reflects the follow
ng convention: Player’s question can only be answered by Opponent, and vi -
versa. In addition every answer will be associated with a unique questi;m Qu::e
upns need not be immediately answered; the immediate response to a uesti. oy
enhgr be an answer, or some further question. 9 onmay
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A play in a dialogue game is required to satisfy the following basic condition.?®

Principle of Pertinence Whenever an answer occurs in a play, it an-
swers the latest unanswered question.

Another way of putting this discipline of questions and answers is that questions
pending in a dialogue are answered on a “last-asked-first-answered” basis. This
has the following global consequence. If one looks at the pattern of brackets in
any play of a game, it will be potentially well-bracketed, that is, the sequence can
be extended to one in which the brackets match up in the standard way. Indeed,
we may as well restrict ourselves to games in which the finite total plays are well
bracketed, and in which any finite play extends to a finite total one.

Justification Some discipline is also maintained on the subsidiary questions
which may be asked in response to a question (and answered before that question
is answered). This is done by the use of a notion of explicit justification which can
be thought of as providing a pointer from the given move (or the resulting position)
to an earlier position. Restrictions on these pointers are given by the following

convention.

Justification Convention The justification for a P-question ( must be
an instance of some earlier O-question [ which is not yet answered. The
justification for an O-question [ must be either the initial position of the
game (so the question does not require justification), or else an instance
of some earlier P-question  which is not yet answered. Answers are
taken to be justified by the unique instance of the question which they

answer.

Let us call pointers in accord with this convention Justification Pointers. Itis
natural for what follows to think of them as pointing from instances of moves to
instances of moves. (When the pointer is to the initjal position, think of it as pointing

to the First Cause.)

Moves In the earlier parts of these notes it made sense to regard moves as tokens
carrying no specific information. Where there is a structure of justification this
is less satisfactory, and it is better to think of moves as carrying with them their
justification history and possible futures?, However this effects nothing that we
need worry about here and we omit the details.

5 The Principle of Pertinence can be found in the established tradition in game semantics of
intuitionistic logic, see c.g. Felscher's survey paper (Felscher 1986). 1 lcarnt of its importance for
the theory of algorithms from Robin Gandy who invented it independently and called it the ‘no-

dangling-question-mark condition’.
24This is in linc with a reading of dialoguc games as involving ‘menu-driven’ computation.
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4.1.2 Dialogue games and innocent strategies

Views m.:._uvomo now that we are given a play in some game which is a sequence
of (explicitly justified) questions and answers satisfying the Principle of Pertinence
m:m the Justification Convention. Call such a sequence well-formed. Suppose that
P is to reply. We are going to require that P’s strategy makes use only of some
relevant part of this history: this is the P-view of the play. '

Definition 4.1 The Player’s view, or P-view, "p™ of a well-formed sequence p of
moves is defined recursively. Let q range over well-formed sequences of moves, and
T over segments of well-formed sequences. .

ﬂ_._ . “.W” ._. . m\.._: is initial,

0 (r 0¥ T i explcly s T,
g) = "q%)

rg [r]) E g if “1” explicitly answers “[”,

rg- (O = g

The P-view of a well-formed sequence of moves has the typical shape
FO G CEO -G CEE) -

.ww nO:.&.EQ.moP. Wwhenever there is a pattern “(-[" in a P-view, the O-question “[”
is explicitly ._.cm:moa by the P-question “(”. Also there can be no segments of the
form “[- -] in a P-view. This may be read in the following two ways:

(i) Player simply ignores answers to questions posed by Opponent;

(ii) Player imagines that Opponent always answers questions directly.

There is a dual definition of Opponent’s view, or O-view, Lp_ of a well-formed
sequence p of moves:

def if s i H 1
Lol E o i7" explicitly justifies (",
FQ._L = FQL._

. n_|n- 1f ss\» 1c1
g (7)s ¥ if “)” explicitly answers “(”,
Lq- —L = Lgy- —

The O-view of an empty sequence is the empty sequence. Since a well-formed
sequence never begins with a P-question, we omit the case of _(s. An O-view can
never have a segment Q,. the form (- --): Opponent ignores answers to questions
posed by Player. An O-view may, for example, have the shape

The following properties of P-view and O-view are easy to verify:
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e If g - (-r) is a well-formed sequence and if “(” explicitly justifies “)”, then

Fg-(r) = "¢"-()
Dually if g - [-7-] is a well-formed sequence and if “[” explicitly justifies “,
then

bl = el

e If p is a well-formed sequence ending with an O-move (respectively P-
move), then the last move of pis preserved by P-view (respectively O-view);
that is to say, the last move of "p? (respectively Lp.) comes from the same
last move of p.

Legal positions The idea is that moves in a P-strategy should be determined, not by
the position itself, but by the P-view of the position. However there is a problem.
In the above definitions we tacitly assume that the justification pointers take care of
themselves. In fact they need not do so; the justifying move may disappear in the
P-view. So we need a further condition on justification pointers.

Visibility Condition The visibility condition for a sequence ¢ is as
follows. For any initial subsequence p - ( of the sequence g, the O-
question “[” explicitly justifying the P-question “(” occurs in the P-
view of p. Similarly for any initial subsequence p- [ of the sequence g,
the P-question explicitly justifying “[” occurs in the O-view of p.

Definition 4.2 A play in a game of questions and answers is a legal position if it
satisfies the Principle of Pertinence, the Justification Convention and the Visibility
Condition.

- Clearly the set of legal positions is prefix closed. Furthermore for legal positions,

the justification pointers do take care of themselves.

Proposition 4.1 If p is a legal position, then both the O-view and the P-view of p
are legal positions.

Definition 4.3 A dialogue game for fun or dialogue fun game consists of a non-
empty tree (that is, prefix closed collection) of legal positions.

Innocent strategies We are now in a position to describe a restricted notion of
strategy. It is simplest to give this in function mode.

Definition 4.4 Suppose that A is a simple dialogue game.

A P-strategy (as in Section 2 but presented in function mode) o : O4 — My is
an innocent strategy if and only if whenever p and q are odd and "p™ = "q" then
o(p) = o(g) (in the usual sense that if one is defined then so is the other).

The force of the definition is that an innocent strategy only makes use of the P-
view. Hence it makes sense to regard the innocent strategy as being given by its
restriction to P-views. Then a finite innocent strategy is one whose restriction to
P-views is a finite function.
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4.1.3 Categories of dialogue games

We now describe some categories of dialogue games. These come in two flavours:
games for fun (with partial strategies) and games to win (with total strategies). We
can follow the pattern already established in Sections 2 and 3. So first, there is a
tensor product and linear function space for dialogue fun-games and for dialogue
win-games. We can adopt the definition of identity strategy and composition of
strategies from Definition 2.4; but, since we are now dealing with innocent strate-

gies, there is something to prove. The basic (non-trivial) combinatorial fact is that
innocent strategies compose.

Proposition 4.2 For any dialogue game A, the strategy ¢4 is innocent. And if
0:A—o BandTt:B —o C are innocent, then so is their composite o; T.

As an immediate consequence, we have SMCCs of games.

Theorem 4.3 There is a sMcC LDFG of linear dialogue fun-games, and a sMcc
LDWG of linear dialogue win-games.

In each case, there is a comonad (/, ¢, &) carrying a comonoid structure. Hence we
get CCCs of games, and since we have products in the linear categories, these may
be taken to be the Kleisli categories.

Theorem 4.4 The Kleisli category of the comonad (! €,8) on the sMcc LDFG
of linear dialogue fun-games is a ccc DFG of dialogue fun-games. The Kleisli
category of the comonad (!, €, 8) on the smcc LDWG of linear dialogue fun-games
is a cCC DWG of dialogue win-games.

A subcategory of DFG is described in detail in Hyland and Ong (1995) where it

is used as the basis for the construction of an intensionally fully abstract model for
PCF.%

Exercises 16

1. Show that in any play satisfying the Principle of Pertinence the number of
questions is always greater than or equal 10 the number of answers. (Recall

that this is the simple algorithm Jor checking correct bracketing of expres-
sions.)

2. Show that the operation of taking the P-view is idempotent. Similarly for
taking the O-view.

3. Describe the sequences of the form "Lpa™, and of the form " p 1. Whar do
You notice?

4. Show that what goes for questions goes for answers, that is, that the explic-
itly justifying question of every P-answer (respectively O-answer) in a legal

position appears in the P-view ( respectively O-view) of the legal position up
to that point.

25 A model is intensionally fully abstract just when its observational or contextual quotient is fully
abstract.
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4.2 Dialogue Games and Logic
4.2.1 A Compactness Theorem for Strategies

In this section we identify a subcategory of the category PWQ ot: dialogue win-
games which is suited to modelling the proof theory of finitary loglf:.

Let us say that a game is acyclic just when there are no justiﬁcatfon cyc]es, and
finitary just when in addition, the number of questions anc! answers is finite. These
are simple and plausible requirements on a game for finitary logic. We need an
additional more subtle property.

Justice Suppose that p is an infinite play in a (finitary) game. We wish to catch th?
intuition that it is either P’s fault or O’s fault that the p]ay. has gone on so lopg,
and that it is the one at fault who should lose. We do not go into the formal details,

but give the basic idea.

Principle of Justice Suppose that p is an infinite play-in a game A, that
Player asks questions justified by a specific instance of | mﬁpnely of-
ten in such a way Player can see (from his view) that het as}cs infinitely
often; then we may say that Player is time-wasting. Similarly Oppo-
nent may be time-wasting. However in a given pla){ on'ly one can be
time wasting. We say that A satisfies the principl{: of justice if and only
if for every infinite play p, if Player is time-wasting then Player loses,
and similarly for Opponent.

Definition 4.5 A dialogue win game is just if and only if it is finitary and satisfies
the principle of justice.

Proposition 4.5 The collection of just games forms a full subccC J G of the ccc
DWG.

For just games there is a finiteness or compactness theorem, which seems funda-
mental for a good theory of proofs.

Theorem 4.6 (Compactness Theorem) All winning strategies in a just game are
finite.?

4.2.2 Categories of Games of Argument

Our intention now is to obtain an appealing model for proofs, »\{hilg gvoi’dmg ques};
tions of polymorphism or uniformity. #* The approach is quite intuitive in as muc
as it relies on an idea which is fundamental to the Lorenzen tradition.

26Recall that an innocent strategy is finite just when the partial function (on views) giving the

strategy is finite. ) o ' ' o
27\?%’3:’ focus here on games with total strategies, though a version involving partial strategies 15

possible.
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Start by fixing a set C of claims or confessions. All definitions and results are

!)eﬁnition 4.6 A game of argument is a dialogue win-game whose questions are
indexed by elements of C; and where every question has as unique answer its index
from C.

Inaplayin a game of argument, both players may answer or admit c € C {, ‘possibly

many times). A play is good if and only if Player never admi
Opponent does. : er admits ¢ € C before

Tl?e notions of l'ensor product and of linear function space carry over to this vari-
ation on the notion of a dialogue game. While the general notion of strategy (see

Deﬁnitions' 2.2 and 3.2) should by now be sufficiently clear, we are interested in
rather special total strategies.

Definition 4.7 A total P-strategy in an argument is

e innocent so long as it only makes use of the P-view of a position;
® good so long as all plays in accord with it are good;

e winning so long as all plays in accord with it are wins Jor Player.

We aga?n adopt the definition of identity strategy and composition of strategies from
Definition 2.4; but now we need to show that good winning innocent strategies
compose. We have commented on innocence in Section 4.1.2, dealt with winning
in Section 3.1.1 and fortunately goodness takes care of itself.

lfroposntion 4.7 Forany argument A, the strategy.s : A — Bisa good, winning
mnocer?t strategy. Andifo: A— Bandt: B —o C are good, winning innocent
strategies, then so is their composite 0;7 : A —o C.

As an immediate consequence, we have SMCCs of games.

Theorem 4.8 There is a sMcc LAG of linear games of argument.

Again there is a comonad (!, ¢, §) carrying a comonoid structure. Hence we geta

cccof games, and since we have products in the linear categories, this may be taken
to be the Kleisli categories.

'I“heorefn 4.9 The Kleisli category of the comonad (!,€,9) on the sMcc LAG of
linear linear games of argument is a ccc AG of games of argument.
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4.2.3 AG as a model for constructive proofs

Regard the collection C of answers in the arguments as a set of propositional
constants (or type constants). An interpretation of the proof theory of the (A, =)-
fragment of intuitionistic logic (or equivalently of the corresponding typed A-
calculus) is given by an interpretation of the elements of C' as arguments.

Definition 4.8 The canonical interpretation is given by interpreting eachc € C
as the argument in which O has just one opening question which can (only) be
immediately answered by c.

Inspection of this interpretation motivates the definition of ‘good play’. In such a
complex play, P acts in a cautious fashion and maintains no proposition which O
has not already conceded.

The canonical interpretation is weakly complete for intuitionistic logic.

Theorem 4.10 Let & and ¥ be propositional formulae in-(A,=>)-logic with con-
stants from C. Suppose that in the canonical interpretation there is a map ®— 0.
Then & - ¥ is provable in intuitionistic logic, and (equivalently) there is a A-term
of type @ = .

The canonical interpretation in AG is far from being strongly complete; but this
could reasonably be regarded as a positive feature. We get a new CCC and with ita
more generous notion of proof. Letus close by considering briefly how the category
AG (based on C) is related to the free CCC (on objects from C), or equivalently
to the simply typed lambda calculus under B7-equality (with base types from C).
Suppose we vary the notion of a game of argument so that once an answer has been
given, all the outstanding questions must be answered in order. Then as the answers
are determined by the questions, they are effectively redundant, and there is simply
an option to call a halt. This gives us yet another CCC R.AG of restricted games of
argument: the objects are those of AG, but the strategies are restricted. A restricted
strategy can be read straightforwardly as a strategy, and so the CCC R.AG embeds
in the ccc AG. This is hardly surprising in view of the following result.

Theorem 4.11 The ccC RAG based on C is a free CCC generated by the set of
objects C.

This is a form of strong completeness: the proof is a simplified version of the
definability result in Hyland and Ong (1995). Closely related ideas are in Felscher
(1986), and Herbelin has independently made essentially the same observation from
a somewhat different point of view.

Exercises 17

1. Show that a play p in A ® B can be good without its projection p4 being
good.
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2. Any argument A can be thought of as a win-game W (A). Show that W
extends 1o a functor LA — LWG. Is W a monoidal SJunctor?

3. Tejst Theorem 4.10, by checking that, in the canonical interpretation, the
Pierce formula does not hold. '

4. How many maps A x A — A can you find in AG?

3. Investigate further the relation between AG and RAG.

A Appendix: Monoidal Categories

The standard deﬁnitions of symmetric monoidal closed category, of monoidal func-
tor and of monoidal natural transformation are as follows.

A monoidal category is a category V equi i
_ pped with a functor ® : V x V
an object I of V, and natural isomorphisms -

ava:(U®V)®W——)U®(V®W),

w:I1®@U — Uandry :U®I — U,
such that the coherence diagrams

((U®V)®W)®X—a’ (U®V)®(W®X)—a.U®(V®(W®X))

a®l 1®a
U(VeWw)ex
) - U ((Vew)eX)
Uel)oV ¢ Ue(IeV)
r®l Al
Uev
commute.

A symmetry for a monoidal category is a natural isomorphism

cov :UQV — VU
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with ¢® = 1, and such that the coherence diagrams

UeVIOW = UV eW) — (VeWw)eU)
c®1 a

— —V
Vel)eWw " Ve (lUeWw) Y ®(Wel)

Uel ¢ 19U

v .
commute.

A closed structure on a (symmetric) monoidal category 4s given by a bifunctor
[=,=]: V°P x V — V together with an isomorphism

YU V,W)=V(U,[V,W))

natural in U, V and W,
A symmetric monoidal closed category (SMCC) is a monoidal category equipped

with a symmetry and a closed structure.

Suppose that I and V are sSMCCs. (We shall not trouble to distinguish between the
respective structures on the categories.) A symmetric monoidal functor is a functor
F :U — V equipped with mediating natural transformations

my: I — F(I)
myy : F(U)® F(V) — FU®V)

such that the diagrams

FloFU ™Y peU) FUe FI 2 Fu e

m; ® lpy F(ly) 1py ® my F(pa)

FU FUuel FU

1® FU
lry PFU

m
eV ru e V) e W)

(FU @ FV)® Fw T8I py o v) o FW
Fa

FU®((VeWw))

FUQF(VeW)

FU ® (FV ® FW)
lpy ® myw my(vew)
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FueFv 2 puev)

cyv F(cyv)

FV®FU — F(V@U)
mvu

commute,

Suppose that F,G : U — V are symmetric monoidal functors. (Again we
do not trouble to distinguish between the associated structures.) A monoidal
natural transformation o« : F — G is a natural transformation such that the
diagrams

I FUeFv 222 cu gV

y y myy myv

FI GI FUeV) GU®V)
aj ayeVv

commute.

It is straightforward to compose symmetric monoidal functors and monoidal
natural transformations.

Proposition SMCCs, symmetric monoidal functors and monoidal natural transfor-
mations form a 2-category.

A monoidal comonad on a SMCC G consists of a symmetric monoidal functor
! © G — G (equipped with mediating natural transformations) together with
monoidal natural transformationse :! — 1g and é : ! —!! which give a comonad
on G. (Thus a monoidal comonad is just a comonad in the 2-category of SMCCs.)

Definition A.1 A Linear category is a SMCC C, together with a monoidal comonad
(!,&,0, map, m;) on C, which is equipped with monoidal natural transformations
with components es:'A — I and ds:)!A —'A®\A which give each free coalge-
bra 64 :'A —2A the structure of a commuiative comonoid, this structure being
preserved by coalgebra morphisms between free coalgebras.

The condition that (!4,d4,e,) forms a commutative comonoid means that the
following three diagrams commute.

1A 14—, 14814
-1 -1
T da ! 4, CiA14
IA®T 1A®IA I®IA 1A®!A
® Liy®es @ ea®ha
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1A da 1A@'A
da hia®da
1A®! 1A®!A)R!A 14 ® (148!4)
4ela da®Lia ( )® MAIAA

In addition we require that e4 and d, be coalgebra morphisms, that is,that the
following diagram commutes.

1 i "
ea leg
1A L 1A
dn tds
14814 s NABIA —— (l48l4)

Finally all coalgebra morphisms between (free) coalgebras are also comonoid
morphisms: if f :1A —!B is a coalgebra morphism, then it is also a comonoid
morphism between the comonoids (!4, e4,d4) and (!B, ep, dg), i.e. it makes the
following diagram commute.

1494 IAQ!A
€A
I f Jfef
€
1B 1B®'B
B

These conditions were introduced in Benton, Bierman, de Paiva, and Hyland
(1992), and their consequences were closely studied in Bierman (1993). The
crucial point is the following.

Theorem A Linear category, C, is a categorical model for (intuitionistic) multi-
plicative exponential linear logic.
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Things simplify markedly in the presence of product, as first noticed by Seely, and
further analysed by Bierman (1995).

Definition A.2 A new-Seely category is a SMCC with finite products, C, together
with a comonad, (!,¢,8) and natural isomorphisms, n; : I —s!1 and nap :
!A®!B —(A x B), such that the adjunction, (F,G, 7, €), between C and the
(co-)Kleisli category C, is a monoidal adjunction. \

In the presence of products, a Linear Category will be a new-Seely category, and
we shall have the following basic resuit.

Theorem (Seely, Bierman) Given a Linear Category with products, C, the co-
Kleisli category C, is cartesian closed and the adjunction between C and Cisa
monoidal adjunction.

B Appendix: PCF

PCF is a typed programming language. Types of the language are Church’s simple
types (Church 1940) also referred to as PCF-types. They are defined as follows:

A o= natural pumbers
| o booleans

| A= A arrow or function type.

Let the meta-variable 3 range over ground types ¢ and o. As usual = associates
to the right: A, = A, = Ajisread as 4; = (A4, = A;). Each simple type
can be uniquely expressed as A; = A, .- = A, = B (n > 0); in the traditional
notation of type theory this is abbreviated as (Ay,---, An, B). For example the type
((¢ = ¢) = ¢t = 1) = 1 = 1 is abbreviated as (((ey2),t52), 2, 2).

For each type A, fix a denumerable set of variables. Raw PCF-terms are defined
by the following grammar:

s o= QA undefined term
A constant
T variable

|

l

| (s-s) application
|  (Az:A.s) abstraction
|

YA (s) general recursive term, or Y-term;

where c# ranges over the basic arithmetic constants. Type information is omitted
where irrelevant. The application (s - t) is written st, and application associates to
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the left: st, - - - t,, abbreviates (- - - ((st1)%2) - - - ,). The phrase s : A means that the
type of the term s is A, derived according to the following rules:

04 A A A
s:A=>A s: A=A t: A s: Ay
YA(s): A (s-1): Ay (Az:Ap8): A = Ay

The basic arithmetic constants are as follows:

n oot numerals, for each natural numbern 2 0
t,f : o booleans: truth and falsity
/
suce : L=t successor
pred : =1 predecessor
zero? : (=0 test for zero

cond* : 0= ¢ = (= natural number conditional

cond® : 0= 0=>0=>o0 boolean conditional.

The notion of free and bound variables is completely standard; a closed term is a
term without any free variables. Term substitution is written s[t/z].

Operational Semantics Programs of PCF are closed terms of ground type. Values
are M-abstractions and constants of ground type; the meta-variable v ranges over
values. Following the function paradigm, to compute a program in PCF is to eval-
vate it. The operational semantics of PCF is given in terms of a Martin-Lof style
evaluation relation: s | v meaning “the closed term s evaluates to the value v”.

ut/z]bv  syv v i
viv (Az.u)t § v stv

s|t ulv s{f u v
cond®suv’ | v cond’sun' | v
sYA(s) v
YA(s) Y v
sin sin+1 s{0
succs {n+1 predsin preds | 0

sy0 sin+1
zero?s | t zero?s || f
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The typf& theory PCF The operational semantics for PCF reflects an intuitive un-
derstanding of the meaning of the terms. In this view the reductions are justified
as th.e replacement of a term by an equal term. Thus the intuitive semantics can
be given expression in an equational theory. In the case of PCF this amounts to a
.typ? theory related to Scott’s original formulation. A (core) type theory for PCF T
i1s given as follows. Take the typing rules already given, and define a relation s = ¢

on typed terms (in context) by taking, in addition to th i
s g e usual rules for equality, the

(Az : A.sht = sft/z] Az:Asz =35 (ifz not free in s)
condftst = s cond’fst = ¢
s(YA(s)) = YA(s)
succn=n+1 predn+1=n pred 0 =0

zero?0 =t zero'fn+1=f

It is important that there be a good relation between the reduction relation | of

the operational semantics and the equality of the type theory. This is given by the
following result.

Proposition For any programs s and t, if s and t are equal in the type theory T
then for any ground value v s bv <= t{w

Wh.al is commonly called a denotational semantics for PCF is essentially some kind
of interpretation of (model for) the type theory which we have just introduced.
The usual form of a model for PCF is that the types are interpreted as domains
anq the terms as continuous (or stable continuous) maps between domains. The
major concern in modelling programming languages is with issues of ‘adequacy’
and ‘ful] abstraction’. For a survey of the famous full abstraction problem for PCF
see Ong (1986). Game theoretic solutions to the problem are offered in Abramsky
Jagafieesan, and Malacaria (1994) Abramsky, Jagadeesan, and Malacaria (1995)’
and in Hyland and Ong (1995). For other recent approaches to sequentiality see

Brookes and Geva (1992), Bucciarelli and Ehrhard (1994), Plotki i
(1994) and Winskel (1994). ( > i end Winskel
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