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Abstract

We consider exponentially large finite relational structures (with
the universe {0, 1}n) whose basic relations are computed by polyno-
mial size (nO(1)) circuits. We study behaviour of such structures when
pulled back by P/poly maps to a bigger or to a smaller universe. In
particular, we prove that:

1. If there exists a P/poly map g : {0, 1}n → {0, 1}m, n < m,
iterable for a proof system then a tautology (independent of g)
expressing that a particular size n set is dominating in a size 2n

tournament is hard for the proof system.

2. The search problem WPHP, decoding RSA or finding a collision
in a hashing function can be reduced to finding a size m homo-
geneous subgraph in a size 22m graph.

Further we reduce the proof complexity of a concrete tautology (ex-
pressing a Ramsey property of a graph) in strong systems to the com-
plexity of implicit proofs of implicit formulas in weak proof systems.

The weak pigeonhole principle (WPHP) is the statement that no f :
{0, 1}m → {0, 1}n can be injective if m > n. The dual weak pigeonhole
principle (dWPHP) is the statement that no g : {0, 1}n → {0, 1}m can be
surjective if n < m. We study the proof complexity of WPHP and dWPHP
for P/poly maps f and g.
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Some information is known. For example, it is a necessary condition for
a family of functions to be strongly collision-free that bounded arithmetic
theory S1

2 does not prove WPHP for functions in the family, cf. [11]. Or if
RSA were to be secure then WPHP for the modular exponentiation cannot
be proved in S1

2 either, cf.[17]. In these results S1
2 can be augmented by the

true ∀Πb
1-theory of N; in particular, by the statements stating the soundness

of all propositional proof systems. Consequently we cannot expect to derive
hardness results for particular proof systems by appealing to witnessing
theorems in bounded arithmetic as such results would automatically apply
to all proof systems; we will get some hardness results for particular search
problems instead. But we find a link between these search problems and the
proof complexity of particular tautologies expressing a Ramsey property of a
graph. The main concept used in this link are the implicit proofs of implicit
formulas, cf.[14, 15].

For the dWPHP we do not know how to derive proof complexity hard-
ness of dWPHP for some P/poly map from some established computational
complexity conjecture. P/poly maps for which it is hard to prove (in propo-
sitional logic, see Section 1) dWPHP are called proof complexity generators.
Maybe the existence of good proof complexity generators is a hypothesis of
a different nature than those considered so far in complexity theory. But we
will be able to show that the hypothesis implies hardness of some specific
tautologies that are independent of any particular generator.

Our method is the “structured WPHP” approach introduced in [11].
In this approach one studies how properties of structures change when the
structure is pulled back by a P/poly map to a bigger or to a smaller uni-
verse. As an example of this view a link between resolution complexity of
the Ramsey theorem and R(2)-complexity1 of (an instance of) WPHP have
been demonstrated in [11], studying structures on [n] given by oraculi. Here
we study exponentially large finite relational structures (with the universe
{0, 1}n) whose basic relations are computed by polynomial size (nO(1)) cir-
cuits.

We do not explicitly use bounded arithmetic (although it is the main
source of intuition for us) but occasionally we insert a comment on the
bounded arithmetic side of things. I do not recall definitions or facts from
bounded arithmetic at these occasions; the reader may find these in [10, 3,
4, 8, 9].

This is a paper in proof complexity and we assume that the reader is

1
R(2) is a natural extension of resolution operating with clauses formed by literals or

conjunctions of two literals, cf.[11].
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familiar with its basic concepts, established since [6]. However, we occasion-
ally insert in the text a brief explanatory note. A more recent concept of
proof complexity generators is recalled in Section 1.

1 Preliminaries: proof complexity generators

We shall consider propositional proof systems in the sense of [6]. We shall
often make an assumption that a proof system P contains resolution R. This
is needed for two reasons. The first one is that R proves (by polynomial size
proofs) that a computation of a circuit is unique. A circuit is encoded for
R in the same way as formulas are, using besides the input variables of the
circuit also additional variables (the so called extension variables) for values
of subcircuits. The “uniqueness” just means that R proves that the value of
any extension variable is uniquely determined by the input variables. Hence
R polynomially proves any true boolean sentences C(a) expressed using a
circuit C; this phrase means that R proves that the value of the extension
atom corresponding to the output of C on input a ∈ {0, 1}n is 1. The
second reason for working with proof systems containing R is that that is
the assumption needed in Theorem 1.2.

Let g be a P/poly p-stretching map (cf.[13]). The later assumption
means that there is m = m(n), a function of n, such that m(n) > n and
|g(x)| = m(n) for all |x| = n. Necessarily m(n) = nO(1) if g is P/poly. We
will often study g just on inputs from {0, 1}n in which case we denote m(n)
simply just m.

Let g : {0, 1}n → {0, 1}m be a P/poly p-stretching map. Assume that g
restricted to {0, 1}n is computed by a circuit Cn, n ≥ 1. Let b ∈ {0, 1}m \
Rng(g). The fact that b is outside of the range of g can be expressed by a
size mO(1) tautology denoted τ(Cn)b; the tautology is just Cn(x) 6= b, where
x is an n-tuple of boolean variables. Although the tautology depends on
Cn and not just on g, the particular circuits Cn often play no role and we
occasionally abuse the notation and write just τ(g)b. Precisely this means
that any given statement about τ(g)b is claimed for all τ(Cn)b, for all P/poly
definitions {Cn}n of g.

Proving τ(g)b, any b ∈ {0, 1}m, means proving, in particular, that g
is not surjective. Maps g (P/poly and p-stretching) for which it is hard
to prove in a proof system P these τ -formulas are called proof complexity
generators for P . There are at least four different level of hardness of g w.r.t.
P (cf.[13]) but we shall need here only two, whose definitions we recapitulate
now.
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For the second part of the following definition we write the τ -formulas
as τ(g)b(x), showing explicitly the n-tuple of variables x corresponding to
the role of x in g(x) 6= b.

Definition 1.1 Let P be a proof system containing R. Let g be a P/poly
p-stretching map.

1. Map g is hard for P if for all polynomials p(m), for n large enough no
τ(g)b for any b ∈ {0, 1}m \Rng(g) has a P -proof of size at most p(m).

Map g is exponentially hard for P if there exists ǫ > 0 such that for n
large enough no τ(g)b for any b ∈ {0, 1}m \ Rng(g) has a P -proof of
size less than 2mǫ

.

2. Map g is called iterable for P if for all polynomials p(n), for all n ≥ 1
large enough the following holds:

Any disjunction of the form

τ(g)B1
(q1) ∨ . . . ∨ τ(g)Bk

(q1, . . . , qk)

requires a P -proof of size at least p(n). Here k ≥ 1 is arbitrary, and
B1, . . . , Bk are circuits with m outputs that are all just substitutions of
variables and constants for variables and such that B1 has no variables,
and variables of Bi+1 are among q1, . . . , qi for i < k, where q1, . . . , qk

are disjoint m-tuples of variables.

Map g is called exponentially iterable for P if there exists ǫ > 0 such
that the same holds with the lower bound p(n) replaced by 2nǫ

.

Note that if g is (exponentially) iterable for P then it is also (exponen-
tially) hard for P .

The truth table function tt takes as an input a circuit C with k inputs
and of size at most 2k/2 (as encoded by O(k2k/2) bits) and outputs the truth
table of C, i.e. 2k bits. Hence tt is an example of a P/poly (canonical circuits
based on “circuit-evaluation” compute tt) and p-stretching (n := O(k2k/2)
bits with a fixed O-constant are stretched to m := 2k bits) map. The
following theorem says that it is, in the sense of iterability, the hardest
proof complexity generator.

Theorem 1.2 ([13]) Let P be a proof system containing R. Assume that
there is a P/poly p-stretching map that is (exponentially) iterable for P .

Then tt is also (exponentially) iterable for P .
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The τ -formulas have been defined in [11] and independently in [1]. The
theory of proof complexity generators is being developed, cf. [12, 23, 13, 24].
I shall not describe this development; this can be found in the introductions
to [13] or [24].

2 Tournaments

A tournament is a directed graph with exactly one edge between any two
distinct vertices: An edge (v,w), directed from v to w, symbolizes that
(player) w lost a tournament game to (player) v. A dominating set in a
tournament is any set X of its vertices such that any vertex outside X lost
a game to some vertex in X.

Assume m = 2n. Let T be a tournament with the set of vertices {0, 1}m.
Every such tournament has a dominating set of size m and Erdös [7] has
shown that if the directions of the edges are chosen uniformly at random
the tournament will, with high probability, have no dominating set of size
n. Razborov [21] proved that there are size mO(1) circuits Dm with 2m
inputs computing the edge relation of a tournament on {0, 1}m such that
the resulting tournament - which we shall denote Tm,Dm

- has no dominating
set of size n either.

Now let g : {0, 1}n → {0, 1}m be a P/poly p-stretching map computed
by a circuit Cn. Define 2n input circuit:

En(x, y) :=











Dm(Cn(x), Cn(y)) if Cn(x) 6= Cn(y)
1 if Cn(x) = Cn(y) ∧ x < y
0 otherwise

where x, y are n-bit strings ordered lexicographically.
Tn,En

is a tournament and so it has a dominating set An ⊆ {0, 1}n of
size n. This can be expressed by a tautology σn,An,Cn,Dm

:

∨

a∈An

x = a ∨ En(a, x)

(x is an n-tuples of boolean variables). Now let Bn := g(An) be the image
of An under g in {0, 1}m. The size of Bn is at most n and so Bn cannot be
dominating in Tm,Dm

. Let b ∈ {0, 1}m \Bn be any vertex not dominated by
Bn.

Lemma 2.1 Assume that σn,An,Cn,Dm
has a P -proof of size s. Then τ(g)b

has a P -proof of size at most s + nO(1).
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Proof :
Reason in P . Start with the size s proof of σn,An,Cn,Dm

. Using the
definition of En, formula σn says

∨

a∈An

a = x ∨ Dm(Cn(a), Cn(x))

which implies

Cn(x) = b → [
∨

a∈An

a = x ∨ Dm(Cn(a), b)] .

All sentence Dm(Cn(a), b) are false and can be disproved by evaluating them,
so we get

Cn(x) = b → [
∨

a∈An

Cn(a) = b] .

But again all Cn(a) = b are false, and so we can derive

Cn(x) 6= b .

That is the formula τ(g)b. The total size of the proof is s plus mO(1) = nO(1).

q.e.d.

The following theorem is then clear.

Theorem 2.2 Assume that g is (exponentially) hard for P . Then the tau-
tologies σn,An,Cn,Dm

require superpolynomial (resp. exponential) size P -
proofs.

The tautologies σn,An,Cn,Dm
do depend on a particular g. Using a stronger

hypothesis we get tautologies that are independent of the particular g.

Theorem 2.3 Assume that P admits (exponentially) iterable P/poly p-
stretching maps. Then the tautologies σn,An,tt,Dm

require superpolynomial
(resp. exponential) size P -proofs.

Proof :
Assume that P admits (exponentially) iterable P/poly p-stretching maps.

By Theorem 1.2 also the truth-table function tt is (exponentially) iterable
for P . Hence tt is also (exponentially) hard for P and Theorem 2.2 applies.

q.e.d.
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3 Vector spaces

Circuits Dm is Section 2 are not canonical and their existence is proved by
a probabilistic argument. In this section we use a very canonical structure,
the m-dimensional vector space over F2, but the pull-back of the structure
is less elegant as g may not be injective.

We will consider vector spaces over F2 in the following language: ternary
relation R(x, y, z) standing for the graph of the addition on the space, and
binary relation S(x, y) computing (by its truth value) the scalar product.
The axioms of partial vector spaces are the usual axioms about addition and
scalar product in vector spaces rewritten using R and S. We do not include
the axiom ∀x, y∃z,R(x, y, z) that would say that the addition as given by
R is a total function. Note that all axioms of partial vector spaces are
thus universal sentences. A structure W = (X,R, S) in this language with
universe X is a partial vector space over F2 iff it satisfies all these universal
axioms.

Let ⊕m and 〈 , 〉 be the (coordinate-wise) addition and the scalar product
on the canonical vector space Vm on {0, 1}m, with 0 the zero vector and
(0, . . . , 0, 1, 0, . . . , 0)’s the basis vectors.

Now let g : {0, 1}n → {0, 1}m be a P/poly p-stretching map computed
by a circuit Cn. Define a structure W ′ = ({0, 1}n, R′

n, S′
n) by:

R′
n(x, y, z) iff Cn(x) ⊕m Cn(y) = Cn(z)

and
S′

n(x, y) iff 〈x, y〉 = 1 .

Structure W ′ is not necessarily a (partial) vector space because one point
of Vm could have been pulled-back to several points in {0, 1}n, as g may
not be injective. This we remedy by taking a quotient of W ′ modulo the
equivalence relation:

x ∼ y iff Cn(x) = Cn(y) .

Define Rn and Sn to be the quotients of R′
n and S′

n by ∼ respectively, and
put W := ({0, 1}n/ ∼, Rn, Sn).

If W were a total vector space then there would exist u1, . . . , un ∈ {0, 1}n

such that no vector in W could be orthogonal to all ui/ ∼. If it were
only a partial vector space then there would be u1, u2 ∈ {0, 1}n such that
Rn(u1/ ∼, u2/ ∼, c/ ∼) could hold for no c ∈ {0, 1}n.

7



Lemma 3.1 There is a sequence Un = (u1, . . . , un) of n elements of {0, 1}n

satisfying the following tautology ρn,Un,Cn
:

¬Rn(u1/ ∼, u2/ ∼, y/ ∼) ∨
∨

u∈Un

Sn(u/ ∼, x/ ∼) .

x and y being n-tuples of boolean variables.

Theorem 3.2 Assume ρn,Un,Cn
has a P -proof of size s. Then there are

b, c ∈ {0, 1}m such that the disjunction τ(g)b ∨ τ(g)c has a P -proof of size
s + nO(1).

In particular, if g is (exponentially) iterable for P then the formulas
ρn,Un,Cn

require superpolynomial (resp. exponential) size P -proofs.

Proof :
Let c := g(u1)⊕m g(u2) and let b ∈ {0, 1}m be an element orthogonal to

all g(u), u ∈ Un. It exists as the dimension of Vm is m > n.
Reason in P , starting with a proof of ρn,Un,Cn

. Formula ρn,Un,Cn
means,

by the definitions of Rn and Sn:

g(u1) ⊕m g(u2) 6= g(y) ∨
∨

u∈Un

〈g(u), g(x)〉 = 1 .

As g(u1) ⊕m g(u2) = c and
∨

u∈Un
〈g(u), b〉 = 0 are true boolean sentences,

P deduces:
g(x) 6= b ∨ g(y) 6= c

which is just the formula τ(g)b ∨ τ(g)c.
The size of the whole proof is s + nO(1).

q.e.d.

Analogously to Section 2 we can replace g by the canonical truth-table
function.

Theorem 3.3 Assume that P admits (exponentially) iterable P/poly maps.
Then the tautologies ρn,Un,tt require superpolynomial (resp. exponential) size
P -proofs.
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4 Homogeneous subgraphs

We have studied maps for which it is hard to prove dWPHP, i.e. which
are good proof complexity generators, getting hardness of some tautologies
as a result. The disadvantage of that is that the existence of good proof
complexity generators has not been proved so far from any of the usual
complexity theoretic assumptions. In this section we will look at maps for
which the ordinary WPHP is hard to prove. Such maps are known to exists
under plausible assumptions. We get the hardness of search problems as a
direct result, not the hardness of tautologies. However, there is another less
direct link to hardness of tautologies; this will be in Section 6.

We shall consider undirected graphs with vertices {0, 1}n where the edge
relation is computed by circuits C with 2n inputs. Such graphs will be de-
noted Gn,C . By Ramsey theorem every such graph contains a homogeneous
set (a clique or an independent set) of size at least n/2. On the other hand,
as shown by Erdös [7], random graph has no homogeneous set of size 2n.
Razborov [21] has shown that there is a circuit Rn with 2n inputs and of
size nO(1) such that the graph Gn,Rn

also does not have a homogeneous set
of size 2n.

We shall define two particular search problems and later we discuss a
many-one reducibility among them, without defining a general notion of a
search problem. This does not seem to leave a room for a confusion but the
reader may find general definitions in [3, 2, 8, 9].

Definition 4.1 1. The search problem RAM asks for the following. Given
a pair 1(m) (a canonical string of length m) and a 4m-input circuit
D find a homogeneous subgraph (by listing its vertices) of size m in
G2m,D.

2. The search problem WPHP asks for the following. Given a triple 1(n),
1(m) and a circuit E with m inputs and n outputs such that n < m, find
a pair u 6= v of distinct elements of {0, 1}m such that E(u) = E(v).

Theorem 4.2 The search problem WPHP can be P/poly many-one reduced
to RAM.

Proof :
Let n < m and E be an input to WPHP. By amplifying the map defined

by E if necessary we may assume that 4n ≤ m. This amplification is quite
standard and goes back to [19]. For example, if m = n+1 then a map defined
by E(E(x1, . . . , xn+1), xn+2) maps {0, 1}n+2 into {0, 1}n and a collision in
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this map yields a collision in E (in other words, if E violates WPHP so does
the amplified map). By iterating this procedure we can boost m = n + 1 to
m = 4n in polynomially many steps.

Define a 2m-input circuit D by:

D(u, v) := Rn(E(u), E(v))

where u and v are m-tuples of boolean variables.
Consider the graph Gm,D as an input to RAM and let H be a homo-

geneous subgraph of Gm,D of size m/2 ≥ 2n. As Gn,Rn
has no that large

homogeneous subgraphs the map E cannot be injective on H and the wanted
collision of E can be found among the elements of H (by exhaustive search
in polynomial time).

q.e.d.

Note that the non-uniform part of the reduction is only in the choice of
circuits Rn.

A family hy(x) of p-time functions from {0, 1}ℓ(|y|) into {0, 1}ℓ(|y|)−1,
where ℓ(n) is a polynomial, is a strongly collision-free family of hash func-
tions if there is no polynomial-time function f that on y computes x1 <
x2 ∈ {0, 1}ℓ(|y|) with hy(x1) = hy(x2) (cf. [25]). An example of a family of
functions with this property (unless the discrete logarithm is tractable) is
the Cham - van Heijst - Pfitzman family, see [25, Chpt.7].

The following is an immediate corollary of Theorem 4.2.

Corollary 4.3 Finding collisions in a family hy(x) of p-time functions as
above can be P/poly many-one reduced to RAM.

Corollary 4.4 The task to decode RSA can be P/poly many-one reduced
to RAM.

Proof :
Let fn(a, b, x) be the function:

fn(a, b, x) := ax (mod b)

where a and b are two parameters of length n ≥ 1 and x is arbitrary.
Put m := 4n. Let En,m(a, b, x) be some fixed canonical circuit computing

fn(a, b, x) on inputs of length m, for arbitrary a and b.
By Theorem 4.2 we can find, employing RAM, two distinct elements

u, v ∈ {0, 1}m for which fn(a, b, u) = fn(a, b, v). Hence we also get a non-
zero w := u − v such that aw ≡ 1(mod b).
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It is known that having such w is enough to break the RSA (see [17,
Thm.3] for a similar argument).

q.e.d.

It is known that in the oracle setting (circuit D is replaced by an oracle)
RAM is not even Turing reducible to PLS (polynomial local search), cf.[4].
It would be interesting (because of the bounded arithmetic consequences,
cf.[3, 4, 8, 9]) to show that RAM cannot be reduced to GLS (generalized
local search, cf.[3]) or at least to MIN (finding a minimal element in a partial
ordering, cf.[3, 8, 9]).

We leave it to the reader to investigate the pull-back of the canonical
vector space Vn on {0, 1}n by f ; the results stated above for RAM can be
analogously proved for the following search problem: Given string 1(m) and
circuits computing relations Rm(x, y, z) and Sm(x, y) on {0, 1}m defining
a partial vector space find m distinct points in {0, 1}m all orthogonal (as
computed by Sm) to each other.

5 Intermezzo: implicit proofs

We need to recall the definition of implicit proofs before the next section.
By [6] a proof system is a polynomial-time function Q whose range is

exactly the set TAUT of tautologies in the DeMorgan language. A Q-proof
of a formula τ is any string π such that Q(π) = τ . The idea of implicit proofs
from [14] is that instead of representing π of length ℓ by writing down all
it’s ℓ bits πi we present a circuit β with log(ℓ) inputs that computes πi from
i ≤ ℓ. This implicit description of π may be, in principle, exponentially
smaller than π. The circuit β alone does not constitute a proof of anything
and in order to get a proof system in the sense of [6] we supplement β with
an ordinary P -proof α of the fact that β indeed describes a valid Q-proof.

Let us describe this a some detail. Assume that the computations of Q
are done by a deterministic machine (also denoted Q) running in time nc.
We will represent the computation an input of size n by the list of all t ≤ nc

instantaneous descriptions of the computation. This list can be represented
by an t×O(t) 0-1 matrix W : think of the ith row Wi as representing the ith
instantaneous description. We may assume that t is a power of 2 and that
W is a t × t matrix (by increasing t to O(t) if needed). Let k := log(t) and
let β(i, j), i = (i1, . . . , ik) and i = (j1, . . . , jk), be a circuit with 2k inputs.

Propositional formula CorrectQβ is the canonical propositional formula
expressing that:
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• The matrix Wi,j := β(i, j) satisfies all local conditions in order to be
a valid computation of Q on an input (encoded in the first row W1).

The size of CorrectQβ is O(|β|).

Definition 5.1 Let P,Q be any proof systems and assume that P contains
R. Proof system [P,Q] is defined as follows: A [P,Q]-proof of τ ∈ TAUT
is a pair (α, β) such that:

1. β is a single-output boolean circuit in variables (i1, . . . , ik, j1, . . . , jk),
some k ≥ 1.

2. β defines a valid computation W of Q (on some input) whose output
is τ .

3. α is a P -proof of the tautology CorrectQβ .

Note that we need not to ask for a P -proof of the fact that the output of W
is τ as that is a true boolean sentence.

In defining [P,Q] we have restricted to proofs of ordinary (explicitly
given) formulas τ . But in fact, we could have defined proofs of formulas
themselves given implicitly by a circuit; cf.[15]. We will not give a general
definition here but only two particular cases that we need in Section 6.

Let us fix a useful notation. Let n,m, s be three parameters. Let x be an
m-tuple of variables and w an s-tuple of variables. Cirn,m,s(x,w) is a circuit
that interprets w as a code of a circuit C with m inputs and n outputs, and
computes the value of C on x. Hence Cirn,m,s has n outputs. Note that the
size of Cirn,m,s is O(s) if n,m ≤ s.

Definition 5.2 1. Let 1 ≤ n < m ≤ s. Let i, j be m-tuples of variables
and w an s-tuple of variables. Circuit

γ¬WPHP
n,m,s (i, j, w)

has 2m + s inputs. On an input i, j, w the circuit outputs:

• Formula Cirn,m,s(i, w) 6= Cirn,m,s(j, w), if i 6= j.

• Formula 1, if i = j.

2. Let 1 < m ≤ s. Let i1, . . . , im be 2m-tuples of disjoint variables, j a
single variable, and let w be an s-tuple of variables. Circuit:

γ¬RAM
m,s (i1, . . . , im, j, w)

is a circuit with 2m2 + s + 1 inputs that outputs:

12



• Formula
∨

u<v≤m Cir1,4m,s(i
u, iv , w), if j = 1 and all i1, . . . , im

are distinct 2m-tuples.

• Formula
∨

u<v≤m ¬Cir1,4m,s(i
u, iv, w), if j = 0 and all i1, . . . , im

are distinct 2m-tuples.

• Formula 1, otherwise.

The size of γ¬WPHP
n,m,s is O(s) and the size of γ¬RAM

m,s is O(m2s), if n ≤ m ≤ s.
Note the different role of variables in the γ-formulas: variables i and

j are used to enumerate clauses of the implicitly defined formula (set of
clauses), while variables w are free parameters.

We will use the following lemma in Section 6. Recall that R∗ is the
tree-like resolution.

Lemma 5.3 ([14, L.4.1]) If P contains R then [P,R∗] p-simulates P .

Now we state a theorem that will be used only for an illustration in
Section 6, and so we only sketch its proof (using bounded arithmetic). Recall
that EF is the Extended Frege proof system of [6].

Theorem 5.4 Assume 1 ≤ n < m ≤ s. Both formulas γ¬WPHP
n,m,s and

γ¬RAM
m,s have size sO(1) [EF,EF ]-refutations.

Proof sketch :
It is shown in [14, Thm.2.1] that [EF,EF ] simulates bounded arithmetic

theory V 1
2 . The simulation is done by a witnessing argument and applies

to simulations of proofs of sequents of Σ1,b
1 -formulas (this is what is done

in the proof of [14, Thm.2.1] although the theorem is stated only for Πb
1-

consequences of V 1
2 ). For both WPHP and RAM the statements that these

search problems are defined on all inputs are expressed even by Σb
1-formulas

and propositional translations of (negations of) these formulas are the im-
plicit formulas from Definition 5.2.

The theorem follows as it is easy to see that V 1
2 proves that both WPHP

and RAM are defined everywhere.

q.e.d.

Simulations of bounded arithmetic theories using implicit proof systems
can be proved for much weaker theories than V 1

2 (in [14] we were interested
in strong theories). In particular, Theorem 5.4 holds with [P,Q] in place of
[EF,EF ] where both P and Q are much weaker than EF .
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6 Ramsey graphs and hard tautologies

We will now reexamine RAM using the implicit formulas and proofs. Cir-
cuits Rn are those from Section 4. The size of the circuits, as computed in
[21], is O(n5 log n) < n6.

Definition 6.1 Let x1, . . . , x2n be n-tuples of distinct variables. The for-
mula ωn,Rn

is the formula:

∧

i6=j

xi 6= xj → [
∨

i6=j

Rn(xi, xj) ∨
∨

i6=j

¬Rn(xi, xj)]

where i, j range over {1, . . . , 2n}.

The formula expresses that Gn,Rn
has no homogeneous subgraph of size 2n

and it is a tautology.
Formulas γ¬WPHP and γ¬RAM are sets of clauses formed by formulas

not by literals, but in the following theorem we shall speak about [P,Q]-
refutations of these formulas and Q could be even R∗. In such a case we
tacitly assume (but not include explicitly in the notation as that would make
the formulas quite unreadable) that the formulas in the clauses are reduced
to literals using limited extension, as it is customary in resolution, cf.[6] (or
the first paragraph in Section 1). Alternatively one could think that the
R∗-refutations can also operate (via some complete set of sound schematic
inference rules, the so called Frege rules in the terminology of [6]) directly
with formulas but only with those which appear as subformulas of some
formulas in one of the original clauses of γ¬WPHP or γ¬RAM respectively.

Theorem 6.2 Let P,Q be two proof systems, P containing R and Q con-
taining R∗. Assume that:

• For any function n ≤ s(n) ≤ nO(1) there is a [P,Q]-refutation of
γ¬RAM
4n,s(n) of size nO(1).

• There is a function n ≤ t(n) ≤ nO(1) such that any [P,Q]-refutation
of γ¬WPHP

n,4n,t(n) must have the size nω(1), i.e. superpolynomial in n.

Then the formulas ωn,Rn
require superpolynomial (size nω(1)) P -proofs.

Proof :

14



Let us take t = t(n) satisfying the second hypothesis, and let us fix
s = O(n6 + t) such that any circuit of the form Rn(E(x), E(y)) is encoded
by s bits if E is encoded by t bits. So s is also nO(1).

To simplify the notation let us denote the circuit encoded by a t-tuple
w in γ¬WPHP

n,4n,t simply by Ew instead of Cirn,4n,t(x,w).
Define a circuit Dw with 8n inputs to be Rn(Ew(x), Ew(y)), and let w′

be the ≤ s bits encoding it. The code w′ can be computed by a circuit from
w, say by S(w).

Now we use the first hypothesis and substitute everywhere in the [P,Q]-
refutation of γ¬RAM

4n,s code S(w) in place of the s variables used in γ¬RAM
4n,s

for the circuit encoding.
After this substitution the clauses of γ¬RAM

4n,s become:

[
∨

i6=j∈H

Rn(Ew(i), Ew(j)) ∨
∨

i6=j∈H

¬Rn(Ew(i), Ew(j))]

where H ranges over all sets of 2n distinct vertices of {0, 1}4n. Call this
disjunction δH .

Let π be a P -proof of ωn,Rn
of size ℓ. We may substitute the 2n different

tuples of variables xu by the 2n tuples Ew(i), for i ∈ H. This would get us
a P -proof πH of

∧

i6=j∈H

Ew(i) 6= Ew(j) → δH .

The size of πH is O(ℓ|Ew|) = O(ℓt) = ℓnO(1).
Now we would like to use proof πH and to derive all clauses δH of γ¬RAM

4n,s

from formulas
∧

i6=j∈H Ew(i) 6= Ew(j), and then continue in the refutation as

in the [P,Q]-refutation of γ¬RAM
4n,s . However, that would combine P -proofs

with Q-proofs and we would not get a [P,Q]-refutation of γ¬WPHP
n,4n,s as we

want. But we can proceed indirectly.
By Lemma 5.3 P is p-simulated by [P,R∗]. Use this simulation to get

from P -proofs πH [P,R∗]-proofs π′
H (of the same formula) of size (ℓn)O(1),

and then proceed as described above to get a [P,Q]-refutation (here we use
that Q contains R∗) of formulas

∧

i6=j∈H Ew(i) 6= Ew(j), one for each H.
However, it is easy to see that each of these formulas has a polynomial size
R∗-derivation from clauses of γ¬WPHP

n,4n,t , and quite uniformly described in

terms of H, and hence we get a [P,Q]-refutation of γ¬WPHP
n,4n,s .

The total size of this refutation is polynomial in ℓ and n (as both t(n)
and s(n) are), and so the theorem follows.

q.e.d.
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Judging from what is known about WPHP and RAM in bounded arith-
metic, it is consistent with the present knowledge that the two hypotheses
in Theorem 6.2 are fulfilled by some [P,Q], where Q is R or one of R(k)
of [11], with 1 ≤ k < O(log 2O(n)) = O(n). Having weak P would not be
necessarily bad as [P,Q] is p-equivalent to [[P,Q], Q] for many natural P , Q
(see [14, L.4.2] and the remark thereafter; this can be extended to proofs of
implicit formulas) and [P,Q] can be much stronger than P . These remarks
will be expanded upon elsewhere.
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[10] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity
theory, Encyclopedia of Mathematics and Its Applications, Vol. 60,
Cambridge University Press, (1995).
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