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Abstra
t. We re
all the notions of weak and strong Euler 
hara
teristi
s on

a �rst order stru
ture and make expli
it the notion of a Grothendie
k ring of a

stru
ture. We de�ne partially ordered Euler 
hara
teristi
 and Grothendie
k

ring and give a 
hara
terization of stru
tures that have non-trivial partially or-

dered Grothendie
k ring. We give a generalization of 
ounting fun
tions to lo-


ally �nite stru
tures, and use the 
onstru
tion to show that the Grothendie
k

ring of the 
omplex numbers 
ontains as a subring the ring of integer poly-

nomials in 
ontinuum many variables. We prove the existen
e of universal

strong Euler 
hara
teristi
 on a stru
ture. We investigate the dependen
e of

the Grothendie
k ring on the theory of the stru
ture and give a few 
ounter-

examples. Finally, we relate some open problems and independen
e results in

bounded arithmeti
 to properties of parti
ular Grothendie
k rings.

1. Introdu
tion

What of elementary 
ombinatori
s holds true in a 
lass of �rst order stru
tures

if sets, relations, and maps must be de�nable? For example, no �nite set is in

one-to-one 
orresponden
e with itself minus one point, and the same is true also for

even in�nite sets of reals if they, as well as the 
orresponden
es, are semi-algebrai
,

i.e. are de�nable in the real 
losed �eld R. Similarly for 
onstru
tible sets and

maps in C . On the other hand, the in�nite Ramsey statement 1 ! (1)

2

2

fails in

C ; the in�nite unordered graph f(x; y) j x

2

= y _ y

2

= xg on C has no de�nable

in�nite 
lique or independent set. For a bit more involved examples 
onsider: given

two sets A, B, �nite or in�nite, there is an embedding of one into the other one.

This is true also in the de�nable sense in R but not in C . No �nite set 
an be

partitioned into m-element 
lasses (m � 2) with the set minus one point also

partitioned into m-element 
lasses (this is the 
ounting modulo m prin
iple). This

is true also for de�nable sets in R and C but for an algebrai
ally 
losed �eld of

non-zero 
hara
teristi
 the validity of the prin
iple depends on m.

Parti
ularly interesting situations arise when a prin
iple of �nite 
ombinatori
s

holds not just for �nite sets but also for de�nable sets, whether �nite or in�nite, and

vi
e versa, when a prin
iple of in�nitary 
ombinatori
s fails in for in�nite de�nable

sets.

The question was originally motivated by [9℄ where some 
ombinatori
s behind

the representation theory of symmetri
 groups is lifted from �nite sets to Euler
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stru
tures, in order to obtain a 
riterion for lower bounds on the degree of Null-

stellensatz proof system. However, the 
onne
tion to proof systems is not the topi


of the paper. We 
onsider this type of questions interesting in their own right and

we study them from purely model-theoreti
 point of view. Although the paper


ontains new material, its main purpose is to isolate a few notions, examples and

problems that seem to us to be important.

The paper is organized as follows. In se
tion 3 we re
all the notions of weak and

strong Euler 
hara
teristi
s on a �rst order stru
ture and make expli
it the notion

of the Grothendie
k ring of a stru
ture, and re
all few fa
ts from [9℄. In se
tion 4

we de�ne and study partially ordered Euler 
hara
teristi
 and Grothendie
k rings

and give a 
hara
terization of stru
tures that have non-trivial partially ordered

Grothendie
k ring. We give, in se
tion 5, a generalization of 
ounting fun
tions to

lo
ally �nite stru
tures, and use the 
onstru
tion to show that the Grothendie
k

ring of 
omplex numbers 
ontains as a subring the ring of integer polynomials in


ontinuum many variables. In se
tion 6 we prove the existen
e of universal strong

Euler 
hara
teristi
 on a stru
ture. Se
tion 7 is devoted to several open problems

and to examples and partial results related to them. In parti
ular, we investigate

the dependen
e of the Grothendie
k ring on the theory of the stru
ture. In se
tion

8 we relate some open problems and independen
e results in bounded arithmeti


to properties of parti
ular Grothendie
k rings. Finally, the paper is 
on
luded by a

short se
tion on abstra
t dimension fun
tion on a stru
ture in the spirit of S
hanuel

[19℄.

We thank B. Poonen for the proofs of Lemmas 5.3 and 5.4, and P. Pudl

�

ak

and J. Sgall for dis
ussions about Problem 8.5.

2. Preliminaries

In this se
tion we re
all some de�nitions.

A stru
ture is a �rst-order stru
ture in a many-sorted language. If M is a one-

sorted �rst-order stru
ture, then we regard M as a many-sorted stru
ture by taking

the �nite Cartesian powers of M as the basi
 sorts with the usual 
o-ordinate

fun
tions 
onne
ting these sorts. By M

eq

we mean the many-sorted stru
ture


onstru
ted from M having as its basi
 sorts the fa
tor sets S=E where S is a basi


sort of M and E is a de�nable equivalen
e relation. De�nability always means with

parameters.

If M is a stru
ture, S is a basi
 sort of M , and '(x) is formula with free variable

x ranging over S, then '(M) := fx 2 S

M

: M j= '(x)g. We may identify de�nable

sets with the formulas de�ning them. So, if X is an M -de�nable set, then we might

write X(M) for X .

If M is a stru
ture and S is a basi
 sort, then Def

S

(M) is the set of all de�nable

subsets of S. The set Def(M) is the union over all basi
 sorts S of Def

S

(M).

Two de�nable sets A;B 2 Def(M) are de�nably isomorphi
 if there is a de�nable

bije
tion f : A! B. The set of de�nable sets in M up to de�nable isomorphism is

denoted by

g

Def(M). Denote the quotient map by [ ℄ : Def(M) !

g

Def(M).

The onto-pigeonhole prin
iple ontoPHP is the statement that there are no set

A, a 2 A, and an inje
tive map f from A onto A n fag. The (ordinary) pigeonhole

prin
iple PHP asserts that f 
annot be onto any proper subset of A, i.e. any

inje
tive f : A! A is onto.
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The modular 
ounting prin
iple Count

m

for m � 2, asserts that there is no set

A, a subset B � A of size 1 � jBj < m, an m-partition R of A (i.e., a partition

into blo
ks of size m), and an m-partition S of A nB.

We say that a stru
ture M satis�es one of the prin
iples i� the prin
iple holds

when all sets, relations, fun
tions are de�nable. We shall denote this fa
t M j=

PHP and similarly.

Note that if M is �nite this is just �nite 
ombinatori
s as all �nite sets are

de�nable. Similarly, if all subsets of (an in�nite) M are de�nable, it is just in�nitary


ombinatori
s.

3. Euler 
hara
teristi
s and Grothendie
k rings

S
hanuel introdu
ed Euler 
hara
teristi
s in slightly more generality than we


onsider in [19℄. In this se
tion we re
all some 
onstru
tions and some of their

basi
 properties.

Given a stru
ture M we give

g

Def(M) an L(+; �; 0; 1) stru
ture by de�ning

� 0 := [?℄;

� 1 := [f�g℄ where � 2M is any element;

� [A℄ + [B℄ := [A

0

[ B

0

℄ where [A℄ = [A

0

℄, [B℄ = [B

0

℄ and A

0

\ B

0

= ?; and

� [A℄ � [B℄ := [A�B℄

g

Def(M) is not ring as (

g

Def(M);+; 0) is not a group.

De�nition 3.1 ([9, Def 2.1℄). Let M be a stru
ture. A (weak) Euler 
hara
teristi


on M with values in the 
ommutative ring with unity R is a map � : Def(M) ! R

of the form

� = �

0

Æ [ ℄

su
h that �

0

is an L(+; �; 0; 1)-homomorphism �

0

:

g

Def(M) ! R. The fa
t that the

values of � are in R is sometimes denoted by symbol �=R.

A strong Euler 
hara
teristi
 on M is a weak Euler 
hara
teristi
 � : Def(M) !

R satisfying the �ber 
ondition:

If f : A! B is a de�nable fun
tion between de�nable sets, 
 2 R, and

�(f

�1

fbg) = 
 for all b 2 B, then �(A) = 
 � �(B).

The next theorem is from [9℄; we re
all it with its proof as the underlying 
on-

stru
tion is used in De�nition 3.3 and Theorem 7.3.

Theorem 3.2 ([9, Thm.3.1℄). Let M be a stru
ture. The following two properties

are equivalent:

1. M j= ontoPHP .

2. There is a non-trivial ring R su
h that M admits weak �=R.

Proof: ([9℄)

The se
ond property implies the �rst one as otherwise obviously 0 = 1 in R.

Assume now that the �rst property holds.

De�ne an equivalen
e relation � on

g

Def(M) by: a � b i� a+ 
 = b+ 
 for some


 2

g

Def(M), and let R be the fa
tor rig

g

Def(M)= �. (R;+; 0) is still not a group

but it is a 
an
ellative monoid. Let

~

R be the unique minimal ring that embeds R.

~

R is non-trivial i� R is, i.e. i� 0 and 1 are not �-equivalent in

g

Def(M). The later


ondition is equivalent to the hypothesis of the theorem.

q.e.d
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De�nition 3.3. The Grothendie
k ring of a stru
ture M , denoted K

0

(M), is the

ring

~

R 
onstru
ted in the proof of Theorem 3.2. The parti
ular weak Euler 
hara
-

teristi
 �

0

=K

0

(M) 
onstru
ted there is 
alled the universal weak Euler 
hara
ter-

isti
.

Theorem 3.2 
an thus be reformulated as

Corollary 3.4. For M a stru
ture, K

0

(M) is non-trivial i� M j= ontoPHP . If

� : Def(M) ! R is a weak Euler 
hara
teristi
 then � fa
tors through �

0

and R is

a quotient of K

0

(M).

Example 3.5. Let M be �nite. Then: K

0

(M) = Z.

Example 3.6. Let R be the real 
losed �eld. Then: K

0

(R) = Z.

To see this let us denote �

g

the geometri
 Euler 
hara
teristi
 
onstru
ted

on Def(R) via triangulation, and dim the dimension (see [5℄). The existen
e of

�

g

implies that K

0

(R) has Z as a quotient. On the other hand, for any two

A;B 2 Def(R) having the same Euler 
hara
teristi
 �

g

(A) = �

g

(B) and dimension

dim(A) = dim(B) there is a de�nable bije
tion f : A ! B (see [5℄). Assume that

we have two de�nable sets U; V with �

g

(U) = �

g

(V ) but of possibly di�erent di-

mensions. We may assume that U; V 2 Def

R

k

(R), with dim(U); dim(V ) < k. Pi
k

X 2 Def

R

k

(R) disjoint from both. Then U [ X and V [ X have the same �

g

as

well as the dimension, and so are equivalent via a de�nable bije
tion. This means,

that their 
lasses in K

0

(R) are the same, by the de�nition of K

0

(R). Hen
e �

g

is

the weak Euler 
hara
teristi
 from Theorem 3.2 and so K

0

(R) = Z.

Example 3.7. Let C be the 
omplex numbers. Then K

0

(C ) � Z. In fa
t, K

0

(C )

admits Z[u; v℄ as a quotient.

The se
ond statement is due to Denef-Loeser [4℄ and rests to a large extent upon

the Hodge theory. We prove a stronger version of the �rst assertion in se
tion 5.

Example 3.8. Given a prime p there is a pseudo-�nite �eld F for whi
h there are

at least two distin
t quotients of K

0

(M) isomorphi
 to F

p

.

This example is taken from [9, Thm.7.3℄.

We 
on
lude the se
tion by re
alling from [9℄ a suÆ
ient 
ondition on M ensuring

that K

0

(M) admits a parti
ular �nite �eld as a quotient.

Theorem 3.9 ([9℄). Let p be a prime and let M satis�es the modular 
ounting

prin
iple Count

p

. Then K

0

(M) admits F

p

as a quotient.

If a linear ordering of M is de�nable in M and K

0

(M) admits F

p

as a quotient

then, on the other hand, M satis�es Count

p

.

This is [9, L.3.6 and Thm.3.7℄.

4. Partially ordered Grothendie
k rings

De�nition 4.1. A partially ordered ring is a pair (R;P ), where R is a ring (
om-

mutative with 1) and P � R su
h that

1. 0 2 P & 1 2 P

2. P + P � P

3. P � P � P



COMBINATORICS WITH DEFINABLE SETS 5

4. x 6= 0 & x 2 P ) �x =2 P

We 
all P the set of non-negative elements.

Equivalently, a partially ordered ring is a 
ommutative ring R with unity given

together with a partial ordering < for whi
h 0 < 1, x < y ) x + z < y + z, and

(z > 0&x < y) ! xz < yz. The equivalen
e is given by P := fx : x � 0g and

x � y , y � x 2 P .

De�nition 4.2. A weak Euler 
hara
teristi
 � : Def(M) ! R on the stru
ture M

is partially ordered if (R;P ) is a partially ordered ring and �(Def(M)) � P .

Equivalently, if A � B are de�nable sets, then �(A) � �(B).

Theorem 4.3. Let M be a stru
ture. The universal weak Euler 
hara
teristi


�

0

: Def(M) ! K

0

(M) is partially ordered i� M satis�es the pigeonhole prin
iple

PHP .

Proof:

Equip already

g

Def(M) with the partial ordering de�ned as: A � B i� there

are disjoint sets A

0

; B

0

; X 2 Def(M) su
h that A = [A

0

℄, B = [B

0

℄, and su
h that

there is a de�nable inje
tive mapping of A

0

[ X into B

0

[ X . The fa
t, that the

equivalen
e relation A � B ^ B � A indu
ed by the partial ordering is not 
oarser

than equality is exa
tly the prin
iple PHP . q.e.d

Example 4.4. The universal weak Euler 
hara
teristi
 �

0

: Def(C ) ! K

0

(C ) on C

is partially ordered. However, no strong �=R on C is partially ordered.

The �rst part is, by Theorem 4.3, essentially a theorem of Ax [1℄ that C j= PHP

and we expand on this observation in se
tion 5. For the se
ond part 
onsider the

two-to-one map x 7! x

2

on C

�

. This 
erti�es, using the �ber property of �, that

�(C

�

) = 2 � �(C

�

). Hen
e �(C

�

) = 0 and �(C ) = 1. But f0; 1g � C is de�nable

and has the Euler 
hara
teristi
 2, 
ontradi
ting the de�nition of partially ordered

�.

A generalization of Ax's theorem to proalgebrai
 spa
es is studied in [6℄. The

pigeonhole prin
iple goes under the roboti
 name of \surjun
tive" there.

Theorem 4.5. If M is an in�nite stru
ture satisfying the pigeon hole prin
iple,

then the polynomial ring in one variable over Z is a subring of K

0

(M).

Proof: By Theorem 4.3, the universal weak Euler 
hara
teristi
 �

0

: Def(M) !

K

0

(M) is a partially ordered weak Euler 
hara
teristi
. Let X := �

0

([M ℄). If

(R;<) is a partially ordered ring and a; b 2 R, then we de�ne a� b if there exists

a positive integer k su
h that for any n 2 ! we have na < kb.

Claim: Let n be a natural number. If P (x) 2 Z[x℄ is a polynomial of degree less

than n, then P (X) � X

n

in K

0

(M).

Proof of Claim: We prove this 
laim by indu
tion on n. If n = 0, then P = 0,

X

0

= 1, and 0 < 1 by the de�nition of a partially ordered ring.

For n = 1, P is a 
onstant polynomial a. Let m 2 !. If a � 0, then X > 0 � ma.

Otherwise, observe that for any m there is some subset of M of size ma (as M is

in�nite) so that a� X .
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Consider now the 
ase of n+ 1. Write P (X) = a+X �Q(X) where a 2 Z. Let

k 2 ! so that for any m 2 ! we have mQ(X) < kX

n

. Let k

0

:= k + 1. Then

mP (X) = ma+mX �Q(X) < X +XkX

n

� X

n+1

+ kX

n+1

= (1 + k)X

n+1

. a

Let now P (x) 2 Z[x℄ be a nonzero polynomial. Write P (x) = ax

d

+Q(x) where Q

is a polynomial of degree less than d and a 6= 0. Note that P (X) = 0 , �P (X) = 0,

so we may and do assume that a > 0. By the 
laim we have Q(X) � X

d

� aX

d

.

In parti
ular, Q(X) 6= �aX

d

so P (X) 6= 0. Therefore, the map Z[x℄ ! K

0

(M)

given by P (x) 7! P (�

0

([M ℄)) is an inje
tion. q.e.d

We say that a stru
ture satis�es the �rst 
omparing of 
ardinalities property

CC

1

if for any two de�nable sets A, B, there is either a de�nable inje
tive mapping

of A into B or of B into A. The property CC

1

implies, in the presen
e of PHP ,

that the Grothendie
k ring K

0

(M) is non-trivial and linearly ordered.

The intuitive property of 
omparing 
ardinalities 
an be formulated also in an-

other way. We say that a stru
ture satis�es the property CC

2

if for any two

non-empty de�nable sets A, B, there is either a de�nable inje
tive mapping of A

into B or a de�nable surje
tive mapping of A onto B.

Both properties hold true for R. To see CC

1

let A, B be two de�nable sets,

w.l.o.g. from the same Def

R

k

(R). If dim(A) = dim(B), then we delete from either

A or B few points to arrange also �

g

(A) = �

g

(B). Then, similarly as in Example

3.6, we have a de�nable bije
tion between the modi�ed pair, i.e. an embedding of

one into another. If dim(A) < dim(B), �rst repla
e B by its subset of dimension

dim(A) and then pro
eed as before. The se
ond 
omparing 
ardinalities property

is treated analogously.

5. Counting fun
tions

As noted earlier, the universal Euler 
hara
teristi
 for a �nite stru
ture is noth-

ing other than the fun
tion whi
h assigns to a de�nable set its 
ardinality. For

in�nite stru
tures, su
h a 
ounting fun
tion respe
ts addition and multipli
ation,

but it is not a ring homomorphism as 
ardinal addition and multipli
ation do not

satisfy 
an
ellation. However, in�nite stru
tures whi
h are well-approximated by

�nite stru
tures inherit 
ounting fun
tions from the �nite approximations. In this

se
tion we note that 
ounting fun
tions on lo
ally �nite stru
tures amalgamate to

give a ring homomorphism from the Grothendie
k ring to a ring of integer valued

fun
tions. Our 
onstru
tion works for any dire
ted limit.

If (I;<) is a dire
ted set and fR

i

g

i2I

is a family of stru
tures indexed by I , then

we de�ne the eventual produ
t of this family to be the redu
ed produ
t

Q

i2I

R

i

=C

where C is the �lter generated by the 
ones on I . More 
on
retely, (x

i

)

i2I

�

(y

i

)

i2I

, (9j 2 I)(8k � j)x

k

= y

k

.

We say that stru
ture M is a strong dire
t limit of the dire
ted system of stru
-

tures fM

i

g

i2I

if f : M

n

! M is a de�nable n-ary fun
tion, de�ned over M

i

, then

for any j � i f maps (the image in M of) M

n

j

ba
k into M

j

.

Theorem 5.1. If M = lim

�!

i2I

M

i

is a strong dire
t limit of stru
tures, then there is

a natural homomorphism of rings from the Grothendie
k ring of M to the eventual

produ
t of the Grothendie
k rings of the dire
ted system,

 : K

0

(M) !

Y

i2I

K

0

(M

i

)=C :
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Proof: We de�ne  on Def(M) as follows. Let X be a de�nable set. As M is the

dire
ted limit of the M

i

's, there is some index i for whi
h X is M

i

de�nable. Let

(x

j

)

j2I

2

Q

j2I

K

0

(M

j

) be the I-sequen
e with x

j

= 0 for j 6� i and x

j

= �

0

(X

j

) 2

K

0

(M

j

) for j � i. Let  (X) be the image of (x

j

)

j2I

in the eventual produ
t. It is

a routine matter to 
he
k that  is a well-de�ned homomorphism, but we in
lude

the details below.

The value of  (X) does not depend on the 
hoi
e of i: Suppose we were to 
hoose

i

0

2 I so that X is de�ned over M

i

0

and let (x

0

j

)

j2I

be the element of

Q

j2I

K

0

(M

j

)


onstru
ted from this 
hoi
e of i

0

. As I is dire
ted, there is some i

00

2 I with

i

00

� i; i

0

. Thus, fj : x

j

= x

0

j

g � fj : j � i

00

g 2 C whi
h means by de�nition that

the images of these elements in the redu
ed produ
t are equal.

We 
he
k now that  indu
es a well-de�ned map on

g

Def(M). Suppose X and

Y are de�nable with [X ℄ = [Y ℄ 2

g

Def(M). Take i 2 I so that X and Y are both

de�ned over M

i

and the isomorphism between X and Y is also de�ned over M

i

.

As M is a strong dire
t limit, �

0

(X) = �

0

(Y ) 2 K

0

(M

j

) for all j � i. Thus,

 (X) =  (Y ).

The fa
t that  respe
ts the ring stru
ture should be 
lear. q.e.d

Remark 5.2. The 
onstru
tion of the eventual limit is fun
torial. That is, if f�

i

:

R

i

! S

i

g

i2I

is a set of homomorphisms indexed by the dire
ted set (I;<), then the

map given by 
o-ordinatewise appli
ation of the �

i

's indu
es a map � :

Q

i2I

R

i

=C !

Q

i2I

S

i

=C.

We apply the above 
onstru
tion to algebrai
ally 
losed �elds. For p a rational

prime, F

alg

p

, the algebrai
 
losure of the �eld F

p

of p elements may be realized as a

strong limit F

alg

p

= lim

�!

F

p

n

where the dire
ted index set is Z

+

ordered by divisibility.

The fa
t that this is a strong limit follows from quanti�er elimination (whi
h shows

that every de�nable fun
tion (F

alg

p

)

n

! F

alg

p

is pie
ewise a polynomial 
omposed

with some integral power of the Frobenius) and the fa
t ea
h �nite �eld is perfe
t.

Ea
h �nite �eld F

q

is �nite, so its Grothendie
k ring is Z with the fun
tion from

g

Def(F) ! Z given by 
ounting. The above proposition yields a homomorphism

 

p

: K

0

(F

alg

p

) !

Q

n2!

Z=C. We use this homomorphism to exhibit a large alge-

brai
ally independent subset of K

0

(F

alg

p

). The following lemmata will show that if

fE

i

g

i2I

is a set of pairwise non-isogenous ordinary ellipti
 
urves over F

alg

p

, then

f 

p

(�

0

(E

i

))g

i2I

is algebrai
ally independent in

Q

n2!

Z=C. We then show that this

property persists to C so that K

0

(C ) 
ontains an algebrai
ally independent set of

size 
ontinuum.

We re
all Weil's formula for the number of points on an ellipti
 
urve over a

�nite �eld (a referen
e for this and few fa
ts used later is [13℄). Let E be an ellipti



urve de�ned over the �nite �eld F

q

. The q-power Frobenius indu
es an algebrai


endomorphism F : E ! E. The minimal polynomial of F over Z (
onsidered as a

subring of the endomorphism ring of E) is of the form X

2

� aX + q with a

2

< 4q.

Let � and �� 2 C be the 
onjugate roots of X

2

� aX + q. Then, for any n, the

number of points in E rational over F

q

n

is 1� �

n

� ��

n

+ q

n

. We refer to � as the

eigenvalue of Frobenius of E. Of 
ourse, one 
annot see the di�eren
e between �

and ��, but this 
hoi
e should 
ause no 
onfusion.
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Weil's formula implies algebrai
 independen
e of non-isogenous ordinary ellipti



urves on
e one knows that the eigenvalues of a family of non-isogenous ellipti



urves are multipli
atively independent. This fa
t ought to be well-known, but we


ould not �nd this statement in the literature. The proof given below is due to B.

Poonen.

Lemma 5.3 (Poonen). Let �

1

; : : : ; �

n

2 C

�

be n 
omplex numbers. We assume

that j�

i

j = 1 and that [Q(�

i

) : Q℄ � 2. If there is a non-trivial multipli
ative

relation among �

1

; : : : ; �

n

, then Q(�

i

) = Q(�

j

) for some i 6= j or �

i

is a root of

unity for some i.

Proof: We work by indu
tion on n. The 
ase of n = 1 is trivial. Consider the 
ase

of n + 1. Suppose that

n+1

Q

i=1

�

m

i

i

= 1 is a multipli
ative relation. By indu
tion, we

may assume that all m

i

's are nonzero, that no �

i

is a root of unity, and that no two

distin
t �

i

's generate the same quadrati
 extensions. As Q(�

n

) 6= Q(�

n+1

), there

is some � 2 Gal(Q(�

1

; : : : ; �

n+1

)=Q) with �(�

n

) = �

n

and �(�

n+1

) 6= �

n+1

.

Note that

1 = �(

n+1

Y

i=1

�

m

i

i

)

n+1

Y

i=1

�

m

i

i

=

Y

fi:�(�

i

)6=�

i

g

j�

i

j

m

i

Y

fi:�(�

i

)=�

i

g

�

2m

i

i

=

Y

fi:�(�

i

)=�

i

g

�

2m

i

i

This gives a nontrivial multipli
ative among �

1

; : : : ; �

n


ontradi
ting the indu
-

tive hypothesis. q.e.d

Lemma 5.4 (Poonen). If E

1

; : : : ; E

n

are n pairwise (absolutely) non-isogenous

ellipti
 
urves over the �nite �eld F

q

, then their eigenvalues of Frobenius f

1

; : : : ; f

n

are multipli
atively independent.

Proof: Repla
ing q by q

2

and therefore ea
h f

i

by f

2

i

we may assume that q is a

square. Set e

i

:=

�

i

p

q

. Note that the norm of e

i

is one. By Lemma 5.3, either some

e

i

is a root of unity or for some i 6= j we have Q(e

i

) = Q(e

j

).

An ellipti
 
urve has eigenvalue of Frobenius a root of unity times the square-

root of q if and only if it is supersingular and any two supersingular ellipti
 
urves

are absolutely isogenous. So, only one of the e

i

's, say e

1

, 
an be a root of unity.

If the multipli
ative relation involved any other e

i

, then by raising the expression

to the twelfth power, we would obtain a non-trivial multipli
ative relation among

e

2

; : : : ; e

m

. In this 
ase we must have Q(f

i

) = Q(e

i

) = Q(e

j

) = Q(f

j

) for some

i 6= j, but the theory of 
omplex multipli
ation shows that the Frobenii of two

ordinary ellipti
 
urves generate the same quadrati
 �eld if and only if the 
urves

are absolutely isogenous. Thus, the only possible multipli
ative relation among the

e

i

's is e

m

i

= 1 (if E

i

is supersingular), but jf

m

i

j = q

m

2

6= 1 unless m = 0. q.e.d

Corollary 5.5. If E

1

; : : : ; E

n

are absolutely non-isogenous ordinary ellipti
 
urves

over a �nite �eld F

q

with eigenvalues of Frobenius �

1

; : : : ; �

n

, then q; �

1

; : : : ; �

n

is a multipli
atively independent set.
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Proof: Without loss of generality, we may repla
e q with q

2

. Let E

0

be a super-

singular ellipti
 
urve over F

q

. By the above lemma, the eigenvalues of Frobenius

of E

0

; : : : ; E

n

are multipli
atively independent. The eigenvalue of Frobenius of E

0

is a square root of q. Thus,

p

q; �

1

; : : : ; �

n

are multipli
atively independent; and

therefore q; �

1

; : : : ; �

n

are multipli
atively independent. q.e.d

The next lemma translates multipli
ative independen
e of the base of exponen-

tials into algebrai
 independen
e.

Lemma 5.6. Let �

1

; : : : ; �

n

be sequen
e of algebrai
 numbers. Let A

i

: Z

+

! C

be the fun
tion m 7! �

m

i

. If �

1

; : : : ; �

n

are multipli
atively independent, then

A

1

; : : : ; A

n

are algebrai
ally independent.

Proof: Let p be a nonzero prime of Z[�

1

; �

�1

1

; : : : ; �

n

; �

�1

n

℄. Let K be the p-adi



ompletion of Q(�

1

; : : : ; �

n

). We will a
tually show that A

1

; : : : ; A

n

are alge-

brai
ally independent over K.

We work by indu
tion on n. Suppose that P (x

1

; : : : ; x

n

) 2 O

K

[x

1

; : : : ; x

n

℄ is

a nonzero integral polynomial for whi
h f(z) := P (A

1

(z); : : : ; A

n

(z)) � 0 as a

fun
tion on Z

+

. We may assume that the hypersurfa
e V (P ) de�ned by P = 0 has

minimal degree among all possible witnesses of algebrai
 dependen
ies.

Repla
ing ea
h �

i

with the same power 
orresponds to restri
ting f to a smaller

set. So, we may and do assume that ea
h �

i

is p-adi
ally 
lose enough to 1 so that

the p-adi
 logarthm is de�ned at �

i

. Let B

i

:= log

p

(�

i

).

We note that f extends uniquely to a p-adi
 analyti
 fun
tion whi
h has in�nitely

many zeroes and is therefore identi
ally zero. Thus, the Taylor expansion of f is

identi
ally zero.

If we write

P (x

1

; : : : ; x

n

) =

X

I

p

I

x

I

then we �nd that

0 =

d

dz

f(z) =

X

I

n

X

i=1

p

I

I

i

B

i

A(z)

I

=: Q(A

1

(z); : : : ; A

n

(z)) :

If V (Q) 6� V (P ), then (A

1

(z); : : : ; A

n

(z)) 2 V (P;Q) whi
h is a variety of dimension

stri
tly less than n�1 (whi
h would be ruled out by indu
tion) or it is a hypersurfa
e

of degree stri
tly less than that of V (P ) (violating the minimality 
ondition on P ).

Thus, there is some � 2 K for whi
h Q = �P . That is, �p

I

= (

P

n

i=1

I

i

B

i

)p

I

for

all multi-indi
es I . Taking I 6= J with p

I

6= 0 and p

J

6= 0, we �nd that

P

n

i=1

(J

i

�

I

i

)B

i

= 0. As I 6= J , this equation gives a non-trivial Z-linear relation among

the B

i

's. Applying the exponential fun
tion, this gives a non-trivial multipli
ative

relation among the �

i

's. q.e.d

Theorem 5.7. If E

1

; : : : ; E

n

are non-isogenous ordinary ellipti
 
urves over the

algebrai
ally 
losed �eld F

alg

p

, then �

0

(E

1

); : : : ; �

0

(E

n

) are algebrai
ally indepen-

dent in K

0

(F

alg

p

).
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Proof: Take q so that E

1

; : : : ; E

n

are all de�ned over F

q

. Let �

1

; : : : ; �

n

be the

eigenvalues of Frobenius on E

1

; : : : ; E

n

. If

 

p

(�

0

(E

1

)); : : : ;  

p

(�

0

(E

n

))

were algebrai
ally dependent, then there would be an algebrai
 dependen
e among

q

z

; �

z

1

; : : : ; �

z

n


onsidered as fun
tions on Z

+

. We know this to be impossible.

q.e.d

Corollary 5.8. There is an inje
tive homomorphism Z[fx

j

: j 2 
g℄ ! K

0

(C ),

where 
 is the 
ardinality of 
ontinuum.

Proof: Realize C as an ultraprodu
t

Q

p

F

alg

p

=U . We have a natural homomorphism

' : K

0

(

Q

p

F

alg

p

=U) !

Q

p

K

0

(F

alg

p

)=U . By  Lo�s's Theorem, if f(j

Æ

p

)g

Æ2I

is a set of

sequen
es of

j-invariants so that for any �nite set Æ

1

; : : : ; Æ

n

the set of p with E

j

Æ

1

p

; : : : ; E

j

Æ

n

p

ordinary and pair-wise non-isogenous is in U , then f'(E

[j

Æ

℄

U

)g is an algebrai
ally

independent set. As there are in�nitely many isogeny 
lasses of ordinary ellipti



urves over F

alg

p

, we may 
hoose I to have the 
ardinality of the 
ontinuum. q.e.d

6. Universal strong Euler 
hara
teristi


We would like a theorem analogous to Theorem 3.2 but for strong Euler 
har-

a
teristi
, i.e. respe
ting also the �ber 
ondition imposed on �. Hen
e, one should

fa
tor K

0

(M) also by \relations" (one for ea
h de�nable f : A! B and all 
 2 R):

IF 8b 2 B;�(f

(�1)

(b)) = 
 THEN �(A) = 
 � �(B)

However, this is only a 
lause while we want equations. Imposing one of these

relations may very well for
e one to impose another su
h not previously apparent.

We note here that every stru
ture admits a universal strong Euler 
hara
teristi
.

Theorem 6.1. For any stru
tureM there is a universal strong Euler 
hara
teristi


� : Def(M) ! K

s

(M).

Proof: We build � by trans�nite re
ursion. Start with �

0

: Def(M) ! K

0

(M)

the universal weak Euler 
hara
teristi
. We build an indu
tive system of rings

f 

�;�

: K

�

(M) ! K

�

(M)g

�<�

setting �

�

:=  

0;�

Æ �

0

. At su

essor stages � + 1,

let

K

�+1

(M) := K

�

(M)=(f�

�

(B)�

�

(A(b

0

))� �

�

(A) : f : A! B a de�nable family

with b

0

2 B and �

�

(A(b)) = �

�

(A(b

0

)) for all b 2 Bg)

and take for '

�;�+1

the quotient map. At limit ordinals �, we set K

�

(M) :=

lim

�!

�!�

K

�

(M) and let '

�;�

: K

�

(M) ! K

�

(M) be the universal map to the dire
t

limit. The universal strong Euler 
hara
teristi
 is �

�

: Def(M) ! K

�

(M) for

�� 0. We 
ould take � = jL

M

j

+

.

The veri�
ation that this 
onstru
tion works is routine, but for 
ompleteness we

in
lude it.

Claim 1: If '

�;�+1

= id

K

�

(M)

, then '

�;�

= id

K

�

(M)

for all � > �.
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Proof of Claim: We prove this by trans�nite indu
tion on � > � with the result

being assumed for � = � + 1. For � = 
 + 1 assuming the result for 
, if we

have a de�nable family f : A ! B and b

0

2 B so that �




(A(b)) = �




(A(b

0

))

holds for all b 2 B, then by hypothesis we have �

�

(A(b)) = �

�

(A(b)) for all b 2 B

already. Hen
e, by the de�nition of K

�+1

(M), the equation �

�+1

(A)��

�+1

(A(b

0

))�

�

�+1

(B) = 0 already holds in K

�+1

(M) so that 
omposing with '

�+1;


we see that

�




(A) = �




(A(b

0

)) � �




(B). As this is true for any su
h family, the quotient map

K




(M) ! K


+1

(M) is the identity. At limits, this follows from the general fa
t

that a limit of identity maps is the identity map. a

Claim 2: There is some � < jL

M

j

+

su
h that '

�;�+1

= id

K

�

(M)

.

Proof of Claim: De�ne E

�

:= ker'

0;�+1

n ker'

0;�

. Assuming that no su
h �

exists, then j

g

Def(M)j � jK

0

(M)j �

S

�<jL

M

j

+

jE

�

j � jL

M

j

+

> j

g

Def(M)j whi
h is

impossible. a

First, we 
he
k that � : Def(M) ! K

s

(M) is a strong Euler 
hara
teristi
.

Sin
e � = '

0;�

Æ �

0

is the 
omposition of a ring homomorphism with the universal

weak Euler 
hara
teristi
, � is at least a weak Euler 
hara
teristi
. We 
he
k

the �bre 
ondition. Let f : A ! B be a de�nable family and b

0

2 B so that

�(A(b)) = �(A(b

0

)) for all b 2 B. Take � < � large enough so that the indu
tive

system has stabilized. Then �

�

(A(b)) = �

�

(A(b

0

)) holds for all b 2 B. The

de�ning relation on K

�+1

(M) ensure that �

�+1

(A) = �

�+1

(A(b

0

)) � �

�+1

(B), so

that applying '

�+1;�

we see that �(A) = �(A(b

0

)) � �(B).

Next, we 
he
k that � is universal. Let � : Def(M) ! R be any strong Euler


hara
teristi
. We show by trans�nite indu
tion that for every � there is a unique

map

~

�

�

: K

�

(M) ! R so that � =

~

�

�

Æ �

�

. For � = 0 this is simply the statement

that �

0

is the universal weak Euler 
hara
teristi
. At a su

essor stage, we observe

that if f : A ! B is a de�nable family and b

0

2 B with �

�

(A(b)) = �

�

(A(b

0

)) for

all b 2 B, then �(A(b)) =

~

�

�

(�

�

(A(b))) =

~

�

�

(�

�

(A(b

0

))) = �(A(b

0

)) for all b 2 B.

Thus, �(A) = �(A(b

0

)) ��(B) so that

~

�

�

(�

�

(A)��

�

(A(b

0

)) ��

�

(B)) = 0. That is,

~

�

�

vanishes on the kernel of '

�;�+1

so it indu
es a unique map on K

�+1

(M) as 
laimed.

Finally, at limit stages, the existen
e and uniqueness of

~

�

�

is a manifestation of the

universality of the dire
t limit. q.e.d

7. Problems on Grothendie
k rings and Euler stru
tures

Problem 7.1. Is there a 
ombinatorially transparent analogue of Theorem 3.2 for

the universal strong Euler 
hara
teristi
?

Problem 7.2. What is the relation between Grothendie
k rings of elementarily equiv-

alent stru
tures?

Some properties of K

0

(M) are obviously properties of the theory of M . For

example, whether K

0

(M) is non-trivial, by Theorem 3.2, or whether any parti
ular

�nite ring is a quotient of K

0

(M), by [9, Thm.3.4℄. Furthermore, if M is an

elementary substru
ture of N then K

0

(M) is naturally embedded into K

0

(N).

This is obvious from the 
onstru
tion (see also [9, L.3.2℄). In fa
t, more is true.
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Theorem 7.3. Let M and N be two elementary equivalent stru
tures. Then their

Grothendie
k rings K

0

(M) and K

0

(N) are 9

1

-elementary equivalent (in the lan-

guage of rings).

Proof:

Assume �rst the M is an elementary substru
ture of N . Let  be an existential

senten
e in the language of rings with variables x

1

; : : : ; x

k

. We may assume that

all atomi
 formulas have the form x+ y = z, x � y = z or x = y.

Assume K

0

(M) j=  and that u

1

; : : : ; u

k

2 K

0

(M) are the witnesses for  . Let

A

1

; : : : ; A

k

2 Def(M) be de�nable sets su
h that �

M

(A

i

) = u

i

in the universal

weak Euler 
hara
teristi
 �

M

=K

0

(M). We may assume that A

i

's are disjoint.

Let A

i

be de�ned in M by �

i

(a

i

; x) with parameters a

i

from M . Take sets

B

i

2 Def(N) de�ned by the same formulas with the same parameters, and put

v

i

:= �

N

(B

i

), with �

N

the universal weak Euler 
hara
teristi
 �

N

=K

0

(N). We


laim that v

i

's witness the validity of  in N .

Assume not. Then there is an atomi
 senten
e that is valid for the witnesses

in one Grothendie
k ring but not for the 
orresponding witnesses in the other one.

For example, let u

1

+ u

2

= u

3

fail in K

0

(M) while v

1

+ v

2

= v

3

holds in K

0

(N).

The validity of v

1

+ v

2

= v

3

in K

0

(N) means that for some Y 2 Def(N), disjoint

from B

1

, B

2

, B

3

(note that all B

i

are also disjoint), B

1

[B

2

[Y � B

3

[Y , i.e. there

is a de�nable bije
tion g between the sets B

1

[B

2

[Y and B

3

[Y . Assume that Y

are g are de�ned in N by de�nitions � and � with parameters r, s. However, the

existen
e of r and s su
h that Y and g de�ned by � and � have the above property

is an elementary property of N and thus holds in M as well for some parameters.

Hen
e u

1

+ u

2

= u

3

must hold in K

0

(M) too, whi
h is a 
ontradi
tion. Cases of

other atomi
 senten
es are treated analogously.

If M , N are elementary equivalent then they have a 
ommon elementary exten-

sion M

0

. By the above, K

0

(M) �

9

1

K

0

(M

0

) and K

0

(M

0

) �

9

1

K

0

(N). Thus, the

theorem is proved. q.e.d

Example 7.4. One 
annot repla
e 9

1

-equivalen
e by even 89-equivalen
e in general

as the following example demonstrates.

Let L := L(E) be the language having a single binary relation. Let M be the

L-stru
ture in whi
h E is interpreted as an equivalen
e relation for whi
h every E-


lass is �nite and for ea
h positive integer n there is exa
tly one E-
lass of size n. By

quanti�er elimination in L

M

, K

0

(M) is generated by the image of Def

M

1

(M). As

M is a lo
ally �nite stru
ture, we see that K

0

(M) is a partially ordered ring. Thus,

K

0

(M) is isomorphi
 to Z[T ℄ with T = �

0

([M ℄). Let N � M be the 
ountable

elementary extension in whi
h there is exa
tly one in�nite E-
lass, C. Realizing N

as a submodel of an ultrapower of M , one sees that Z� �

0

([C℄) � �

0

([N ℄) so that

K

0

(N) is isomorphi
 to Z[T; S℄ with T = �

0

([N ℄) and S = �

0

([C℄). The in
lusion

Z[T ℄ ,! Z[T; S℄ is not even an 89-extension as Z[T ℄ has Krull dimension two while

Z[T; S℄ has Krull dimension three. The 
ondition that a Noetherian 
ommutative

ring have Krull dimension less than three may be expressed by:

(8x; y; z)(9a; b; 
)[ax+ by + 
z = 1 _ ax+ by = z _ by + 
z = x _ ax+ 
z = y℄

Remark 7.5. If M is �

0

-saturated, then for any elementary extension N � M we

have K

0

(M) � K

0

(N).
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Remark 7.6. The above proof a
tually takes pla
e at the level of

g

Def(M) and passes

to K

0

(M) via the interpretability of K

0

(M) in

g

Def(M) in the language of rings.

The same proof fails for strong Euler 
hara
teristi
s as the �ber 
ondition is not

de�nable in the ring language. In fa
t, there are stru
tures whi
h admit no non-

trivial strong Euler 
hara
teristi
 but whi
h have elementary extensions possessing

non-trivial strong Euler 
hara
teristi
s. If A � M is a subset, then we denote by

Def(M)

=A

the 
lass of A-de�nable sets in M and by

g

Def(M)

=A

the 
lass of A-

de�nable sets in M up to M -isomorphism. If M � N is an elementary extension,

then the identi�
ation of

g

Def(M) with

g

Def(N)

=M

indu
es a map from the image

of

g

Def(N)

=M

in K

s

(N), denoted K

s

(N)

=M

, onto K

s

(M). This map may have a

nontrivial kernel.

Problem 7.7. Whi
h �elds admit nontrivial strong Euler 
hara
teristi
?

Algebrai
ally 
losed �elds of 
hara
teristi
 zero, real 
losed �elds, �nite and

pseudo-�nite �elds do admit strong Euler 
hara
teristi
 (see [9℄ for examples).

Algebrai
ally 
losed �elds of positive 
hara
teristi
 do not admit strong Euler


hara
teristi
s (
f. also [9, Se
.5℄). We give the 
al
ulation in 
hara
teristi
 greater

than two. Let K be an algebrai
ally 
losed �eld of 
hara
teristi
 p > 2. The

fun
tion K

�

! K

�

given by x 7! x

2

has �bers of size two over every point so

that by the �ber 
ondition, �([K

�

℄) = 0. The fun
tion K n f0; 1g ! K

�

given by

x 7! x

p+1

�x

p

has �bers of size p+1 over every point so that �1 = �([K nf0; 1g℄) =

(p+ 1)�([K

�

℄) = 0. For 
hara
teristi
 two use the Artin-S
hreier map x 7! x

2

+ x

to 
al
ulate �([K℄) = 0 and then use x 7! x

3

+ x

2

as above.

D. Haskell [7℄ has shown that p-adi
 �elds do not even admit non-trivial weak

Euler 
hara
teristi
s.

Do any other �elds admit strong �=R?

Problem 7.8. Whi
h �elds admit nontrivial strong partially ordered Euler 
hara
-

teristi
?

We note that su
h a �eld is ne
essarily perfe
t and quasi-�nite. That is, its

absolute Galois group is isomorphi
 to

^

Z, the pro�nite 
ompletion of the integers.

Finite and pseudo-�nite do, while real 
losed and algebrai
ally 
losed do not.

Obviously, even weak ordered � implies perfe
tion.

However, weak ordered � is not enough to guarantee pseudo-�niteness. To see

this we borrow an example from [1℄. Consider the �eld that is a union of �nite

�elds with p

q

k

elements, k = 1; 2; : : : , and p; q �xed di�erent primes. It is perfe
t,

PAC (pseudo-algebrai
ally 
losed) but not pseudo-�nite. In the �eld the algebrai


and the model-theoreti
 
losure 
oin
ide and so a de�nable fun
tion is pie
e-wise

rational. Hen
e su
h a �eld satis�es PHP (otherwise some of the �nite sub�elds

would 
ontain a 
ounter-example to PHP), and that yields, by Theorem 4.3, an

ordered weak �.

A 
lass of �elds of interest with respe
t to this problem is the 
lass of non-

standard �nite �elds in models of arithmeti
, de�ned as residue �elds modulo a

non-standard prime. If the models satisfy PA the �elds are just - up to elementary

equivalen
e - pseudo-�nite �elds of 
hara
teristi
 zero, 
f. [11℄. In these models the

�elds admit an ordered strong Euler 
hara
teristi
 based on 
ounting.

Now assume the models satisfy only some bounded arithmeti
 theory (
f. Se
tion

8). If 
ounting were de�nable in the theory, the �elds admit again an ordered
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strong Euler 
hara
teristi
. Hen
e a proof that only �nite or pseudo-�nite �elds

admit strong partially ordered � either gives an independen
e of 
ounting from the

bounded arithmeti
 theory or improves upon [11℄ 
onsiderably (for a partial result

in this dire
tion see [3℄).

Problem 7.9. To what extent is the Grothendie
k ring of a stru
ture de�nable (per-

haps in terms of some imaginary parameters asso
iated to the stru
ture)?

Espe
ially interesting 
ases: C and models of I�

top

0

(see next se
tion).

We remark that the universal weak Euler 
hara
teristi
 in R is de�nable in R,


f. [5℄ while the universal strong Euler 
hara
teristi
 on C is de�nable in C . In

parti
ular, given a de�nable f : A ! B between de�nable A, B, and given n 2 Z,

the set fb 2 B j �

0

(f

(�1)

(b)) = ng is also de�nable.

A parti
ularly interesting spe
ial 
ase of the previous problem is

Problem 7.10. Des
ribe all �=F

q

on pseudo-�nite �elds, or at least on ultraprodu
ts

of �nite �elds.

This problem is related to [9, Thm.7.3℄ (see remarks there).

8. Examples from bounded arithmeti


Bounded arithmeti
 I�

0

, de�ned by Parikh [14℄, is a subtheory of Peano arith-

meti
 with indu
tion for bounded formulas only (the language is f0; 1;+;�;=;�g)

(see also [8℄ for a general referen
e on bounded arithmeti
). One of the oldest

and most interesting open problems about bounded arithmeti
 was posed by A.

Ma
intyre some twenty years ago: Does I�

0

prove that no fun
tion de�ned by a

�

0

-formula maps inje
tively an interval [0; n℄ into [0; n)? This statement is 
alled

the �

0

pigeonhole prin
iple �

0

� PHP ; similarly for the onto-version. We shall

see that the problem simply asks whether a 
ertain Grothendie
k ring is trivial or

not.

First let us observe that �

0

�PHP is equivalent to the version of PHP formu-

lated for all �

0

maps and �

0

sets that are not 
o�nal. Assume f : X ! X maps

inje
tively a non-
o�nal set X � [0; n℄ into its proper subset. By possibly adding

n to X and 
hanging one or two values of f we may assume that n 2 X nRng(f).

Then the map extending f by identity id

[0;n℄nX


ontradi
ts the original formulation

of �

0

� PHP .

Let I�

top

0

be the theory like I�

0

but only on bounded intervals [0; e℄ (it was


onsidered already by Paris and Wilkie). Namely, the language L

B

of the theory

is as of I�

0

augmented by a new 
onstant e, ex
ept that the operations + and �

are repla
ed by ternary relations �, 
 (standing for their graphs). The 
onstant e

is interpreted as the largest element with respe
t to the linear ordering �, and the

axiomatization states basi
 properties of 0, 1, �, 
, � on interval [0; e℄, and asserts

the indu
tion for all formulas (all quanti�ers are impli
itly bounded by e).

Having a model M of I�

0

and n 2 M , [0; n℄ is a model of I�

top

0

under the

natural interpretation of the language. On the other hand, a model [0; e℄ of I�

top

0

de�nes uniquely (via e-adi
 notation for numbers) a model M of I�

0

, in whi
h [0; e℄

is an initial interval and in whi
h the (standard) powers of e are 
o�nal. De�nable

subsets of [0; e℄

k

, k = 0; 1; : : : , are in one-to-one 
orresponden
e with subsets of M

that are de�nable by �

0

-formulas and that are not 
o�nal in M . Thus M satis�es

PHP for �

0

sets and maps i� [0; e℄ satis�es PHP for all de�nable sets and maps.

Hen
e we have
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Theorem 8.1. The �

0

-PHP (resp. the �

0

-ontoPHP ) is independent from I�

0

i� there is a model of I�

top

0

with a trivial partially ordered Grothendie
k ring (resp.

a trivial Grothendie
k ring).

Various independen
e results are known for a modi�
ation of these theories.

Namely, one augments the language by a unary predi
ate symbol �. The symbol �

may appear in �

0

(�)-formulas in indu
tion axioms but the theory, denoted I�

0

(�),

has no spe
ial axioms about �. (One may think about � as about unknown ora
les

in 
omplexity theory.) The theory I�

0

(�)

top

is de�ned analogously as before.

Assuming that the predi
ate � is not 
o�nal in M , the relation between models of

I�

0

(�) and I�

0

(�)

top

is as des
ribed above, taking n su
h that some power n

k

bounds �.

Example 8.2. Let p; q be two di�erent primes. There is a stru
ture M whose

Grothendie
k ringK

0

(M) admits F

q

as a quotient but not F

p

. In parti
ular, K

0

(M)

does not admit Z as a quotient.

By [2℄ there is a model N of I�

0

(�) that satis�es �

0

(�)-Count

q

but not the

�

0

(�)-Count

p

(the 
ounting prin
iples are also restri
ted to non-
o�nal sets). The

stru
ture M is a suitable model of I�

0

(�)

top

, obtained from N as above. By

Theorem 3.9 the validity of Count

q

guarantees the existen
e of weak �=F

q

while

the failure of Count

p

shows that no weak �=F

p

exists on M .

The weak pigeonhole prin
iple WPHP asserts that no two disjoint 
opies A

_

[A of

a set A 
an be inje
tively mapped into A. This prin
iple is prominent in bounded

arithmeti
 and 
omplexity theory.

Example 8.3. There is a stru
ture M whose Grothendie
k ring K

0

(M) is trivial

but whi
h satis�es the weak pigeonhole prin
iple WPHP .

By [16, 10, 18℄ there is a model N of I�

0

(�) that satis�es �

0

(�)-WPHP but

not the �

0

(�)-ontoPHP . The stru
ture M is again a suitable model of I�

0

(�)

top

,

obtained from N as above. For another example, 
onsider (N; S) where S is the

su

essor operation.

Example 8.4. There are stru
tures M

1

and its elementary extension M

2

su
h that

Grothendie
k ring K

0

(M

1

) is properly in
luded in K

0

(M

2

).

Let N be a non standard model of true arithmeti
. Consider models N

e

of I�

top

0

with universe [0; e℄ for e 2 N . We 
laim that there are non-standard e

1

; e

2

2 N su
h

that N

e

1

is an elementary substru
ture of N

e

2

and 2

e

1

< e

2

. The former 
ondition

means that e

1

, e

2

satisfy in N the same bounded formulas with any parameters

smaller than e

1

. The existen
e of suitable e

1

, e

2

follows, in parti
ular, from an

argument that the Paris-Harrington prin
iple implies the 
onsisten
y of PA, as

given in [15℄.

Take M

i

:= N

e

i

, i = 0; 1. It remains to show that for some B 2 Def(M

2

), the

universal weak Euler 
hara
teristi
 �

M

2

(B) 2 K

0

(M

2

) nK

0

(M

1

). Put B := [0; e

2

).

Assume �

M

2

(B) 2 K

0

(M

1

), so there is a de�nable (inM

2

) bije
tion between disjoint

unions A [X and B [X , where A 2 Def(M

1

) and X 2 Def(M

2

). The bije
tion

is also de�nable in N and hen
e preserves 
ardinalities of �nite sets. So jAj = jBj.

But that is impossible as jAj � e

k

1

< 2

e

1

< e

2

= jBj, some standard k.

We 
on
lude the se
tion by a problem motivated by 
onsiderations about the

Ma
intyre's problem mentioned earlier. We shall not explain the 
onne
tion here,

but the problem seems to be suÆ
iently interesting in its own right.



16 JAN KRAJ

�

I

�

CEK AND THOMAS SCANLON

In general form the problem asks whether the prin
iples of 
omparing 
ardinali-

ties CC

1

or CC

2

formulated at the end of se
tion 4 hold e�e
tively. Spe
i�
ally (for

CC

1

) this 
an be formulated as follows: Is there a 
onstant k su
h that whenever

A and B are subsets of f0; 1g

n

that are 
omputable by 
ir
uits of size S, then there

is an inje
tive mapping f of either A into B or vi
e versa su
h that the graph of f

is 
omputable by a 
ir
uit of size � S

k

?

This general problem is 
learly related to 
ounting of polynomial time sets and

using Toda's theorems [20℄ one 
an answer the problem in the negative, assuming

that the polynomial time hierar
hy does not 
ollapse.

It would be very interesting however, to solve the problem un
onditionally at

least in the 
ase of AC

0


ir
uits.

To make this self-
ontained let us give a model-theoreti
 de�nition of what it

means that a sequen
e of sets X

n

of subsets of f1; : : : ; ng

k

, n = 1; 2; : : : , is AC

0

de�nable. Let R(x

1

; : : : ; x

k

) be a k-ary relation symbol. Then fX

n

g

n<!

is AC

0

de�nable i� there are a �rst order language L not 
ontaining R, L-stru
tures A

n

with universe f1; : : : ; ng, n = 1; 2; : : : , and a senten
e � in language L [ fRg su
h

that for any n and any Y � f1; : : : ; ng

k

, Y 2 X

n

i� the expanded stru
ture (A

n

; Y )

satis�es �.

We propose the following 
ombinatorial example. Sets A and B(k), for k > 0 a

�xed number, will be sets of graphs on n verti
es without loops. The set A 
onsists

of dire
ted graphs that are vertex-disjoint unions of dire
ted 
y
les. The set B(k)


onsists of undire
ted graphs that are vertex-disjoint unions of 
y
les, ea
h 
y
le

having one of k 
olours. In parti
ular, in graphs from B(1) all 
y
les have the same


olour.

Clearly all sets A, B(k) are AC

0

de�nable.

Problem 8.5. 1. Is there an embedding of B(1) into A with AC

0

de�nable graph?

2. Is there a bije
tion between B(2) and A with AC

0

de�nable graph?

3. Is there an embedding of A into B(k), any k > 2, with AC

0

de�nable graph?

(M. Ajtai told us that he proposed exa
tly problem 2. some ten years ago.) We

would expe
t the answer in the negative for all three questions.

9. Abstra
t dimension

In 
lassi
al geometri
 examples a notion 
losely asso
iated to Euler 
hara
teristi


is that of dimension. In this se
tion we re
all few fa
ts spe
ialized to the 
ategory

of de�nable sets. We do not have any original material to add but we think that

the topi
 should be further investigated and we wish to bring it to an attention.

We re
all �rst a 
onstru
tion of S
hanuel [19℄. S
hanuel uses the notion of a

\rig", a \ring without negatives". Examples: natural numbers N, polynomials from

N[x℄, the 
olle
tion

g

Def(M) of de�nable sets modulo de�nable bije
tions we de�ned

earlier. Other examples 
ome from distributive 
ategories: rigs of isomorphism


lasses of obje
ts added by 
o-produ
t and multiplied by produ
t.

Formally, a rig is a stru
ture with two 
ommutative monoid stru
tures (R; 0;+)

and (R; 1; �) related by: a � 0 = 0 and by distributivity.

An abstra
t dimension fun
tion on M is a rig homomorphism d :

g

Def(M) ! R

on

g

Def(M) with values in a rig R satisfying 1 + 1 = 1. One may regard su
h a

stru
ture as an upper semi-latti
e (R; e;�;_; 0;�) in whi
h + on

g

Def(M) be
omes

_, � be
omes �, 0 maps to e, and 1 maps to 0.
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There is a universal (abstra
t) dimension dim on M , an arbitrary stru
ture. It is

the map [ ℄ : Def(M) !

g

Def(M) 
omposed with a universal map dim :

g

Def(M) !

D(M) from the rig

g

Def(M) to the quotient of

g

Def(M) by the 
ongruen
e de�ned

by 1 + 1 = 1. The expli
it 
onstru
tion is as follows. De�ne on

g

Def(M)

a � b i� 9n 2 N9x 2

g

Def(M); a+ x =

n times

z }| {

b+ � � �+ b

and then de�ne a 
ongruen
e by:

a � b i� a � b ^ b � a :

This always yields a nontrivial rig as obviously [fag℄ 6� [;℄. However, the quali�
a-

tion non-trivial may mean just having 
ardinality 2.

Let us mention a few examples. The real 
losed �eld R admits a dimension

fun
tion 
onstru
ted via triangulation of de�nable sets, 
f [5℄. It is the geometri


dimension with values in N[f�1g. In stability theory the global ranks on de�nable

sets, for example Morley rank, fa
tor through dim. De�nable sets in the ring of

integers Z have only three possible dimensions, 
orresponding to the empty set,

�nite sets and in�nite sets (all non-empty �nite set have the same dimension and

all in�nite sets have even the same [ ℄-value in

g

Def(Z)).

It would be very interesting if under some general 
onditions the values of �

0

and dim 
lassify de�nable sets up to de�nable bije
tions. This is, for example, the


ase of R, 
f. [5℄.
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