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Abstrat. We reall the notions of weak and strong Euler harateristis on

a �rst order struture and make expliit the notion of a Grothendiek ring of a

struture. We de�ne partially ordered Euler harateristi and Grothendiek

ring and give a haraterization of strutures that have non-trivial partially or-

dered Grothendiek ring. We give a generalization of ounting funtions to lo-

ally �nite strutures, and use the onstrution to show that the Grothendiek

ring of the omplex numbers ontains as a subring the ring of integer poly-

nomials in ontinuum many variables. We prove the existene of universal

strong Euler harateristi on a struture. We investigate the dependene of

the Grothendiek ring on the theory of the struture and give a few ounter-

examples. Finally, we relate some open problems and independene results in

bounded arithmeti to properties of partiular Grothendiek rings.

1. Introdution

What of elementary ombinatoris holds true in a lass of �rst order strutures

if sets, relations, and maps must be de�nable? For example, no �nite set is in

one-to-one orrespondene with itself minus one point, and the same is true also for

even in�nite sets of reals if they, as well as the orrespondenes, are semi-algebrai,

i.e. are de�nable in the real losed �eld R. Similarly for onstrutible sets and

maps in C . On the other hand, the in�nite Ramsey statement 1 ! (1)

2

2

fails in

C ; the in�nite unordered graph f(x; y) j x

2

= y _ y

2

= xg on C has no de�nable

in�nite lique or independent set. For a bit more involved examples onsider: given

two sets A, B, �nite or in�nite, there is an embedding of one into the other one.

This is true also in the de�nable sense in R but not in C . No �nite set an be

partitioned into m-element lasses (m � 2) with the set minus one point also

partitioned into m-element lasses (this is the ounting modulo m priniple). This

is true also for de�nable sets in R and C but for an algebraially losed �eld of

non-zero harateristi the validity of the priniple depends on m.

Partiularly interesting situations arise when a priniple of �nite ombinatoris

holds not just for �nite sets but also for de�nable sets, whether �nite or in�nite, and

vie versa, when a priniple of in�nitary ombinatoris fails in for in�nite de�nable

sets.

The question was originally motivated by [9℄ where some ombinatoris behind

the representation theory of symmetri groups is lifted from �nite sets to Euler

1991 Mathematis Subjet Classi�ation. Primary 03C07; Seondary 03F20, 68Q15.

Key words and phrases. First order struture, Euler harateristi, Grothendiek ring.

Partially supported by ooperative researh grant INT-9600919/ME-103 from the NSF (USA)

and the M

�

SMT (Czeh Republi) and the grant # A 101 99 01 of the Aademy of Sienes of the

Czeh Republi.

Partially supported by an NSF MSPRF.

1



2 JAN KRAJ

�

I

�

CEK AND THOMAS SCANLON

strutures, in order to obtain a riterion for lower bounds on the degree of Null-

stellensatz proof system. However, the onnetion to proof systems is not the topi

of the paper. We onsider this type of questions interesting in their own right and

we study them from purely model-theoreti point of view. Although the paper

ontains new material, its main purpose is to isolate a few notions, examples and

problems that seem to us to be important.

The paper is organized as follows. In setion 3 we reall the notions of weak and

strong Euler harateristis on a �rst order struture and make expliit the notion

of the Grothendiek ring of a struture, and reall few fats from [9℄. In setion 4

we de�ne and study partially ordered Euler harateristi and Grothendiek rings

and give a haraterization of strutures that have non-trivial partially ordered

Grothendiek ring. We give, in setion 5, a generalization of ounting funtions to

loally �nite strutures, and use the onstrution to show that the Grothendiek

ring of omplex numbers ontains as a subring the ring of integer polynomials in

ontinuum many variables. In setion 6 we prove the existene of universal strong

Euler harateristi on a struture. Setion 7 is devoted to several open problems

and to examples and partial results related to them. In partiular, we investigate

the dependene of the Grothendiek ring on the theory of the struture. In setion

8 we relate some open problems and independene results in bounded arithmeti

to properties of partiular Grothendiek rings. Finally, the paper is onluded by a

short setion on abstrat dimension funtion on a struture in the spirit of Shanuel

[19℄.

We thank B. Poonen for the proofs of Lemmas 5.3 and 5.4, and P. Pudl

�

ak

and J. Sgall for disussions about Problem 8.5.

2. Preliminaries

In this setion we reall some de�nitions.

A struture is a �rst-order struture in a many-sorted language. If M is a one-

sorted �rst-order struture, then we regard M as a many-sorted struture by taking

the �nite Cartesian powers of M as the basi sorts with the usual o-ordinate

funtions onneting these sorts. By M

eq

we mean the many-sorted struture

onstruted from M having as its basi sorts the fator sets S=E where S is a basi

sort of M and E is a de�nable equivalene relation. De�nability always means with

parameters.

If M is a struture, S is a basi sort of M , and '(x) is formula with free variable

x ranging over S, then '(M) := fx 2 S

M

: M j= '(x)g. We may identify de�nable

sets with the formulas de�ning them. So, if X is an M -de�nable set, then we might

write X(M) for X .

If M is a struture and S is a basi sort, then Def

S

(M) is the set of all de�nable

subsets of S. The set Def(M) is the union over all basi sorts S of Def

S

(M).

Two de�nable sets A;B 2 Def(M) are de�nably isomorphi if there is a de�nable

bijetion f : A! B. The set of de�nable sets in M up to de�nable isomorphism is

denoted by

g

Def(M). Denote the quotient map by [ ℄ : Def(M) !

g

Def(M).

The onto-pigeonhole priniple ontoPHP is the statement that there are no set

A, a 2 A, and an injetive map f from A onto A n fag. The (ordinary) pigeonhole

priniple PHP asserts that f annot be onto any proper subset of A, i.e. any

injetive f : A! A is onto.
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The modular ounting priniple Count

m

for m � 2, asserts that there is no set

A, a subset B � A of size 1 � jBj < m, an m-partition R of A (i.e., a partition

into bloks of size m), and an m-partition S of A nB.

We say that a struture M satis�es one of the priniples i� the priniple holds

when all sets, relations, funtions are de�nable. We shall denote this fat M j=

PHP and similarly.

Note that if M is �nite this is just �nite ombinatoris as all �nite sets are

de�nable. Similarly, if all subsets of (an in�nite) M are de�nable, it is just in�nitary

ombinatoris.

3. Euler harateristis and Grothendiek rings

Shanuel introdued Euler harateristis in slightly more generality than we

onsider in [19℄. In this setion we reall some onstrutions and some of their

basi properties.

Given a struture M we give

g

Def(M) an L(+; �; 0; 1) struture by de�ning

� 0 := [?℄;

� 1 := [f�g℄ where � 2M is any element;

� [A℄ + [B℄ := [A

0

[ B

0

℄ where [A℄ = [A

0

℄, [B℄ = [B

0

℄ and A

0

\ B

0

= ?; and

� [A℄ � [B℄ := [A�B℄

g

Def(M) is not ring as (

g

Def(M);+; 0) is not a group.

De�nition 3.1 ([9, Def 2.1℄). Let M be a struture. A (weak) Euler harateristi

on M with values in the ommutative ring with unity R is a map � : Def(M) ! R

of the form

� = �

0

Æ [ ℄

suh that �

0

is an L(+; �; 0; 1)-homomorphism �

0

:

g

Def(M) ! R. The fat that the

values of � are in R is sometimes denoted by symbol �=R.

A strong Euler harateristi on M is a weak Euler harateristi � : Def(M) !

R satisfying the �ber ondition:

If f : A! B is a de�nable funtion between de�nable sets,  2 R, and

�(f

�1

fbg) =  for all b 2 B, then �(A) =  � �(B).

The next theorem is from [9℄; we reall it with its proof as the underlying on-

strution is used in De�nition 3.3 and Theorem 7.3.

Theorem 3.2 ([9, Thm.3.1℄). Let M be a struture. The following two properties

are equivalent:

1. M j= ontoPHP .

2. There is a non-trivial ring R suh that M admits weak �=R.

Proof: ([9℄)

The seond property implies the �rst one as otherwise obviously 0 = 1 in R.

Assume now that the �rst property holds.

De�ne an equivalene relation � on

g

Def(M) by: a � b i� a+  = b+  for some

 2

g

Def(M), and let R be the fator rig

g

Def(M)= �. (R;+; 0) is still not a group

but it is a anellative monoid. Let

~

R be the unique minimal ring that embeds R.

~

R is non-trivial i� R is, i.e. i� 0 and 1 are not �-equivalent in

g

Def(M). The later

ondition is equivalent to the hypothesis of the theorem.

q.e.d
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De�nition 3.3. The Grothendiek ring of a struture M , denoted K

0

(M), is the

ring

~

R onstruted in the proof of Theorem 3.2. The partiular weak Euler hara-

teristi �

0

=K

0

(M) onstruted there is alled the universal weak Euler harater-

isti.

Theorem 3.2 an thus be reformulated as

Corollary 3.4. For M a struture, K

0

(M) is non-trivial i� M j= ontoPHP . If

� : Def(M) ! R is a weak Euler harateristi then � fators through �

0

and R is

a quotient of K

0

(M).

Example 3.5. Let M be �nite. Then: K

0

(M) = Z.

Example 3.6. Let R be the real losed �eld. Then: K

0

(R) = Z.

To see this let us denote �

g

the geometri Euler harateristi onstruted

on Def(R) via triangulation, and dim the dimension (see [5℄). The existene of

�

g

implies that K

0

(R) has Z as a quotient. On the other hand, for any two

A;B 2 Def(R) having the same Euler harateristi �

g

(A) = �

g

(B) and dimension

dim(A) = dim(B) there is a de�nable bijetion f : A ! B (see [5℄). Assume that

we have two de�nable sets U; V with �

g

(U) = �

g

(V ) but of possibly di�erent di-

mensions. We may assume that U; V 2 Def

R

k

(R), with dim(U); dim(V ) < k. Pik

X 2 Def

R

k

(R) disjoint from both. Then U [ X and V [ X have the same �

g

as

well as the dimension, and so are equivalent via a de�nable bijetion. This means,

that their lasses in K

0

(R) are the same, by the de�nition of K

0

(R). Hene �

g

is

the weak Euler harateristi from Theorem 3.2 and so K

0

(R) = Z.

Example 3.7. Let C be the omplex numbers. Then K

0

(C ) � Z. In fat, K

0

(C )

admits Z[u; v℄ as a quotient.

The seond statement is due to Denef-Loeser [4℄ and rests to a large extent upon

the Hodge theory. We prove a stronger version of the �rst assertion in setion 5.

Example 3.8. Given a prime p there is a pseudo-�nite �eld F for whih there are

at least two distint quotients of K

0

(M) isomorphi to F

p

.

This example is taken from [9, Thm.7.3℄.

We onlude the setion by realling from [9℄ a suÆient ondition on M ensuring

that K

0

(M) admits a partiular �nite �eld as a quotient.

Theorem 3.9 ([9℄). Let p be a prime and let M satis�es the modular ounting

priniple Count

p

. Then K

0

(M) admits F

p

as a quotient.

If a linear ordering of M is de�nable in M and K

0

(M) admits F

p

as a quotient

then, on the other hand, M satis�es Count

p

.

This is [9, L.3.6 and Thm.3.7℄.

4. Partially ordered Grothendiek rings

De�nition 4.1. A partially ordered ring is a pair (R;P ), where R is a ring (om-

mutative with 1) and P � R suh that

1. 0 2 P & 1 2 P

2. P + P � P

3. P � P � P
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4. x 6= 0 & x 2 P ) �x =2 P

We all P the set of non-negative elements.

Equivalently, a partially ordered ring is a ommutative ring R with unity given

together with a partial ordering < for whih 0 < 1, x < y ) x + z < y + z, and

(z > 0&x < y) ! xz < yz. The equivalene is given by P := fx : x � 0g and

x � y , y � x 2 P .

De�nition 4.2. A weak Euler harateristi � : Def(M) ! R on the struture M

is partially ordered if (R;P ) is a partially ordered ring and �(Def(M)) � P .

Equivalently, if A � B are de�nable sets, then �(A) � �(B).

Theorem 4.3. Let M be a struture. The universal weak Euler harateristi

�

0

: Def(M) ! K

0

(M) is partially ordered i� M satis�es the pigeonhole priniple

PHP .

Proof:

Equip already

g

Def(M) with the partial ordering de�ned as: A � B i� there

are disjoint sets A

0

; B

0

; X 2 Def(M) suh that A = [A

0

℄, B = [B

0

℄, and suh that

there is a de�nable injetive mapping of A

0

[ X into B

0

[ X . The fat, that the

equivalene relation A � B ^ B � A indued by the partial ordering is not oarser

than equality is exatly the priniple PHP . q.e.d

Example 4.4. The universal weak Euler harateristi �

0

: Def(C ) ! K

0

(C ) on C

is partially ordered. However, no strong �=R on C is partially ordered.

The �rst part is, by Theorem 4.3, essentially a theorem of Ax [1℄ that C j= PHP

and we expand on this observation in setion 5. For the seond part onsider the

two-to-one map x 7! x

2

on C

�

. This erti�es, using the �ber property of �, that

�(C

�

) = 2 � �(C

�

). Hene �(C

�

) = 0 and �(C ) = 1. But f0; 1g � C is de�nable

and has the Euler harateristi 2, ontraditing the de�nition of partially ordered

�.

A generalization of Ax's theorem to proalgebrai spaes is studied in [6℄. The

pigeonhole priniple goes under the roboti name of \surjuntive" there.

Theorem 4.5. If M is an in�nite struture satisfying the pigeon hole priniple,

then the polynomial ring in one variable over Z is a subring of K

0

(M).

Proof: By Theorem 4.3, the universal weak Euler harateristi �

0

: Def(M) !

K

0

(M) is a partially ordered weak Euler harateristi. Let X := �

0

([M ℄). If

(R;<) is a partially ordered ring and a; b 2 R, then we de�ne a� b if there exists

a positive integer k suh that for any n 2 ! we have na < kb.

Claim: Let n be a natural number. If P (x) 2 Z[x℄ is a polynomial of degree less

than n, then P (X) � X

n

in K

0

(M).

Proof of Claim: We prove this laim by indution on n. If n = 0, then P = 0,

X

0

= 1, and 0 < 1 by the de�nition of a partially ordered ring.

For n = 1, P is a onstant polynomial a. Let m 2 !. If a � 0, then X > 0 � ma.

Otherwise, observe that for any m there is some subset of M of size ma (as M is

in�nite) so that a� X .
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Consider now the ase of n+ 1. Write P (X) = a+X �Q(X) where a 2 Z. Let

k 2 ! so that for any m 2 ! we have mQ(X) < kX

n

. Let k

0

:= k + 1. Then

mP (X) = ma+mX �Q(X) < X +XkX

n

� X

n+1

+ kX

n+1

= (1 + k)X

n+1

. a

Let now P (x) 2 Z[x℄ be a nonzero polynomial. Write P (x) = ax

d

+Q(x) where Q

is a polynomial of degree less than d and a 6= 0. Note that P (X) = 0 , �P (X) = 0,

so we may and do assume that a > 0. By the laim we have Q(X) � X

d

� aX

d

.

In partiular, Q(X) 6= �aX

d

so P (X) 6= 0. Therefore, the map Z[x℄ ! K

0

(M)

given by P (x) 7! P (�

0

([M ℄)) is an injetion. q.e.d

We say that a struture satis�es the �rst omparing of ardinalities property

CC

1

if for any two de�nable sets A, B, there is either a de�nable injetive mapping

of A into B or of B into A. The property CC

1

implies, in the presene of PHP ,

that the Grothendiek ring K

0

(M) is non-trivial and linearly ordered.

The intuitive property of omparing ardinalities an be formulated also in an-

other way. We say that a struture satis�es the property CC

2

if for any two

non-empty de�nable sets A, B, there is either a de�nable injetive mapping of A

into B or a de�nable surjetive mapping of A onto B.

Both properties hold true for R. To see CC

1

let A, B be two de�nable sets,

w.l.o.g. from the same Def

R

k

(R). If dim(A) = dim(B), then we delete from either

A or B few points to arrange also �

g

(A) = �

g

(B). Then, similarly as in Example

3.6, we have a de�nable bijetion between the modi�ed pair, i.e. an embedding of

one into another. If dim(A) < dim(B), �rst replae B by its subset of dimension

dim(A) and then proeed as before. The seond omparing ardinalities property

is treated analogously.

5. Counting funtions

As noted earlier, the universal Euler harateristi for a �nite struture is noth-

ing other than the funtion whih assigns to a de�nable set its ardinality. For

in�nite strutures, suh a ounting funtion respets addition and multipliation,

but it is not a ring homomorphism as ardinal addition and multipliation do not

satisfy anellation. However, in�nite strutures whih are well-approximated by

�nite strutures inherit ounting funtions from the �nite approximations. In this

setion we note that ounting funtions on loally �nite strutures amalgamate to

give a ring homomorphism from the Grothendiek ring to a ring of integer valued

funtions. Our onstrution works for any direted limit.

If (I;<) is a direted set and fR

i

g

i2I

is a family of strutures indexed by I , then

we de�ne the eventual produt of this family to be the redued produt

Q

i2I

R

i

=C

where C is the �lter generated by the ones on I . More onretely, (x

i

)

i2I

�

(y

i

)

i2I

, (9j 2 I)(8k � j)x

k

= y

k

.

We say that struture M is a strong diret limit of the direted system of stru-

tures fM

i

g

i2I

if f : M

n

! M is a de�nable n-ary funtion, de�ned over M

i

, then

for any j � i f maps (the image in M of) M

n

j

bak into M

j

.

Theorem 5.1. If M = lim

�!

i2I

M

i

is a strong diret limit of strutures, then there is

a natural homomorphism of rings from the Grothendiek ring of M to the eventual

produt of the Grothendiek rings of the direted system,

 : K

0

(M) !

Y

i2I

K

0

(M

i

)=C :
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Proof: We de�ne  on Def(M) as follows. Let X be a de�nable set. As M is the

direted limit of the M

i

's, there is some index i for whih X is M

i

de�nable. Let

(x

j

)

j2I

2

Q

j2I

K

0

(M

j

) be the I-sequene with x

j

= 0 for j 6� i and x

j

= �

0

(X

j

) 2

K

0

(M

j

) for j � i. Let  (X) be the image of (x

j

)

j2I

in the eventual produt. It is

a routine matter to hek that  is a well-de�ned homomorphism, but we inlude

the details below.

The value of  (X) does not depend on the hoie of i: Suppose we were to hoose

i

0

2 I so that X is de�ned over M

i

0

and let (x

0

j

)

j2I

be the element of

Q

j2I

K

0

(M

j

)

onstruted from this hoie of i

0

. As I is direted, there is some i

00

2 I with

i

00

� i; i

0

. Thus, fj : x

j

= x

0

j

g � fj : j � i

00

g 2 C whih means by de�nition that

the images of these elements in the redued produt are equal.

We hek now that  indues a well-de�ned map on

g

Def(M). Suppose X and

Y are de�nable with [X ℄ = [Y ℄ 2

g

Def(M). Take i 2 I so that X and Y are both

de�ned over M

i

and the isomorphism between X and Y is also de�ned over M

i

.

As M is a strong diret limit, �

0

(X) = �

0

(Y ) 2 K

0

(M

j

) for all j � i. Thus,

 (X) =  (Y ).

The fat that  respets the ring struture should be lear. q.e.d

Remark 5.2. The onstrution of the eventual limit is funtorial. That is, if f�

i

:

R

i

! S

i

g

i2I

is a set of homomorphisms indexed by the direted set (I;<), then the

map given by o-ordinatewise appliation of the �

i

's indues a map � :

Q

i2I

R

i

=C !

Q

i2I

S

i

=C.

We apply the above onstrution to algebraially losed �elds. For p a rational

prime, F

alg

p

, the algebrai losure of the �eld F

p

of p elements may be realized as a

strong limit F

alg

p

= lim

�!

F

p

n

where the direted index set is Z

+

ordered by divisibility.

The fat that this is a strong limit follows from quanti�er elimination (whih shows

that every de�nable funtion (F

alg

p

)

n

! F

alg

p

is pieewise a polynomial omposed

with some integral power of the Frobenius) and the fat eah �nite �eld is perfet.

Eah �nite �eld F

q

is �nite, so its Grothendiek ring is Z with the funtion from

g

Def(F) ! Z given by ounting. The above proposition yields a homomorphism

 

p

: K

0

(F

alg

p

) !

Q

n2!

Z=C. We use this homomorphism to exhibit a large alge-

braially independent subset of K

0

(F

alg

p

). The following lemmata will show that if

fE

i

g

i2I

is a set of pairwise non-isogenous ordinary ellipti urves over F

alg

p

, then

f 

p

(�

0

(E

i

))g

i2I

is algebraially independent in

Q

n2!

Z=C. We then show that this

property persists to C so that K

0

(C ) ontains an algebraially independent set of

size ontinuum.

We reall Weil's formula for the number of points on an ellipti urve over a

�nite �eld (a referene for this and few fats used later is [13℄). Let E be an ellipti

urve de�ned over the �nite �eld F

q

. The q-power Frobenius indues an algebrai

endomorphism F : E ! E. The minimal polynomial of F over Z (onsidered as a

subring of the endomorphism ring of E) is of the form X

2

� aX + q with a

2

< 4q.

Let � and �� 2 C be the onjugate roots of X

2

� aX + q. Then, for any n, the

number of points in E rational over F

q

n

is 1� �

n

� ��

n

+ q

n

. We refer to � as the

eigenvalue of Frobenius of E. Of ourse, one annot see the di�erene between �

and ��, but this hoie should ause no onfusion.
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Weil's formula implies algebrai independene of non-isogenous ordinary ellipti

urves one one knows that the eigenvalues of a family of non-isogenous ellipti

urves are multipliatively independent. This fat ought to be well-known, but we

ould not �nd this statement in the literature. The proof given below is due to B.

Poonen.

Lemma 5.3 (Poonen). Let �

1

; : : : ; �

n

2 C

�

be n omplex numbers. We assume

that j�

i

j = 1 and that [Q(�

i

) : Q℄ � 2. If there is a non-trivial multipliative

relation among �

1

; : : : ; �

n

, then Q(�

i

) = Q(�

j

) for some i 6= j or �

i

is a root of

unity for some i.

Proof: We work by indution on n. The ase of n = 1 is trivial. Consider the ase

of n + 1. Suppose that

n+1

Q

i=1

�

m

i

i

= 1 is a multipliative relation. By indution, we

may assume that all m

i

's are nonzero, that no �

i

is a root of unity, and that no two

distint �

i

's generate the same quadrati extensions. As Q(�

n

) 6= Q(�

n+1

), there

is some � 2 Gal(Q(�

1

; : : : ; �

n+1

)=Q) with �(�

n

) = �

n

and �(�

n+1

) 6= �

n+1

.

Note that

1 = �(

n+1

Y

i=1

�

m

i

i

)

n+1

Y

i=1

�

m

i

i

=

Y

fi:�(�

i

)6=�

i

g

j�

i

j

m

i

Y

fi:�(�

i

)=�

i

g

�

2m

i

i

=

Y

fi:�(�

i

)=�

i

g

�

2m

i

i

This gives a nontrivial multipliative among �

1

; : : : ; �

n

ontraditing the indu-

tive hypothesis. q.e.d

Lemma 5.4 (Poonen). If E

1

; : : : ; E

n

are n pairwise (absolutely) non-isogenous

ellipti urves over the �nite �eld F

q

, then their eigenvalues of Frobenius f

1

; : : : ; f

n

are multipliatively independent.

Proof: Replaing q by q

2

and therefore eah f

i

by f

2

i

we may assume that q is a

square. Set e

i

:=

�

i

p

q

. Note that the norm of e

i

is one. By Lemma 5.3, either some

e

i

is a root of unity or for some i 6= j we have Q(e

i

) = Q(e

j

).

An ellipti urve has eigenvalue of Frobenius a root of unity times the square-

root of q if and only if it is supersingular and any two supersingular ellipti urves

are absolutely isogenous. So, only one of the e

i

's, say e

1

, an be a root of unity.

If the multipliative relation involved any other e

i

, then by raising the expression

to the twelfth power, we would obtain a non-trivial multipliative relation among

e

2

; : : : ; e

m

. In this ase we must have Q(f

i

) = Q(e

i

) = Q(e

j

) = Q(f

j

) for some

i 6= j, but the theory of omplex multipliation shows that the Frobenii of two

ordinary ellipti urves generate the same quadrati �eld if and only if the urves

are absolutely isogenous. Thus, the only possible multipliative relation among the

e

i

's is e

m

i

= 1 (if E

i

is supersingular), but jf

m

i

j = q

m

2

6= 1 unless m = 0. q.e.d

Corollary 5.5. If E

1

; : : : ; E

n

are absolutely non-isogenous ordinary ellipti urves

over a �nite �eld F

q

with eigenvalues of Frobenius �

1

; : : : ; �

n

, then q; �

1

; : : : ; �

n

is a multipliatively independent set.
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Proof: Without loss of generality, we may replae q with q

2

. Let E

0

be a super-

singular ellipti urve over F

q

. By the above lemma, the eigenvalues of Frobenius

of E

0

; : : : ; E

n

are multipliatively independent. The eigenvalue of Frobenius of E

0

is a square root of q. Thus,

p

q; �

1

; : : : ; �

n

are multipliatively independent; and

therefore q; �

1

; : : : ; �

n

are multipliatively independent. q.e.d

The next lemma translates multipliative independene of the base of exponen-

tials into algebrai independene.

Lemma 5.6. Let �

1

; : : : ; �

n

be sequene of algebrai numbers. Let A

i

: Z

+

! C

be the funtion m 7! �

m

i

. If �

1

; : : : ; �

n

are multipliatively independent, then

A

1

; : : : ; A

n

are algebraially independent.

Proof: Let p be a nonzero prime of Z[�

1

; �

�1

1

; : : : ; �

n

; �

�1

n

℄. Let K be the p-adi

ompletion of Q(�

1

; : : : ; �

n

). We will atually show that A

1

; : : : ; A

n

are alge-

braially independent over K.

We work by indution on n. Suppose that P (x

1

; : : : ; x

n

) 2 O

K

[x

1

; : : : ; x

n

℄ is

a nonzero integral polynomial for whih f(z) := P (A

1

(z); : : : ; A

n

(z)) � 0 as a

funtion on Z

+

. We may assume that the hypersurfae V (P ) de�ned by P = 0 has

minimal degree among all possible witnesses of algebrai dependenies.

Replaing eah �

i

with the same power orresponds to restriting f to a smaller

set. So, we may and do assume that eah �

i

is p-adially lose enough to 1 so that

the p-adi logarthm is de�ned at �

i

. Let B

i

:= log

p

(�

i

).

We note that f extends uniquely to a p-adi analyti funtion whih has in�nitely

many zeroes and is therefore identially zero. Thus, the Taylor expansion of f is

identially zero.

If we write

P (x

1

; : : : ; x

n

) =

X

I

p

I

x

I

then we �nd that

0 =

d

dz

f(z) =

X

I

n

X

i=1

p

I

I

i

B

i

A(z)

I

=: Q(A

1

(z); : : : ; A

n

(z)) :

If V (Q) 6� V (P ), then (A

1

(z); : : : ; A

n

(z)) 2 V (P;Q) whih is a variety of dimension

stritly less than n�1 (whih would be ruled out by indution) or it is a hypersurfae

of degree stritly less than that of V (P ) (violating the minimality ondition on P ).

Thus, there is some � 2 K for whih Q = �P . That is, �p

I

= (

P

n

i=1

I

i

B

i

)p

I

for

all multi-indies I . Taking I 6= J with p

I

6= 0 and p

J

6= 0, we �nd that

P

n

i=1

(J

i

�

I

i

)B

i

= 0. As I 6= J , this equation gives a non-trivial Z-linear relation among

the B

i

's. Applying the exponential funtion, this gives a non-trivial multipliative

relation among the �

i

's. q.e.d

Theorem 5.7. If E

1

; : : : ; E

n

are non-isogenous ordinary ellipti urves over the

algebraially losed �eld F

alg

p

, then �

0

(E

1

); : : : ; �

0

(E

n

) are algebraially indepen-

dent in K

0

(F

alg

p

).
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Proof: Take q so that E

1

; : : : ; E

n

are all de�ned over F

q

. Let �

1

; : : : ; �

n

be the

eigenvalues of Frobenius on E

1

; : : : ; E

n

. If

 

p

(�

0

(E

1

)); : : : ;  

p

(�

0

(E

n

))

were algebraially dependent, then there would be an algebrai dependene among

q

z

; �

z

1

; : : : ; �

z

n

onsidered as funtions on Z

+

. We know this to be impossible.

q.e.d

Corollary 5.8. There is an injetive homomorphism Z[fx

j

: j 2 g℄ ! K

0

(C ),

where  is the ardinality of ontinuum.

Proof: Realize C as an ultraprodut

Q

p

F

alg

p

=U . We have a natural homomorphism

' : K

0

(

Q

p

F

alg

p

=U) !

Q

p

K

0

(F

alg

p

)=U . By  Lo�s's Theorem, if f(j

Æ

p

)g

Æ2I

is a set of

sequenes of

j-invariants so that for any �nite set Æ

1

; : : : ; Æ

n

the set of p with E

j

Æ

1

p

; : : : ; E

j

Æ

n

p

ordinary and pair-wise non-isogenous is in U , then f'(E

[j

Æ

℄

U

)g is an algebraially

independent set. As there are in�nitely many isogeny lasses of ordinary ellipti

urves over F

alg

p

, we may hoose I to have the ardinality of the ontinuum. q.e.d

6. Universal strong Euler harateristi

We would like a theorem analogous to Theorem 3.2 but for strong Euler har-

ateristi, i.e. respeting also the �ber ondition imposed on �. Hene, one should

fator K

0

(M) also by \relations" (one for eah de�nable f : A! B and all  2 R):

IF 8b 2 B;�(f

(�1)

(b)) =  THEN �(A) =  � �(B)

However, this is only a lause while we want equations. Imposing one of these

relations may very well fore one to impose another suh not previously apparent.

We note here that every struture admits a universal strong Euler harateristi.

Theorem 6.1. For any strutureM there is a universal strong Euler harateristi

� : Def(M) ! K

s

(M).

Proof: We build � by trans�nite reursion. Start with �

0

: Def(M) ! K

0

(M)

the universal weak Euler harateristi. We build an indutive system of rings

f 

�;�

: K

�

(M) ! K

�

(M)g

�<�

setting �

�

:=  

0;�

Æ �

0

. At suessor stages � + 1,

let

K

�+1

(M) := K

�

(M)=(f�

�

(B)�

�

(A(b

0

))� �

�

(A) : f : A! B a de�nable family

with b

0

2 B and �

�

(A(b)) = �

�

(A(b

0

)) for all b 2 Bg)

and take for '

�;�+1

the quotient map. At limit ordinals �, we set K

�

(M) :=

lim

�!

�!�

K

�

(M) and let '

�;�

: K

�

(M) ! K

�

(M) be the universal map to the diret

limit. The universal strong Euler harateristi is �

�

: Def(M) ! K

�

(M) for

�� 0. We ould take � = jL

M

j

+

.

The veri�ation that this onstrution works is routine, but for ompleteness we

inlude it.

Claim 1: If '

�;�+1

= id

K

�

(M)

, then '

�;�

= id

K

�

(M)

for all � > �.
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Proof of Claim: We prove this by trans�nite indution on � > � with the result

being assumed for � = � + 1. For � =  + 1 assuming the result for , if we

have a de�nable family f : A ! B and b

0

2 B so that �



(A(b)) = �



(A(b

0

))

holds for all b 2 B, then by hypothesis we have �

�

(A(b)) = �

�

(A(b)) for all b 2 B

already. Hene, by the de�nition of K

�+1

(M), the equation �

�+1

(A)��

�+1

(A(b

0

))�

�

�+1

(B) = 0 already holds in K

�+1

(M) so that omposing with '

�+1;

we see that

�



(A) = �



(A(b

0

)) � �



(B). As this is true for any suh family, the quotient map

K



(M) ! K

+1

(M) is the identity. At limits, this follows from the general fat

that a limit of identity maps is the identity map. a

Claim 2: There is some � < jL

M

j

+

suh that '

�;�+1

= id

K

�

(M)

.

Proof of Claim: De�ne E

�

:= ker'

0;�+1

n ker'

0;�

. Assuming that no suh �

exists, then j

g

Def(M)j � jK

0

(M)j �

S

�<jL

M

j

+

jE

�

j � jL

M

j

+

> j

g

Def(M)j whih is

impossible. a

First, we hek that � : Def(M) ! K

s

(M) is a strong Euler harateristi.

Sine � = '

0;�

Æ �

0

is the omposition of a ring homomorphism with the universal

weak Euler harateristi, � is at least a weak Euler harateristi. We hek

the �bre ondition. Let f : A ! B be a de�nable family and b

0

2 B so that

�(A(b)) = �(A(b

0

)) for all b 2 B. Take � < � large enough so that the indutive

system has stabilized. Then �

�

(A(b)) = �

�

(A(b

0

)) holds for all b 2 B. The

de�ning relation on K

�+1

(M) ensure that �

�+1

(A) = �

�+1

(A(b

0

)) � �

�+1

(B), so

that applying '

�+1;�

we see that �(A) = �(A(b

0

)) � �(B).

Next, we hek that � is universal. Let � : Def(M) ! R be any strong Euler

harateristi. We show by trans�nite indution that for every � there is a unique

map

~

�

�

: K

�

(M) ! R so that � =

~

�

�

Æ �

�

. For � = 0 this is simply the statement

that �

0

is the universal weak Euler harateristi. At a suessor stage, we observe

that if f : A ! B is a de�nable family and b

0

2 B with �

�

(A(b)) = �

�

(A(b

0

)) for

all b 2 B, then �(A(b)) =

~

�

�

(�

�

(A(b))) =

~

�

�

(�

�

(A(b

0

))) = �(A(b

0

)) for all b 2 B.

Thus, �(A) = �(A(b

0

)) ��(B) so that

~

�

�

(�

�

(A)��

�

(A(b

0

)) ��

�

(B)) = 0. That is,

~

�

�

vanishes on the kernel of '

�;�+1

so it indues a unique map on K

�+1

(M) as laimed.

Finally, at limit stages, the existene and uniqueness of

~

�

�

is a manifestation of the

universality of the diret limit. q.e.d

7. Problems on Grothendiek rings and Euler strutures

Problem 7.1. Is there a ombinatorially transparent analogue of Theorem 3.2 for

the universal strong Euler harateristi?

Problem 7.2. What is the relation between Grothendiek rings of elementarily equiv-

alent strutures?

Some properties of K

0

(M) are obviously properties of the theory of M . For

example, whether K

0

(M) is non-trivial, by Theorem 3.2, or whether any partiular

�nite ring is a quotient of K

0

(M), by [9, Thm.3.4℄. Furthermore, if M is an

elementary substruture of N then K

0

(M) is naturally embedded into K

0

(N).

This is obvious from the onstrution (see also [9, L.3.2℄). In fat, more is true.
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Theorem 7.3. Let M and N be two elementary equivalent strutures. Then their

Grothendiek rings K

0

(M) and K

0

(N) are 9

1

-elementary equivalent (in the lan-

guage of rings).

Proof:

Assume �rst the M is an elementary substruture of N . Let  be an existential

sentene in the language of rings with variables x

1

; : : : ; x

k

. We may assume that

all atomi formulas have the form x+ y = z, x � y = z or x = y.

Assume K

0

(M) j=  and that u

1

; : : : ; u

k

2 K

0

(M) are the witnesses for  . Let

A

1

; : : : ; A

k

2 Def(M) be de�nable sets suh that �

M

(A

i

) = u

i

in the universal

weak Euler harateristi �

M

=K

0

(M). We may assume that A

i

's are disjoint.

Let A

i

be de�ned in M by �

i

(a

i

; x) with parameters a

i

from M . Take sets

B

i

2 Def(N) de�ned by the same formulas with the same parameters, and put

v

i

:= �

N

(B

i

), with �

N

the universal weak Euler harateristi �

N

=K

0

(N). We

laim that v

i

's witness the validity of  in N .

Assume not. Then there is an atomi sentene that is valid for the witnesses

in one Grothendiek ring but not for the orresponding witnesses in the other one.

For example, let u

1

+ u

2

= u

3

fail in K

0

(M) while v

1

+ v

2

= v

3

holds in K

0

(N).

The validity of v

1

+ v

2

= v

3

in K

0

(N) means that for some Y 2 Def(N), disjoint

from B

1

, B

2

, B

3

(note that all B

i

are also disjoint), B

1

[B

2

[Y � B

3

[Y , i.e. there

is a de�nable bijetion g between the sets B

1

[B

2

[Y and B

3

[Y . Assume that Y

are g are de�ned in N by de�nitions � and � with parameters r, s. However, the

existene of r and s suh that Y and g de�ned by � and � have the above property

is an elementary property of N and thus holds in M as well for some parameters.

Hene u

1

+ u

2

= u

3

must hold in K

0

(M) too, whih is a ontradition. Cases of

other atomi sentenes are treated analogously.

If M , N are elementary equivalent then they have a ommon elementary exten-

sion M

0

. By the above, K

0

(M) �

9

1

K

0

(M

0

) and K

0

(M

0

) �

9

1

K

0

(N). Thus, the

theorem is proved. q.e.d

Example 7.4. One annot replae 9

1

-equivalene by even 89-equivalene in general

as the following example demonstrates.

Let L := L(E) be the language having a single binary relation. Let M be the

L-struture in whih E is interpreted as an equivalene relation for whih every E-

lass is �nite and for eah positive integer n there is exatly one E-lass of size n. By

quanti�er elimination in L

M

, K

0

(M) is generated by the image of Def

M

1

(M). As

M is a loally �nite struture, we see that K

0

(M) is a partially ordered ring. Thus,

K

0

(M) is isomorphi to Z[T ℄ with T = �

0

([M ℄). Let N � M be the ountable

elementary extension in whih there is exatly one in�nite E-lass, C. Realizing N

as a submodel of an ultrapower of M , one sees that Z� �

0

([C℄) � �

0

([N ℄) so that

K

0

(N) is isomorphi to Z[T; S℄ with T = �

0

([N ℄) and S = �

0

([C℄). The inlusion

Z[T ℄ ,! Z[T; S℄ is not even an 89-extension as Z[T ℄ has Krull dimension two while

Z[T; S℄ has Krull dimension three. The ondition that a Noetherian ommutative

ring have Krull dimension less than three may be expressed by:

(8x; y; z)(9a; b; )[ax+ by + z = 1 _ ax+ by = z _ by + z = x _ ax+ z = y℄

Remark 7.5. If M is �

0

-saturated, then for any elementary extension N � M we

have K

0

(M) � K

0

(N).
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Remark 7.6. The above proof atually takes plae at the level of

g

Def(M) and passes

to K

0

(M) via the interpretability of K

0

(M) in

g

Def(M) in the language of rings.

The same proof fails for strong Euler harateristis as the �ber ondition is not

de�nable in the ring language. In fat, there are strutures whih admit no non-

trivial strong Euler harateristi but whih have elementary extensions possessing

non-trivial strong Euler harateristis. If A � M is a subset, then we denote by

Def(M)

=A

the lass of A-de�nable sets in M and by

g

Def(M)

=A

the lass of A-

de�nable sets in M up to M -isomorphism. If M � N is an elementary extension,

then the identi�ation of

g

Def(M) with

g

Def(N)

=M

indues a map from the image

of

g

Def(N)

=M

in K

s

(N), denoted K

s

(N)

=M

, onto K

s

(M). This map may have a

nontrivial kernel.

Problem 7.7. Whih �elds admit nontrivial strong Euler harateristi?

Algebraially losed �elds of harateristi zero, real losed �elds, �nite and

pseudo-�nite �elds do admit strong Euler harateristi (see [9℄ for examples).

Algebraially losed �elds of positive harateristi do not admit strong Euler

harateristis (f. also [9, Se.5℄). We give the alulation in harateristi greater

than two. Let K be an algebraially losed �eld of harateristi p > 2. The

funtion K

�

! K

�

given by x 7! x

2

has �bers of size two over every point so

that by the �ber ondition, �([K

�

℄) = 0. The funtion K n f0; 1g ! K

�

given by

x 7! x

p+1

�x

p

has �bers of size p+1 over every point so that �1 = �([K nf0; 1g℄) =

(p+ 1)�([K

�

℄) = 0. For harateristi two use the Artin-Shreier map x 7! x

2

+ x

to alulate �([K℄) = 0 and then use x 7! x

3

+ x

2

as above.

D. Haskell [7℄ has shown that p-adi �elds do not even admit non-trivial weak

Euler harateristis.

Do any other �elds admit strong �=R?

Problem 7.8. Whih �elds admit nontrivial strong partially ordered Euler hara-

teristi?

We note that suh a �eld is neessarily perfet and quasi-�nite. That is, its

absolute Galois group is isomorphi to

^

Z, the pro�nite ompletion of the integers.

Finite and pseudo-�nite do, while real losed and algebraially losed do not.

Obviously, even weak ordered � implies perfetion.

However, weak ordered � is not enough to guarantee pseudo-�niteness. To see

this we borrow an example from [1℄. Consider the �eld that is a union of �nite

�elds with p

q

k

elements, k = 1; 2; : : : , and p; q �xed di�erent primes. It is perfet,

PAC (pseudo-algebraially losed) but not pseudo-�nite. In the �eld the algebrai

and the model-theoreti losure oinide and so a de�nable funtion is piee-wise

rational. Hene suh a �eld satis�es PHP (otherwise some of the �nite sub�elds

would ontain a ounter-example to PHP), and that yields, by Theorem 4.3, an

ordered weak �.

A lass of �elds of interest with respet to this problem is the lass of non-

standard �nite �elds in models of arithmeti, de�ned as residue �elds modulo a

non-standard prime. If the models satisfy PA the �elds are just - up to elementary

equivalene - pseudo-�nite �elds of harateristi zero, f. [11℄. In these models the

�elds admit an ordered strong Euler harateristi based on ounting.

Now assume the models satisfy only some bounded arithmeti theory (f. Setion

8). If ounting were de�nable in the theory, the �elds admit again an ordered
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strong Euler harateristi. Hene a proof that only �nite or pseudo-�nite �elds

admit strong partially ordered � either gives an independene of ounting from the

bounded arithmeti theory or improves upon [11℄ onsiderably (for a partial result

in this diretion see [3℄).

Problem 7.9. To what extent is the Grothendiek ring of a struture de�nable (per-

haps in terms of some imaginary parameters assoiated to the struture)?

Espeially interesting ases: C and models of I�

top

0

(see next setion).

We remark that the universal weak Euler harateristi in R is de�nable in R,

f. [5℄ while the universal strong Euler harateristi on C is de�nable in C . In

partiular, given a de�nable f : A ! B between de�nable A, B, and given n 2 Z,

the set fb 2 B j �

0

(f

(�1)

(b)) = ng is also de�nable.

A partiularly interesting speial ase of the previous problem is

Problem 7.10. Desribe all �=F

q

on pseudo-�nite �elds, or at least on ultraproduts

of �nite �elds.

This problem is related to [9, Thm.7.3℄ (see remarks there).

8. Examples from bounded arithmeti

Bounded arithmeti I�

0

, de�ned by Parikh [14℄, is a subtheory of Peano arith-

meti with indution for bounded formulas only (the language is f0; 1;+;�;=;�g)

(see also [8℄ for a general referene on bounded arithmeti). One of the oldest

and most interesting open problems about bounded arithmeti was posed by A.

Maintyre some twenty years ago: Does I�

0

prove that no funtion de�ned by a

�

0

-formula maps injetively an interval [0; n℄ into [0; n)? This statement is alled

the �

0

pigeonhole priniple �

0

� PHP ; similarly for the onto-version. We shall

see that the problem simply asks whether a ertain Grothendiek ring is trivial or

not.

First let us observe that �

0

�PHP is equivalent to the version of PHP formu-

lated for all �

0

maps and �

0

sets that are not o�nal. Assume f : X ! X maps

injetively a non-o�nal set X � [0; n℄ into its proper subset. By possibly adding

n to X and hanging one or two values of f we may assume that n 2 X nRng(f).

Then the map extending f by identity id

[0;n℄nX

ontradits the original formulation

of �

0

� PHP .

Let I�

top

0

be the theory like I�

0

but only on bounded intervals [0; e℄ (it was

onsidered already by Paris and Wilkie). Namely, the language L

B

of the theory

is as of I�

0

augmented by a new onstant e, exept that the operations + and �

are replaed by ternary relations �, 
 (standing for their graphs). The onstant e

is interpreted as the largest element with respet to the linear ordering �, and the

axiomatization states basi properties of 0, 1, �, 
, � on interval [0; e℄, and asserts

the indution for all formulas (all quanti�ers are impliitly bounded by e).

Having a model M of I�

0

and n 2 M , [0; n℄ is a model of I�

top

0

under the

natural interpretation of the language. On the other hand, a model [0; e℄ of I�

top

0

de�nes uniquely (via e-adi notation for numbers) a model M of I�

0

, in whih [0; e℄

is an initial interval and in whih the (standard) powers of e are o�nal. De�nable

subsets of [0; e℄

k

, k = 0; 1; : : : , are in one-to-one orrespondene with subsets of M

that are de�nable by �

0

-formulas and that are not o�nal in M . Thus M satis�es

PHP for �

0

sets and maps i� [0; e℄ satis�es PHP for all de�nable sets and maps.

Hene we have
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Theorem 8.1. The �

0

-PHP (resp. the �

0

-ontoPHP ) is independent from I�

0

i� there is a model of I�

top

0

with a trivial partially ordered Grothendiek ring (resp.

a trivial Grothendiek ring).

Various independene results are known for a modi�ation of these theories.

Namely, one augments the language by a unary prediate symbol �. The symbol �

may appear in �

0

(�)-formulas in indution axioms but the theory, denoted I�

0

(�),

has no speial axioms about �. (One may think about � as about unknown orales

in omplexity theory.) The theory I�

0

(�)

top

is de�ned analogously as before.

Assuming that the prediate � is not o�nal in M , the relation between models of

I�

0

(�) and I�

0

(�)

top

is as desribed above, taking n suh that some power n

k

bounds �.

Example 8.2. Let p; q be two di�erent primes. There is a struture M whose

Grothendiek ringK

0

(M) admits F

q

as a quotient but not F

p

. In partiular, K

0

(M)

does not admit Z as a quotient.

By [2℄ there is a model N of I�

0

(�) that satis�es �

0

(�)-Count

q

but not the

�

0

(�)-Count

p

(the ounting priniples are also restrited to non-o�nal sets). The

struture M is a suitable model of I�

0

(�)

top

, obtained from N as above. By

Theorem 3.9 the validity of Count

q

guarantees the existene of weak �=F

q

while

the failure of Count

p

shows that no weak �=F

p

exists on M .

The weak pigeonhole priniple WPHP asserts that no two disjoint opies A

_

[A of

a set A an be injetively mapped into A. This priniple is prominent in bounded

arithmeti and omplexity theory.

Example 8.3. There is a struture M whose Grothendiek ring K

0

(M) is trivial

but whih satis�es the weak pigeonhole priniple WPHP .

By [16, 10, 18℄ there is a model N of I�

0

(�) that satis�es �

0

(�)-WPHP but

not the �

0

(�)-ontoPHP . The struture M is again a suitable model of I�

0

(�)

top

,

obtained from N as above. For another example, onsider (N; S) where S is the

suessor operation.

Example 8.4. There are strutures M

1

and its elementary extension M

2

suh that

Grothendiek ring K

0

(M

1

) is properly inluded in K

0

(M

2

).

Let N be a non standard model of true arithmeti. Consider models N

e

of I�

top

0

with universe [0; e℄ for e 2 N . We laim that there are non-standard e

1

; e

2

2 N suh

that N

e

1

is an elementary substruture of N

e

2

and 2

e

1

< e

2

. The former ondition

means that e

1

, e

2

satisfy in N the same bounded formulas with any parameters

smaller than e

1

. The existene of suitable e

1

, e

2

follows, in partiular, from an

argument that the Paris-Harrington priniple implies the onsisteny of PA, as

given in [15℄.

Take M

i

:= N

e

i

, i = 0; 1. It remains to show that for some B 2 Def(M

2

), the

universal weak Euler harateristi �

M

2

(B) 2 K

0

(M

2

) nK

0

(M

1

). Put B := [0; e

2

).

Assume �

M

2

(B) 2 K

0

(M

1

), so there is a de�nable (inM

2

) bijetion between disjoint

unions A [X and B [X , where A 2 Def(M

1

) and X 2 Def(M

2

). The bijetion

is also de�nable in N and hene preserves ardinalities of �nite sets. So jAj = jBj.

But that is impossible as jAj � e

k

1

< 2

e

1

< e

2

= jBj, some standard k.

We onlude the setion by a problem motivated by onsiderations about the

Maintyre's problem mentioned earlier. We shall not explain the onnetion here,

but the problem seems to be suÆiently interesting in its own right.
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In general form the problem asks whether the priniples of omparing ardinali-

ties CC

1

or CC

2

formulated at the end of setion 4 hold e�etively. Spei�ally (for

CC

1

) this an be formulated as follows: Is there a onstant k suh that whenever

A and B are subsets of f0; 1g

n

that are omputable by iruits of size S, then there

is an injetive mapping f of either A into B or vie versa suh that the graph of f

is omputable by a iruit of size � S

k

?

This general problem is learly related to ounting of polynomial time sets and

using Toda's theorems [20℄ one an answer the problem in the negative, assuming

that the polynomial time hierarhy does not ollapse.

It would be very interesting however, to solve the problem unonditionally at

least in the ase of AC

0

iruits.

To make this self-ontained let us give a model-theoreti de�nition of what it

means that a sequene of sets X

n

of subsets of f1; : : : ; ng

k

, n = 1; 2; : : : , is AC

0

de�nable. Let R(x

1

; : : : ; x

k

) be a k-ary relation symbol. Then fX

n

g

n<!

is AC

0

de�nable i� there are a �rst order language L not ontaining R, L-strutures A

n

with universe f1; : : : ; ng, n = 1; 2; : : : , and a sentene � in language L [ fRg suh

that for any n and any Y � f1; : : : ; ng

k

, Y 2 X

n

i� the expanded struture (A

n

; Y )

satis�es �.

We propose the following ombinatorial example. Sets A and B(k), for k > 0 a

�xed number, will be sets of graphs on n verties without loops. The set A onsists

of direted graphs that are vertex-disjoint unions of direted yles. The set B(k)

onsists of undireted graphs that are vertex-disjoint unions of yles, eah yle

having one of k olours. In partiular, in graphs from B(1) all yles have the same

olour.

Clearly all sets A, B(k) are AC

0

de�nable.

Problem 8.5. 1. Is there an embedding of B(1) into A with AC

0

de�nable graph?

2. Is there a bijetion between B(2) and A with AC

0

de�nable graph?

3. Is there an embedding of A into B(k), any k > 2, with AC

0

de�nable graph?

(M. Ajtai told us that he proposed exatly problem 2. some ten years ago.) We

would expet the answer in the negative for all three questions.

9. Abstrat dimension

In lassial geometri examples a notion losely assoiated to Euler harateristi

is that of dimension. In this setion we reall few fats speialized to the ategory

of de�nable sets. We do not have any original material to add but we think that

the topi should be further investigated and we wish to bring it to an attention.

We reall �rst a onstrution of Shanuel [19℄. Shanuel uses the notion of a

\rig", a \ring without negatives". Examples: natural numbers N, polynomials from

N[x℄, the olletion

g

Def(M) of de�nable sets modulo de�nable bijetions we de�ned

earlier. Other examples ome from distributive ategories: rigs of isomorphism

lasses of objets added by o-produt and multiplied by produt.

Formally, a rig is a struture with two ommutative monoid strutures (R; 0;+)

and (R; 1; �) related by: a � 0 = 0 and by distributivity.

An abstrat dimension funtion on M is a rig homomorphism d :

g

Def(M) ! R

on

g

Def(M) with values in a rig R satisfying 1 + 1 = 1. One may regard suh a

struture as an upper semi-lattie (R; e;�;_; 0;�) in whih + on

g

Def(M) beomes

_, � beomes �, 0 maps to e, and 1 maps to 0.
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There is a universal (abstrat) dimension dim on M , an arbitrary struture. It is

the map [ ℄ : Def(M) !

g

Def(M) omposed with a universal map dim :

g

Def(M) !

D(M) from the rig

g

Def(M) to the quotient of

g

Def(M) by the ongruene de�ned

by 1 + 1 = 1. The expliit onstrution is as follows. De�ne on

g

Def(M)

a � b i� 9n 2 N9x 2

g

Def(M); a+ x =

n times

z }| {

b+ � � �+ b

and then de�ne a ongruene by:

a � b i� a � b ^ b � a :

This always yields a nontrivial rig as obviously [fag℄ 6� [;℄. However, the quali�a-

tion non-trivial may mean just having ardinality 2.

Let us mention a few examples. The real losed �eld R admits a dimension

funtion onstruted via triangulation of de�nable sets, f [5℄. It is the geometri

dimension with values in N[f�1g. In stability theory the global ranks on de�nable

sets, for example Morley rank, fator through dim. De�nable sets in the ring of

integers Z have only three possible dimensions, orresponding to the empty set,

�nite sets and in�nite sets (all non-empty �nite set have the same dimension and

all in�nite sets have even the same [ ℄-value in

g

Def(Z)).

It would be very interesting if under some general onditions the values of �

0

and dim lassify de�nable sets up to de�nable bijetions. This is, for example, the

ase of R, f. [5℄.
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