
A proof complexity generator

Jan Kraj́ıček∗†

Academy of Sciences and Charles University, Prague

Abstract

We define a map g : {0, 1}n → {0, 1}n+1 such that all output bits are
defined by 2DNF formulas in the input bits, and such that g has the fol-
lowing hardness property. For any b ∈ {0, 1}n+1 \Rng(g), formula τ(g)b

naturally expressing that b /∈ Rng(g) requires exponential size proofs
in any proof system for which the pigeonhole principle is exponentially
hard.

We define a class of generators generalizing g and show that there is
a universal one in this class.

Consider a map g : x ∈ {0, 1}n → y ∈ {0, 1}m defined by conditions

yi ≡ ϕi(x)

where ϕi(x) are propositional formulas in x = (x1, . . . , xn) and m > n. As the
domain of g is smaller than {0, 1}m there are b ∈ {0, 1}m \ Rng(g). For any
such b the formula τ(g)b(x):

∨

i∈[m]

bi 6≡ ϕi(x)

expresses that b /∈ Rng(g) in the sense that τ(g)b is a tautology iff b /∈ Rng(g).
Our aim is to define g for which the τ -formulas are hard to prove. When

all τ(g)b require super-polynomial (resp. exponential) size proofs in a proof
system P we say (following [22]) that g is hard (resp. exponentially hard)
proof complexity generator for P. The τ -formulas have been defined in
[7] and independently in [2], and their theory is being developed (see [8, 21,
9, 22, 10, 11, 14]); the introductions to [9] or [22] offer a more comprehensive
exposition. The property ”b /∈ Rng(g)” can be expressed by a tautology even
for maps g with output bits defined by non-uniform NP ∩ coNP conditions
on the input bits. Such a generality allowed Razborov [22] to formulate an
intriguing conjecture about Extended Frege system EF (see also [10]). We do
not need such a generality here.

∗Keywords: propositional proof complexity, pigeonhole principle.
†Partially supported in part by grants A1019401, AV0Z10190503, MSM0021620839,

201/05/0124, and LC505.

1



The map g we define is exponentially hard for proof systems for which
the pigeonhole principle is exponentially hard. This includes, for example,
constant depth Frege systems Fd, polynomial calculus PC or the system from
[5] combining the two.

Finally we show that in a class of generators generalizing g, we call them
gadget generators, there is a universal one.

Exponentially hard generators were previously constructed for resolution
R (see [9, Thm.4.2] and [22, Thms.2.10,2.20]). Maps yielding hard τ -formulas
for polynomial calculus and a system combing PC with R were constructed in
[2] but under the assumption of a particular encoding used in the definition
of the τ -formulas (linear encoding, see [2]).

Hard generators are also known to exists (assuming the hardness of factor-
ing) for proof systems admitting feasible interpolation, and our construction
applies to systems for which the pigeonhole principle is hard. Note that these
two categories of proof systems (not mutually exclusive) cover virtually all1

proof systems for which a super-polynomial lower bound is known.

The paper is organized as follows. We define the generator in Section 1
and in Section 2 we prove that it is (exponentially) hard for proof systems for
which the pigeonhole principle is (exponentially) hard. The class of gadget
generators is defined in Section 3 where we construct a universal one in the
class.

We assume that the reader has a basic knowledge of proof complexity. In
particular, we do not repeat definitions of the proof systems we write about.
This background can be found2 in [6, 18, 15] or in the papers cited at the
respective places. However, we do not presume a prior knowledge of proof
complexity generators.

Notation: [n] is {1, . . . , n}.

1 The generator

Definition 1.1 Let k ≥ 1 and put t := k2 + k + 1 and

n := k(k + 1) + kt = k3 + 2k2 + 2k .

For an n of this form define map gn : {0, 1}n → {0, 1}n+1 as follows. Input

string x of length n is interpreted as

x = (v, u1, . . . , ut)

1An example of an exception is a constant depth Frege system augmented by PHP as an
additional axiom scheme.

2This paper accompanies my lecture ”Proof complexity and proof search” at the 13th
International Congress of Logic, Methodology and Philosophy of Science, Beijing (August
2007). It contains one of the new results mentioned in the talk but not the expository part
of the talk. Some of that material can be found in [3, 4, 12, 13].

2



where

v = (vij)i∈[k+1],j∈[k] and us = (us
j)j∈[k]

for s = 1, . . . , t. We call v the gadget3 variables.

The output string y of length n + 1 is defined as y := (y1, . . . , yt) where

ys
i :=

∨

j∈[k]

(vij ∧ us
j)

for s = 1, . . . , t and i ∈ [k + 1].

Remarks:

(1) We could have defined the generator by conditions

ys
i :=

∧

j∈[k]

(vij → us
j) .

These conditions are equivalent to the original ones assuming that vij ’s satisfy
formula Fn(v):

∧

i∈[k+1]

∨

j∈[k]

vij ∧
∧

i∈[k+1]

∧

j1 6=j2∈[k]

¬vij1 ∨ ¬vij2

expressing that {(i, j) | vij = 1} is a graph of a function from [k + 1] to [k].
If we postulate that the output of the map is the zero vector whenever Fn(v)
fails, the two definitions would be literally equivalent as, assuming Fn(v), ¬vij

is equivalent to
∨

j′ 6=j vij′ .

(2) We could have introduced ` ·k gadget variables vij with intended meaning
to represent maps from [`] into [k], for ` >> k and not just for ` = k + 1.
The resulting generator would have the output/input ratio about `/k, and its
hardness would follow for proof systems where the weak pigeonhole principle
PHP `

k is hard in the same way as Theorem 2.1. However, for proof systems
where so weak PHP is hard to prove generators are known already, cf.[19, 22].

(3) In order to treat algebraic proof systems like polynomial calculus PC we
can define the generator by degree 2 polynomials. In particular, put

ys
i :=

∑

j∈[k]

vij · u
s
j .

Note that these equations define the same map as the original condition as-
suming Fn(v).

3I borrow this term from Razborov’s comment.

3



2 The hardness of generator g

Theorem 2.1 Let d ≥ 2. Then for k = 1, 2, . . . and n := k3 + 2k2 + 2k map

gn : {0, 1}n → {0, 1}n+1 is an exponentially hard proof complexity generator

for constant depth Frege systems Fd.

Proof :
Let b := (b1, . . . , bt) ∈ {0, 1}n+1 be an arbitrary string, bs’ blocks of length

k + 1. Substitute in an alleged Fd-proof π of τ(gk)b everywhere

us
j :=

∨

i∈[k+1]

vij ∧ bs
i .

The substitution depends on v so we shall denote it us
j(v). Denote the substi-

tuted proof π′.
Let ¬PHP k+1

k (v) be the formula expressing that v defines a graph of a
function violating the pigeonhole principle from [k+1] into [k] (not necessarily
bijective):

Fn(v) ∧
∧

i1 6=i2∈[k+1]

∧

j∈[k]

(¬pi1j ∨ ¬pi2j) .

Then it is easy to see that there is a size nO(1) = kO(1) Fd-proof σ of

¬PHP k+1
k (v) → gk(v, u1(v), . . . , ut(v)) = b .

Combining σ and π′ gives a proof of PHPk(v). However, by [1, 16, 17] any
such proof must have size exponential in k. Hence π ′ (and so π too) must have
exponential size too.

q.e.d.

Remarks:

(1) We concentrate on Fd as these are the most important proof systems for
which no hard generators were previously known. However, the argument
utilizes just the hardness of PHP and so it applies to any proof system where
PHP is hard and which supports the simple proof manipulations involved (or
one of a variety of alternative formalizations of the argument).

(2) In particular, the argument can be modified for polynomial calculus PC.
The τ(gn)b formula is represented by the following set of polynomial equations
to be refuted:

bs
i =

∑

j∈[k]

vij · u
s
j . (1)

The measure of complexity of proofs in PC is its degree. Using the dense
notation for polynomials, degree d polynomials in n variables are encoded by
strings of O(nd) of field elements. Hence an exponential lower bound on the
size corresponds to an nΩ(1) lower bound on the degree.

The hardness of gk in PC is derived using the k/2 degree lower bound for
PC refutations of ¬PHP k+1

k (even with any number ` > k of pigeons) from
[20].

4



3 Gadget generators

One can consider maps of a general form similar to that of generator g: gadget
v is simply a string of ` = `(k) bits and each output block ys ∈ {0, 1}k+1 is
computed from us ∈ {0, 1}k by a fixed polynomial time function f :

ys := f(v, us) .

In fact, one can take for f the circuit-value function

CV`,k(v, u)

that takes ` bits v describing a circuit C with k input bits and k + 1 output
bits and u ∈ {0, 1}k , and outputs the string C(u).

For the generator to output more bits than its input has, e.g. t := ` + 1
copies of blocks us suffice to swallow the gadget. Thus the only non-canonical
part of this construction is the size of the gadget, the parameter `. The
observation we want to make is that, in fact, it is possible without a loss of
generality to assume that ` ≤ k1+ε, any fixed ε > 0. This is seen as follows.

Each string CV`,k(v, us) is computed by a circuit of size O(` + k) and the
whole generator in size O(t · (` + k)). Thus for any ε > 0 we can take t > `
large enough but still t = kO(1) such that the generator is computed in time
n1+ε. Let us call such a generator G.

It is easy to see that the (exponential) hardness of G in a proof system P
follows if:

(*) There is any (exponentially) iterable map from {0, 1}k to {0, 1}k+1 com-
puted by a circuit of size ≤ `(k)1/2 (in particular, described by ≤ `(k)
bits).

In fact, G is then also (exponentially) iterable. Hence we can now repeat
the same construction again, taking blocks us of size n and gadgets v of size
n1+ε. Call this map H.

Hypothesis (*) then implies that there is a size n1+ε gadget describing a
circuit computing G for which the corresponding instance of H, and hence H
itself, is (exponentially) iterable too.

A general construction like this is unlikely to be useful for lower bounds
for specific proof systems. However, a similar universal construction where
the gadgets describe the data (a 0-1 matrix and a Boolean function) needed to
define the Nisan-Wigderson generator (considered first in this context in [2])
can be helpful.

Acknowledgments:
This paper owns its existence to the encouragement from A. A. Razborov

(Princeton) to publish the simple construction.

5



References

[1] M. Ajtai, The complexity of the pigeonhole principle, in: Proc. IEEE 29th

Annual Symp. on Foundation of Computer Science, (1988), pp. 346-355.

[2] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson,
Pseudorandom generators in propositional proof complexity, Electronic

Colloquium on Computational Complexity, Rep. No.23, (2000). Ext. ab-
stract in: Proc. of the 41st Annual Symp. on Foundation of Computer

Science, (2000), pp.43-53.

[3] J. Kraj́ıček, A fundamental problem of mathematical logic, Annals of the

Kurt Gödel Society, Springer-Verlag, Collegium Logicum, Vol.2, (1996),
pp.56-64.

[4] J. Kraj́ıček, On methods for proving lower bounds in propositional logic,
in: Logic and Scientific Methods Eds. M. L. Dalla Chiara et al., (Vol. 1
of Proc. of the Tenth International Congress of Logic, Methodology and
Philosophy of Science, Florence (August 19-25, 1995)), Synthese Library,
Vol.259, Kluwer Academic Publ., Dordrecht, (1997), pp.69-83.

[5] J. Kraj́ıček, Lower bounds for a proof system with an exponential speed-
up over constant-depth Frege systems and over polynomial calculus, in:
Eds. I.Pŕıvara, P. Růžička, 22nd Inter. Symp. Mathematical Foundations

of Computer Science (Bratislava, August ’97), Lecture Notes in Computer
Science 1295, Springer-Verlag, (1997), pp.85-90.

[6] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity the-

ory, Encyclopedia of Mathematics and Its Applications, Vol. 60, Cam-
bridge University Press, (1995).

[7] J. Kraj́ıček, On the weak pigeonhole principle, Fundamenta Mathemati-

cae, Vol.170(1-3), (2001), pp.123-140.

[8] J. Kraj́ıček, Tautologies from pseudo-random generators, Bulletin of Sym-

bolic Logic, 7(2), (2001), pp.197-212.

[9] J. Kraj́ıček, Dual weak pigeonhole principle, pseudo-surjective functions,
and provability of circuit lower bounds, Journal of Symbolic Logic, 69(1),
(2004), pp.265-286.

[10] J. Kraj́ıček, Diagonalization in proof complexity, Fundamenta Mathemat-

icae, 182, (2004), pp.181-192.

[11] J. Kraj́ıček, Structured pigeonhole principle, search problems and hard
tautologies, J. of Symbolic Logic, 70(2), (2005), pp.619-630.

[12] J. Kraj́ıček, Hardness assumptions in the foundations of theoretical com-
puter science, Archive for Mathematical Logic, 44(6), (2005), pp.667-675.

6



[13] J. Kraj́ıček, Proof complexity, in: Laptev, A. (ed.), European congress of
mathematics (ECM), Stockholm, Sweden, June 27–July 2, 2004. Zurich:
European Mathematical Society, (2005), pp.221-231.

[14] J. Kraj́ıček, Substitutions into propositional tautologies, Information

Processing Letters, 101(4), (2007), pp.163-167.

[15] J. Kraj́ıček, Propositional proof complexity I., lecture notes available at
http://www.math.cas.cz/˜krajicek/ds1.ps

[16] J. Kraj́ıček, P. Pudlák,and A. Woods, An Exponential Lower Bound to
the Size of Bounded Depth Frege Proofs of the Pigeonhole principle”,
Random Structures and Algorithms, 7(1), (1995), pp.15-39.

[17] T. Pitassi, P. Beame, and R. Impagliazzo, Exponential lower bounds for
the pigeonhole principle, Computational complexity, 3, (1993), pp.97-308.

[18] P. Pudlák, The lengths of proofs, in: Handbook of Proof Theory, S.R.Buss
ed., Elsevier, (1998), pp.547-637.

[19] A. A. Razborov, Unprovability of lower bounds on the circuit size in
certain fragments of bounded arithmetic, Izvestiya of the R.A.N., 59(1),
(1995), pp.201-224.

[20] A. A. Razborov, Lower bounds for the polynomial calculus, Computa-

tional Complexity, 7(4), (1998), pp.291-324.

[21] A. A. Razborov, Resolution lower bounds for perfect matching principles,
in: Proc. of the 17th IEEE Conf. on Computational Complexity, (2002),
pp.29-38.

[22] A. A. Razborov, Pseudorandom generators hard for k-DNF resolution
and polynomial calculus resolution, preprint, (May’03).

Mailing address:
Mathematical Institute
Academy of Sciences
Žitná 25, Prague 1, CZ - 115 67
The Czech Republic
krajicek@math.cas.cz

7


