
Comments beginning with “Note:” aren’t meant to correct anything; they help me
understand faster where I struggled.

p 18 l 8 “obtains;” should be “obtains”
p 24 l -11 The definition of NTime(f) says “accepted by a machine with time complex-

ity” but according to the definition of time complexity, the existence of any x ∈ Σn \ L
means timeM(x) = ∞ and hence tM(n) = ∞, and so any machine accepting such a
nontrivial language L (a language satisfying ∀n∃x, x ∈ Σn \ L) has tM(n) =∞ for all n.
This is not a definition of NTime(f) we want. An additional definition of e.g. “machine
M accepts L in time t(n)” would solve this.

p 25 l -12 In the definition of spaceM(w), the “minimum” should be “maximum”.
(Otherwise all languages are in NSpace(2).)

p 34 l -4 The lower indices P and Q should be interchanged in the displayed expression.
(See Definition 14.1.1 in the 1995 book by Kraj́ıček.)

p 41 l -3 To prove the treelike version of Lemma 2.1.5, it seems that we need that the
Claim inside the proof of the lemma ensures for each F -rule E1,...,E`

E0
a tree-like F -proof

η : q → E1, . . . , q → E` ` q → E0 that, moreover, uses each of q → E1, . . . , q → E` at
most once as a hypothesis. This “moreover” part seems to be an additional requirement
on F , and it is needed to keep the number of steps of the new proof linear. It would
help to have e.g. modus ponens. Then we could derive the tautology (q → E1)→ ((q →
E2) → . . . ((q → E`) → (q → E0)) . . .) from the empty set of formulas (i.e., the leaves
are 0-ary rules of F , also called axiom schemes) using a treelike proof, and apply modus
ponens.

p 43 l 12 In the proof of the theorem, especially in Claim 2, we need (like in the
remark p 41 l -3) that each auxiliary constant-size proof π′ (substituting into which we
obtain statements like Claim 2) has to be tree-like and each of the formulas from the set
the proof π′ is a proof from can appear in at most one leaf of π′. This is an additional
requirement on F , and again, having modus ponens would help.

p 43 l -5 Note: The idea behind Claim 2 is (similarly to the Claim in proof of the
deduction lemma) to have for each F -rule E1,...,Ec

E0
a single tree-like proof of the tautology

(. . . (p∧E1)∧E2)∧ . . .)∧Ec)→ (p∧Ec), which we can instantiate by substitution at any
step i of π that uses that rule, obtaining (. . . (Di∧Cj1)∧Cj2)∧ . . .)∧Cjc)→ (Di∧Ci+1),
which by modus ponens and rearranging the brackets gives Di+1.

p 50 l -9 The estimate on logical depth should respect the side of the displayed equiv-
alence b[G(p, q1/H1, . . . , qu/Hu] ≡ b[G](p, q1/b[H1], . . . , qu/b[Hu]) that has higher logical
depth, which is the right hand side, not the left hand side. So the estimate should be
`dp(b[G]) + maxv≤u{`dp(b[Hv]}+O(1).

p 56 l 16 Rather than “Lemma 2.1.4 then gives us short proofs” of the displayed
formula, such proofs are similar to those in the comment about equality axioms right
below Claim 1 in the proof of Lemma 2.3.3.

p 56 l -9 “dj is an axiom” should be “Dj is an axiom”.

p 56 l -8 “Du, Dv, u, v ≤ j − 1” should be “Dut , t = 1, . . . , `, with ut ≤ j − 1”.

p 56 l 7 The notation for the substitution is not very clear. What we want is
Di(p1/B

j
1, . . . , pn/B

j
n) = Dj(p1/q

j
1, . . . , pn/q

j
n) = Ej, in particular, we need to make it

clear that Bj
u is in the variables qj.

1

p 58 l 11 “sEF(A) = O(kEF(A) + |A|)” should be “sEF(A) = O(kEF(A) + |A|2)”.

p 59 l -6 “`dpF (A) ≤ O(log sF (A))” should be “`dpF (A) ≤ O(log sF (A)) + `dp(A)”.

p 66 l 21 Also the cut rule has to be adjusted.

p 68 l -8 The linear bounds on the number of steps and on size don’t seem to be
correct: it is not enough to suitably substitute the fixed proofs (3.2.2); their leaves —
substituted initial sequents of LK — also need to be derived. Polynomial bounds can be
achieved, though.

p 72 l 17 Note: As for proving (3.3.2) in case (3.3.3), we apply ∧:right to the sequents
Γ,Def CU

−→ yU and Γ,Def CV
−→ yV one obtains Γ,Def CU

,DefCV
−→ yU ∧ yV , which

after a cut with the sequent DefyZ=yU∧yV , yU ∧ yV −→ yZ , which has a constant size
proof (and where DefyZ=yU∧yV is (¬yZ ∨ yU) ∧ (¬yZ ∨ yU) ∧ (yZ ∨ ¬yU ∨ ¬yV)), gives
Γ,Def CZ

−→ yZ .
For the other sequent in (3.3.2), cut Def CU

, yU −→ ∆, A with DefyZ=yU∧yV , yZ −→ yU
to obtain Def CU

,DefyZ=yU∧yV , yZ −→ ∆, A. Similarly, cutting Def CV
, yV −→ ∆, B with

DefyZ=yU∧yV , yZ −→ yV one obtains Def CV
,DefyZ=yU∧yV , yZ −→ ∆, B. Applying ∧:right

yields Def CZ
, yZ −→ ∆, A ∧B.

p 83 l 7 Note: Fist the simulated SF -proof needs to be made tree-like, but that can
be achieved in the same way as in Claim 2 in the proof of Theorem 2.2.1.

p 88 l -16 “fB(p) := CSk(p, CSk(p, 1))” instead of “fB(p) := C(p, C(p, 1))”, see the
definition of a Boolean program.

p 89 l 13 Tree-likeness claimed here for σV is missing in the statement of induction
hypothesis; it should be added there. Lemma 4.2.4, used in the current ∃:right case, can
produce tree-like proofs.

p 89 l -16 It is not “C replaced by C(p,¬CSk(p, 1))”, the last line of σV contains
CSk(p, q), which after the substitution becomes CSk(p,¬CSk(p, 1)).

p 141 l -10 j = (j1, . . . , jk) instead of i = (j1, . . . , jk).

p 171 l 15 I suggest to get rid of item 2. completely: 1) it makes the claim “The
hypothesis and the compactness theorem imply that T is consistent” unjustified, because
if T were inconsistent, compactness only yields I∆0 ` e ≤ sn∨∃y ≤ t′(e)A(e, y) for some
n and t′, and it still takes some work (using Σ0

1-completeness (n + 1)-times to account
for the finitely many cases e ≤ sn) to argue that this contradicts the assumption that for
any term t, I∆0 6` ∀x∃y ≤ t(x)A(x, y), and 2) by removing item 2. the rest of the proof
stays correct (for nothing special about the standard cut is used there).

p 174 l 8 βj ∧ βj+1 should be βj ∧ ¬βj+1. The same on line 23.

p 173 l 17 With conditions 1. - 7. as stated the Claim cannot hold, because there
is no relation whatsoever between atomic LPA(Ie)-sentences in G and atomic LPA(Ie)-
sentences true in Ie. Everything will work if one requires of G besides 1. - 7. also the
following: For each atomic LPA(Ie)-sentence B, B ∈ G if and only if Ie |= B.

2

p 173 l -14 The atoms mentioned in (i) are not enough; what works is: “(i) α is built
from atoms ra,b with a, b ∈ Ie.”

p 173 l -11 ∆0(R, Ie) instead of ∆(R, Ie).

p 174 l 10 Note: For this and the following two paragraphs, it is useful to employ the
deduction lemma 2.1.5 (adapted to our non-standard setting in a straightforward way).

p 174 l -10 Note: It is not completely trivial to show that G just defined satisfies the
requirements 1. - 7. For example, to show that requirement 6. is satisfied, we need the
following of the conditions on Si’s: 2., 3. together with 4. and, crucially, 6. (in order to
satisfy the “if” from the “if and only if” in requirement 6.).

p 186 l -12 The first axiom in 4. is redundant: it follows from the second axiom in 4.
and the second axiom in 3.

p 187 l 12 It is not true that the encoding construction just described satisfies item 8.
The one-element sequence encoding a number a has bit-length |a| · (|a| − 1)/2 and hence
its value is 2Ω(|a|2), which violates the bound w′ ≤ (wa)10 in 8. (just consider w to be a
constant). Moreover, what is worse is that the bound (wa)10 in 8. is not good enough
for proving basic properties, like Lemma 9.3.2. about coding. A natural bound on w′ in
8., which would work in the proof of the lemma about coding, has the form w′ ≤ c1wa

c2

for some c1, c2 > 1. It is trivial to verify that such a bound with c1 = 1000 and c2 = 2 is
satisfied e.g. by the construction of encoding in I∆0 in the book by Hájek and Pudlák,
which writes the binary expansions of the numbers to be encoded one after another into
one binary string, and pairs this number with another of the same bit-length and such
that 1’s in its binary expansion serve as pointers to the first bit of each of the encoded
numbers.

p 187 l 19 has been added → have been added, and the same on the following line.

p 190 l 4 The lemma does not seem to hold because BASIC(#) is not enough to show
that M1(K) is downward closed. The simplest way to fix this is to change the definition
of M1(K) by replacing a = |b| in it with a ≤ |b|.

p 190 l 11 The displayed formula is a direct consequence of the last axiom in item 5.
of BASIC(#); no other axiom is needed.

p 190 l 23 Instead of “and B := A \ {max(A)}” should be “where B is such that
∀c(c ∈ B ≡ c+ 1 ∈ A)”.

p 190 l 25 Instead of “C := {max(A) · max(B)}” should be “C := {(max(A) + 1) ·
(max(B) + 1)}”.

3

