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Abstract 

The weak form of the Hilbert’s Nullstellensatz says 
that a system of algebraic equations over a field, 
Q;(%) = 0, does not have a solution in the algebraic 
closure 8 1 is in the ideal generated by the polynomi- 
als Q;(%). We shall prove a lower bound on the degrees 
of polynomials Pi(%) such that 

The 
modular counting principle states that no finite set 
whose cardinality is not divisible by q can be parti- 
tioned into q-element classes. For each fixed cardi- 
nality N ,  this principle can be expressed as a proposi- 
tional formula Count:. Ajtai [3] proved recently that, 
whenever p , q  are two different primes, the proposi- 
tional formulas do not have polynomial 
size, constant-depth Frege proofs from instances of 
County, m $ 0 (mod p). We give a new proof of this 
theorem based on the lower bound for the Hilbert’s 
Nullstellensatz. Furthermore our technique enables us 
to extend the independence results for counting prin- 
ciples to composite numbers p and q. This results in an 
exact characterization of when Countp can be proven 
efficiently from Countp, for all p and q. 

P,(%)Q;(%) = 1. 
This result has the following application. 
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Introduction 

The problem of solvability of a system of algebraic 
equations 

Q;(%) = 0, i E I, (1) 

in a fixed finite field F is one of the most natural AfP- 
complete problems. If we look for solutions in the 
algebraic closure of F the solvability is characterized 
by the basic result in algebraic geometry known as 
Hilbert’s Nullstellensatz. Namely, the equations (1) 
do not have a solution in the algebraic closure of F, iff 
there exist polynomials Pi(%) from F[Z] such that 

We can also use this to test solvability in the finite 
field F itself by adding the equations {z:~‘ - xj = 0) 
to (1) and we will usually assume that these equations 
have been included in (1). 

The AfP-completeness of the solvability problem 
for (1) in F holds even if the degrees of the Qi’s are 
bounded by a constant. Suppose there existed Pi’s of 
constant degree satisfying (2) for the extended system 
whenever (1) did not have a solution. Then, by solving 
linear equations which determine the coefficients of the 
monomials in the Pi’s, we could construct these poly- 
nomials in polynomial time. Thus P # MP implies 
that there are instances such that the degree of Pi’s 
cannot be bounded by a constant. But the assump- 
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tion P # hfP does not point to any concrete system of 
equations which requires Pi’s of nonconstant degree. 

The question of the degree of the polynomials P; in 
(2) has also been studied in the context of the ‘effective 
Nullstellensatz’ of Brownawell and others ([8, 14, 91) 
and upper bounds on the degrees of the Pi are shown 
that are exponential in the number of variables. In 
the general case where the question of interest is the 
solution of a family of polynomials in an algebraic clo- 
sure of F there is a matching lower bound example 
as well [8]. However, when using the Nullstellensatz 
to determine if solutions exist in F by extending the 
system of polynomials as described above, the degrees 
of the P; for this example becomes constant. 

In this paper we prove the first nonconstant lower 
bound on the degree of polynomials P; in (2) for such 
an extended system. We prove this bound for equa- 
tions which represent the counting principles men- 
tioned in the abstract. Since we are interested in mod- 
ular counting with an arbitrary modulus we also prove 
our results for some rings which are not fields. Our 
proof relies on a repeated use of Ramsey’s theorem, 
so the bounds we obtain are extremely slowly growing 
functions of the number of variables. (There is a much 
simpler lower bound proof for the case of the real field 
which gives a much larger lower bound.) 

Our results on the degrees of the witnessing poly- 
nomials P; imply an improved lower bound for the 
lengths of the proofs of these counting principles in a 
class of propositional proof systems called constant- 
depth Frege proofs. 

The interest in constant-depth Frege proofs is two- 
fold. Cook and Reckhow [lo] showed that the prob- 
lem of whether there is a proof system in which all 
propositional tautologies have proofs of size polyno- 
mial in the size of the formula is equivalent to the ques- 
tion of whether hfP equals CO-hfP. Thus, a research 
program of proving lower bounds for more and more 
powerful propositional proof systems parallels the ap- 
proach taken by boolean complexity of trying to prove 
lower bounds on the circuit size for restricted classes 
of circuits. Constant-depth Frege systems (which in- 
clude Resolution as a special case) are the strongest 
proof systems for which a nontrivial lower bound is 
known. The second source of interest is the connec- 
tion between the complexity of constant-depth Frege 
proofs and the inherent power of the systems lAo(R) 
and S2(IZ) of bounded arithmetic (see [16] for de- 
tails.) This connection shows that to demonstrate the 
unprovability of a principle in IAo(R)  or Sz(R),  it 
suffices to prove that it has no constant-depth Frege 
proofs of a certain size. 

In a series of results, it has been shown that any 
constant-depth Frege proof of the pigeonhole princi- 
ple  ( P H P )  requires exponential size [12, 1, 15, 6, 17, 
191. These results were extended to show that even 
with the pigeonhole principle as an additional axiom 
constant-depth Frege systems require exponential size 
to prove the Count2 tautologies [2 ,  7,  201. (We use the 
notation Counta for the generic version of County 
where m 9 0 (mod q).) Ajtai [3] studied the rela- 
tionships among the various modular counting princi- 
ples and showed that if p, q are different primes then 
Counta does not admit polynomial size, constant- 
depth Frege proofs from instances of Countp. f i s  
[20] also considered the same problem. 

In this paper we give a new proof of this lower 
bound which also applies when p and q are not primes. 
We also give upper bounds that result in an exact char- 
acterization of when polynomial-size constant-depth 
Frege proofs exist. The lower bound proof consists of 
two parts. The first part is similar to the proof strat- 
egy of [6, 17, 191 and it is a universal method allowing 
us to reduce the lower bound problem to a combi- 
natorial question about the existence of certain finite 
structures. This part employs ideas from boolean com- 
plexity (partial truth assignments, switching lemmas). 
The second part involves the lower bound for Hilbert’s 
Nullstellensatz. 

1 Proof systems and counting 
principles 

We confine ourselves to the following propositional 
language: atoms 2, y, . . ., constants 0 (falsity) and 1 
(truth), negation -1 and disjunction v (binary). We 
use A as an abbreviation. The depth of a formula is 
the maximal number of alternations of 1 and v and 
its size is the number of occurrences of V. We shall use 
symbol vi 4; denoting the disjunction of unbounded 
arity as an abbreviation for the disjunction formed 
from binary v with brackets distributed arbitrarily. 

A Prege system [lo] is a sound and implicationally 
complete proof system having a finite number of axiom 
schemes and inference rules. A typical Frege system is 
the usual calculus based on a finite number of axioms 
with modus ponens as the only rule of inference. The 
size of a proof in a Frege system is the number of dis- 
tinct subformulas appearing in the proof where we do 
not distinguish F and 1F. We will also need a notion 
of the size of the inference rules and axiom schemes 
in a Frege system. For this we use the same notion of 
the number of distinct subformulas appearing in the 
axiom scheme or inference rule and we again identify 
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F and -IF. 
A depth d h g e  system is a Frege system allowing 

only formulas of depth at most d in proofs. It is not 
complete but there is a constant c such that any depth 
d tautology has a depth c+d proof in the Frege system. 

Definition 1.1 Let N 2 r 2 2 and let V be a set 
of cardinality N. [VI' denotes the set of r-element 
subsets of V .  

Formula Count: is formedfrom atoms x,, e E [VI' 
and it is the formula: 

v /\=, v V(x"xZf) 
WEV WE, e l f  

where e I f abbreviates the conjunction e n  f # 8Ae # 

Denote by Count,,i the set of formulas Count? for 
N E i (mod r). For R a set of pairs ( r , i )  such that 
0 < i < T, CountR denotes the union of the sets 
of formulas Count,,, such that (r,i) E R. Finally, 
Count, denotes the set of all formulas Count?, for 
N $ 0 (mod r); equivalently, Count, is CountR for 
R = ((T, i) 1 0 < i < T}. 

f .  

In the introduction we observed that if r divides s 
then are polynomial size constant-depth Frege proofs 
of Count, from Count,. 

Problem Assume s , r  2 2 and assume r does not 
divide s. Are there polynomial size, constant-depth 
J k g e  proofs of Count, from instances of formulas in 
Count, 4 If so, under what circumstances do they ex- 
ist ? 

This was solved in the negative by Ajtai [3] for the 
case when T, s are two different primes. The following 
theorem is a strengthened version of Ajtai's result that 
gives a complete characterization of this problem. Let 
symbol (a, b) denote the greatest common divisor of a 
and b. 

Theorem 1.2 Let q 2 2 and 0 < i < q .  Let R be a 
set of pairs of integers (p ,  j) such that 0 < j < p. Then 
there are constant-depth, polynomial size Frege proofs 
of formulas from Count,,i from instances of CountR 
if and only if there is a (p ,  j) E R such that all prime 
divisors of also divide &. 
Corollary 1.3 Let p ,  q 2 2 and assume that there is a 
prime factor of q which does not divide p .  Then there 
is an infinite set of N $ 0 (mod q )  such that there 
are no constant-depth, polynomial size Frege proofs of 
County from instances of Countp. In  particular, this 
holds for all suficiently large N such that ( p ,  f i )  = 
1. 

On the other hand, if all prime factors of q also 
divide p then for every infinite set of N $ 0 (mod q )  
there are constant-depth, polynomial size Frege proofs 
of County from instances of Countp. 

Proof of Corollary 1.3 from Theorem 1.2: For 
the first part, if r is a prime factor of q which does 
not divide p then for N E q/r (mod q )  we have 
( p , h )  = (p , r )  = 1. It follows that for all j, 
0 < j < p, = 1. Thus for each j, 
0 < j < p, there is some prime factor of that 
is not a factor of h. Applying Theorem 1.2 we 
obtain our desired result. 

For the second part, assume that all prime factors 
of q also divide p .  For N $ 0 (mod q) ,  let s be any 
prime factor of f i .  By assumption s also divides p. 
Thus for j = p / s  all prime factors of & also divide 

0 
(%NI 

The bulk of our arguments are concerned with our 
extension of Ajtai's lower bounds but we deal with 
the upper bounds first. These are extensions of up- 
per bounds due to Riis [20]. The informal arguments 
given below can be easily formalized by polynomial 
size, constant-depth Frege proofs. 

Q and applying Theorem 1.2 we are done. 

Lemma 1.4 Assume that T 2 2, 0 < i < T, and k is 
a positive integer. Then 

(a) there are polynomial size constant-depth Frege 
proofs of Count,,i from instances of COZlnt rk , ik .  

(b) if i k  $ 0 (mod T), there are polynomial size 
constant-depth Frege proofs of Count,,i from in- 
stances of CountT,;k mod ,. 

Proof: Suppose that we have an r-partition of N, 
N G i (mod r). We can make k copies of each point 
to create a new set of size N' = Nk. Part (a) follows 
by creating an rk-partition of N' where each new class 
contains all k copies of the elements of each class from 
the partition of N. Part (b) follows instead by creat- 
ing an r-partition of N' by making each class in the 
partition of N into k classes in the new partition. 0 

The proof of the following lemma is more interest- 
ing but too long to include here. The main idea in its 
proof, which we borrow from a similar construction 
due to Riis [20], is to use a property of a set N (ex- 
istence of an rk-partition of N) to obtain a property 
of the set M of k-element subsets of N (existence of 
an r-partition) and to use the fact that the size of M 
modulo r depends on the size of N in a nice way. 
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Lemma 1.5 Let r 2 2 and k be a positive integer. 
There are polynomial size constant-depth Frege proofs 
of Count, .k,k f r o m  instances of Count,,1. 

Corollary 1.8 Let p 2 2 and 0 < j < p .  

(a) There are polynomial size constant-depth Frege 
proofs of Count,,, from instances of C o u n t P I 1 ,  
and 

( p d  

(b) There are polynomial size constant-depth Frege 
proofs of Count-,1 from instances of Count,,,. 

Proof: For (a) part, we start with instances of 
Count+,1. By Lemma 1.5 we obtain Count,,(,,j). 
By defimtion there are integers k, 1 such that (p, j )  = 
kj + lp. Applying Lemma 1.4 part (b) with this value 
of k, r = p and i = j we obtain Count,,,. For (b) 
part, starting with instances of Countp, ,  and apply- 
ing Lemma 1.4 part (a) with r = &, i = j ,  and 
k = (p, j )  we obtain Count j . Then, applying 

Lemma 1.4 part (b) with r = &, i = 1, and IC = -L 
( p , j )  

0 we obtain Count 

Lemma 1.7 Let p ,  q 2 2. If all prime factors of p 
also divide q then there are polynomial size constant- 
depth Frege proofs of  Count,,l from instances of 
Countp, 1 . 
Proof: If all prime factors of p also divide q then 
there is some integer k such that p I q k .  By split- 
ting the classes of size p into pieces of size qk ,  we can 
obtain polynomial size constant-depth Frege proofs of 
Countqh,l from instances of Count,,l. We will show 
how to obtain Count,,l from instances of 

Suppose that there is some q-partition E of N 
1 (mod 4). The Fermat-Euler Theorem implies that 
N m  E 1 (mod q k )  where m is any multiple of 4 ( q k ) .  
Fix some such multiple m with m 2 k. Define a qm- 
partition E' of N m  by taking the the m-th Cartesian 
power of E, i.e. the classes of E' have the form: e l  x 
. . . x e,  where e; are classes of E. E' is a qm-partition 
of Nm = N x . . . x N .  Decompose each class of E' into 
subclasses of size q k .  This yields a partition violating 

We are now ready to prove the forward direc- 
tion of Theorem 1.2. Assuming that all prime di- 
visors of &j divide f i ,  we want to show that we 
can prove Count,,; from Count,,,. By Corollary 1.6 
part (b), we can prove Count- from Count,,,. 
Then by Lemma 1.7, we can prove C o u n t n , l  from 

Lastly, by Corollary 1.6 part (a), we can 
derive Count,,; from Countn , , .  

(P9J) 

(P - 3  

(psi) ' ( p d  

fiJ. 

Countqhll. 0 

( p d  ' 
( q , i )  

( p d  

( q , 4  

2 Reducing the lower bound to a 
combinatorial problem 

In this section we reduce the lower bound that we 
are after to a purely combinatorial problem concern- 
ing generic systems. This section is a modification of 
very similar arguments that can be found in [7] and 
[20] (the name generic systems was introduced in [20] 
for similar objects). For the rest of the paper we shall 
fix two different numbers p, q 2 2 and a set V of car- 
dinality N such that N $ 0 (mod q). We will also 
sometimes find it convenient to identify an  integer N 
with a canonical set of size N .  We will first state some 
important definitions. 

2.1 q-decision trees and k-evaluations 

Definition 2.1 A q-decision tree T over V i s  a finite 
directed tree whose vertices other than leaves are la- 
belled by elements v E V ,  whose edges are labelled by 
classes e E [VI,, whose leaves are labelled f r o m  a fized 
set L of values, (usually L will be the set (0,1}) and 
which satisfies two conditions: 

1. i f  the label of the root of T is v then for  any e E 
[V]q, v E e ,  there is ezactly one edge outgoing 
from the root and labelled by  e, and there are no  
other edges. 
W e  shall identifi the edges by  their labels. 

2. Let Te be the proper subtree of T whose root is the 
end-point of edge e outgoing f rom the root. Then  
Te is a q-decision tree over V \ ( e } .  

The height of tree T i s  the maz imum number of 
edges o n  a path f rom the root t o  a leaf. Let br(T) 
denote the set of branches of T and br;(T) denote the 
set of branches of T with leaf label i E L. W e  shall also 
identifi a branch with the conjunction of the variables 
indezed by i ts  edges. 

We would like to prove the main theorem by finding 
an assignment making all formulas from CountR true 
but Count: false, demonstrating thus that Count, 
cannot be proved from CountR. This is, of course, 
impossible as all formulas in Countq are tautologies. 
So we must find another way of 'evaluating' formulas 
which would permit such argument. A possible eval- 
uation is to assign to each formula 4 a usual decision 
tree deciding the value of the formula and consider 
the set of all branches of the tree for 4 with leaf label 
1. Thus 4 is a tautology iff all branches in this deci- 
sion tree have leaf label 1 (br(T4) = brI(T+) in future 
terminology). 
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We shall approximate this idea by the following def- 
inition. To each formula 4 we assign a q-decision tree 
T+. Intuitively, a formula q5 is approximately true iff 
all branches in T+ have leaf label 1. Furthermore, con- 
dition (1) of Definition 2.1 corresponds to the first con- 
junct in icount: (i.e. every v E v is in some class e 
of the partition violating Count:) while condition (2) 
corresponds to the second one (that any two classes in 
the partition are disjoint). Hence we expect that all 
leaves of T+ have leaf label 1 for q5 = 1Count: and 
thus get a notion of evaluation in which Count: is 
false. The following is a reinterpretation of the defini- 
tion in [17]. 

Definition 2.2 Let r be a set of formulas formed 
f rom atoms of Count: (we shall not repeat this condi- 
tion as we do not consider formulas formed f rom other 
atoms) and closed under subformulas. 

A k-evaluation of I’ i s  a map T : q5 H T+, defined 
o n  r such that: 

1. the set of leaf labels L of T+ is {0,1}. 

2. T+ is a q-decision tree over V of height at most k 

3. TO and TI are q-decision trees of height 0 ,  
brl(T0) = 0 and brl(T1) = br(T1) 

4. T,. is a q-decision tree having the property that 
every non-leaf vertez of TZe is labelled by some 
v E e ,  and brl(Tze) is the unique branch of length 
1 consisting of the edge labelled b y  e .  

2. equality brl(T+) = br(T+) i s  preserved by  any 
sound inference rule of size at most s; for  ezample 
i f  3kq < N, brl(Ta) = br(Ta) and brl(Tlavp) = 
br(Tlavp) implies brl(Tp) = br(Tg) 

3. i f  4 = Count: E r then brl(T+) = 0 # br(T+) 

Assume now that II is a short constant-depth F’rege 
proof of Count: from some instances of CountR; that 
is from some formulas 

where M E j (mod p), 0 < j < p and ( p , j )  E R, 
g E [M]p and qhg are formulas in atoms a, of Count:. 
Other than the CountR axioms, there is a constant s 
such that all axiom schemes and inference rules used 
in 11 are of size at most s. Suppose that there is a 
k-evaluation T of all subformulas in II such that 

(1) kqs < N and 

(2) for all instances 4 of a CountR axiom in 11, 
brl(T+) = br(T+). 

That would give a contradiction with Lemma 2.3 
as brl(T+) = br(T+) would hold for all axioms and all 
inferences in ‘lr but not for the final formula. 

This motivates the structure of our argument. More 
precisely, we first show that if II is a short proof of 
Count: then there is a k-evaluation of all subformu- 
las of 11 satisfying (1) but not (2) and thus derive in 
Theorem 2.5 that a particular combinatorial object (a 
generic system) must exist. We then derive a contra- 
diction in Lemma 2.10 by showing that this combina- 
torial object cannot exist. 

6. if 4 = vi 4, then T+ refines and represents v H Definition 2.4 A ( p ,  q, 1, M)-generic system over V 
is a collection of q-decision trees over VI T,, i 5 MI 
with leaf labels f rom [M]p such that: 

(1) each Ti has height at most e; 

where H := U, brl(T+j), i.e.: 

(a) br(T+) refines H I  i.e. every E E br(T+) ei- 
ther i s  a superset of some F E H or E I F 

(2) each branch in T, with leaf label g has i E g ;  for all F E H where E I F i f e  I f for 
some e E E and f E F 

( b )  brl(T+) = { E  E br(T+) I 3 F  E H ,  F g E}. 

The following lemma is completely analogous to a 
lemma from [17] treating the case of PHP,, in place 
of Count: and we shall not reprove it here. 

Lemma 2.3 Assume I’ i s  a set of formulas closed un- 
der subformulas. Let T be i ts  k-evaluation and assume 
kqs < N. Then 

1. if q5 E I? i s  an  aziom scheme of size at most s 
then brl(T+) = br(T+) 

(3) for all g E [Mlp, br , (z )  = b r g ( q )  for all i, j E g .  

Informally, a (p, q, e,  M)-generic system over V 
specifies locally consistent pieces of a perfect p 
partition of M as partial functions of {te}, e E [Vlq. 
(Say that E and F are compatible if E ,L F. By lo- 
cally consistent, we mean that any mutually compat- 
ible set of branches in the trees of the generic system 
have leaf labels that are themselves mutually compat- 
ible.) When M is congruent to 0 mod p ,  (p, q ,  1, M)- 
generic systems exist (take any system of height 1 q- 
decision trees { T i }  and a ppartition ir of M and label 
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all leaves of Ti by the pclass e E ?r such that i E e ) .  
Even when M is not congruent to 0 mod p ,  the exis- 
tence of a ( p ,  q ,  t, M)-generic system is not inconceiv- 
able since there need not be any mutually compatible 
set of branches that contains a branch from each T,. 

(3) 11 restricted by p is  a proof (over N') of Count:' 
f i o m  instances of CountR, and 

(4) there exists an  k'-evalUation, T, O f  the sUbfo7"u- 
las in II' for  k' 5 Cdk(N).  

Theorem 2.5 Let 0 < i < q and R be a set of 
pairs of integers ( p ,  j )  such that 0 < j < p .  Let d 
be a constant and k ( N )  a function of N with k ( N )  = 
No('), and assume that for  suficiently large N ,  N E 
i (mod q) ,  there are depth d size N k ( N )  Frege proofs 
of County f rom instances of CountR. 

Then for  suficiently large N E i (mod q )  there 
is  a ( p , j )  E R, an  N' 5 N ,  N' = N"(') and 
N' E i (mod q ) ,  an  t = O ( k ( N ) )  and a number 
M = No(') = (N')O('), M j (mod p ) ,  such that 
there ezists a ( p ,  q, 1, M)-generic system over a set V 
of size N'. 

For the proof we need to use restrictions. 

The above lemma is proven by inductively gener- 
ating kl-evaluations (for some appropriate sequence 
of values kl) for the set of subformulas appearing at 
the t bottom levels of every formula in II. It is triv- 
ial to do this for the literals and constants on the 
leaves of the formulas. This kl-evaluation is extended 
to a kl+I-evaluation of the set of subformulas in II 
one level higher by applying a Histad-style switch- 
ing lemma [13] on an appropriate class of restrictions. 
The restrictions that are needed, together with the 
corresponding switching lemma, are stated below. A 
complete proof of this switching lemma and a sketch 
of how to apply it to obtain the above lemma can be 
found in [5].  

Definition 2'6 A restriction p is given by a set O f  Definition 2.8 Define the set of restrictions M L  to 
be the set of all partial q-partitions p of V which cover 
all but q m +  j nodes of V where j = IVI mod q. 

disjoint q-element sets on a domain V .  I t  determines 
an  assignment t o  the variables over V as follows: 

1 i f e E p ,  

x, otherwise. 
(z,)P = 0 i f  e $Z p but e n f # 0 for some f E p, 

W e  shall denote by VP the set of vertices not covered 
by q-element sets of p. Denote by FP the eflect of ap- 
plying the assignment t o  a Boolean formula F ;  we use 
similar notion for  the eflect of p on proofs, functions 
etc. Also, we can apply a restriction p to  a q-decision 
tree T over V in the obvious way t o  obtain a q-decision 
tree T P  over V P .  Note that after applying p, we get 
essentially the same modulus q counting principle on 
V P  and that ( V P l  

Proof: Assume that II is a depth d,  size N k ( N )  Frege 
proof of Count: from instances of some Count? (and 
thus Mi = automatically.) We begin by ap- 
plying a restriction p to each formula in II to get a 
new proof, II' over a smaller universe N' < N with 
the property that II' has a k-evaluation-this is the 
content of the following lemma. 

Lemma 2.7 Let II be a depth d ,  size N k ( N )  Frege 
proof of County f rom instances of CountR.  For some 
cd 5 5(2q2)d,  i f  k ( N )  5 Nilcd, then there exists a 
restriction p such that: 

lVl mod q .  

(2) N' E N(mod q ) ,  

Lemma 2.9 Fix some set V of vertices and integers 
m, T ,  and s 2 0 .  Let Ti be any set of q-decision 
trees over V of height at most r ,  let n = LIVI/qJ 
and let U = m/n. If p is  a restriction chosen uni- 
formly at random from M L ,  then with probability at 
least 1 - ( 4 e ' J r l / q ~ ' J n q - ~ / q ) ~ ,  there is  a q-decision tree 
over VP of depth at most s refining and representing 
v; brl(TP). 

If S is a set of Boolean formulas closed under sub- 
formulas and T is a k-evaluation of S over V then it 
is easy to check that the map T' that sends 4 P  + T$ 
is a k-evaluation of SP over VP. With this observation 
and the appropriate choice of parameters we obtain 
Lemma 2.7 from repeated applications of Lemma 2.9. 

After applying Lemma 2.7, we are left with a 
new proof of Count: from instances of CountR: 
CountF(+) such that M, j ;  (mod p i )  where 
(p i ,  j i )  E R, together with a k'-evaluation, T, for all 
subformulas, in the proof, where N' = N e ,  E > 0, and 
M; 5 (N' )k  1' for k' = O ( k ( N ) ) .  

Lemma 2.3 implies (as brl(T,) # br(T,) holds for 
the final formula 9 of 11') that bro(T4) # 0 for at least 
one CountR axiom 4 in II'. Take one such 4, and any 
G E bro(T4) and restrict 11' further by G. In partic- 
ular, 4 is reduced to some instance dG = County(+) 
for which b r ( T p )  = bro(Tp).  To simplify further 
notation we shall assume that already G p; hence 

799 



M ,  N', k', T, . . . remain the same after applying G and 
br(T+.) = bro(T4) for the axiom 4 = Count:($). 

For each formula $, in Count:($), let T+g denote 
the image of $, under T. 

Claim. For all incompatible g , h  E [M]p ,  if E is a 
branch of T+# labelled b y  1, and F is a branch of T+,, 
labelled by  1, then E I F .  

Proof: Suppose the claim fails, and let g , h  E [M]P 
be incompatible, E ,  F be branches labelled 1 in T+g 
and T$h, respectively, where E is compatible with F. 
Apply the restriction Q = E U F to the entire proof to 
obtain a new proof of Count, on the smaller universe 
of size N' - qIcr1. It  is not too hard to show that 
after applying U to 4 = the tree, T p  
representing 4' will have all 1 labels. 

This is, however, impossible as already brl(T+) = 8. 

We still need to  apply another restriction to II'; 
this restriction will be used to obtain q-decision trees, 
Ti for each i E [MI, whose leaf labels are in [M]P. 
We obtain the q-decision trees Ti, i E [MI, by ap- 
plying Lemma 2 .9  with r = k', s = O(k'/c) and 
m = (NI)' for some constant 6 > 0, to the sets of 
trees F, = {T+# I i E g } .  Let p' be the restriction 
constructed and N" = (N')' be the size of the re- 
sulting domain. A direct application of the switch- 
ing lemma to the Fi, i E [MI, yields q-decision trees 
over N", Ti, with 0-1 labels, that refine and repre- 
sent v,, brl(T$b). We will modify the 1 labels as 
follows. If Q is a branch of Ti labelled by 1, then by 
the switching lemma, it extends a branch labelled 1 of 
some T$b, i E g .  Furthermore, it extends a branch of 

exactly one T$'b by the above claim. Therefore, we will 
label Q by the unique g E [M]p such that Q extends 
a branch of T$'L. By construction, all labels of Ti will 
now be either 0 or will be labelled by some g E [M3P1 
i E g .  

We now show that for all i, no branch of T; is la- 
belled by 0. (This argument is very similar to the proof 
of the above claim.) Assume there exists a branch Q of 
Ti with label 0. By the switching lemma, this implies 
that Q is not compatible with any branch labelled 1 

in U,, brl(T").  Applying the restriction U to the 
entire proof, we ibtain a new proof of Count, on the 
smaller universe of size N" - qlal. But it is not hard 
to show (by similar reasoning as in the above claim) 
that brl(T$') = br (T iU)  since i is not contained in 
any partition of [MI. But again, this contradicts the 
fact that brl(T+) = 0. 

For all i E [MI, we can extend the trees T, to  obtain 
new trees Ti, such that for all i , j  E g ,  the branches of 
q' with label g are equal to the branches of with 
label g. (The height of the new trees will be equal to 
.! = pk, where k was the height of the original trees 

We are now ready to complete the proof of The- 
orem 2.5. We will show that the set of q-partition 
decision trees Ti, i E [MI form a (p, Q, .!, M)-generic 
system for .! = O ( k ( N ) ) .  By construction, the trees 
q' have height O(pk'/c) = O ( k ( N ) )  and the q' are 
defined over a set of size N" = Ne' = Also 
by construction, each branch in q' with leaf label g 
has i E g .  Finally, by the above argument, we have 
shown that for every g ,  and every i , j  E g, the set of 
branches in b r ( z )  with leaf label g ,  is equal to the set 
of branches in b r ( q )  with leaf label g .  Thus, the de- 
cision trees q', i E [MI is a (p, q ,  -!, M)-generic system 
as required by Theorem 2 .5 .  0 

We shall apply Theorem 2.5 only for k ( N )  a con- 
stant because we are able to prove the next lemma 
only for .! a constant independent of N. It is our main 
combinatorial result and its proof occupies sections 3 
and 4. 

Ti .) 

Lemma 2.10 Let .! > 0 .  For all suficiently large 
N such that (p('-')'+',q) I N, there does not ez- 
ist a (p, q ,  .!, M)-generic system over N, with M $ 
0 (mod p). 

Proof of Theorem 1.2: 
Let q' = e 9 % )  and R' = {&J I (p, j )  E R}. By Corol- 
lary 1.6 it suffices to show that there are polynomial 
size constant-depth Frege proofs of Countqi,l from in- 
stances of Countpi,lr p' E R', if and only if there is 
some p' E R' such that all prime factors of p' also 
divide 4'. 

In the case that some such p' exists, the statement 
follows immediately from Lemma 1.7. 

Now suppose instead that for every p' E R' there is 
some prime factor of p' that does not divide 4'. Let 
k be a constant. Assume that, for sufficiently large 
N E 1 (mod q'), there are depth d size Nk Frege proofs 
of Count? from instances of Countpi,l. Then by The- 
orem 2.5 for some p' E R' there is a (p', q', .!, M)- 
generic system over N' E 1 (mod 4') for constant .!, 
it4 E 1 (mod p'), and N' arbitrarily large. 

Let r be the prime factor of p' that does not divide 
q'. From the (p', q', 4, M)-generic system over N' we 
can derive an ( r ,  q', .!, M)-generic system over N' by 
splitting sets of size p' in a canonical way into p'/r 
sets each of size r .  More precisely, for each i E M and 
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g E [MI,' for each leaf of Ti labelled by g we replace 
the label g by the canonical r-subset of g that contains 
i. Since r and q' are relatively prime, the existence 
of this ( r ,  q', 1, M)-generic system over N' contradicts 
Lemma 2.10 and we have completed the proof of the 
theorem. 0 

3 Counting principles and systems of 
polynomial equations 

It is possible to  express the propositional formula 
County by a system of polynomial equations, Qi(Z) = 
0, over the ring Z,. We will first describe these polyno- 
mial equations and then show that Lemma 2.10 follows 
from a nonconstant lower bound on the degree of any 
linear combination of the Qi's that equals 1 modulo p. 

Definition 3.1 Assume that N 8 0 (mod q). An 
( N ,  9)-polynomial system expressing the modulo q 
counting principle is the following system of polyno- 
mial equations in variables z,, e E [V]q, !VI = N: 

one for each v E V, and 

(e1 f 1 x, Xf = 0 

one for each e ,  f E [Vlq, e I f .  

Denote the left-hand side of equation ( v )  by Qu and 
the left-hand side of equation (e ,  f) by Q,,J. 

Assume that U,, e E [VIP, is a solution of the poly- 
nomial system in some field. The equations (e ,  f )  im- 
ply that for each v at  most one U, is nonzero for v E e 
and the equation ( v )  then implies that the unique 
nonzero U, for v E e is equal to 1. Hence the set 

{e E [VIq I u e  = 1) 

is a q-partition of V which cannot exist when N is 
not congruent to 0 modulo q.  Thus the above poly- 
nomial system has no solution in any field. Hilbert's 
Nullstellensatz then implies the following lemma. We 
shall not use it, but we state it here for completeness. 

Lemma 3.2 Let F be any field. There are polynomi- 
als P,, v E V, and P,,j,  e l f  E [V]q, e I f from the 
ring F[Ze] such that equality: 

We note that, although xkF' - x, is not present 
explicitly in the system of polynomials, Q. , Qe,j , it is 
easily derived since x," - a, is obtainable as a linear 
combination 2, * Q, - ~ u E e l , e l f e  Qe,ej  for any v E e.  
Thus a non-constant degree lower bound on the P, and 
Pelf in the above linear combination also implies such 
a non-constant lower bound for an extended system of 
the type considered in the introduction. 

We shall study linear combinations of polynomials 
QU1Qe,f also for the ring Z, of counting modulo p, 
where we do not assume that p is prime. Henceforth a 
linear combination L means a polynomial of the form: 

U e l f  

and the degree of L is the maximum degree of the 
polynomials Pu , Pelf. 

For a non-empty q-partition E = { e l ,  . . . , e t }  of 
V denote by XE the monomial x,, . . . . * x,, and put 
xg := 1. 

Lemma 3.3 Let T be a q-decision tree of height 1 and 
assume 1q < N .  Then the polynomial 

E E br(T) 

can be expressed as a linear combination of degree at 
most 1 -  1. 

(This means that UT is equal to 1 modulo the ideal 
generated by polynomials Q, , Qe,f , but the bound on 
the degrees is also important for us.) 

Proof: Proceed by induction on 1. For 1 = 1 

7 Q = c x e  - 1  
,€e 

for some v E V which is just the polynomial Q, itself. 
Hence UT is a linear combination of degree 0. 

Assume 1 > 1 and let v be the label of the root of 
T .  Then: 

E E br(T) , € e  FEbr(T') 

By the induction hypothesis there are linear combina- 
tions Le of degree at  most 1 - 2 such that: 

and so 

holds in the ring F[Z,]. 
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The quantity CUE, x, L e  is a linear combination of 
degree at most 1- 1 and the remaining quantity is just 
the polynomial Q V ;  hence ut is also a linear combina- 

0 

The next lemma is an important property of generic 

tion of degree at most 1 - 1. 

systems. 

Lemma 3.4 Let T i ,  i E [MI be a ( p ,  q, 1, M)-generic 
system. Then  in the ring Z,[a,] we have 

Proof: Let g E [MI ,  and S, = brg(q) .  By the 
definition of a generic system, for each i E g ,  brg(T;) = 
S, and for each i 4 g, br,(Ti) = 8. Thus for each g ,  
each branch in S, occurs p times in UiELM1 br(Ti), once 
for each of the elements i E g, and hence 

Z E E O  (modp). 
,€[MI E€br(Ti) 

0 

The lemma below follows from the previous two 
lemmas. 

Lemma 3.5 If there i s  a ( p ,  q, 1, M)-generic system 
T i ,  i E [MI ,  such that 1 q < N ,  then there is a linear 
combination L of degree at most 1 - 1 such that L + 
M = 0 in the ring Z,[Z,]. 

Proof: By Lemma 3.3, we can write the sum 

as: 

,€[MI ,€[MI 

where Li are linear combinations of degree at most 
1 - 1. But by Lemma 3.4, 

and thus we have Li + M = 0.  0 

The following is the main technical result of this 
paper. 

Lemma 3.6 (main) Let d be a constant, let N 
be suficiently large and suppose that N satisfies 
( p d a + l  , q )  I N and M f 0 (mod p ) .  Then every linear 
combination L such that L = M in Z,[L~,] must have 
degree larger than d. 

Put otherwise, linear combinations ezpressing a 
constant other than 0 cannot have a constant degree. 

We shall prove the main lemma in the next section, 
now we infer Lemma 2.10 from it. 

Proof of Lemma 2.10 from Lemma 3.6 
Assume that for some constant 1 there exists 

a ( p , q , 1 ,  M)-generic system T i ,  i E [MI ,  M f 
0 (mod p), over some N such that (P(~-')~+', q )  I N .  

If N E 0 (mod q )  then there is some perfect q- 
partition ?r of N .  For each q-decision tree Ti, there 
is some branch E, in T, such that E, c ?r. By the 
definition of generic systems, the leaf labels of these 
branches form a perfect ppartition of M which is im- 
possible since M f 0 (mod p). 

Suppose now that N f 0 (mod q). By Lemma 3.5 
the existence of this ( p ,  q, 1, M)-generic system over N 
implies the existence of a linear combination, L,  of 
degree at most 1 - 1 such that L = - M  in the ring of 
polynomials Z,[$,]. But this contradicts Lemma 3.6 

0 because - M  is not congruent to 0 mod p. 

4 Proof of the lower bound on the 
degree of the polynomials 

In this section we prove main Lemma 3.6. It is an 
immediate corollary of the following lemma. 

Lemma 4.1 Let d be a constant, let N, be suficiently 
large and suppose that N satisfies (pd  + l ,  q )  I N .  If 
P,,, U E V ,  [VI = N ,  are of degree 5 d, then there 
ezists a 0-1 assignment a such that for every e I f 

Q e , f  ( a )  = 0, (3) 

Pu (.)Qv ( a )  = 0, (4) 
and 

UEV 

where we count in Z,. 

The rest of the section is devoted to outlining the 
proof of this lemma. We first need some preliminary 
concepts. 

A 0-1 assignment corresponds to a set of q-element 
sets (those for which x e ( a )  = 1). For this 'to satisfy 
(3) these q-element sets must be disjoint, so without 
loss of generality we restrict ourselves to such assign- 
ments. Also, since we shall evaluate polynomials on 
0-1 inputs, we can replace any xt with d > 1 by c,. 
Thus we shall assume that all polynomials are multi- 
linear. (This assumption could also easily have been 
justified by the fact that for any e ,  x : - x ,  is obtainable 
as a linear combination of degree 1.) 

Let E = z e ,  . . .xed be a monomial of P,,. If v E 
e j ,  for some j ,  then E(a)Q, , (a)  is always 0 ,  since if 
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Q V ( a )  # 0, then v is not covered by a q-element set 
from a,  thus z e j ( a )  = 0 and = ( a )  = 0. Furthermore, 
if e, n e k  # 0, for some j # k, then = ( a )  is always 0, 
since the q-element sets in a are disjoint. 

Convention. From now on we consider only sys- 
tems P = { P , } , ~ v ,  where v is not contained in any of 
the el, . . . , e d  and e l ,  . . . , e d  are disjoint for any mono- 
mial E = z,, . . . zed of P, occurring with nonzero co- 
efficient. 

Fix d. All systems P we consider have degree d 
(i.e. all Pa's have degree 5 d.) For a monomial E = 
z,, . . .zec, we denote by supp(E) = el U . . . U e, the 

The system of polynomials P = { P V } u E ~  is de- 
termined by a sequence of coefficients of the form 
a7 E Z, for 7 = (v, E), where U E V, E = =el . . . z e c  

for c 5 d, e l , .  . . ,e, E [V]q, and { v } ,  e l , .  . . ,e, are 
disjoint. We shall assume that the q-element sets 
are ordered by their least elements, i.e. mine1 < 
. . . < mine,. Thus we get a 1-1 correspondence 
between (v ,E)  with E of degree c and qc + 1- 
tuples (v ,e1,1,  ..,el,p,...,e,,l,..,e,,,) of distinct ele- 
ments from V such that e;,l < ej,l for i < j and 
e,,, < e+ for j < k. 

Definition 4.2 
(I) type(v,E) denotes the isomorphism type of the 
structure 

support of E. 

( { V I  U S v P ( = ) ;  21, e l , .  . . 1  e,, 5) ;  

(2) k- type(v ,  E) over V denotes the isomorphism type 
of the structure 

({v}us'11??p(E); ~ , ~ l , . . . , ~ c , ~ ~ R O ~ . . . , ~ k - l ) ~  

where Ro, .. . , Rk-1 are unary predicates defined by 

&(z) e d f  1: = vj and i = j mod k 

where V = { v i , .  . . , U N } ,  v1 < . . . < VN. 
Definition 4.3 
(I) P is symmetric, i f  for  every type T the ay  are the 
same for all 7 = (U, E) of type T .  
(2) P is k-symmetric over V, i f  for every k-type T 
over V the ay  are the same for  all 7 = (U, E) of k-type 
T over V .  

Lemma 4.4 I f ?  is  pk-symmetric over V ,  I v I  = N, 
( p k + l , q )  I N and N 2 pk+lq ,  then there ezists an 
assignment a such that 

P V ( a ) Q o ( a )  z 0 (mod P). 
V E V  

Proof: Take t 2 0 such that 

N - qt 2 0 and N - qt G 0 (mod pk++').  

Let a consist of a q-partition of the last qt  elements 
of V, the rest being uncovered. Then for v > N - qt,  
P,(a)Q,(a) = 0, since Q,,(a) = 0 already. For 1 5 v 5 
N - qt we have Q,(a)  = -1 and all monomials E in 
P, that are non-zero under a have support contained 
in the last qt elements of V .  Thus, the choice of v 5 
N-qt does not affect the t y p e ( v ,  E) for any monomials 
E that are non-zero under a. By pk-symmetry, for 
any two v ,v '  5 N - qt that agree modulo p k ,  the 
coefficients of all monomials with support among the 
last qt elements of V are the same in P, and P,!. 
Since pk+' divides N - qt the number of v 5 N - qt  
congruent to i modulo pk is divisible by p for each 
fixed 0 5 i < p k .  Thus pk-symmetry implies that for 
every i 

c P,(a)Q,(a)  0 (mod P), 
u < N - q t ,  w ~ i  (mod pk) 

whence the lemma follows. 0 

We note that in the argument above we actually 
used relatively little of the properties of pk-symmetry. 
However, the notion of pk-symmetry is more natural 
for the application of Ramsey's theorem and it facili- 
tates the inductive nature of the argument. 

To apply Ramsey's theorem we employ restrictions 
as described in section 2. When we try to apply Ram- 
sey theorem to get a pk-symmetric system of polyno- 
mials after applying some restriction p we encounter 
two problems: First, a single application of Ramsey's 
theorem will only allow us symmetrize with respect to 
monomials of some particular degree (since the signa- 
tures of monomials of different degrees are different.) 
When we symmetrize with respect to the monomials 
of some degree c,  we apply a restriction and this re- 
striction may also create new monomials of degree c 
from monomials of larger degree. Thus it makes sense 
to symmetrize starting with monomials of large degree 
first in the hope that the newly created monomials will 
occur symmetrically. However, the second problem is 
that if the monomials of degree d are pk-symmetric 
then it turns out (an example can be given) that it 
is not possible to achieve pk-symmetry for monomials 
of smaller degree. This is resolved by starting with 
pr-symmetry for r < k (a stricter notion) for the large 
degrees and then relaxing it as the smaller degrees are 
handled and being careful about the exact details of 
constructing the restriction. 

Suppose that !VI = N, V' = VP = {VI,.  . . , v m ) ,  
v1 < . . . < v, for some restriction p and that P has 
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been made p+-symmetric over V with respect to mono- 
mials of degree greater than d'. To argue that the con- 
tribution to  monomials of degree d' from monomials 
in P of larger degree is pa-symmetric over V' for some 
s > T ,  we argue that for any p'-type TI over V' of de- 
gree d', the contribution (modulo p) to the coefficient 
of any (U,=,) of p'-type 2'' over V' from the restric- 
tion of monomials of pr-type T over V is the same. 
By the pr-symmetry of the larger degree terms over V 
we need only count the number of ( v ,  E l E z )  of pr-type 
T over V that contribute to the coefficient of a given 
( v ,= l )  of p'-type T' over V'. 

We note that for a given ( U , E ~ ) ~  the number of 
Ez such that E; = 1 and ( v , E l E z )  is of a given pr- 
type over V is affected by the relative order of { v }  U 
supp(Z1) among the elements of the q-sets in p. Thus, 
after we choose the set V' using Ramsey's theorem, 
we have to be careful, when we choose p such that 
V' = VP, to consider how the q-element sets in p cover 
the nodes in V \ V' that are between elements of VI; 
we say any such q-element set interleaves the set VI. 

The next lemma whose proof is in the full paper 
formalires the base case of the proof of Lemma 4.1. 

Lemma 4.5 For every m, d', k' > 0 there ezists an 
NO such that f o r  every N > NO with N E m (mod q )  
and every P over any V ,  [VI = N ,  there ezists a re- 
striction p such that 

1. the monomials of degree d' in P in variables over 
the set VP f o r m  a symmetric system; 

2. I VP I = m; 

3. for  every v,v'  E VP, U E U' (mod k'); 

4. i f  we let U = { u l , . . . , u z }  V \ VP be the 
set of elements that are between elements of 
VP then p contains the sets {u i1  U:'), . . . , u:'-~)} 
where fo r  i = 1, ..., z we take disjoint sets 
{U:'),. . . , U$'-')} consecutively, either starting 
f rom the largest element of VP and working up- 
wards, or starting f rom the smallest element of 
VP working downwards. 

Lemma 4.6 For every m > 0 and d' 5 d, there ezists 
NO such that f o r  every N 2 NO with N E m (mod q )  
and every P of degree d over V ,  IVI = N ,  i f  the mono- 
mials of P of degrees d' + 1,. . . , d fo rm a k-symmetric 
system of polynomials, then there is  a restriction p 
such that lVPl = m and the monomials of degree 
d', d' + 1,. . . , d of PP f o r m  a kpd-symmetric system 
over VP. 

To prove this we need: 

Lemma 4.7 Let 0 5 ill. .  . , il < k be fized and con- 
sider all n > 0. Let C be the number of possible choices 
of (b l ,  . . . , bl) with 0 5 bl < . . . < bl < n satisfying 
the condition 

bl E il (mod k) 

bl E i1 (mod k). 
(5) 

Then the residue class modulo p of C is  determined by 
n mod kp'. 

Proof of Lemma 4.6. By Lemma 4.5 there is an 
No such that for any V ,  [VI 2 No and lVl = N E 
m (mod q ) ,  and any P over V ,  there is a restriction p 
satisfying conclusions 1-4 of Lemma 4.5 with k' = kpd. 
Choose this No and p. By conclusion 1 of Lemma 4.5, 
the monomials of degree d' in P over VP appear sym- 
metrically. Thus, since the monomials of degree > d' 
in P form a k-symmetric system it is sufficient to  show 
that if P' is any k-symmetric system of monomials of 
degree at most d over V then PtP  is kpd-symmetric 
over VP. 

Let VI = VP = { q ,  .. . , v,} and write p = p1pz 
where p1 is the portion of p that interleaves V'. 

Consider first PrPa over VPa. Note that VPa is 
a consecutive sequence of elements of V .  Thus, for 
any two ( v l E 1 )  and ( U ' , = ; )  of k-type T over VPO, if 
( v ,  E l E z )  is of k-type T' over V of degree > d' then so 
is (U' ,  EtEz). Thus PrP2 is k-symmetric over VPa. 

It remains to see what happens with monomials 
after applying p1. Since ptPa is k-symmetric over VPa 
and the elements of VPa are consecutive we can ignore 
the difference between PIPa and Pr and between VPa 
and V .  Thus we want to show that for an arbitrary k- 
symmetric system P' over V of degree at most d such 
that VP1 = V' ,  PrP1 is kpd-symmetric over V'. 

Claim. Suppose that T is  a k-type of degree at 
most d over V and T' is  a kpd-type over V' of degree 
c < d. For any ( U , = , )  of kpd-type TI over V ' ,  the 
number (modulo p )  of Ez such that (v ,  E l E z )  has k- 
type T over V and E; = 1 is  the same. 

Let { v }  U SUPp(E1) = { v i o , . .  . , v i q c }  in increasing 
order (c  is the degree of E l ) .  Consider possible mono- 
mials Ez of degree b such that b+c < d and EzP1 = 1. 
Each q-set fixed by p1 is determined by a single repre- 
sentative U E [v l ,  U,] \V'. Thus consider the represen- 
tatives uj1 < . . . < ujS in [v l ,  v,] \ V' which determine 
the monomial Ez. Since E1 is fixed, by construction 
of p1 the k-type of ( U ,  E1Ez) over V depends only on 
two properties: 
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(A) the position of U,,,.. . , ujb w.r.t. uio,  U;, . . . , uiqC 
(which fixes the type of (U, ZlEz) since the order 
of the least elements in the q-sets containing the 
Uj, is either always the order of the uj, or always 
the reverse); 

(B) the residue classes of {U,, , U!:), U:.:), . . . , uj;-')}, 
l " ' 1  {U. 3 b l  u(l) j b  l U j b  (') I * ' * l  U!:-')} modulo k. 

The key observation for (B) is that the residue classes 
of U::), U::), . . . , U::-') are precisely determined by 
the residue class modulo k of U,* and the residue 
class modulo k of the number of vertices in VI less 
than U,,. This is because the residue classes of 
U!:), U!:),. . . , U::-') are determined just by j t  modulo 
k and the difference between the residue classes of ujt 
and j t  depends on the number of vertices in VI less 
than U,,. (The difference is either positive or nega- 
tive depending upon whether p1 matches the elements 
[VI,  um] \ VI above or below ['VI, um].)  

Since we only consider El such that (v,ZlZz) 
has some fixed k-type T over V, for each CY, 0 5 
a 5 qc, we have fixed the indices p, . . . , 7 such that 
U;, < U,,., < . . . < U,, < U;,+, where p and 7 de- 
pend only on a. We shall handle each such inter- 
val ~ ~ , , u ~ , + ~  separately and show that (modulo p) 
the number of choices of such U,,.,,.. . , U,, between 
U;, and vi,+, such that {ujp, U$:', U;:), . . . , u~~-"} 
, .. . , {U,,, uil,), U!:),. . . , u'q-')} belong to particular 
residue classes modulo k depends only on the residue 
classes of i, and ia+l modulo kpd. This will be suf- 
ficient since the total number of choices of E2 is the 
product of the number of choices in each of these inter- 
vals and the kpd-type(u, El) over VI determines these 
residue classes. 

By the key observation, the only further condition 
that the k-type T places on uja , . .  . , uj, is given by a 
sequence of pairs (kp, k;), . .  . , (k7, kk) such that, for 
P 5 t 5 7, 0 5 kt, k: < k and 

3, 

U,, kt (mod k); and 
Lt E k[ (mod k), 

where 1: is the index such that ut, < ujt < uf,+1. 

We would like to apply Lemma 4.7 to the equa- 
tions for U,, and et above and argue that the number 
of solutions only depends on i, and ia+l modulo kpd. 
We cannot do so immediately since it is possible, if 
k: = IC:+,, that 1, = et+, and Lemma 4.7 does not 
apply in this case. Instead we break up the cases into 
the possible partitions a of the interval ply ]  into in- 
tervals [PI, vl], . . ., [/+, v.tJ so that for t ,  t' in in the 

same interval Lt = .&I and for t, t' in different intervals 
1: # & I .  It is now sufficient to argue two things for 
each fixed partition a: 

0 The number of choices (modulo p) of the sequence 
et consistent with the k-type T and the partition 
a depends only on i, and ia+l modulo kpd. 

0 The number of choices (modulo p )  of U,,., , . . . , U,,, 
consistent with k-type T and a fixed sequence of 
et that is consistent with T, is independent of the 
choice of (U, El). 

Given the fixed partition T ,  the sequence of Lt for 
t E lo, 71 is precisely determined by t,, , . . . , e,, where 
i, 5 L,, < . . . < e,, < ia+l and Lpi E kLi (mod k) 
for i = 1,. . . , (. By Lemma 4.7 the number of such 
solutions depends only on ia+l - i, modulo kpc which 
is determined by ia+l - i, modulo kpd since 

Now consider the fixed sequence Lt and its associ- 
ated partition a. For each interval [b, v;] = [r, s] in 
a we count the number of choices of U,, , .. . , U,, con- 
sistent with the k-type T. The solutions U,,, . . . , U,, 
precisely satisfy ut,  + 1 5 Uj, < . . . < Uj, < ut,+1 

and U,, E kt (mod k) for t E [ r , s ] .  By Lemma 4.7 
the number of such choices modulo p depends only 
ut,+1 - (ut, + 1) modulo kp"-'+'. Since all elements 
of V' are equivalent modulo kpd and d 2 s - r + 1, 
ut,+1 - (ut, + 1) is always congruent to  -1 modulo 
kp*-'+' and thus the number of choices modulo p 
in each interval of a is independent of the choice of 
(U, El).  Therefore the number of choices modulo p 
of U,,.,,.. . , U,, consistent with the sequence of Lt and 
the k-type T is independent of the choice of (U, Z1) as 
required . 

Thus we have proved the claim and hence the sys- 
tem PIp is kpd-symmetric, which finishes the proof of 
Lemma 4.6. 0 

Proof of L e m m a  4.1. Let m 2 pda+'q and 
(pd2+', q)lm. Choose V, J V J  = N f m (mod q ) ,  large 
enough to apply Lemma 4.6 for d' = d, d - 1,. . . , 1, 
in order, to a system P = { P v } v E ~  of degree d and 
still have the combined restriction constructed have 
lVPl = m. Choose any such system P and note 
that Lemma 4.6 implies that there is a restriction p 
with lVPl = m and PP is pda-symmetric over VP. By 
Lemma 4.4 there is an assignment a on which PP van- 
ishes. Combining p with a, we get an assignment on 
which the P vanishes. Finally, recall that all Q e f %  
vanish too, due to the fact that p and a are partial 

5 d. 

partitions. 0 
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5 Remarks 

We have introduced a natural approach to prov- 
ing lower bounds for propositional proof systems that 
is based on studying the complexity of the Nullstel- 
lensatz polynomials witnessing the unsolvability of a 
system of equations. 

One important open question is whether or not our 
main theorem can be improved. We conjecture that 
the degree lower bound is nearly linear, although the 
techniques of this paper only succeed in proving a non- 
constant lower bound. Note that an exponential lower 
bound on the size of constant-depth Frege proofs of 
Counts;' from Count, instances would follow from an 
improvement of the degree lower bound to n', for some 
€ > 0. 

We note that, a t  the same time as Ajtai's proof of 
the separation of the counting principles appeared [3], 
Riis [20] also announced a more detailed separation 
but its proof was incomplete. More recently [21], he 
has developed another proof of the separation using a 
Ramsey theory argument but not the Nullstellensatz 
polynomials that we use here. 

Finally, Edmonds, Impagliazzo, and Pitassi [ 111 
have recently shown a lower bound of f'l(n1/4) on the 
degree of the witnessing polynomials for a different 
unsolvable system of polynomial equations. 
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