
Uniform families of polynomial equations over a

�nite �eld and structures admitting an Euler

characteristic of de�nable sets

�y

Jan Kraj���cek

z

Mathematical Institute, Academy of Sciences

�

Zitn�a 25, Prague, 115 67, The Czech Republic

and

Mathematical Institute, Oxford University

24-29 St.Giles', Oxford, OX1 3LB, U.K.

Abstract

We consider families of polynomial equations f

i

(x

1

; : : : ; x

n

N
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that are uniformly determined by

a parameter N . The notion of a uniform family is de�ned in terms of

�rst-order logic.
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a statement that the system has a solution for in�nite N , and we prove a
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solvability for �nite N .

Using this characterisation we formulate a criterion yielding degree

lower bounds for various ideal membership proof systems (e.g., Nullstel-

lensatz and the polynomial calculus).
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particular, the case of �elds.
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Introduction

Consider the following system of polynomial equations over a �nite prime �eld

F

p

. Fix a parameter N � 1 (identi�ed with f0; 1; : : : ; N � 1g). The variables of

the system :PHP

N

are x

ij

, where i 2 N and j 2 N n f0g. The system consists

of the following polynomials:

1. Q

ij

:= x

2

ij

� x

ij

, all i; j.

2. Q

i

1

;i

2

;j

:= x

i

1

j

x

i

2

j

, all i

1

6= i

2

, j.

3. Q

i;j

1

;j

2

:= x

ij

1

x

ij

2

, all i, j

1

6= j

2

.

4. Q

i

:= 1�

P

j

x

ij

, all i.

and the equations are stating that all these polynomials are zero. We identify

a polynomial system fF

i

g

i

with the system of equations fF

i

= 0g

i

.

The system is unsolvable for all N : by the �rst equations each x

ij

is either

0 or 1, by the remaining equations the set f(i; j) j x

ij

= 1g is a graph of an

injective mapping from N into N nf0g, violating the pigeonhole principle (hence

the name :PHP

N

).

Now take for N an in�nite set containing a constant 0. The de�nition of

variables as well as of polynomials make a good sense: the equations are indexed

by tuples of elements of N and the conditions de�ning which monomial occurs

with which coe�cient in a polynomial are de�ned in terms of equalities and

inequalities among indices (making a sense over any set N). For in�nite N

however, :PHP

N

has intuitively a solution as there are injective maps from N

into N n f0g.

This appears to have nothing to do with equations but just with simple

properties of in�nite cardinalities. However, we shall consider N equipped with

structures (most often with a �eld structure in this paper) and we only take

those solutions (i.e., injective maps avoiding 0) that are de�nable in the struc-

ture. Furthermore we shall require that there is a consistent way of assigning

"cardinalities" with values in F

p

to de�nable sets so that one can verify us-

ing such a cardinality modulo p function that a solution indeed satis�es the

equations. This leads to the notion of an abstract Euler characteristic on a

�rst-order structure. An example of a structure admitting such an Euler char-

acteristic (with values in Z, in fact) is the real �eld R in the language of ordered

rings (see Example 2.3).

We show that the solvability of a system of linear equations in F

p

for N

(�nite or in�nite) depends only on r modulo a �xed power p

�

of p, where r is

the Euler characteristic given to (structure) N (in �nite case this is just the

cardinality modulo p

�

). The implicit connection between �nite and in�nite N

is caused by the uniformity of the de�nition of the linear system. The notion

of uniformity is de�ned in (simple) terms of �rst-order logic (or, equivalently,

in a combinatorial way). The proof of this theorem is based on a generalisation
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(from �nite sets to Euler structures) of some results on tabloid modules and

Specht modules (cf.[25]) by [2, 28].

Our main motivation for this work was the question to establish degree

lower bounds for various ideal membership proof systems (over various �elds

F ). A proof system seeks to prove that f

0

2 hf

1

; : : : ; f

k

i, given f

i

2 F [x].

A proof of the ideal membership in the so called Nullstellensatz proof system

(cf.[5]), abbreviated NS, is a k-tuple g

1

; : : : ; g

k

of polynomials from F [x] such

that

P

i�1

g

i

� f

i

= f

0

. A proof of the ideal membership in polynomial calculus

(or Gr�obner calculus as it is called in [11], cf. also [6]), abbreviated PC, is a

sequence of polynomials h

1

; : : : ; h

t

such that h

t

= f

0

, and such that every h

j

is

either one of f

1

; : : : ; f

k

, or is derived from earlier h

1

; : : : ; h

j�1

by one of the two

rules: g

1

, g

2

entail any F -linear combination of g

1

, g

2

, and g entails any x

i

� g.

1

A suitable measure of complexity of proofs turned out to be the maximum

degree of a polynomial from the proof; max

i�1

deg(g

i

f

i

) in NS and max

i

deg(h

i

)

in PC. Some bounds for NS and PC were established (cf.[5, 4, 6, 34, 28, 23]).

If f

i

's are given uniformly in N then the existence of a degree d NS or PC

proof of the ideal membership is equivalent to the solvability of a linear system,

also uniform in N (cf.[5], [28]). Thus our criterion, together with examples

constructed here, yields new proofs for some of the known degree lower bounds,

as well as some new bounds. It allows us to replace �nite combinatorics by

geometric considerations.

The study of algebraic proof systems such as NS or PC originated from a

research in complexity of propositional logic and in related theory of bounded

arithmetic (cf.[27]). In fact, the criterion we prove (Theorem 6.1) was �rst

guessed from a somewhat analogous situation in bounded arithmetic. There is

an in�nitary criterion yielding independence results for bounded arithmetic the-

ory S

2

2

(�) and lower bounds for corresponding proof system and for particular

search trees (cf.[35] and [27, Sec.11.3]). As it is not di�cult to observe that NS

over F

p

corresponds to an extension of S

2

2

(�) by the so called counting modulo

p principle, one expects a similar criterion linking NS and in�nite structures sat-

isfying such a counting principle. We shall, however, not pursue this connection

here as the proof we give does not use any bounded arithmetic.

Although our main motivation lies in ideal membership proof systems, we

devote a large part of the paper to the development of the notion of Euler struc-

tures, a �rst-order structure M augmented by an abstract Euler characteristic

� of its de�nable sets. We give a su�cient condition on M guaranteeing that

some (M;�) is an Euler structure, and we show that the existence of such an

expansion is a property of the theory of M rather than of M itself. Further

we consider various classes of �elds (real closed, algebraically closed, �nite and

pseudo-�nite, p-adic) and prove several existence and non-existence theorems

about Euler characteristics on them. We also consider de�nable dependence of

1

The corresponding rule in the de�nition of PC in [6] allows to infer g

0

� g, any g

0

2 F [x];

as we are interested in the maximum degree of polynomials in a PC-proof, this makes no

di�erence.
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Euler characteristic on parameters.

The paper is organised as follows. The de�nition of uniform polynomial

systems and some examples of these are given the �rst section. Euler structures

are de�ned and studied in the second and the third sections. The solvability

criterion is proved in the fourth section. The �fth section studies Euler structure

properties of various �elds. Degree lower bounds for NS and PC are considered

in the sixth section. The last section concerns the de�nability of the Euler

characteristic.

The reader interested only in degree lower bounds may skip Sections 3, 5

and 7, while the reader interested only in Euler structures may skip Sections 4

and 6.

Remarks on the notation: N is identi�ed with f0; : : : ; N � 1g and [N ]

m

de-

notes the set of m-element subsets of N . Z, Q, R, C are the rings of integers,

and the �elds of rationals, reals and complex numbers respectively. Their lan-

guage is the language of rings 0; 1;+; �;= except for R whose language is the

language of ordered rings containing also <. F

p

is the p-element �nite �eld,

~

F

p

is its algebraic closure. Q

p

and Z

p

are the p-adics and the p-adic integers. Z=m

is the ring of integers modulo m. F

p

G is a group algebra, M

�

and S

�

are the

tabloid module and the Specht module ([25]). Finally, NS and PC are the ideal

membership proof systems de�ned earlier.

1 Uniform systems of polynomials

Consider �rst two more polynomial systems, to have a few examples illustrating

the general de�nition of a uniform system.

Example 1.1 Let N � m � 2. The variables of the system :Count

N

m

are x

e

,

where e ranges over [N ]

m

. The system consists of the following polynomials:

1. Q

e

:= x

2

e

� x

e

, for each e.

2. Q

e;f

:= x

e

� x

f

, for every e, f such that e \ f 6= ; but e 6= f .

3. Q

i

:= 1�

P

e: i2e

x

e

, for each i 2 N .

Assume that x

e

:= a

e

is a solution of the system :Count

N

m

in some integral

domain. Then by equations Q

e

= 0 all a

e

are 0 or 1, and by the remaining

equations the set

fe 2 [N ]

m

j a

e

= 1g

is a partition of N into m-element sets. Thus the system has a solution i� m

divides N .
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Nowwe shall construct another example of a uniform system. Take :Count

N

m

over a �eld F . By Nullstellensatz, for N not divisible by m, the ideal generated

by the system is improper (the same holds for all N in the case of :PHP

N

).

Hence there are polynomials P

e

, P

e;f

and P

i

such that

X

e

P

e

Q

e

+

X

e;f

P

e;f

Q

e;f

+

X

i

P

i

Q

i

= 1

holds in the ring F [x].

Fix d � 2 (2 is the maximum degree of polynomials in :Count

m

) and for any

monomial � (an unordered tuple of variables with repetitions) of degree at most

d, identi�ed with unordered tuples of not necessarily distinct elements of [N ]

m

,

take variables u

�;e

, v

�;e;f

and w

�;i

. Their intended meaning is to denote the

coe�cient of the monomial � in the polynomials P

e

, P

e;f

and P

i

respectively.

Example 1.2 The following linear polynomial expresses the coe�cient of � in

the Nullstellensatz expression above:

X

�;e:�=�[fe;eg

u

�;e

�

X

�;e:�=�[feg

u

�;e

+

X

�;e;f :�=�[fe;fg;e?f

v

�;e;f

+

X

�;i:�=�

w

�;i

�

X

�;e;i:�=�[feg;i2e

w

�;i

:

Denote by NS(d;:Count

m

)

N

the linear system consisting of the equations say-

ing that all these polynomials are zero for all � of degree at most d, except for

the constant monomial 1 (represented by � = ;) for which the equations requires

the value 1 (the right-hand side of the Nullstellensatz expression above).

NS(d;:Count

N

m

) is solvable i� there are polynomials P

e

, P

e;f

and P

i

such that

the maximum degree of P

e

Q

e

, P

e;f

Q

e;f

and P

i

Q

i

is at most d satisfying the

Nullstellensatz identity. Note that this system is intuitively also uniform in N ,

if d is �xed.

Now we give, in two steps, the de�nition of uniform systems. An equivalent

combinatorial de�nition is provided by Lemma 1.7.

De�nition 1.3 Let L(C) be the �rst-order language consisting only of the sym-

bol = for equality and of a �nite set C of distinct constants. Let L

�

(C) be a

�rst-order language extending L(C) and having an element-sort and a set-sort,

and consisting of an equality predicate = in both sorts, of a membership relation

2 between elements and sets, and constants C. The set-sort can be used only

as free variables; i.e., quanti�ers may range only over element-sort.

Any structure M containing C has a unique natural expansion M

�

to an

(expansion of the) L

�

(C)-structure: it interprets the element-sort by its elements

and the set-sort by its subsets. We shall always assume that all constants from

C are di�erent in M .
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We shall, in fact, never substitute for set-variables other than �nite sets.

De�nition 1.4 Let M be a �rst-order structure containing C.

1. Index(M;k) is the set of k-tuples i = (i

1

; : : : ; i

k

) of �nite subsets of M

such that ji

j

j � k, all j � k. The elements of Index(M;k) are called

k-ary indices over M . The support of i is the set supp(i) :=

S

j

i

j

, and

the support - size of i is the cardinality of supp(i).

2. V ar(M;k) is the set of variables x

i

indexed by elements i of Index(M;k)

di�erent from ; = (;; : : : ; ;). (The index ; will represent 1 in monomials.)

3. Mon(M;k; d) is the set of all monomials formed from V ar(M;k) and of

degree at most d. Monomials from Mon(M;k; d) are identi�ed with some

indices from Index(M;kd), utilising the index ; for monomials of degree

less than d: in particular, monomial x

i

1

x

i

2

: : : x

i

` , i

t

= (i

t

1

; : : : ; i

t

k

), is

identi�ed with the kd -ary index (i

1

1

; : : : ; i

1

k

; : : : ; i

`

1

; : : : ; i

`

k

; ;; : : : ; ;).

We sometimes also write x

i

for the monomial i.

4. A polynomial over M is an L

�

(C)-de�nable function from Mon(M;k; d)

to F

p

. It is de�nable in L

�

(C) over A � M if for each a 2 F

p

there

is an L

�

(C)-formula �

a

(�) with free variables � = (�

1;1

; : : : ; �

1;k

; : : : ;

�

d;1

; : : : ; �

d;k

) and with parameters from C [ A such that the coe�cient

of the monomial x

j

1;1

;:::;j

1;k

� : : : �x

j

d;1

;:::;j

d;k

is a i� the formula �

a

(j) holds

in M

�

.

Poly(M;k; d) is the set of polynomials of degree at most d with variables

from V ar(M;k).

5. A family F

M

i

, i 2 Index(M; `) and M ranging over structures containing

C, of polynomials with variables from V ar(M;k) and of degree at most d is

uniform i� there are L

�

(C)-formulas �

a

(; �), a 2 F

p

, with no parameters

other than C, with free variables  = 

1

; : : : ; 

`

, � = �

1;1

; : : : ; �

d;k

of the

set-sort such that for every M and every i 2 Index(M; `) the polynomial

F

M

i

is de�ned in M

�

by the formulas �

a

(i; �).

We shall use the notation F

M

i;j

for the unique a 2 F

p

such that �

a

(i; j)

holds in M

�

, and we shall write F

M

i

=

P

j

F

M

i;j

j, where j also denotes the

monomial corresponding to j.

The language L

�

(C) is introduced to allow as indices also unordered tuples

(as in Example 1.1).

The reason for the somewhat unnatural representation of monomials of de-

gree ` � d by kd -ary indices is that we shall later use the theory of tabloid

modules and tabloids are ordered (it also allows us to use a �xed number of

variables �

ij

for formulas �

a

(�) de�ning polynomials). More importantly, this
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representation of monomials by indices does not account for the commutativ-

ity of variables. We shall correct this situation, when studying degree � d

polynomials, by including in all families F a particular family COMM

k;d

.

De�nition 1.5 COMM

k;d

is a uniform family indexed by pairs i; j of elements

of Mon(M;k; d), with the polynomial COMM

k;d

i;j

being x

i

� x

j

, whenever i; j

represent the same monomial.

Hence, for �niteM , Poly(M;k; d)=COMM

k;d

is isomorphic to the F

p

-vector

space of degree � d polynomials over F

p

with variables V ar(M;k). With this

understanding we shall abuse the language and call elements of Mon(M;k; d)

and Poly(M;k; d) monomials and polynomials respectively; there is never a

danger of misunderstanding.

Note that the linear polynomials are simply functions F : Index(M;k)! F

p

such that each F

(�1)

(a) , a 2 F

p

, is L

�

(C)-de�nable.

We need to link de�nability with the symmetric group. Permutations of N

act also on the set of variables (and hence on polynomials) of the systems from

Examples 1.1 and 1.2, and the systems are invariant under such actions. For a

general uniform system over some M a similar fact holds.

De�nition 1.6 Let M be an L(C)-structure, A � M , and i 2 Index(M; r).

Sym

C

(M=A) is the group of permutations of M �xing point-wise the set C [A.

The type of i over A, denoted tp

C

(i=A), is the isomorphism type of the �nite

L(C)-structure

hC [ supp(i) [ A; fcg

c2C

; fag

a2A

; i

1

; : : : ; i

r

i

with the universe C [ supp(i) [ A.

Types of r-ary indices over A are in a bijective correspondence with orbits of

Sym

C

(M=A) acting on Index(M; r). The following lemma is a simple model-

theoretic fact (recall that we allow quanti�cation only over the element-sort).

Lemma 1.7 Let L(C), the set A and r be �xed. Let X

M

� Index(M; r), M

ranging over L(C)-structures containing A, be a family of sets of r-ary indices.

Then the following two statements are equivalent:

1. There is an L

�

(C)-formula  (�), � = (�

1

; : : : ; �

r

), with parameters from

A such that for each M � A

X

M

= fi 2 Index(M; r) j M

�

j=  (i)g :

2. There is a (necessarily �nite) set S of types over A of r-ary indices such

that for every M � A and every i 2 Index(M; r)

i 2 X

M

i� tp

C

(i=A) 2 S :
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In particular, a family F

M

is uniform i� the value F

M

i;j

2 F

p

depends only on

the type tp

C

((i; j)) of the pair of indices (i; j).

Let us conclude this section by an example of a system that is not uniform

in our sense but that also occurred in proof complexity. It is the iteration

principle considered in connection with bounded arithmetic in [7] (renamed as

the house-sitting principle by various authors, cf. [4, 11]).

Example 1.8 For N � 1, the system Iter

N

has variables x

ij

, for i; j 2 N , and

polynomials:

1. x

2

ij

� x

ij

, all i; j.

2. x

ij

(1�

P

k>j

x

jk

), all i < j.

3. 1�

P

j>0

x

0j

.

By 1. and 3., x

0;j

0

= 1 for some j

0

> 0. Then by 1. and 2., x

j

0

;j

1

= 1 for some

j

1

> j

0

, and x

j

1

;j

2

= 1 for some j

2

> j

1

, etc., which is impossible.

The system is not uniform as its de�nition uses an ordering of N .

2 Euler structures and evaluation of polynomi-

als

The following de�nition formalises properties of an Euler characteristic thought

of as a cardinality function. I have come up with it while progressing towards

Theorem 6.1, in a splendid ignorance of possibly related work. Papers, where

such a cardinality function on possibly in�nite structures is considered in order

to extend validity of results for �nite structures are the following: [37] con-

siders a general problem of constructing an abstract Euler characteristic (and

dimension) for distributive categories, and [41] uses Euler characteristic in the

O-minimal context as a cardinality function. [1] studies the existence of a car-

dinality modulo p function for linearly ordered structures.

De�nition 2.1 Let M be a �rst-order structure. Def

k

(M) is the class of

subsets of M

k

de�nable in M (with parameters) and Def

1

(M) is the union

S

k

Def

k

(M).

Let R be a commutative ring with unity. A function

� : Def

1

(M) �! R

is an abstract Euler characteristic on M over R i� it satis�es the following

conditions:

1. �(fag) = 1, any a 2M

k

.

8



2. �(A [ B) = �(A) + �(B), whenever A;B;A [ B 2 Def

1

(M) and A, B

are disjoint.

3. �(A�B) = �(A) � �(B), whenever A;B;A�B 2 Def

1

(M).

4. �(A) = �(B), whenever A;B 2 Def

1

(M) and there is a de�nable bijec-

tion between A and B.

5. �(A) = c � �(B), whenever c 2 R, A;B 2 Def

1

(M) and there is a de�n-

able map f with domain A and range B such that each its �ber f

(�1)

(b),

b 2 B, has Euler characteristic �(f

(�1)

(b)) = c.

Any pair (M , �=R) satisfying this conditions is called Euler structure and an

Euler expansion of M . (We abuse the notation slightly as (M;�=R) is not a

�rst-order structure.)

A function �=R satisfying all conditions but the last one is called weak ab-

stract Euler characteristic and (M;�=R) a weak Euler structure.

The word abstract is meant to stress that � is not assumed to arise from any

particular cohomology theory, and we shall skip it for the sake of brevity. We

shall also abbreviate the phrase that M admits an (weak) Euler characteristic

� over R to M admits (weak) �=R.

Note that the conditions in De�nition 2.1 are not independent. For example,

conditions 3. and 4. follow from conditions 1. and 5. (the former is witnessed

by a projection map, the later is trivial using 1.), and assuming a priori that � is

not identically zero and R is an integral domain, also 1. follows from 5. (there is

a de�nable bijection between fag and fag� fag so x := �(fag) satis�es x

2

= x

and thus x = 0 or x = 1, the former being excluded as it forces � � 0). Hence,

having a non-constant function � from Def

1

(M) to an integral domain, it is

enough to verify conditions 2. and 5. in order to certify that � is an abstract

Euler characteristic.

In the proof of Theorem 4.1 as well as in its applications to degree lower

bounds (Section 6) we use Euler structures and not weak Euler structures.

However, general existence theorems like Theorems 3.1, 3.4 or 3.7 seems to be

valid only for weak Euler structures.

We note a simple but useful property of Euler structures.

Lemma 2.2 Let (M;�=R) be an Euler structure. Let R � A�B be a de�nable

relation between de�nable sets. Assume that there are c

A

; c

B

2 R such that

�(fb 2 B j R(a; b)g) = c

A

; for all a 2 A

and

�(fa 2 A j R(a; b)g) = c

B

; for all b 2 B :

Then �(A) � c

A

= �(B) � c

B

.

9



Proof :

Let �

A

and �

B

be the two projections of R on A and B. By the assumption,

all �bers of �

A

as well as of �

B

have the same value of the �-characteristic (c

A

and c

B

respectively). So, by condition 5. of De�nition 2.1

�(A) � c

A

= �(R) = �(B) � c

B

:

q.e.d.

We shall give now several examples of Euler structures.

Example 2.3 Let R be the real �eld considered as a �rst-order structure in the

language of ordered rings 0; 1;+; �; <. De�nable sets are semi-algebraic sets (by

Tarski-Seidenberg's theorem) and R admits �=Z (see [13, 14, 33, 37]).

Note that this Euler characteristic is di�erent from the one arising from the

singular cohomology (the later one does not distinguish between an open and a

closed interval which contradicts conditions of De�nition 2.1).

Similar general construction of �=Z works over any O-minimal structure

(cf.[13, 14, 33]). In particular, over expansions of R by the restricted analytic

functions or exponentiation or Pfa�an functions (see [12, 16, 42, 43]).

A reduct of R whose de�nable sets are boolean combinations of polyhedra

(semi-linear sets) is considered in connection with Euler characteristic in [40].

Example 2.4 Let C be the complex �eld considered as a �rst-order structure

in the language of rings 0; 1;+; �. De�nable sets are boolean combinations of

algebraic sets, i.e. constructible sets (by Chevalley, cf. [32, 30]) and C admits

�=Z as C is de�nable in R

2

.

In fact, all algebraically closed �elds of characteristic 0 admit �=Z.

Example 2.5 A pseudo-�nite �eld is an in�nite �eld satisfying the theory of

all �nite �elds (cf.[3, 8, 18] or the introduction to [22]). Any pseudo-�nite �eld

admits weak �=R over any �nite R (see Theorem 5.6).

We remark that [9] provide a function � de�ned on de�nable sets in pseudo

- �nite �elds with values in Q

+

(behaving like a measure). � satis�es all the

conditions of De�nition 2.1 except condition 2. that holds only for sets of equal

dimension.

Example 2.6 The rings of integers and rationals do not admit weak �=R over

any non-trivial R as in both rings a bijection between a non-empty subset of the

ring and the subset without one element is de�nable (this is trivial for integers,

and integers are de�nable in rationals by [36]). That contradicts conditions 1.,

2. and 4. of De�nition 2.1.

10



Our use of Euler structures is aimed chiey at the following.

De�nition 2.7 Let (M

�

; �=F

p

) be an Euler structure and let

f : Index(M; r)! F

p

be de�nable in M

�

. For a 2 F

p

, let

X

a

:= fj 2 Index(M; r) j M

�

j= f(j) = ag :

Then we de�ne, for b 2 F

p

:

(M

�

; �=F

p

) j=

X

j

f(j) = b i�

X

a2F

p

a � �(X

a

) = b :

In particular, as F 2 Poly(M;k; d) is de�nable in M

�

, if there is a de�nable

assignment a to V ar(M;k) giving the value a

j

to monomial j, then the value of

F at a is one of such sums:

P

j

F

M

j

a

j

. We leave it as an exercise to verify that

this evaluation of polynomials is a homomorphism of the space of polynomials

Poly(M;k; d) to F

p

, �xing F

p

and containing COMM

k;d

in its kernel. We

only summarise in one lemma some of the counting properties provable from

Euler characteristic axioms used later (the proofs establish de�nable bijections

between terms on both sides of the equalities).

Lemma 2.8 Let (M

�

; �=F

p

) be an Euler structure. Let f; g : Index(M; r) !

F

p

and h : Index(M; r) � Index(M; r) ! F

p

be functions de�nable in M

�

.

Then:

1. (

P

j

1

f(j

1

))(

P

j

2

g(j

2

)) =

P

j

(

P

j

1

;j

2

:(j

1

;j

2

)=j

f(j

1

)g(j

2

)),

with j

1

; j

2

ranging over Index(M; r), j over Index(M; 2r), and (j

1

; j

2

)

being the concatenation of indices j

1

; j

2

.

2.

P

i

(

P

j

h(i; j)) =

P

j

(

P

i

h(i; j)),

with j ranging over Index(M; r).

Proof :

Consider the �rst part. By the de�nition (

P

j

1

f(j

1

))(

P

j

2

g(j

2

)) is equal to

(�(X

0

) + : : :+ �(X

p�1

)) � (�(Y

0

) + : : :+ �(Y

p�1

))

where X

a

(resp. Y

a

) is the set of j

1

(resp. j

2

) such that f(j

1

) = a (resp.

g(j

2

) = a). Similarly, the right hand side of the equation is equal to

�(Z

0

) + : : :+ �(Z

p�1

)

where Z

a

is the set of triples hj; j

1

; j

2

i such that j = (j

1

; j

2

) and f(j

1

)g(j

2

) =

a. The de�nable bijection sending pair hj

1

; j

2

i to the triple h(j

1

; j

2

); j

1

; j

2

i ,

maps

S

p�1

i=0

X

i

� Y

a�i

onto Z

a

(the term a � i is modulo p). Hence �(Z

a

) =

P

p�1

i=0

�(X

i

)�(Y

a�i

) and the equality follows.

The second part is analogous.

q.e.d.
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3 More on Euler structures

The reason for the non-existence of weak �=R in Example 2.6 is, in fact, the

only one.

Theorem 3.1 Let M be a structure. The following two properties are equiva-

lent:

1. For no X 2 Def

1

(M) is there a de�nable bijection between X and X

without one element.

2. There is a non-trivial ring R such that M admits weak �=R.

Proof :

The second property implies the �rst one by conditions 1., 2. and 4. of

De�nition 2.1. Assume now that the �rst property holds.

De�ne an equivalence relation on Def

1

(M) by: X � Y i� there is a de�n-

able (inM) bijection betweenX and Y . Denote R

0

the factor setDef

1

(M)= �.

We equip R

0

with an interpretation of the ring language as follows:

1. 0 := ;= �.

2. 1 := fag= �, for any a 2M .

3. (X= �) + (Y= �) = (Z= �), if for some disjoint X

0

2 (X= �) and Y

0

2

(Y= �) it holds that X [ Y � Z.

4. (X= �) � (Y= �) = (Z= �), if X � Y � Z.

The structure (R

0

; 0; 1;+; �) is not a ring (as (R

0

; 0;+) is not a group) but it is

a (Burnside) rig in the sense of Schanuel [37] (a "ring without negatives").

De�ne an equivalence relation �

1

on R

0

by: a �

1

b i� a+ c = b+ c for some

c 2 R

0

, and let R

1

be the factor rig R

0

= �

1

. (R

1

; 0;+) is still not a group but

it is a cancellative monoid. Let R be the unique minimal ring that embeds R

1

.

R is non-trivial i� R

1

is, i.e. i� 0 and 1 are not �

1

-equivalent in R

0

. The later

condition is equivalent to the hypothesis of the theorem.

q.e.d.

Note that algebraically closed �elds of all characteristics satisfy the �rst

condition of Theorem 3.1, cf. Example 5.5.

Lemma 3.2 Let M

1

, M

2

be two structures of the same signature, and assume

that M

1

is an elementary substructure of M

2

. Assume that M

2

admits weak

�=R.

Then M

1

admits weak �=R too.

12



Proof :

Let �

2

be an Euler characteristic on M

2

over R. Let X

1

� M

k

1

be de�ned

in M

1

by �(a; x), for some parameters a 2M

`

1

.

Take X

2

�M

k

2

de�ned in M

2

by the same formula and put:

�

1

(X

1

) := �

2

(X

2

) :

It is easy to see that �

1

does not depend on the particular de�nition �(a; x) and

that it satis�es the �rst four conditions of De�nition 2.1.

q.e.d.

I do not know if the lemma can be extended to non - weak �=R; the same

proof does not apply as one does not have a control over the Euler characteristic

of �bers f

(�1)

(b) for b outside of M

1

, even if f is de�nable in M

1

and satis�es

there the hypothesis of the �ber condition 5 of de�nition 2.1. However, if � is

de�nable (see Section 7), then f satisfying the hypothesis of the �ber condition

in M

1

satis�es it also in M

2

and the same proof goes through.

Lemma 3.3 Let M

i

, i 2 I, be structures of the same signature, and assume

that M is an ultraproduct of M

i

. Assume that all M

i

admit (weak) �=R, where

R is �nite.

Then M admits (weak) �=R too.

Proof :

The ultraproduct naturally carries � (the ultraproduct of the Euler charac-

teristics of M

i

) with values in the ultrapower of R. However, as R is �nite this

ultrapower is isomorphic to R.

q.e.d.

The use of ultraproduct is certainly not necessary as Euler expansions of M

over a �nite R are just expansions of M satisfying a certain in�nite �rst-order

theory (see the proof of Theorem 7.2) and hence compactness would su�ce.

However, we shall �nd the ultraproduct formulation handy later on.

The next theorem shows that the property whether M admits weak �=R,

for �nite R, is really a property of its theory.

Theorem 3.4 LetM

1

, M

2

be two structures of the same signature, and assume

that M

1

is elementarily equivalent to M

2

. Assume that M

1

admits weak �=R,

where R is �nite.

Then M

2

admits weak �=R too.

Proof :

By a theorem of Shelah [39], there are ultrapowers M

�

i

of M

i

, i = 1; 2, that

are isomorphic.

If M

1

admits weak �=R so does M

�

1

(by Lemma 3.3) and thus M

�

2

too. As

M

2

is an elementary substructure of M

�

2

, it admits weak �=R also, by Lemma

3.2.

13



q.e.d.

It is clear that structures admitting �=(Z=m) are axiomatizable by a �rst-

order scheme in the original language (use compactness). However, a natural

axiomatisation is possible using the so called counting principles, see [1].

De�nition 3.5 Let m � 2 and let M be a �rst-order structure. We say that

M satis�es counting principle modulo m, written M j= Count

m

, if there are no

de�nable set X � M

k

and two de�nable equivalence relations R, S on X such

that

1. Every class of R has size m.

2. Every class of S except one exceptional class has size m and the excep-

tional class has size between 1 and m� 1.

In [1] it is proved that if M can be de�nably linearly ordered and p is a

prime, then M admits weak �=F

p

i� M j= Count

p

([1] has no �ber condition 5.

of De�nition 2.1). One direction (the next lemma) is simple and holds for any

m � 2. The proof of the other direction can be modi�ed so that the assumption

about the existence of a linear ordering is not needed (Theorem 3.7).

Lemma 3.6 ([1]) Assume that M admits weak �=(Z=m), and that a linear

ordering of M is de�nable in M .

Then M j= Count

m

.

Proof :

Assume that X , R, S witness the failure of Count

m

in M . Using R and

the de�nable linear ordering of M (and consequently of M

k

) de�ne X

i

� X ,

i = 1; : : : ;m, the sets of the i-th elements of classes of R. There are de�nable

bijections between X

1

and all X

i

(pair two elements in the same classes) so in

Z=m:

�(X) =

X

i

�(X

i

) = m � �(X

1

) = 0 :

Similarly we may partition X n Y using S into X

0

i

, where Y is the exceptional

class of S, so that in Z=m:

�(X) = �(Y ) + �(X n Y ) = �(Y ) +

X

i

�(X

0

i

) = �(Y ) +m � �(X

0

1

) = �(Y ) :

However, 1 � �(Y ) � m � 1 and hence �(Y ) is non-zero in Z=m. That is a

contradiction.

q.e.d.

Theorem 3.7 Let p be a prime and assume that M j= Count

p

.

Then M admits weak �=F

p

.
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Proof :

If M j= Count

p

then, in particular, M satis�es the hypothesis of Theorem

3.1. This is because if f : X ! X n fag is a bijection then X � fc

1

; : : : ; c

p

g (c

i

distinct) admits two equivalence relations: S

1

with classes f(x; c

1

); : : : ; (x; c

p

)g,

x 2 X , and S

2

with classes f(x; c

1

); : : : ; (x; c

p�1

); (f(x); c

p

)g, x 2 X , with one

missing point (a; c

p

).

Let R be the (non-trivial) ring constructed in the proof of Theorem 3.1 (we

use also the notation from that proof).

De�ne an ideal I in R as follows. It is su�cient to specify I on R

1

. Let

a 2 R

1

. Then a 2 I i� a has the form a = (X= �)= �

1

for some X 2 Def

1

(M)

such that there exists a de�nable equivalence relation S on X whose all classes

have p elements. It is clear that I is indeed an ideal in R, and is proper by

Count

p

.

We claim that R

0

:= R=I is a ring of characteristic p that satis�es the

identity x

p

= x. The former is obvious. For the later let a 2 R

1

has the form

a = (Z= �)= �

1

for some Z 2 Def

1

(M), and let �

Z

be the diagonal in Z

p

(i.e., in Z � : : : � Z, p-times) and Y := Z

p

n �

Z

. Hence �

Z

� Z. De�ne an

equivalence relation S on Y by: (y

1

; : : : ; y

p

)S(y

0

1

; : : : ; y

0

p

) i� (y

0

1

; : : : ; y

0

p

) can be

obtained from (y

1

; : : : ; y

p

) by a cyclic permutation. This proves that a

p

�a 2 I .

Finally, take a maximal ideal J in R

0

and the factor R

0

=J . Necessarily

R

0

=J ' F

p

, as it is a �eld of characteristic p satisfying the identity x

p

= x.

q.e.d.

We remark that Ajtai's proof [1] of a similar statement in the presence of

a de�nable linear ordering in M uses the ordering in a non-trivial way in the

proofs of properties F5 (the last paragraph) and F6 there.

The theorem cannot be reversed in general: an algebraically closed �eld of

characteristic p is an example of a structure admitting weak �=F

p

(even weak

�=Z by Example 5.5) but not satisfying Count

p

(by Theorem 5.1).

Lemma 3.8 If M j= Count

m

then M j= Count

n

, for all njm.

Proof :

If X , R, S witness the failure of Count

n

in M , we may replace every point

in X by its

m

n

copies. Such inated X , R, S form a counterexample to Count

m

.

q.e.d.

For �nite M a form of converse holds too, cf.[5, Sec.2]. Identical argument

as there proves the same converse for in�nite structures with a de�nable linear

order.
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4 Solvability criterion

The aim of this section is to prove the following theorem generalising a theo-

rem of Ajtai [2] from �nite structures to Euler structures. A prime p is �xed

throughout the section.

Theorem 4.1 Let F be a uniform family of linear polynomials over F

p

, with

variables indexed by k-indices and polynomials indexed by `-indices.

Then there is � � 1, depending only on k and `, and Q � f0; : : : ; p

�

�1g such

that the following holds for any su�ciently large Euler structure (M;�=(Z=p

�

))

(�nite or in�nite):

F

M

is solvable in (M;�=(Z=p

�

)) i� �(M) 2 Q :

The rest of the section consists of the proof of the theorem. For degree lower

bounds in Section 6 we need only the statement of the theorem but nothing

used for its proof; hence a reader interested only in the lower bounds but not

keen on details can skip the rest of the section.

The proof follows the construction from [28] that extends and modi�es a

construction from [2]. Ajtai [2] constructs generators for group algebra sub-

modules of the tabloid modules that are de�nable in particular expansions of

the underlying structure (that is always �nite in [2, 28]). The expansions used

allow to linearly order the universe (in order to de�ne a standard tableaux) and

to simulate a counting modulo a �xed power of p (in order to sum various de�n-

able functions over sets of `-tuples). This extra structure is already discarded

in [28] at the expense of replacing a bounded size set of generators of the sub-

module by a uniform family generating the submodule as a vector space. The

counting in the expanded structures in [2] is reduced in [28] to the knowledge

of M (mod p

�

), and will be replaced here by counting using the Euler charac-

teristic. In particular, polynomials are evaluated by the Euler characteristic in

the sense of De�nition 2.7.

Let us give now an example illustrating why we need � over some Z=p

�

rather than just over F

p

. Consider a set X of 2-indices formed by unordered

pairs of di�erent elements of M . If jM j = n is �nite then jX j (mod 2) does

not depend only on n (mod 2) but on n (mod 4). A calculation showing that

2�(X) = �(M)(�(M)� 1) is valid also for in�nite M . Namely, let R �M �X

be the element-hood relation. Then R-degree of any element of M is �(M)� 1

while the R-degree of any element of X is 2. Thus �(M)(�(M)�1) = 2�(X), by

Lemma 2.2. Hence to be able to count modulo 2 sets of 2-indices it is necessary

to count modulo 4 subsets of M . A general statement we need is the following.

Given M and r � 1, denote by (M; Index(M; r)) the two-sorted structure

expanding M by the element-hood relation between elements of M and � r-

element subsets of M occurring in Index(M; r).

The next lemma is analogous to [28, L. 1.7] but the construction is a bit

di�erent as we must use only de�nable maps and relations and not a priory
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counting.

Lemma 4.2 Let M be a set without a structure, possibly with a distinguished

set C of constants. Given r � 1 there is � � 1 such that any Euler structure

(M;�=(Z=p

�

))

uniquely determines an Euler structure

((M; Index(M; r)); �

0

=F

p

)

on an L

�

(C)-expansion of M with the property that

�(X) � �

0

(X) (mod p)

for all X 2 Def

1

(M).

Moreover, if f : Index(M; r)! F

p

is a de�nable function then

X

j2Index(M;r)

f(j) (mod p)

as de�ned by �

0

, depends only on �(M) and �(C), provided p

�

> (r!)

r

.

Proof :

A natural approach to extending � to �

0

is to represent r-indices, say j =

(j

1

; : : : ; j

r

), by ordered r-tuples of ordered elements of supp(j

i

), and instead of

counting the �

0

-cardinality of a set of j's count the �-cardinality of the set of

corresponding tuples. However, every j is represented by many such tuples and

we need to verify that the usual arithmetic of ordered and unordered tuples can

be carried from axioms of Euler characteristic only. As an illustration that it is

so we compute the �-cardinalities of the sets of realizations of all possible types

of j's.

We wish to compute �(J), where J is the set of realizations of a type

tp

C

(j=A) of j 2 Index(M; r), and show

Claim 1: �(J) (mod p) depends on �(M), �(A) and �(C) only, if � is large

enough.

(The value of � will be speci�ed later.)

We proceed by induction on r. For simplicity we �rst disregard C and A.

Let j = j

1

; : : : ; j

r

and j

�

= j

1

; : : : ; j

r�1

. If r = 1 then J is the set of j

1

-element

subsets of M and this is handle as the case j

1

= 2 before the lemma. For

r > 1, let J

�

be the set of realizations of tp

C

(j

�

). Then an element j 2 J

is in a one-to-one correspondence with the triple j

�

, tp

C

(j

�

=supp(j

�

)) where

j

�

:= j

1

; : : : ; j

r�1

; j

r

\supp(j

�

), and tp

C

(j

r

nsupp(j

�

)=supp(j

�

)). Elements j

�

comprise J

�

. The set of realizations of tp

C

(j

�

=supp(j

�

)) has only boundedly

many realizations (depending on r), and the set of realizations of tp

C

(j

r

n
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supp(j

�

)=supp(j

�

)) is in one-to-one correspondence with the set of t-element

subsets ofMnsupp(j

�

), for t := jj

r

nsupp(j

�

)j. As t � r, the Euler characteristic

of the last set modulo p depends, as before, only on Euler characteristic module

a �xed power of p (depending on r), see the claim below.

Hence

�(J) = �(J

�

) � c � �([X ]

s

)

where c is bounded, X is a de�nable set and s � r. By induction assumption

the claim holds for �(J

�

), so it holds for �(J) as well, provided we have the

following

Claim 2: For any s � 1 and any X 2 Def

1

(M) with at least s elements the

set [X ]

s

of s-element subsets of X (a particular s-indices) satis�es:

�([X ]

s

) � s! = �(X) � (�(X)� 1) � : : : � (�(X)� s+ 1) :

The claim is veri�ed by induction on s. The case s = 1 is obvious. For s > 1

we have

�([X ]

s

) � s = �([X n fag]

s�1

) � �(X)

where a 2 X is any element. This is seen as the case s = 2 before the lemma,

taking the element-hood relation R � [X ]

s

�X and applying Lemma 2.2. By

induction hypothesis then

�([X n fag]

s�1

) � (s� 1)! = (�(X)� 1) � : : : � (�(X)� s+ 1)

which together imply the equality.

Returning back to our original aim, we notice that the number of ordered

tuples representing an index j as described at the beginning of the proof is at

most (r!)

r

. Hence the above computation shows that as long as p

�

> (r!)

r

, �

uniquely determines �

0

.

q.e.d.

For the rest of the section �x the polynomial system F and the Euler struc-

ture (M;�=(Z=p

�

)); � is �xed but unspeci�ed at this point. We shall assume

familiarity with some notions and some constructions from [28]. However, we

give in detail all de�nitions and their modi�cations needed to our case.

De�nition 4.3 1. An r-partition of M is a tuple � = �

1

; : : : ; �

k

of natural

numbers such that

jM j �

k

X

i=1

�

i

�

k

X

i=1

�

i

and r � �

1

and r � 1 � k. (Note that the �rst inequality always holds if

M is in�nite.)
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The partition is proper if moreover

jM j �

k

X

i=1

�

i

� �

1

� �

2

� : : : � �

k

2. Let � = �

1

; : : : ; �

k

be an r-partition. A �-tabloid is a (k + 1)-tuple of

subsets X

0

; X

1

; : : : ; X

k

of M such that

(a) X

i

's form a partition of M .

(b) jX

i

j = �

i

, for i � 1.

3. A �-tableaux t is a �-tabloid X

0

; : : : ; X

k

together with

(c) Linear orderings of X

1

; : : : ; X

k

.

(d) A linearly ordered subset X

0

0

� X

0

of size �

1

.

If t is a tableaux, ftg denotes the underlying tabloid (forgetting the data

in (c), (d).

We picture tableaux t as arranged into rows X

0

; : : : ; X

k

and columns, the

ith column (i � �

1

) consisting of the ith elements of the rows (if they exist).

We do not order into columns the remaining elements X

0

nX

0

0

of the �rst row.

De�nition 4.4 Let � = �

1

; : : : ; �

k

be a proper r-partition and t a �-tableaux.

C

t

� Sym

C

(M) is the column stabiliser subgroup of the symmetric group of M

containing those � 2 Sym

C

(M) such that

1. � � id on X

0

n (X

0

0

[X

1

[ : : : [X

k

).

2. � �xes set-wise all �

1

columns of X

0

0

; X

1

; : : : ; X

k

.

Note that jC

t

j � ((k+1)!)

r

� (r!)

r

, and that if � is an r-partition then �-tabloids

correspond to particular r-indices (forgetting X

0

).

De�nition 4.5 Let � be an r-partition. The tabloid module M

�

is the set of

all L

�

(C)-de�nable (with parameters) maps from the sets of �-tabloids to F

p

.

Such an element shall be denoted as

P

f(ftg)ftg or as

P

j

u

j

j with j ranging

over �-tabloids.

Note that this de�nition yields the usual de�nition of [25] if M is �nite.

However, if M is in�nite then it is not the case that M

�

is a vector space with

the basis formed by the �-tabloids.

In what follows we extend the arguments from [28] from �nite structures to

Euler structures (possibly in�nite). We show that de�nitions as well as proofs
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carry directly to this more general context; we consider in detail the important

Submodule theorem of James [25] (generalised to Theorem 4.9 here).

We remark that Gray [19, 20] extended a part of James's characteristic - free

representation theory of the symmetric group from �nite to in�nite. In particu-

lar, he studied F

p

Sym(M) - submodules of a permutation module generated by

unordered k - tuples of elements over in�niteM (note that this is itself a proper

submodule of M

�

as de�ned here, for � = �

1

being unordered k - tuples).

Following [28] we say that V generates a F

p

[Sym

C

(M)]-submodule U i� it

generates U as an F

p

[Sym

C

(M)]-module, and that it generates U as a vector

space i� U is the F

p

-linear span of V .

De�nition 4.6 1. Let � be a proper r-partition and t a �-tableaux. The

signed column sum of t is

�

t

:=

X

�2C

t

(sgn �)�

and the polytabloid of t is

e

t

:= ftg�

t

2. The Specht module S

�

is the F

p

[Sym

C

(M)]-submodule of M

�

spanned by

all polytabloids e

t

.

Note that S

�

is de�ned identically as in [25], and that it is a cyclic submodule

generated by any polytabloid e

t

([25, 4.5]).

Lemma 4.7 1. Let t, t

�

be two �-tableaux. Then ft

�

g�

t

is either 0 or e

t

or

�e

t

.

2. Let u 2 M

�

be arbitrary and let t be an arbitrary �-tableau. Then there

is c 2 F

p

such that u�

t

= c � e

t

.

Proof :

Assume ft

�

g�

t

6= 0. By the construction then for some � 2 C

t

we have

ft

�

g = ftg� (as in [25, 4.6]). So

ft

�

g�

t

= ftg��

t

= (sgn �)e

t

:

This proves the �rst part.

For the second part write u =

P

ft

�

g

u

ft

�

g

ft

�

g, u

ft

�

g

2 F

p

, with ft

�

g ranging

over some (L

�

(C)-de�nable sets of) �-tabloids. By the �rst part of the lemma,

ft

�

g�

t

= c

ft

�

g

e

t

, where c

ft

�

g

is 0, 1 or �1, and c

ft

�

g

is L

�

(C)-de�nable from

ft

�

g (as C

t

has a bounded size so is explicitly de�nable using elements of t

as parameters). So the sum

P

ft

�

g

u

ft

�

g

c

ft

�

g

is de�nable and hence can be

evaluated by � (cf. De�nition 2.7). So u�

t

= c � e

t

where c :=

P

ft

�

g

u

ft

�

g

c

ft

�

g

(use Lemma 2.8).
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q.e.d.

De�nition 4.8 Let u =

P

j

u

j

j, v =

P

j

v

j

j be two elements of M

�

, where j

ranges over �-tabloids. De�ne the bilinear form hu; vi as follows:

hu; vi :=

X

j

u

j

v

j

The map sending j to u

j

v

j

2 F

p

is L

�

(C)-de�nable, hence the sum can be

evaluated by the Euler characteristic.

The bilinear form determines a notion of orthogonality. The following state-

ment is a version of James's submodule theorem [25, Thm.4.9] in our situation.

Theorem 4.9 Let U � M

�

be an arbitrary F

p

[Sym

C

(M)]-submodule. Then

either S

�

� U or U � (S

�

)

?

.

Proof :

Consider two cases: the �rst occurs when u�

t

6= 0 for some u 2 U and some

�-tableaux t, the second otherwise. In the �rst case, by Lemma 4.7, u�

t

= ce

t

for some non-zero c 2 F

p

. So c

�1

(u�

t

) = e

t

2 U too and hence S

�

� U .

To calculate the second case note that hu�; vi = hu; v�

(�1)

i for a permutation

� 2 Sym

C

(M) and as sgn(�) = sgn(�

(�1)

also hu�

t

; vi = hu; v�

t

i. Then, in

the second case, necessarily for all u 2 U and all t:

0 = hu�

t

; ftgi = hu; e

t

i :

So U � (S

�

)

?

.

q.e.d.

Second ingredient from [25, 24] used in [28] is a characterisation of the Specht

module and its orthogonal complement as the kernel and the range of certain

linear maps, respectively. We give the de�nitions of these maps and state the

characterisations; the translation of their proofs from [25, 24] to the present

context is equally straightforward as in the case of the Submodule theorem, and

is left to the reader.

De�nition 4.10 Let � = (�

1

; : : : ; �

k

) be a proper r- partition.

1. For 0 � i < k and 0 � v < �

i+1

a map  

i;v

is de�ned as follows:

The map  

i;v

maps M

�

to M

�

i;v

�

i;v

= (�

1

; �

2

; : : : ; �

i�1

; �

i

+ �

i+1

� v; v; �

i+2

; : : : ; �

k

)

by sending a � - tabloid T to the sum

P

fT

0

j T

0

2 X

T

g, where X

T

is the

set of all �

i;v

- tabloids T

0

that agree with T on all rows except on the ith

and the (i+1)st ones, and the (i+1)st row of T

0

is a subset of the (i+1)st

row of T of size v.

21



2. The maps '

i;v

: M

�

i;v

! M

�

are de�ned as follows: '

i;v

maps a �

i;v

-

tabloid T to the sum

P

T

0

2X

T

T

0

, where X

T

is the set of all � - tabloids

agreeing with T in all except the ith and the (i+1)st rows, with the (i+1)st

row of T

0

being the (i+ 1)st row of T together with some �

i

� v elements

of the ith row of T .

The sums in both parts are evaluated by the Euler characteristic.

Maps '

i;v

are in [24] denoted  

i;�v

; we use the notation of [28] as it is

somewhat less confusing. The following theorem extends [25, Cor.17.18] (�rst

part) and [24, Cor.3] (second part) to the context of Euler structures.

Theorem 4.11 Let � = (�

1

; : : : ; �

k

) be a proper partition.

1. S

�

=

T

k�1

i=0

T

�

i+1

�1

v=0

Ker( 

i;v

).

2. (S

�

)

?

=

P

k�1

i=0

P

�

i+1

�1

v=0

Rng('

i;v

).

We may extend now [28, Thms.3.3 and 3.5] to our context. For F a uniform

linear system with variables indexed by Mon(M;k

0

; 1), k

0

� k, let V (F

M

)

denote the vector space of solutions of the homogeneous system F

M

x = 0, and

V

k

(F

M

) its projection onto M

(k)

.

Theorem 4.12 For any k � 1 there are � � 1, c � 1, k

0

� k and at most c uni-

form linear systemsK

s

, s � c, with variables indexed byMon(M;k

0

; 1) such that

the following holds true for any su�ciently large Euler structure (M;�=(Z=p

�

)):

Any U � Poly(M;k; 1), an F

p

[Sym

C

(M)]-submodule, is one of the vector

spaces V

k

((H

s

)

M

).

Furthermore, for any two linear systems H

1

; H

2

with variables indexed by

Mon(M;k

0

; 1) the validity of the inclusion V

k

(H

M

1

) � V

k

(H

M

2

) depends only on

M (mod p

�

).

Proof :

The proof can follow literally the construction and arguments in [28]. This is

because earlier de�nitions and statements we gave in this section (most notably

Theorems 4.9 and Theorem 4.11) extend the notions smoothly from [25, 24] to

the case of an in�nite Euler structure M .

In particular, monomials from Mon(M;k; 1) are encoded by Index(M;k)

and thus Poly(M;k; 1) is itself an F

p

[Sym

C

(M)]-submodule of the tabloid mod-

ule M

�

, �-tabloids encoding k-indices where � is an r-partition for suitable r

(for example, r � 2

k

in the encoding used in [28]). Theorems 4.9 and 4.11 are

repeatedly used to construct a vector space basis in an inductive process. The

length of this induction (de�ned in [28]) depends on r but not on M .

The constant � � 1 is the constant provided by Lemma 4.2 for r � 2

k

as

above.
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q.e.d.

Proof of Theorem 4.1:

We follow the proof of [2, Thm.2 and Cor.6] from [2, Thm.7'], replacing it

by Theorem 4.12 (see also [28, Thm.3.6]).

If F consists only of homogeneous linear equations there is nothing to prove

as there is always the trivial solution. Otherwise we may assume that F contains

exactly one non-homogeneous equation, say F

;

. This can be achieved by replac-

ing every non-homogeneous F

i

by F

i

� c

i

F

i

0

, for some �xed F

i

0

and suitable

c

i

2 F

p

, and by renaming F

i

0

to F

;

. It is easy to see that this transformation

preserves the uniformity of F .

De�ne F

1

by dropping from F the equation F

;

= 0, and F

2

by changing the

non-zero absolute coe�cient of F

;

to zero.

Let U

1

and U

2

be the subspaces of Poly(M;k; 1) of solutions in the sense

of De�nition 2.7 of F

1

and F

2

respectively. As F

1

, F

2

are uniform, U

1

and U

2

are by Lemma 1.7 F

p

[Sym

C

(M)]-submodules of Poly(M;k; 1). U

2

� U

1

and

clearly F

M

has a solution i� U

2

6� U

1

.

By Theorem 4.12, whether or not U

1

nU

2

6= ; depends only onM (mod p

�

).

This completes the proof of Theorem 4.1.

q.e.d.

To conclude the section let us note that Theorem 4.1 cannot be extended to

non-linear systems F .

Example 4.13 The uniform system :PHP from the introduction is a degree

2 system solvable in R (take, for example, f : R ! R sending any x > 0 to

x+ 1 and �xing all x � 0) but unsolvable for any �nite N .

5 Examples from �eld theory

We start with algebraically closed �elds.

Theorem 5.1 (L. van den Dries, D. Marker, G. Martin [15]) Let K be

an algebraically closed �eld and m � 2. Let S 2 Def

2

(K) be an equivalence

relation on K all of whose classes except one exceptional class have m elements,

and let the exceptional class has B elements for some 1 � B � m. Then:

1. If char(K) = 0 or char(K) > m then B = 1.

2. If char(K) = 2 = m then B = 2.

3. If char(K) = p > 2 and p < m �

3

2

p then B � p+ 1 (mod m).
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Moreover, these are the only restrictions on B.

The theorem is derived from L�uroth's theorem (alternatively it can be de-

rived from Hurwitz's theorem). A generalisation to smooth projective curves

over K was proved by Albert (see [30, p.22]). He showed that the number B of

exceptional points in any equivalence relations S on a smooth projective curve C

must satisfy B � �(C) (mod m), where �(C) is the Euler characteristic derived

from the cohomology of projective space (cf.[21, III.5]).

Note that for char(K) = 0 the result follows immediately from Example 2.3

and Lemma 3.6, as C is de�nable in R

2

. For m = 2 the theorem determines

B uniquely for all characteristics. In fact, a bit more holds. Namely Count

2

is

satis�ed in all dimensions.

Theorem 5.2 Let K be an algebraically closed �eld. Then K j= Count

2

and

K admits weak �=F

2

.

Proof :

Consider �rst the case char(K) = p > 0. Let X;S;R; e be a counter-example

to Count

2

with R a 2-partition of a de�nable X � K

k

, and S a 2-partition of

X n feg, where e 2 X . De�ne f

R

: X ! X by the condition fa; f

R

(a)g 2 R, for

all a 2 X . So f

(2)

R

= f

R

.

Similarly de�ne f

S

: X n feg ! X n feg. By quanti�er elimination and

compactness (see e.g. [32] or [30]) it holds:

1. X is quanti�er-free de�nable.

2. f

R

and f

S

are piece-wise, i.e. on (quanti�er-free) de�nable subsets, of the

form

Frob

(�j)

(r(x))

where Frob is the Frobenius map on K: x 7! x

p

, and r is a rational

function.

Let A � K be a �nite set containing e and all the parameters from the de�nitions

1. and 2. .

By elementary equivalence of all algebraically closed �elds of the same char-

acteristic we may assume without a loss of generality that K =

~

F

p

. Let

F

p

` �

~

F

p

be a sub�eld of

~

F

p

large enough to contain A. Then X , R, S, e

constitute a counter-example to Count

2

in F

p

` which is impossible as Count

2

holds in all �nite structures. .

The case of char(K) = 0 follows either from Example 2.4, or by compactness

from the non-zero characteristic.

This proves K j= Count

2

. The second part of the theorem follows from

Theorem 3.7.
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q.e.d.

Next lemma extends Lemma 3.6 (with the quali�cation weak omitted) to

algebraically closed �elds. .

Lemma 5.3 Assume K is an algebraically closed �eld and K j= :Count

m

for

some m � 2.

Then K does not admit �=(Z=m).

Proof :

Let X 2 Def

1

(K), R and S be a counterexample to Count

m

in K with

1 � B � m � 1 exceptional points. By elimination of imaginaries (cf.[30, 32])

m-element subsets of K

k

are coded by elements of some K

`

, ` depending on

k;m (for example, by symmetric polynomials, i.e. by their coe�cients).

Let Y

R

and Y

S

be subsets ofK

`

of the codes of classes of R and S respectively.

Consider a relation R

�

� X � Y

R

consisting of pairs (x; y) such that x is in the

R-class coded by y. Similarly de�ne S

�

� X � Y

S

.

The R

�

-degree of any x 2 X is 1 and of any y 2 Y is m. So by Lemma 2.2:

�(X) = m � �(Y

R

) :

The S

�

-degree of any x 2 X is also 1 except of the exceptional B elements of S

having S

�

-degree 0. The S

�

-degree of any y 2 Y is m. So again by Lemma 2.2:

�(X)�B = m � �(Y

S

)

hence

B = m � (�(Y

R

)� �(Y

S

)) = 0 :

That is a contradiction.

q.e.d.

The lemma has, together with Theorem 5.1, the following corollary.

Corollary 5.4 Let K be an algebraically closed �eld of char(K) = p > 0.

Then K admits neither �=F

p

if p > 2 nor �=(Z=m) if m >

3

2

p.

I do not know if K satis�es Count

m

whenever it satis�es it in dimension

1 (i.e., no counterexample can be X 2 Def

1

(K)). If so, then Theorems 3.7

and 5.1 alone imply that any algebraically closed �eld K admits weak �=F

q

for primes q < char(K). This, and more, is indeed true but for much deeper

reasons, as the next example points out.

Example 5.5 Let K be an algebraically closed �eld of char(K) = p > 0, and

let ` be a prime di�erent from p.

Then Euler - Poincar�e characteristic �

c

(X;Q

`

) given by the �etale cohomol-

ogy with ` - adic coe�cients (cf. [17, 31]) determines a weak �=Z.
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Let us turn to pseudo-�nite �elds. These are in�nite �elds satisfying the

theory of all �nite �elds, see e.g. [8] or the introduction to [22].

Theorem 5.6 Pseudo-�nite �elds admit weak �=R, for any �nite R.

Proof :

Any pseudo-�nite �eld is elementarily equivalent to an ultraproduct of �nite

�elds. As all �nite �elds trivially admit all �=(Z=m) and so also �=R for all

�nite R, so do their ultraproducts (by Lemma 3.3). Hence all pseudo-�nite �elds

admit weak �=R (by Theorem 3.4).

q.e.d.

Now we turn to p-adics.

Lemma 5.7 Let (Q

p

; �) be an Euler structure. Then:

(�(Q

p

)� 1) � (�(Z

p

)� 1) = (�(Z

p

)� 1)

2

Proof :

Consider the bijection (Z

p

�

)

2

! Q

p

�

�Z

p

�

given by (a; b)! (a=b; hcf(a; b)),

with the highest common factor chosen in a de�nable way. In particular, the

�rst bracket in the equation corresponds to non-zero elements inQ

p

expressed as

ratios of coprime (p-adic) integers, the second bracket corresponds to non-zero

integer scalars, and the right-hand side to non-zero elements in Q

p

, expressed

as ratios of two not necessarily distinct coprime integers. Clearly the bijections

between these de�nable sets are de�nable.

q.e.d.

Lemma 5.8 Let q � 2 be a prime and let (Q

p

=(�=F

q

)) be an Euler structure.

Then either q = 2 = p, or qjp� 1 and �(Z

p

) = 1.

Proof :

Recall �rst that Z

p

is de�nable in Q

p

, and observe that necessarily

1. �(Q

p

) = 2 � �(Z

p

) � 1, as Q

p

is in de�nable bijection (mimicking the

construction of a quotient �eld) with a disjoint union of Z

p

and inverses

to non-zero elements in Z

p

.

2. (p � 1)�(Z

p

) = 0, as Z

p

is equal to a disjoint union of pZ

p

, 1 + pZ

p

,

2 + pZ

p

; : : : ; (p� 1) + pZ

p

.

De�ne

P

n

:= fx 2 Q

p

j 9y 6= 0; y

n

= xg

Then Q

�

p

is a disjoint union of cosets of P

n

; let k(n) be the number of the cosets.

So

�(Q

�

p

) = k(n)�(P

n

)
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Also njk(n) as k(n) = [Q

�

p

: P

n

]. Hence taking n := q yields �(Q

�

p

) = 0.

Using 1. above it follows:

�(Q

�

p

) = 2(�(Z

p

)� 1)

which gives that either q = 2 or �(Z

p

) = 1.

Using 2., the later option implies that qjp� 1. This yields the statement.

q.e.d.

Note that in the previous two lemmas having a weak � su�ces.

Theorem 5.9 For p > 2, Q

p

does not admit weak �=F

q

, for any q not dividing

p� 1. Q

2

does not admit weak �=F

q

, for any q.

Proof :

2

Lemma 5.8 implies the �rst part and rules out q > p = 2. the remaining case

to rule out is p = q = 2. By the proof of Lemma 5.8 then �(Q

p

) = 1 (always)

and �(Z

p

) = 0 (if q = 2). That contradicts Lemma 5.7, however.

q.e.d.

The theorem rules out the existence of some �=F

q

but does not o�er any

positive examples. In this connection, as pointed out by L. van den Dries,

there is an interesting remark in Serre [38]. Namely he considers two compact

d-dimensional p-adic manifolds M , N and shows that these are analytically

isomorphic i� a

M

� a

N

(mod p

d

�1), whereM (resp. N) is a

M

copies of (Z

p

)

d

(resp. a

N

copies). This is akin to a property of �=R, cf.[13, 14].

6 Degree lower bounds

We prove several degree lower bounds for NS and PC using the following suf-

�cient condition derived from Theorem 4.1. We formulate the theorem to give

non - constant lower bounds (as this is the most interesting threshold) but re-

mark that the method of [28] gives in the same way actually 
(log(N)) degree

lower bounds for NS and 
(log log(N)) for PC.

Note that in the theorem we require Euler structure on M

�

rather than just

on M . This is because Lemma 4.2 allows to lift � for M to M

�

only for pure

L

�

(C)-structures but not necessarily for richer ones. In the applications we use

structures that eliminate imaginaries and hence � automatically lifts from M

to M

�

.

2

D. Haskell proved recently that the p-adics admit no non-trivial �=R, any R.
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Theorem 6.1 Let F be a uniform polynomial system of degree at most d poly-

nomials (with variables indexed by k-indices and equations indexed by `-indices),

and let g be a uniform polynomial (i.e., a family consisting of one polynomial)

with the same variables. Let t � 1. Then there is � � 1 depending only on k, `,

d and t such that the following holds.

Assume that there is an Euler structure (M

�

; �=(Z=p

�

)) in which a solution

to F

M

= 0 is de�nable (not necessarily L

�

(C)-de�nable) not satisfying g

M

= 0.

Then for no �nite su�ciently large N , N � �(M) (mod p

�

), does g

N

have

a degree t NS- or PC-proof from F

N

.

Proof :

Let t � 1 be �xed. The idea of the proof is that we shall show in the Euler

structure that both NS and PC (with their intrinsic de�nitions) are sound. The

statement for NS follows from the statement for PC as any degree t NS-proof

yields trivially a degree t PC-proof: derive �rst all multiples of F

i

occurring in

the NS-proof and the sum them all up (in fact, NS-proofs can be characterised

as particular PC-proofs, see [6, Thm.4.1]). On the other hand, by [28, Thm.5.5]

uniform families admitting constant degree PC-proofs admit also constant de-

gree NS-proofs. Thus it is enough to treat the case of NS only.

Let NS(t; F; g) be a uniform system constructed as NS(d;:Count

q

) in Ex-

ample 1.2. This system will be solvable for �nite N i� there is a degree at

most t NS-proof of g

N

from F

N

. In particular, let u

i;j

be variables, i ranging

over `-indices and j ranging over monomials of degree at most t (i.e., particular

tk-indices). Variable u

i;j

is intended to represent the coe�cient (from F

p

) of

the monomial j in G

i

, if

P

i

G

i

F

i

= g is the alleged NS-proof. Then such G

i

of

degree at most t exists i�

X

i

X

j

1

;j

2

:j

1

[j

2

=j

u

i;j

1

F

i;j

2

= g

j

for all j (we put g

j

:= 0 for monomials j not occurring in g).

Let a = (a

j

)

j

be the value of monomial j under a �xed assignment to

variables of F satisfying all F

i

= 0 but not g = 0. We shall show that this is a

contradictory situation by computing the sum (via Euler characteristic):

X

i

(

X

j

1

u

i;j

1

a

j

1

)(

X

j

2

F

i;j

2

a

j

2

)

to two di�erent values. The sum is equal to

X

j

X

i

(

X

j

1

;j

2

:j

1

[j

2

=j

u

i;j

1

a

j

1

F

i;j

2

a

j

2

)

and assuming that (u

i;j

)

i;j

satisfy NS(t; F; g) then it is also equal to

X

j

g

j

a

j
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which does not equal 0 by the assumption.

On the other hand, by the hypothesis about a again all

X

j

2

F

i;j

2

a

j

2

= 0

so the original sum is equal to 0 as well. That is a contradiction. It is straight-

forward to see that properties of evaluations of sums we used are among those

provided for Euler structures by Lemma 2.8.

By Theorem 4.1 now (with F there being NS(t; F; g) here), the system

NS(t; F; g) cannot be solved in any �nite su�ciently largeN of cardinality equal

to �(M) modulo p

�

either. As for �nite N the unsolvability of NS(t; F; g)

N

means that g

N

has no degree t NS-proof from F

N

, we are done.

q.e.d.

The argument rests on two properties of the linear system NS(t; F; g). First,

its solvability for �nite N is equivalent to the existence of degree t proof. Sec-

ondly, it is not some ad hoc system satisfying the �rst condition but it formalises

the intrinsic de�nition of NS-provability as we need to prove the \soundness" of

NS using the de�nition by the linear system. A proof for PC following similar

lines is possible. The construction of the linear systems used as the intrinsic

de�nition of PC in M (replacing NS(t; F; g) above) and the proof of its sound-

ness are more involved. The �rst part, the linear systems characterising PC, is

provided by [28].

Example 6.2 ([34]) There is no t � 1 such that for all �nite N there are degree

at most t PC-proofs of 1 (the so called refutations) from the system :PHP

N

,

over any F

p

.

This follows from Theorem 6.1 and Example 4.13. �(R) = �1 in Example

4.13 (cf. [13, 14]); to get other values modulo p

�

, consider the same function

but de�ned on R without i = 1; : : : ; p

�

� 2 negative numbers.

Next we derive two new degree lower bounds (proved in the same way).

These examples are motivated by [35] and [27, Cor.11.3.3].

Example 6.3 The system Dense with variables x

i;j

for i 6= j and polynomials

1. x

2

i;j

� x

i;j

, all i 6= j.

2. x

i;j

+ x

j;i

� 1, all i 6= j.

3. x

i;j

x

j;k

(1� x

i;k

), all i; j; k di�erent.

4. x

i;j

(1�

P

k 6=i;j

x

i;k

x

k;j

), all i 6= j.

has no bounded degree PC-refutations (i.e., proof of 1) over any F

p

.
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The system Dense is not solvable for any �nite N as its solution de�nes a dense

linear order f(i; j) j x

i;j

= 1g on the universe. However, it is trivially solvable

in (R; �=Z). Hence Theorem 6.1 applies.

Example 6.4 The system Max with variables x

i;j

for i 6= j and y

i

, and poly-

nomials

1. x

2

i;j

� x

i;j

, all i 6= j.

2. y

2

i

� y

i

.

3. x

i;j

+ x

j;i

� 1, all i 6= j.

4. x

i;j

x

j;k

(1� x

i;k

), all i; j; k di�erent.

5. 1� y

0

.

6. y

i

(1�

P

j 6=i

x

i;j

y

j

).

has no bounded degree PC-refutations (i.e., proof of 1) over any F

p

.

The system Max is not solvable for any �nite N as its solution de�nes a

linear order on the universe with a non-empty subset 0 2 fi j y

i

= 1g not having

a maximal element in the ordering. Again, it is trivially solvable in (R; �=Z)

and Theorem 6.1 applies.

7 De�nability of Euler characteristic

In this section we concern ourselves with the de�nable dependence of Euler

characteristic on parameters.

De�nition 7.1 Let (M;�=R) be an Euler structure. We say that � is de�nable

in M i� for all formulas �(x

1

; : : : ; x

k

; y

1

; : : : ; y

`

) and all a 2 R, the set

fx 2M

k

j �(fy 2M

`

j M j= �(x; y)g) = ag

is de�nable in M .

We say that � is de�nable in a theory T i� such de�nitions common to all

models of T exists.

Note that �=Z is de�nable in real closed �elds, cf.[13]. By Theorems 3.7 and

5.2 all algebraically closed �elds admit weak �=F

2

but I do not know if it is

de�nable, or even if the weak �=Z provided in Example 5.5 is de�nable.

Theorem 7.2 Let T be a theory and R be �nite. Assume that all models M

of T admit exactly one (weak) �=R.

Then such an �=R is unique and is de�nable in T .
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Proof :

We shall use Beth's de�nability theorem. For every formula �(x; y) in the

language ofM and every a 2 R take a new relation symbols R

a

�

(x) with intended

meaning

R

a

�

(x) is true i� �(fy j �(x; y)g) = a

and write down the axioms of an Euler characteristic (of weak Euler character-

istic, respectively).

By the hypothesis of the theorem, predicates R

a

�

are implicitly de�nable in

T , and hence also explicitly.

q.e.d.

As �=Z is unique in algebraic closed �elds of characteristic 0 (cf. [14]),

�=(Z=m), any m � 2, is de�nable in their theory. I do not know if the weak

�=Z provided for algebraically closed �elds of non - zero characteristic by �etale

cohomology (see Example 5.5) is unique.

I have also one negative result.

Theorem 7.3 Let q � 2 be a prime. Then the unique �=F

q

in �nite �elds is

not de�nable in the theory of �nite �elds.

In fact, if the order of a prime p in F

q

�

is at least 3 then the unique �=F

q

is

not de�nable in the theory of �elds F

p

` , ` � 1, and, in particular, the cardinality

of F

p

` modulo q is not de�nable in F

p

` 's.

Proof :

If �=F

q

were de�nable then there are, in particular, sentences �

q;i

, i =

0; : : : ; q � 1, such that F

p

` j= �

q;i

i� p

`

� i (mod q). We shall show that for

q � 5 such a sentence does not exists for at least one i. Note that for q = 2; 3

such sentences do exist; we treat the cases q = 2; 3 separately.

Pick a prime p such that the minimal t � 1 for which p

t

� 1 (mod q) is at

least 3. Pick 1 < i < t coprime to t. Then:

1. p

tk+1

� p (mod q), any k � 1.

2. p

tk+i

� p

i

(mod q), any k � 1.

3. For all 1 < j < t: p

j

6� p (mod q), by the choice of t.

Now take the sentence

	 := �

q;(p mod q)

^ 0 = 1 + : : :+ 1 (p-times)

Then, by 3. above, F

p

` j= 	 i� ` � 1 (mod t).

The main theorem of Ax [3, p.240] implies, in particular, that there is ! � 1

such that for all su�ciently large ` from the set

W := fs � ! j s � 1 ^ (s; !) = 1g
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F

p

`
satis�es 	. Hence also ` � 1 (mod t). But, as (t; i) = 1, there are in�nitely

many primes r � i (mod t), by Dirichlet's theorem. Then for in�nitely many

`

0

:= s � r � ! 2 W (s as in the de�nition of W ), `

0

� s � i � ! � i (mod t). This

means that F

p

`

0

satis�es 	 for such `

0

too. However, that is a contradiction as

by 2. and 3. above p

`

0

6� p (mod q).

It remains to prove cases q = 2 and q = 3. We start with the later one.

De�ne X

p

`
� F

p

`
as X

p

`
:= fy 2 F

p

`
n f0g j 9x;x

3

= yg. Then, for p > 3 for

which x

3

= 1 has three distinct roots, jF

p

` j = p

`

= 3 � jX

p

` j+ 1, so

p

`

� 4 (mod 9) i� �

3

(X

p

`) = 1 :

Take e.g. p := 7. Then 7

`

� 4 (mod 9) i� ` � 2 (mod 3), but the set f` �

1 j ` � 2 (mod 3)g contains no setW of the form as above. Hence Ax's theorem

implies that �

3

(X

p

`) is not de�nable in F

p

` 's.

The case q = 2 is treated analogously. TakeX

p

` := fy 2 F

p

` nf0g j 9x;x

2

=

yg and p := 3. Then

p

`

� 3 (mod 4) i� �

2

(X

p

`
) = 1 :

We have 3

`

� 3 (mod 4) i� ` is odd, but odd numbers do not contain any set

as W . So �

2

(X

p

`
) is unde�nable in F

p

`
's.

q.e.d.

Note that Theorems 7.2 and 7.3 imply that the class of pseudo-�nite �elds

admits at least two non-equivalent �=F

q

, any q � 2. It is interesting to �nd

extra parameters (structure) needed to de�ne Euler characteristic on pseudo -

�nite �elds (here [26] could help, see also [18, Sec.26.3]).

E. Hrushovski pointed out to me that perhaps (i) in any particular ultra-

product of �nite �elds the particular �=F

q

is de�nable from suitable imaginary

parameters related to �etale cohomology (see also Example 5.5), and (ii) that in

any pseudo-�nite �eld every �=F

q

might be de�nable from parameters related

to non - standard Frobenius automorphisms, cf. [10, 29].

Whether (i) admits a more model - theoretic treatment and whether or

not (ii) holds are interesting open problems, among others stemming from this

paper.
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