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This is a draft of a �rst part of le
ture notes on Propositional proof 
om-

plexity. It is roughly the 
ontent of my 
ourse at the Charles University in

Spring'03. This �rst part is almost 
omplete and there will be only a few

additions. Most notably: in�nitary 
riteria for lower bounds in tree-like and

general resolution, on Ramsey theorem in resolution, the link between mod-

ular 
ounting prin
iples and algebrai
 proof systems, the separation between

depth d and d+1 Frege systems, and the de�nition and few fa
ts about the


onstant depth Frege systems with modular 
ounting gates. There may be

also missing referen
es.

Next part will roughly 
orrespond to a 
ourse I plan for Fall'04; it should

in
lude: links with bounded arithmeti
, �nitisti
 
onsisten
y statements and

p-simulations, a 
onstru
tion of hard tautologies, NP -pairs and links to


ryptography, automatizability of proof systems, some upper bounds (that


an be proved via bounded arithmeti
 mu
h more easily than dire
tly), and

a part on the 
urrent proje
t of � -formulas based on pseudo-random gener-

ators.

The eventual le
ture notes will in
lude also some topi
s not 
overed in

either of the two 
ourses. In parti
ular, this should in
lude auxiliary proof

systems like algebrai
 proof systems (Nullstellensatz, polynomial 
al
ulus, a

proof system based on a �nitely presented group, et
.) or geometri
 proofs

systems (
utting planes and their extensions to Lovasz-S
hrijver system and

to the 1st order theory of dis
retely ordered rings) or links with model theory

(e.g. the notion of 
overing 
lasses and Euler stru
tures), and perhaps some

other less familiar topi
s.

Some referen
e in the 
urrent text are just ??; they refer to future parts.

21. 5. 2003
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Chapter 1

Basi
 
on
epts and

motivations

Propositional proof 
omplexity studies the 
omplexity of proving that a

propositional formula is a tautology. For a de�niteness we �x set TAUT

of tautologies in the DeMorgan language with 
onstants 0, 1 (the truth

values FALSE and TRUE) and propositional 
onne
tives: unary : (the

negation), and binary ^ and _ (the 
onjun
tion and the disjun
tion). (The

language also 
ontains various auxiliary symbols like bra
kets or 
ommas.)

The formulas are built, using the 
onne
tives, from the 
onstants and from

atoms p

0

; p

1

; : : : ; p

n

; : : :.

We 
onsider all �nite obje
ts en
oded in a �nite alphabet and , in fa
t, in

the binary alphabet f0; 1g. In parti
ular, we 
onsider TAUT as a subset of

f0; 1g

�

and so the length of a formula ' is denoted j'j. A minor point to note

(and then ignore) is that the length of an atom p

n

is not 1 but jp

n

j � logn,

as the index n has to be en
oded in binary. But we shall ignore this as the

logarithmi
 fa
tor is irrelevant in our 
omputations.

Consider any one of the usual text-book examples of propositional 
al
uli

working with DeMorgan formulas that is based on a �nite number of axiom

s
hemes (like A_:A, or similar) and a �nite number of inferen
e rules (like

the modus ponens A;:A _ B=B, or similar)

1

. Any su
h system is 
alled a

Frege system and denoted F . Two properties the system has are:

1. A formula � has a proof in F i� � 2 TAUT (the if-dire
tion is the


ompleteness and the only-if-dire
tion is the soundness of F ).

1

What the quali�
ation similar means will be explained in Se
tion 3.1.

5



6 J. Kraj���
ek

2. The relation w is an F -proof of � is a p-time de
idable relation of w

and � .

These two properties lead to the following abstra
t de�nition of a proof

system.

De�nition 1.0.1 (Cook-Re
khow[14℄) A propositional proof system ( a

pps, shortly) is any p-time 
omputable fun
tion P : f0; 1g

�

! f0; 1g

�

su
h

that Rng(P ) = TAUT .

Any w 2 f0; 1g

�

su
h that P (w) = � is 
alled a P -proof of � .

A pps P is polynomially bounded if there exists a polynomial p(x) 2 N[x℄

su
h that any � 2 TAUT has a P -proof w of size jwj � p(j� j).

It is easy to see that F 
an be seen as a pps in this abstra
t setting too.

Just de�ne a fun
tion P

F

by:

P

F

(w) =

(

� if w is an F -proof of �

1 otherwise

Any of the usual logi
 systems for propositional logi
 
an be similarly rep-

resented, be it the sequent 
al
ulus, the natural dedu
tion system, the �rst-

order predi
ate logi
 or even �rst-order theories. For example, a less usual

pps is:

P

ZFC

(w) =

8

>

<

>

:

� if w is a proof in set theory ZFC of the formalization

of the statement � 2 TAUT

1 otherwise

based on set theory.

The following is the main theorem showing that proof 
omplexity relates

to 
omputational 
omplexity.

Theorem 1.0.2 (Cook-Re
khow[14℄) There exists a polynomially bounded

pps i� NP = 
oNP.

Proof :

If P is a p-bounded pps with the polynomial bound p(x) then

9w(jwj � p(jxj));P (w) = x

is an NP-de�nition of TAUT , a 
oNP-
omplete set.
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On the other hand, if 9u(juj � q(jxj));A(u; x) is su
h a de�nition (with

A a p-time relation) then the fun
tion

P (w) =

(

� if w = (u; x) and juj � q(j� j) ^A(u; �) holds

1 otherwise

is a polynomially bounded pps.

q.e.d.

Hen
e, if we believe that NP 6= 
oNP , no pps is p-bounded. A large

part of proof 
omplexity a
tivity is 
entered around proving that parti
ular

pps' are not p-bounded (or even subexponentially bounded). The 
onje
ture

NP 6= 
oNP itself would be unlikely proved in this in
remental manner as a

way to prove a universal statement is rarely proving all its instan
es. But we

may hope to un
over hidden "
omputional hardness assumptions" in these

lower bounds and thus to redu
e the 
onje
ture to some intuitively more

rudimentary one. (More on this in the introdu
tions to [29, 40℄ or in [30℄.)

However, there is another less illusorymotivation for proving lower bounds

for 
on
rete pps' that I shall explain now.

Consider a �rst-order senten
e in, say, the language of dire
ted graphs:

=, a binary relation R(x; y) and a 
onstant whi
h we shall denote 0. As an

example

2

I take the pigeonhole prin
iple PHP:

9x8y;:R(x; y) _ [9x

1

; x

2

; y;x

1

6= x

2

^R(x

1

; y) ^R(x

2

; y)℄ _

[9x; y

1

; y

2

; y

1

6= y

2

^R(x; y

1

) ^R(x; y

2

)℄ _ 9x;R(x; 0) :

Assume that R(x; y), a relation on some universe M , does not satisfy any

of the �rst three disjun
ts. Then it is a graph of an inje
tive fun
tion

f :M !M . The last disjun
t must then be true, i.e. 0 must be a value. In

other words, PHP says that an inje
tive fun
tion is surje
tive. The prin
iple

is valid for all �niteM . For any n � 1 we 
an translate PHP into a proposi-

tional formula hPHP i

n

as follows: Repla
e 9 and 8 by the disjun
tion and

the 
onjun
tion respe
tively over all elements of [n℄, leave the propositional


onne
tives in pla
e, repla
e true resp. false atomi
 senten
es i 6= j by 1

resp. by 0, and translate atomi
 senten
es R(i; j) by new atoms r

ij

, one for

2

This is not a random 
hoi
e. We shall see that the PHP - in various forms - is the

most important prin
iple studied in proof 
omplexity.
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every pair i; j 2 [n℄. The formula hPHP i

n

, often denoted just PHP

n

, is

then:

_

i

^

j

;:r

ij

_ [

_

i

1

<i

2

;j

r

i

1

j

^ r

i

2

j

℄ _

[

_

i;j

1

<j

2

r

ij

1

^ r

ij

2

℄ _

_

i

r

i0

:

Here it is already simpli�ed a bit, deleting disjun
ts whi
h are 0 (like (0^r

ij

^

r

ij

)), and deleting also multiple o

uren
es of some disjun
ts (like (r

i

1

j

^r

i

2

j

)

and (r

i

2

j

^ r

i

1

j

)). In fa
t, PHP

n

is usually simpli�ed yet more. By allowing

j to range only over [n℄ n f0g we get rid of the last disjun
t in the formula:

_

i

^

j

;:r

ij

_ [

_

i

1

<i

2

_

j

r

i

1

j

^ r

i

2

j

℄ _ [

_

i

_

j

1

<j

2

r

ij

1

^ r

ij

2

℄ :

The truth assignments to r

ij

' 
orrespond to relations on [n℄. As PHP is

valid in all stru
tures of size n, PHP

n

is satis�ed by all truth assignments,

i.e. it is a tautology.

In general this translation 
an be de�ned for any �

1

1

�rst order senten
e

�. If � is valid in all �nite stru
tures then the resulting sequen
e of formulas

h�i

n

, n < !, is a sequen
e of tautologies.

The se
ond important motivation for studying lengths of proofs in par-

ti
ular pps' is the following fa
t: To any "usual"

3

�rst-order theory T it is

possible to atta
h a pps P

T

su
h that h�i

n

, n < !, have short (usually poly-

nomial or quasipolynomial size) P

T

-proofs if T proves �. Hen
e a suÆ
iently

strong lower bound to the length of su
h proofs implies the unprovability of

� in T . A parti
ular formula � to whi
h the 
onstru
tion applies 
an be,

for example, a 
onsisten
y statement. Consisten
y statements are the most

important formulas used in a 
alibration of the strength of theories (for very

good proof-theoreti
 reasons).

Although we 
an des
ribe P

T

for T being Peano Arithmeti
 PA or set

theory ZFC, nobody has a 
lue how to prove any lower bound for su
h P

T

.

However, for some theories of interest in logi
 (in parti
ular, for the so 
alled

Bounded Arithmeti
 theories) the situation is mu
h better and we have even

exponential lower bounds for some of the P

T

' arising in these 
ases.

We 
on
lude the 
hapter by a natural notion of quasi-ordering of pps' by

their strength.

3

This topi
 will be studied in Chapter ?? where we de�ne the quali�
ation usual.
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De�nition 1.0.3 (Cook-Re
khow[14℄) Let P;Q be two pps'. Pps P p-

simulates Q, P �

p

Q in symbols, i� there is a p-time 
omputable fun
tion

g : f0; 1g

�

! f0; 1g

�

su
h that for all w 2 f0; 1g

�

:

P (g(w)) = Q(w) :

In other words, g translates Q-proofs into P -proofs of the same formula.

As g is p-time, the length of the P -proofs is at most polynomially longer

than the length of the original Q-proofs.
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Chapter 2

Resolution

We start our investigation of parti
ular pps' with the resolution proof system

R. It is the simplest pps for whi
h it is not easy to prove a lower bound. The

proof system has been introdu
ed by Blake [9℄ and made prominent some

thirty years later in its use in automated theorem proving, 
f. Davis-Putnam

[18℄ and Robinson [44℄.

2.1 De�nition, soundness and 
ompleteness

Resolution is a proof system, denoted simply R, for proving formulas in a

DNF form. In general, transforming a formula into an equivalent one in the

DNF form may in
rease its size exponentially. However, we don't really need

an equivalent formula, we only need that the original formula is a tautology

i� the 
onstru
ted DNF formula is too. This 
an be done by a simple tri
k,

the so 
alled limited extension, that is des
ribed in Exer
ise 2.9.1. A literal

is an atom or its negation. A 
lause is a disjun
tion of literals `

1

_ : : : _ `

k

,

possibly empty. As there are no other 
onne
tives or formulas in resolution,

the 
lause is written simply as a set f`

1

; : : : ; `

k

g. The only inferen
e rule in

R is the resolution rule:

C [ fp

i

g D [ f:p

i

g

C [D

The atom p

i

is 
alled the resolved atom. There are no restri
tion on o

ur-

ren
es of p

i

or :p

i

in C and D, but it is easy to see that we 
an assume

w.l.o.g. that neither p

i

nor :p

i

o

ur in C [D.

An assignment satis�es a 
lause if it makes true at least one literal in the


lause. In parti
ular, the empty 
lause 
annot be satis�ed. The resolution

11
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rule is sound: If both 
lauses in the hypothesis of an inferen
e are satis�ed

by an assignment then the assignment satis�es the 
on
lusion too.

Let A be a formula in a DNF form

W

i2I

B

i

, with B

i

=

V

j2J

i

`

i

j

and `

i

j

literals. De�ne 
lauses C

i

:= f:`

i

j

j j 2 J

i

g, for i 2 I. A resolution proof of

A is a sequen
e D

1

; : : : ;D

t

of 
lauses su
h that:

1. Ea
h D

u

is either one of initial 
lauses C

i

, i 2 I, or it is derived using

the resolution rule from D

v

1

and D

v

2

, some v

1

; v

2

< u.

2. The end-sequent D

t

is the empty 
lause ;.

The proof of A is also often 
alled the refutation of C

1

; : : : ; C

k

as its existen
e


erti�es that C

i

' are not simultaneously satis�able.

Theorem 2.1.1 A DNF formula is provable in R i� it is a tautology.

Proof :

Let A be a DNF formula and let C

i

's be the 
lauses obtained as above.

Any truth assignment satisfying all C

i

' would have to satisfy, by the sound-

ness of the resolution rule, all 
lauses in any resolution refutation of C

1

; : : : ; C

k

.

In parti
ular, also the end 
lause - the empty 
lause - would have to be sat-

is�ed. But that is impossible as there is nothing to satisfy in ;. This proves

the only-if part of the theorem.

For the opposite dire
tion assume that C = fC

1

; : : : ; C

k

g is unsatis�able.

Let p

1

; : : : ; p

n

;:p

1

; : : : ;:p

n

be the literals appearing in C. We shall prove

by indu
tion on n that for any su
h C there is a resolution refutation of C.

If n = 1 there is nothing to prove: C must 
ontain 
lauses fp

1

g and f:p

1

g

and their resolvent is the empty 
lause. Assume n > 1, and partition C into

four disjoint sets: C

00

[ C

01

[ C

10

[ C

11

, of those 
lauses whi
h 
ontain no

p

n

and no :p

n

, no p

n

but do 
ontain :p

n

, do 
ontain p

n

but not :p

n

and


ontain both p

n

;:p

n

respe
tively.

Now form new set of 
lauses C

0

by

1. Delete all 
lauses from C

11

.

2. Repla
e C

01

[ C

10

by the set of all 
lauses that are obtained by the

resolution rule applied to all pairs of 
lauses C

1

[ f:p

n

g from C

01

and

to C

2

[ fp

n

g from C

10

.
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Note that the new 
lauses introdu
ed in the 2nd step do not 
ontain either

p

n

or :p

n

. More importantly, the new set of 
lauses C

0

is also unsatis�able.

This is be
ause any assignment �

0

: fp

1

; : : : ; p

n�1

g ! f0; 1g satis�es either all


lauses C

1

su
h that C

1

[f:p

n

g 2 C

01

, or all 
lauses C

2

su
h that C

2

[fp

n

g 2

C

01

(otherwise we 
ould �nd C

1

[C

2

2 C

0

not satis�ed by �

0

). Hen
e �

0


an be

extended, by giving a suitable value to p

n

, to a truth assignment � satisfying

C, whi
h is a 
ontradi
tion.

q.e.d.

Obviously, the proof 
onstru
ted in the 
ompleteness part of the argu-

ment 
an be sometimes exponentially long (see Exer
ise 2.9.2). However, this

does not mean that there 
annot be some other, mu
h shorter, R-proofs. The

�rst superpolynomial (and, in fa
t, exponential) lower bound for R-proofs

has been proved only in 1985 by Haken [20℄. We shall give, in the 
oming

se
tions, several exponential lower bounds for R.

2.2 Tree-like resolution

An R-proof � = (D

1

; : : : ;D

t

) is tree-like i� ea
h D

i

is used at most on
e as

a hypothesis of an inferen
e in the proof. If one draws the proof-graph of �,

a dire
ted graph with nodes being the 
lauses and the edges going from the


on
lusion of an inferen
e to the two hypothesis, then the 
ondition tree-like

pre
isely says that the graph is a tree (a proof-tree).

The proof system allowing exa
tly tree-like R-proofs is 
alled tree-like

resolution and denoted R

�

. In this se
tion we give an exponential lower

bound on the size of R

�

-proofs of PHP

n

.

With an unsatis�able set of 
lauses C = fC

1

; : : : ; C

k

g we may asso
iate

the following sear
h problem: Given a truth assignment � to the atoms of C

�nd C

i

2 C false under �. This sear
h problem 
an be solved by a bran
hing

program, a simple 
on
ept from Boolean 
omplexity.

A bran
hing program is a dire
ted a
y
li
 graph with one in-degree 0

node (the sour
e), and with all other nodes of out-degree either 2 (the inner

nodes) or 0 (the leaves). The inner nodes are labelled by atoms and the

two edges leaving a node are labelled by 0; 1 respe
tively. The leaves are

labelled by elements of a some set X. Any evaluation � of atoms determines

a path through the bran
hing program: The path starts at the sour
e and

in every node labelled by p

i

uses the edge labelled 1 i� �(p

i

) = 1. In this

way a bran
hing program 
omputes a fun
tion f(p

1

; : : : ; p

n

) : f0; 1g

n

! X
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assigning to � 2 f0; 1g

n

the label of the leaf on the path determined by �.

The size of a bran
hing program is the number of nodes.

An important spe
ial 
ase of bran
hing programs are de
ision trees,

bran
hing programs that are trees with the edges dire
ted from the root

towards the leaves. We speak about the the height of a de
ision tree, mean-

ing the maximum length of a path through it.

Now ba
k to our sear
h problem of �nding unsatis�ed 
lauses from C.

Assume that we have an R

�

-refutation � of C. We shall use � as a de
ision

tree for solving the sear
h problem as follows. The underlying tree of the

de
ision tree is the proof-tree of �. The sour
e is the end-
lause. A node


orresponding to a 
lause D derived in � by resolving atom p

i

is labeled by

p

i

. The edge from the node towards the node 
orresponding to a hypothesis

of the inferen
e is labelled by 1 (resp. by 0) i� the hypothesis 
ontains :p

i

(resp. it 
ontains p

i

). The leaves of the tree 
orrespond to initial 
lauses in

� and they are labelled by the initial 
lauses themselves.

Lemma 2.2.1 Assume � is an R

�

-refutation of C. Then the de
ision tree

de�ned from � as above solves the sear
h problem: Given a truth assignment

� �nd an unsatis�ed 
lauses in C.

In parti
ular, the height of the de
ision tree is the same as the height of

the proof tree of �.

Proof :

It is enough to observe that the 
lauses 
orresponding to the nodes on

the path determined by an � are all falsi�ed by �.

q.e.d.

Now we 
an prove our �rst, quite modest, lower bound.

Theorem 2.2.2 Every R

�

-proof of PHP

n

must have the height at least

n� 1.

Proof :

By Lemma 2.2.1 it suÆ
es to show that any de
ision tree solving the

sear
h problem atta
hed to PHP

n

must have the height at least n� 1.

The sear
h problem 
an be interpreted as follows: Given a truth assign-

ment �, whi
h we may identify with a relation � [n℄ � ([n℄ n f0g), �nd one

of:
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1. A pigeon i 2 [n℄ that is mapped (by the fun
tion whose graph � is

supposed to be) nowhere, i.e. i su
h that 8j 2 [n℄ n f0g;:�(i; j).

2. Pigeons i

1

< i

2

and a hole j su
h that both i

1

and i

2

are mapped into

j: �(i

1

; j) ^ �(i

2

; j).

3. A pigeon i and two holes j

1

< j

2

su
h that i is mapped to both the

holes: �(i; j

1

) ^ �(i; j

2

).

Let g :� [n℄! [n℄ n f0g be a partial 1-to-1 map. The map g determines

a partial truth assignment �

g

by:

1. �

g

(r

ij

) = 1 i� g(i) is de�ned and equal to j.

2. �

g

(r

ij

) = 0 i� g(i) is de�ned but di�erent from j, or for some k 6= i,

g(k) = j.

3. �(r

ij

) is unde�ned in all other 
ases.

A partial truth assignment for
es a 
lause true i� it assigns 1 to a literal

in the 
lause, and it for
es a 
lause false i� it assigns 0 to all literals in the


lause. In parti
ular, a partial assignment 
annot for
e a 
lause false without

giving a value to all literals o

urring in it. The following is straightforward.

Claim: Let g :� [n℄ ! [n℄ n f0g be a partial 1-to-1 map of 
ardinality

< n� 1. Then the partial truth assignment �

g


annot for
e false any 
lause

of :PHP

n

, i.e. any initial 
lauses in an R

�

-proof of PHP

n

.

Assume that we have a de
ision tree of the height h solving the sear
h

problem. We walk through the tree 
reating at step ` a partial 1-to-1 map

g

`

: [n℄ ! [n℄ n f0g su
h that jg

`

j � `, and su
h that �

g

`

gives values to

all atoms at the nodes of the path up to the `th step, and the values are


onsistent with the path.

At the beginning put g

0

:= ;. Assume we have g

`

and the atom at the

node we need to de
ide in the (`+1)st step is r

ij

. If j 6= 0 and g

`

[f(i; j)g is

a partial 1-to-1 map, de�ne g

`+1

:= g

`

[ f(i; j)g. Otherwise put g

`+1

:= g

`

.

It is easy to verify that the maps g

`

' have the required properties.

By the 
laim, the last map must have the size at least n � 1. That is,

the path has to 
ontinue for at least n� 1 steps, i.e. the height of the tree

is at least n� 1.

q.e.d.
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A binary tree of height n may have, if it is very unbalan
ed, the size just

2n+ 1 and that gives a very poor lower bound (even the number of 
lauses

in PHP

n

is bigger: O(n

3

)). Hen
e we need to modify the argument a bit

in order to get a lower bound for the size of R

�

-proofs of PHP

n

. In fa
t,

we will estimate from below the number of 
lauses in any su
h proof (that

number is obviously a lower bound to the size).

First we prove a simple lemma about binary trees. We shall think of

binary trees as ordered upwards from the root (the minimal element) up

towards the leafs. Let us denote the ordering by a generi
 symbol �. For a

binary tree T and a node a in T , denote by T

a

the subtree of T 
onsisting

of nodes b su
h that b � a. By T

a

denote the tree (T n T

a

) [ fag, i.e. it


onsists of nodes b su
h that b 6> a. By jT j denote the size of a tree T .

Lemma 2.2.3 (Spira [45℄) There is a node a 2 T su
h that:

(1=3)jT j � jT

a

j; jT

a

j � (2=3)jT j :

Proof :

Walk a path through T , starting at the root and always walking to the

bigger subtree (if the two subtrees have the same size, 
hoose arbitrarily one).

The size s of a 
urrent subtree 
an de
rease in one step only to s

0

�

s�1

2

.

Continue in this fashion until we rea
h the �rst node a su
h that the

subtree T

a

has the size � (2=3)jT j. The key observation is that then also

(1=3)jT j � jT

a

j. This is be
ause the immediately previous subtree 
an have

the size (by the bound to s

0

above) at most s � 2jT

a

j+ 1: If it were jT

a

j <

(1=3)jT j then the previous subtree had the size � (2=3)jT j and the pro
ess

should have stopped then.

As jT

a

j = jT j � jT

a

j+ 1, the inequalities (1=3)jT j � jT

a

j � (2=3)jT j hold

too.

q.e.d.

Re
all the de�nition of a partial truth assignment �

g

from the proof of

Theorem 2.2.2.

Theorem 2.2.4 Any R

�

-proof of PHP

n

must have the size at least (3=2)

n�2

.

Proof :

Let k be the number of 
lauses in some R

�

-proof � of PHP

n

. We shall


onstru
t a 4-tuple g

u

, D

u

, E

u

and S

u

where:
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1. g

u

:� [n℄! [n℄ n f0g is a partial 1-to-1 map su
h that jg

u

j � u.

2. D

u

is a set of 
lauses (in the literals of PHP

n

) ea
h of whi
h is for
ed

true by �

g

u

.

3. E

u

is a 
lause for
ed false by �

g

u

.

4. S

u

is an R

�

-proof of E

u

from 
lauses of PHP

n

and D

u

.

5. jS

u

j � (2=3)

u

k.

Put g

0

:= ;, S

0

:= �, D

0

:= ; and E

0

:= ;. Assume we have g

u

, D

u

,

E

u

, S

u

. Find, using Lemma 2.2.3, a node a 2 S

u

splitting S

u

in the 1=3 -

2=3 fashion of the lemma. Let D be the 
lause at the node a. Consider two


ases:

(a) D 
an be for
ed true by some h � g

u

, a partial 1-to-1 map from [n℄

into [n℄ n f0g.

(b) There is no su
h h.

In Case (a) note that su
h h need to extend g

u

by at most one pair (i; j);

i.e. we may assume that h n g

u

j � 1. This is be
ause to make a 
lause true

it suÆ
es to make one literal true. Take any su
h h and de�ne:

� g

u+1

:= h.

� D

u+1

:= D

u

[ fDg.

� E

u+1

:= E

u

.

� S

u+1

:= (S

u

)

a

, i.e. the nodes in S

u

that are not > a.

In Case (b) put g

u+1

:= g

u

, D

u+1

:= D

u

, E

u+1

:= D and S

u+1

:= (S

u

)

a

.

It is easy to verify that the properties 1. - 4. required from the 4-tuples

are maintained in the 
onstru
tion.

Now assume that ` is so large that S

`

is just one 
lause E

`

, i.e. jS

`

j = 1.

By the 
onstru
tion E

`

is for
ed false by g

`

. Hen
e it 
annot be a 
lause

from D

`

and must be from PHP

n

. But then, identi
ally as in the proof of

Theorem 2.2.2, it must hold that jg

`

j � n� 1, i.e. that ` � n� 1.

The lower bound is obtained by 
ombining this inequality with the esti-

mate that ` � dlog

3=2

(k)e is suÆ
ient to enfor
e jS

`

j = 1 (by jS

`

j � (2=3)

`

k):

dlog

3=2

(k)e � n� 1 , so k � (3=2)

n�2

:
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q.e.d.

Although the 
onstru
tion looks formally di�erent from the argument in

Theorem 2.2.2, it is not really. We leave it as an Exer
ise 2.9.3 to turn the


onstru
tion into a 
onstru
tion of an 9-de
ision tree, a de
ision tree that

bran
hes a

ording to the truth value of a 
lauses rather than of an atom.

Another dire
tion to whi
h it is possible to generalize this bound is to


onsider a proof system that operates not only with 
lauses formed from lit-

erals but with 
lauses formed from small 
onjun
tions of literals (
f.[28℄).We

shall get ba
k to this in ??.

2.3 E�e
tive interpolation: A general set-up

Assume that U and V are two disjoint NP-sets (subsets of f0; 1g

�

). By the

proof of the NP-
ompleteness of satis�ability there are sequen
es of proposi-

tional formulasA

n

(p

1

; : : : ; p

n

; q

1

; : : : ; q

t

n

) andB

n

(p

1

; : : : ; p

n

; r

1

; : : : ; r

s

n

) su
h

that the size of A

n

and B

n

is n

O(1)

and su
h that

U

n

:= U \ f0; 1g

n

= f(�

1

; : : : ; �

n

) 2 f0; 1g

n

j 9�

1

; : : : ; �

t

n

A

n

(�; �) holdsg

and

V

n

:= V \ f0; 1g

n

= f(�

1

; : : : ; �

n

) 2 f0; 1g

n

j 9�

1

; : : : ; �

s

n

B

n

(�; �) holdsg :

The assumption that U \ V = ; is equivalent to the statement that the

impli
ations

A

n

�! :B

n

are all tautologies. By the Craig interpolation theorem [16, 17℄ (see Exer-


ise 2.9.6) there is a formula I

n

(p) built only from atoms p su
h that both

impli
ations:

A

n

! I

n

and I

n

! :B

n

are tautologies. This means that the set de�ned by I

n

:

W :=

[

n

f� 2 f0; 1g

n

j I

n

(�) holds g

separates U from V :

U �W and W \ V = ; :

Hen
e a lower bound to a 
omplexity of interpolating formulas is also a lower

bound on the 
omplexity of sets separating disjoint NP-sets. We 
annot
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really expe
t to polynomially bound the size of a formula or a 
ir
uit de�ning

suitable W from the length of the impli
ation A

n

! :B

n

. This would

immediately imply, as observed by Mundi
i [35, 36, 37℄, that NP \ 
oNP �

NC

1

=poly or � P=poly (just take U and V two 
omplementary NP-sets).

The idea of e�e
tive interpolation (dis
ussed �rst in Kraj���
ek [24℄) is

more subtle: For a given propositional proof system P , try to estimate the


ir
uit-size of an interpolant of an impli
ation in terms of the size of the

shortest proof of the impli
ation.

De�nition 2.3.1 A pps P admits e�e
tive interpolation

1

i� there is a poly-

nomial p(x) 2 N[x℄ su
h that any impli
ation with a P -proof of size m has

an interpolant of a 
ir
uit size � p(m).

Exer
ise 2.9.7 shows why it is ne
essary to 
onsider the 
ir
uit size and

not just the formula size of the interpolant.

To start with, we have at least one example when this 
learly works (we

shall en
ounter LK in 3.4).

Example 2.3.2 Cut-free propositional sequent 
al
ulus LK admits e�e
tive

interpolation.

The interpolating 
ir
uit is 
onstru
ted by an obvious indu
tion on the

number of sequents in an LK-proof. (This is the base 
ase in the usual

proof-theoreti
 proof of Craig's interpolation theorem via 
ut-elimination,

see, for example, [25, 4.3℄.)

The point of the e�e
tive interpolation method is that by establishing a

good upper bound for a proof system P in the form of the e�e
tive interpo-

lation we prove lower bounds on the size of P -proofs. Namely:

Theorem 2.3.3 Assume that U and V are two disjoint NP-sets su
h that

U

n

and V

n

are inseparable by a set of 
ir
uit 
omplexity � s(n), all n � 1.

Assume that P admits e�e
tive interpolation.

Then the impli
ations A

n

! :B

n

require P -proofs of size � s(n)

�

, some

� > 0.

1

This is sometimes 
alled feasible interpolation. I prefer the original name as in some

appli
ations the interpolant is not feasible (in the usual meaning of the term as beeing -

uniform or nonuniform - p-time) but it is still in some sense e�e
tive.
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Proof :

By the e�e
tive interpolation, a proof of the impli
ation of size � s yields

an interpolant of 
ir
uit size � p(s), some �xed polynomial. Pi
k � > 0 su
h

that p(s

�

) � s for all s � 1.

q.e.d.

An apriori diÆ
ulty with this strategy how to get proof 
omplexity lower

bounds is that no non-trivial 
ir
uit lower bounds are known.

We shall over
ome the diÆ
ulty by 
onsidering the monotone version of

the e�e
tive interpolation. This will work be
ause strong lower bounds to

monotone 
ir
uits are known.

In the monotone version we 
onsider separations of two NP-sets U and

V as earlier but now we assume that U is 
losed upwards:

u 2 U

n

^ u � u

0

! u

0

2 U

n

where the ordering u � u

0

on f0; 1g

n

means that u

i

� u

0

i

, for all bits i � n.

If U \V = ; and U is 
losed upwards then U and V 
an be separated by W

that is also 
losed upwards (e.g. by U itself). The same 
on
lusion is true

if we assume instead that V is 
losed downwards - we shall not dis
uss this

dual 
ase.

The propositional version of the monotone interpolation is the following

statement.

Lemma 2.3.4 (Lyndon's theorem) Assume that A(p; q) ! B(p; r) is a

tautology, and that the atoms p

i

' o

ur only positively (i.e. in the s
ope of

an even number of negations) in A.

Then there is a monotone interpolant I(p) of the impli
ation, an inter-

polant in whi
h all p

i

' also o

ur only positively.

De�nition 2.3.5 A pps P admits monotone e�e
tive interpolation i� there

is a polynomial p(x) 2 N[x℄ su
h that any impli
ation with a P -proof of size

m has a monotone interpolant of a monotone 
ir
uit size � p(m).

Similarly as Theorem 2.3.3 we get

Theorem 2.3.6 Assume that U and V are two disjoint NP-sets with U


losed upwards. Assume that U

n

and V

n

are inseparable by a set 
losed

upwards and of monotone 
ir
uit 
omplexity � s(n), all n � 1. Assume that

P admits monotone e�e
tive interpolation.
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Then the impli
ations A

n

! :B

n

require P -proofs of size � s(n)

�

, some

� > 0.

Now we give an example of two NP-sets U and V , U 
losed upwards (and

also, in fa
t, V 
losed downwards) for whi
h it is known that any monotone

separating set must be de�ned by a large monotone 
ir
uit.

In the next de�nition we denote the set of two-element subsets of f1; : : : ; ng

by the suggestive symbol

�

n

2

�

.

De�nition 2.3.7 Let n; !; � � 1. The set Clique

n;!

(p; q) is a set of the

following 
lauses in the atoms p

ij

, fi; jg 2

�

n

2

�

, and q

ui

, u = 1; : : : ; ! and

i = 1; : : : ; n:

1.

W

i�n

q

ui

, all u � !,

2. :q

ui

_ :q

vi

, all u < v � ! and i = 1; : : : ; n,

3. :q

ui

_ :q

vj

_ p

ij

, all u < v � ! and fi; jg 2

�

n

2

�

.

The set Color

n;�

(p; r) is the set of the following 
lauses in the atoms p

ij

,

fi; jg 2

�

n

2

�

, and r

ia

, i = 1; : : : ; n and a = 1; : : : ; �:

1.

W

a��

r

ia

, all i � n,

2. :r

ia

_ :r

ib

, all a < b � � and i � n,

3. ℄ :r

ia

_ :r

ja

_ :p

ij

, all a � � and fi; jg 2

�

n

2

�

.

Truth assignments to atoms p

ij


an be identi�ed with undire
ted graphs

with the vertex set [n℄. Truth assignments to q

ui

su
h that Clique

n;!

(p; q) is

satis�ed 
an be identi�ed with 1-to-1 maps from the set [!℄ onto a 
lique (i.e.

a 
omplete subgraph) in the graph determined by p, and truth assignments

to r

ia

su
h that Color

n;�

(p; r) is satis�ed 
an be identi�ed with 
olorings of

the graph by � 
olors. The set

fp j 9q Clique

n;!

(p; q)g

is the set of graphs on [n℄ with a 
lique of size � !, while the set

fp j 9r Color

n;�

(p; r)g

is the set of graphs on [n℄ 
olorable by � � 
olors.
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Note that the atoms p

i

' o

ur only positively in 
lauses in Clique and

only negatively in Color and, indeed, the two sets are 
losed upwards and

downwards respe
tively.

The impli
ation

^

Clique

n;!

! :

^

Color

n;�

is obviosuly a tautology if ! > �.

The following theorem just restates the bound from [5℄

2

.

Theorem 2.3.8 (Alon-Boppana[5℄) Assume that 3 � � < ! and

p

�! �

n

8 log n

. Then the impli
ation

^

Clique

n;!

! :

^

Color

n;�

has no interpolant of the monotone 
ir
uit-size smaller than:

2


(

p

�)

:

A suitable 
hoi
e of parameters is � := d

p

ne and ! := � + 1. The lower

bound provided by the theorem is then 2


(n

1=4

)

.

2.4 Communi
ation 
omplexity interlude

We shall prove in Se
tion 2.5 that R admits both monotone and nonmono-

tone e�e
tive interpolation. First we need to re
all, in this se
tion, few

notions and fa
ts from 
ommuni
ation 
omplexity. This will be a base of a

universal method for proving e�e
tive interpolation.

Let U

n

; V

n

� f0; 1g

n

be two disjoint sets. Kar
hmer-Wigderson game on

U

n

, V

n

(introdu
ed in [21℄) is played by two players A and B. Player A

re
eives u 2 U while B re
eives v 2 V . They 
ommuni
ate bits of infor-

mation (following a proto
ol previously agreed on) until both players agree

on the same i 2 [n℄ su
h that u

i

6= v

i

. A measure of the 
omplexity of the

game is the minimum (over all proto
ols) of the number of bits they need to


ommuni
ate in the worst 
ase. This minimum is 
alled the 
ommuni
ation


omplexity of the game and it is denoted by C(U

n

; V

n

).

2

One needs to repla
e the 
lass of graphs without a 
lique of size � used in [5℄ by the

smaller 
lass of �-
olorable graphs. It is the bound to monotone 
ir
uits separating these

two 
lasses what is a
tually proved in [5℄.
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Assume that we have a propositional formula (in the DeMorgan lan-

guage) '(p

1

; : : : ; p

n

) that is 
onstantly 1 and 0 on U

n

and V

n

respe
tively.

We say that su
h ' separates U

n

from V

n

. Applying the DeMorgan rules if

ne
essary, we may assume that the negations in ' are applied only to atoms.

The players 
an use su
h a formula as follows. They start at the top


onne
tive, i.e. at the whole formula, and will work down to smaller and

smaller subformulas until rea
hing a literal. The property they will preserve

is that the 
urrent subformula gives value 1 on u and 0 on v. This is true at

the beginning, by the hypothesis. If the top 
onne
tiv is a 
onjun
tion the

player B indi
ates to A, by sending one bit, whi
h of the two subformulas

yields value 0 on v. If the top 
onn
etive is a disjun
tion, analogously A

indi
ates to B whi
h of the two subformulas is 1 on u. This argument

proves a half of the following simple but important statement (for the other

half see Exer
ise 2.9.8).

In the monotone version of the game U

n

is assumed to be 
losed upwards,

and the players sear
h for i su
h that u

i

= 1 ^ v

i

= 0 (and not just u

i

6=

v

i

). Any monotone formula separating U

n

from V

n


an be used by the

players as a proto
ol, identi
ally as above. LetMC(U

n

; V

n

) be the monotone


ommuni
ation 
omplexity of the game.

Theorem 2.4.1 (Kar
hmer-Wigderson[21℄) Let U

n

; V

n

� f0; 1g

n

be two

disjoint sets. Then C(U

n

; V

n

) is equal to the minimal depth of a DeMorgan

formula separating U

n

from V

n

.

The same is true in the monotone 
ase: MC(U

n

; V

n

) is equal to the

minimal depth of a monotone DeMorgan formula separating U

n

from V

n

.

If the players had a 
ir
uitC separating U

n

from V

n

instead of the formula

' they 
ould use the same 
ommuni
ation proto
ol. But the 
ommuni
ation


omplexity would be still bounded only by the depth of C whi
h really says

nothing about the size of C. To 
apture the 
omplexity of proto
ols 
omming

from 
ir
uits we need to use a more general notion of proto
ol. The de�nition

is a variant of a notion from [39℄ that used PLS-problems.

De�nition 2.4.2 ([27℄) Let U

n

; V

n

� f0; 1g

n

be two disjoint sets. A pro-

to
ol for the Kar
hmer-Wigderson game on the pair (U

n

; V

n

) is a labelled

dire
ted graph G satisfying the following 
onditions:

1. G is a
y
li
 and has one sour
e denoted ;.

The nodes with the out-degree 0 are leaves, all other are inner nodes.
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2. Leaves are labelled by one of the following formulas:

u

i

= 1 ^ v

i

= 0 or u

i

= 0 ^ v

i

= 1

for some i = 1; : : : ; n.

3. There is a fun
tion S(u; v; x) (the strategy) su
h that S assigns to a

node x and a pair (u; v) 2 U

n

� V

n

an edge leaving from the node x.

Fixing a pair (u; v) 2 U

n

� V

n

the strategy de�nes for every node x a

dire
ted path P

x

uv

= x

1

; : : : ; x

h

in G: Start at x and go towards a leaf x

h

,

always going from x

i

using the edge S(u; v; x

i

).

4. For every (u; v)� 2 U

n

� V

n

there is a set F (u; v) � G satisfying:

(a) ; 2 F (u; v).

(b) x 2 F (u; v)! P

x

u;v

� F (u; v).

(
) The label of any leaf from F (u; v) is valid for u; v.

Su
h a set F is 
alled the 
onsisten
y 
ondition.

A proto
ol is 
alled monotone i� every leaf in it is labelled by one of the

formulas u

i

= 1 ^ v

i

= 0, i = 1; : : : ; n.

The 
ommuni
ation 
omplexity of G is the minimal number t su
h that for

every x 2 G the players (one knowing u and x, the other one v and x) de
ide

whether x 2 F (u; v) and 
ompute S(u; v; x) with at most t bits ex
hanged in

the worst 
ase.

See Exer
ise 2.9.9 about the 
onsisten
y 
ondition.

Now let us observe that this notion naturally formalizes proto
ols formed

from a 
ir
uit (as des
ribed above). Assume that C is a 
ir
uit separating U

n

from V

n

. Reverse the edges in C, take for F (u; v) those sub
ir
uits di�ering

in the value on u and v, and de�ne the strategy and the labels of the leaves

in an obvious way. This determines a proto
ol for the game on (U

n

; V

n

)

whose 
ommuni
ation 
omplexity is 2. The next theorem says that there

is a 
onverse 
onstru
tion. The theorem reformulates a statement from [39℄

but we give it a new proof whi
h then applies to generalizations in ??.

Theorem 2.4.3 ([39℄) Let U

n

; V

n

� f0; 1g

n

be two disjoint sets. Let G be

a proto
ol for the game on U

n

; V

n

whi
h has k nodes and the 
ommuni
ation


omplexity t.
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Then there is a 
ir
uit C of size k2

O(t)

separating U

n

from V

n

. Moreover,

if G is monotone so is C.

On the other hand, any (monotone) 
ir
uit C of size s separating U

n

from

V

n

determines a (monotone) proto
ol G with s nodes whose 
ommuni
ation


omplexity is 2.

Proof :

The se
ond part of the theorem was explained already, so let us 
on
en-

trate on the �rst part. Let G be a proto
ol satisfying the hypothesis. For a

node a and w 2 f0; 1g

t

, let R

a;w

be the set of pairs (u; v) 2 U

n

�V

n

su
h that

the 
ommuni
ation of the players de
iding a 2

?

F (u; v) evolves a

ording to

w and ends with the aÆrmation of the membership. It is easy to see that

R

a;w

is a re
tangle, i.e. of the form R

a;w

= U

a;w

� V

a;w

for some U

a;w

� U

n

and V

a;w

� V

n

.

For a node a denote by k

a

the number of nodes in G that 
an be rea
hed

from a by a (dire
ted) path. So k

a

= 1 for a a leaf, while k

;

= k for the

sour
e ;.

Claim 1: For all a 2 G and w 2 f0; 1g

t

there is a 
ir
uit C

a;w

separating

U

a;w

from V

a;w

and of size � k

a

2

O(t)

.

(The 
onstant in the O(t) is independent of a.) This implies the theorem

taking for a the sour
e (whi
h is in all F (u; v)).

The 
laim is proved by indu
tion on k

a

. If a is a leaf the statement

is 
lear. Assume a is not a leaf and let w 2 f0; 1g

t

. For u 2 U

a;w

let

u

�

2 f0; 1g

4

t

be a ve
tor whose bits u

�

!

are parametrized by ! = (!

1

; !

2

) 2

f0; 1g

t

� f0; 1g

t

and su
h that u

�

!

= 1 i� there is a v 2 V

a;w

su
h that

the 
ommuni
ation of the players 
omputing S(u; v; a) evolves a

ording to

!

1

and the 
omputation of S(u; v; a) 2

?

F (u; v) evolves a

ording to !

2

.

De�ne v

�

!

2 f0; 1g

4

t

dually: v

�

!

= 0 i� there is a u 2 U

a;w

su
h that the


ommuni
ation of the players 
omputing S(u; v; a) evolves a

ording to !

1

and the 
omputation of S(u; v; a) 2

?

F (u; v) evolves a

ording to !

2

.

Let U

�

a;w

and V

�

a;w

be the sets of all these u

�

and v

�

respe
tively.

Claim 2: There is a monotone formula '

a;w

(in 4

t

atoms) separating U

�

a;w

from V

�

a;w

of size 2

O(t)

.

Claim 2 follows from Theorem 2.4.1 as there is an obvious way how the

players 
an �nd a bit ! in whi
h u

�

!

= 1 and v

�

!

= 0: They simply 
ompute

S(u; v; a) (this gives them !

1

) and then de
ide S(u; v; a) 2

?

F (u; v) (this

gives them !

2

).
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Let us resume the proof of Claim 1. For !

1

2 f0; 1g

t

let a

!

1

be the node

S(u; v; a) 
omputed for some u; v with 
ommuni
ation !

1

. De�ne a 
ir
uit:

C

a;w

:= '

a;w

(: : : ; y

!

1

;!

2

=C

a

!

1

;!

2

; : : :)

that is, we substitute the 
ir
uit C

a

!

1

;!

2

in the position of the (!

1

; !

2

)-th

variable in '

a;w

.

As k

a

!

1

< k

a

, the indu
tion hypothesis implies that all C

a

!

1

;!

2

work


orre
tly on all U

a

!

1

;!

2

� V

a

!

1

;!

2

. The 
ir
uit C

a;w

works then 
orre
tly by

the de�nition of the formula '

a;w

.

This 
on
ludes the proof of the general 
ase. But the same proof gives

also the monotone 
ase (as '

a;w

is monotone).

q.e.d.

2.5 E�e
tive interpolation for resolution

In this se
tion we prove the e�e
tive interpolation for resolution.

Theorem 2.5.1 (Kraj���
ek[27℄) Assume that the set of 
lauses

fA

1

; : : : ; A

m

; B

1

; : : : ; B

`

g

where:

1. A

i

� fp

1

;:p

1

; : : : ; p

n

;:p

n

; q

1

;:q

1

; : : : ; q

s

;:q

s

g, all i � m

2. B

j

� fp

1

;:p

1

; : : : ; p

n

;:p

n

; r

1

;:r

1

; : : : ; r

t

;:r

t

g, all j � `

has a resolution refutation with k 
lauses.

Then the impli
ation:

^

i�m

(

_

A

i

) �! :

^

j�`

(

_

B

j

)

(where

W

C denotes the disjun
tion of the literals in a 
lause C) has an

interpolant I(p) whose 
ir
uit-size is kn

O(1)

.

Moreover, if all atoms p

i

' o

ur only positively in all A

i

then there is a

monotone interpolant whose monotone 
ir
uit-size is kn

O(1)

.

Before we prove the theorem let us note a 
orollary of the theorem and

Theorems 2.3.6 and 2.3.8, our �rst exponential lower bound for R.
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Corollary 2.5.2 ([27℄) There is a 
onstant 
 > 0 su
h that whenever 3 �

� < ! and

p

�! �

n

8 log n

the following holds.

Any R-proof of the impli
ation

^

Clique

n;!

! :

^

Color

n;�

must have at least n

�


2

�

1=2


lauses.

In parti
ular, if n


(1)

� � < ! < n

2=3

then any su
h refutation must

have 2

n


(1)


lauses.

Proof of Theorem 2.5.1:

Assume that � is an R-refutation with k 
lauses of fA

1

; : : : ; A

m

; B

1

; : : : ; B

`

g,

a set of 
lauses satisfying the hypothesis of the theorem. Let U and V be

the subsets of f0; 1g

n

de�ned by

U := fp 2 f0; 1g

n

j 9q 2 f0; 1g

s

;

^

i

_

A

i

g

and by

V := fp 2 f0; 1g

n

j 9r 2 f0; 1g

t

;

^

j

_

B

j

g

respe
tively. Eventually we shall show how to transform � into a proto
ol

for the Kar
hmer-Wigderson game on U , V , of size k + 2n and of the 
om-

muni
ation 
omplexity O(log n). But we start with a less formal argument.

Assume that � = D

1

; : : : ;D

k

. For D a 
lause let

~

D denote the set of all

truth assignments satisfying D.

Assume player A gets u 2 U and player B gets v 2 V . A �xes some

q

u

2 f0; 1g

s

su
h that

VW

A

i

(u; q

u

) holds, and similarly B pi
ks some r

v

2

f0; 1g

t

, a witness of the membership of v in V .

The players will 
onstru
t a path P = S

0

; : : : ; S

h

through �, from the

endsequent (= S

0

) to one of the initial sequents. The property they will

try to maintain is that the truth evaluations (u; q

u

; r

v

) and (v; q

u

; r

v

) do not

satisfy the 
lauses on the path, i.e. are not in

~

S

a

, a = 0; : : : ; h.

Assume the players rea
h S

a

whi
h was dedu
ed in � by the inferen
e:

X Y

S

a

:

They �rst determine whether (u; q

u

; r

v

) 2

~

X and (v; q

u

; r

v

) 2

~

X, and then


ontinue depending on a possible out
ome:
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1. (u; q

u

; r

v

) 2

~

X ^ (v; q

u

; r

v

) 2

~

X.

2. (u; q

u

; r

v

) =2

~

X ^ (v; q

u

; r

v

) =2

~

X.

3. Exa
tly one of (u; q

u

; r

v

); (v; q

u

; r

v

) is in

~

X .

In the �rst 
ase none of the two tuples 
an be in

~

Y and the players put

S

a+1

:= Y . In the se
ond 
ase they take S

a+1

:= X. It is the third 
ase whi
h

is most interesting: Ne
essarily u 6= v and the players stop 
onstru
ting the

path and enter a proto
ol aimed at �nding i � n su
h that u

i

6= v

i

.

As ea
h initial sequent is satis�ed by either (u; q

u

; r

v

) or by (v; q

u

; r

v

),

the players must sooner or later enter the third possibility and thus �nd

i � n su
h that u

i

6= v

i

.

For this to work we need to show that ea
h of the three tasks:

1. De
ide whether (u; q

u

; r

v

) 2

~

D.

2. De
ide whether (v; q

u

; r

v

) 2

~

D.

3. If (u; q

u

; r

v

) 2

~

D 6� (v; q

u

; r

v

) 2

~

D �nd i � n su
h that u

i

6= v

i

.

where D is a 
lause, has small 
ommuni
ation 
omplexity. But this is easy:

The �rst two 
an be de
ided by ea
h player sending one bit (the truth value

of the part of the 
lause he 
an evaluate), the third task needs log n bits by

a binary sear
h.

Let us now de�ne the proto
ol G formally. G has (k + 2n) nodes, the k


lauses of � together 2n extra verti
es. These extra verti
es are labelled by

formulas u

i

= 1 ^ v

i

= 0 and u

i

= 0 ^ v

i

= 1, i = 1; : : : ; n.

The 
onsisten
y 
ondition F (u; v) is formed by those 
lauses D

j

that are

not satis�ed by (v; q

u

; r

v

), and also by those of the extra 2n nodes whose

label is valid for the pair u; v.

The strategy fun
tion S(u; v;D

j

) (for D

j

derived from X and Y ) is de-

�ned as follows:

1. If (u; q

u

; r

v

) =2

~

D

j

then

S(u; v;D

j

) :=

(

X if (v; q

u

; r

v

) =2

~

X

Y if (v; q

u

; r

v

) 2

~

X (and hen
e (v; q

u

; r

v

) =2

~

Y ).

2. If (u; q

u

; r

v

) 2

~

D

j

then the players use binary sear
h for �nding i � n

su
h that u

i

6= v

i

. S(u; v;D

j

) is then the one of the two nodes labelled

by u

i

= 1 ^ v

i

= 0 and u

i

= 0^ v

i

= 1 whose label is valid for the pair

u; v.
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Note that the strategy fun
tion S(u; v; x) as well as the membership

relation x 2 F (u; v) 
an be determined by the players ex
hanging at most

log n bits. As G has (k+2n) nodes, Theorem 2.4.3 yields a 
ir
uit separating

U from V and having the size at most (k + 2n) � 2

O(log n)

= kn

O(1)

.

Now we turn to the monotone 
ase, whi
h requires a modi�
ation. As-

sume that the atoms p

j

' o

ur only positively in all A

i

's. Note that this

means that U is 
losed upwards but even a bit more: If u 2 U and q

u

is a

witness for this, and u � u

0

, then q

u

also witnesses the membership u

0

2 U .

The proto
ol in the monotone 
ase will have only (k + n) nodes, the

k 
lauses of � plus n extra nodes labelled by formulas u

i

= 1 ^ v

i

= 0,

i = 1; : : : ; n. The 
onsisten
y 
ondition F (u; v) is de�ned as before.

The strategy fun
tion 
hanges a bit. In the third 
ase of the 
onstru
tion

of the path above assume that (u; q

u

; r

v

) 2

~

X while (v; q

u

; r

v

) =2

~

X. Then

the players, instead of using the binary sear
h for �nding the bit in whi
h u

di�ers from v, they either �nd i � n su
h that

u

i

= 1 ^ v

i

= 0

or learn that there is some u

0

satisfying

u

0

� u ^ (u

0

; q

u

; r

v

) =2

~

X

This 
an be done by the player A only, in fa
t, and hen
e he just need to


ommuni
ate log n bits identifying i to B.

Formally, in the �rst 
ase they de�ne

S(u; v;D

j

) :=

(

X if (v; q

u

; r

v

) =2

~

X

Y if (v; q

u

; r

v

) 2

~

X.

In the se
ond 
ase S(u; v;D

j

) is simply the additional node with the label

u

i

= 1 ^ v

i

= 0.

By the monotoni
ity 
ondition assumed about A

1

; : : : ; A

m

, for every u

0

o

urring above it holds:

(u

0

; q

u

; r

v

) 2

\

j�m

A

j

:

This implies that the players again have to, sooner or later, enter the option

leading to i � n su
h that u

i

= 1 ^ v

i

= 0.

So we get (k + n) � 2

O(t)

= kn

O(1)

bound to the size of a monotone

separating 
ir
uit (by Theorem 2.4.3).

q.e.d.
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2.6 Generalizations and limitations of e�e
tive in-

terpolation

Note that the proof of Theorem 2.5.1 does not really use any parti
ular

information about the syntax of R; it works with the sets of satisfying as-

signments. This means that we 
an generalize e�e
tive interpolation to a

more general situation whi
h is grasped by the following 
on
ept.

De�nition 2.6.1 ([27℄) Let N � 1.

1. The semanti
 rule allows to infer from two subsets A;B � f0; 1g

N

a

third one:

A B

C

i� C � A \B.

2. A semanti
 derivation of the set C � f0; 1g

N

from sets A

1

; : : : ; A

m

�

f0; 1g

N

is a sequen
e of sets B

1

; : : : ; B

k

� f0; 1g

N

su
h that B

k

= C,

and su
h that ea
h B

i

is either one of A

j

' or derived from two previous

B

i

1

; B

i

2

, i

1

; i

2

< j, by the semanti
 rule.

3. Let X � exp(f0; 1g

N

) be a family of subsets of f0; 1g

N

. A semanti


derivation B

1

; : : : ; B

k

is an X -derivation i� all B

i

2 X .

Derivability in semanti
 derivations, without a restri
tion to some X ,

would be rather trivial: C is derivable from A

i

's i� C �

T

i

A

i

. But when the

family X is not a �lter on f0; 1g

N

, the notion of X -derivability be
omes non-

trivial. For example, a family formed by the subsets of f0; 1g

N

de�nable by a


lause yields a non-trivial notion. The following te
hni
al de�nition abstra
ts

a property of sets of truth assignments used in the proof of Theorem 2.5.1.

De�nition 2.6.2 Let N = n + s + t be �xed and let A � f0; 1g

N

. Let

u; v 2 f0; 1g

n

, q

u

2 f0; 1g

s

and r

v

2 f0; 1g

t

.

The 
ommuni
ation 
omplexity of A, CC(A), is the minimal number of

bits two players (one knowing u; q

u

and the other one knowing v; r

v

) need to

ex
hange in the worst 
ase in solving any of the following three tasks:

1. De
ide whether (u; q

u

; r

v

) 2 A.

2. De
ide whether (v; q

u

; r

v

) 2 A.

3. If (u; q

u

; r

v

) 2 A 6� (v; q

u

; r

v

) 2 A �nd i � n su
h that u

i

6= v

i

.
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The monotone 
ommuni
ation 
omplexity w.r.t. U of A, MCC

U

(A), is

the minimal t � CC(A) su
h that the next task 
an be solved 
ommuni
ating

� t bits in the worst 
ase.

4. If (u; q

u

; r

v

) 2 A and (v; q

u

; r

v

) =2 A either �nd i � n su
h that

u

i

= 1 ^ v

i

= 0

or learn that there is some u

0

satisfying

u

0

� u ^ (u

0

; q

u

; r

v

) =2 A

Note that proofs in any of the usual propositional 
al
uli based on bounded

arity inferen
e rules translate into semanti
 derivations: Repla
e a 
lause,

(a sequent, a formula, an equation, et
.) by the set of its satisfying truth

assignments. The soudness of the inferen
e rules implies that they translate

into instan
es of the semanti
 rule.

The point of this generalization is that we 
an lift the e�e
tive interpo-

lation from R to this 
ontext. Let N = n + s + t be �xed for now. For

A � f0; 1g

n+s

de�ne the set

~

A by:

~

A :=

[

(a;b)2A

f(a; b; 
) j 
 2 f0; 1g

t

g

where a; b; 
 range over f0; 1g

n

, f0; 1g

s

and f0; 1g

t

respe
tively, and similarly

for B � f0; 1g

n+t

de�ne

~

B:

~

B :=

[

(a;
)2B

f(a; b; 
) j b 2 f0; 1g

s

g :

Theorem 2.6.3 Let A

1

; : : : ; A

m

� f0; 1g

n+s

and B

1

; : : : ; B

`

� f0; 1g

n+t

.

Assume that there is a semanti
 derivation � = D

1

; : : : ;D

k

of the empty set

; = D

k

from the sets

~

A

1

; : : : ;

~

A

m

;

~

B

1

; : : : ;

~

B

`

.

If the 
ommuni
ation 
omplexity of all D

i

, i � k, satis�es CC(D

i

) � t

then the two sets

U = fu 2 f0; 1g

n

j 9q

u

2 f0; 1g

s

; (u; q

u

) 2

\

j�m

A

j

g

and

V = fv 2 f0; 1g

n

j 9r

v

2 f0; 1g

t

; (v; r

v

) 2

\

j�`

B

j

g
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an be separated by a 
ir
uit of size at most (k + 2n)2

O(t)

.

Further, if the sets A

1

; : : : ; A

m

satisfy the following monotoni
ity 
ondition

w.r.t. U :

(u; q

u

) 2

\

j�m

A

j

^ u � u

0

! (u

0

; q

u

) 2

\

j�m

A

j

andMCC

U

(D

i

) � t for all i � k, then there is a monotone 
ir
uit separating

U from V of size at most (k + n)2

O(t)

.

The proof is identi
al to the proof of Theorem 2.5.1.

Theorem 2.6.3 
an be used to give exponential lower bounds for various

proof systems of "geometri
 nature" (see Exer
ises 2.9.10, 2.9.11 and Chap-

ter ??). A parti
ular proof system of this type that has been studied in the


onne
tions with the linear programming is the 
utting planes proof system

CP , introdu
ed in [15℄. This system operates with integer linear inequalities

of the form a

1

x

1

+ : : : a

n

x

n

� b, with x

i

representing the truth values of

atoms. CP has some obvious rules: adding two inequalities, multiplying an

inequality by a positive 
onstant, but also a less obvious one, the division

rule:

a

1

x

1

+ : : : a

n

x

n

� b

a

1




x

1

+ : : :

a

n




x

n

� d

b




e

provided that 
 > 0 and 
ja

i

, all i (the rounding up is what makes the system


omplete). CP has also two initial inequalities: x � 0, �x � �1. It is a

refutation system whi
h derives from an unsatis�able system of inequalities

the inequality 0 � 1. The term unsatis�able means that the system has no 0-

1 solution. It is sound and 
omplete and polynomially simulates resolution,

see [15℄ or [25, 13.1℄.

We shall dis
uss e�e
tive interpolation for CP in Chapter ??, together

with a generalization of 
ommuni
ation 
omplexity from the Boolean frame-

work to the so 
alled real 
ommuni
ation 
omplexity. .

Finally, let us dis
uss an apriori limitation to the monotone e�e
tive

interpolation method. Assume that

Clique

n;!

[ Color

n;�

were satis�able. The satisfying assignment then de�nes a map from [!℄

into [�℄ that is 1-to-1 (
omposing the map from [!℄ onto a 
lique with the


oloring restri
ted to the 
lique). More formally, we 
an de�ne propositional

formulas E

au

for a 2 [!℄ and u 2 [�℄ (built from the atoms p; q; r) and derive
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from Clique

n;!

[ Color

n;�

by a p-size R-proof that E

au

's de�ne a graph

of an inje
tive fun
tion from [!℄ into [�℄. Hen
e whenever a proof system


an prove the instan
e of the pigeonhole prin
iple saying that no su
h map

exists, it also shortly proves the unsatis�ability of Clique

n;!

[ Color

n;�

and

hen
e 
annot admit monotone e�e
tive interpolation. Su
h instan
es of the

pigeonhole prin
iple are provable in F and even in very weak subsystems of

F (see Chapter ??).

One 
an also prove limitations to non-monotone e�e
tive interpolation

but only modulo unproven 
ryptographi
al 
onje
tures (like the se
urity of

RSA). More on this in ??.

2.7 Width of resolution proofs

For a 
lause C, the width of C, denoted w(C), is the number of literals in C.

For a set C of 
lauses de�ne w(C) := max


2C

w(C). In parti
ular, the width

of a proof �, w(�), is the maximal width of a 
lause in the proof.

Our aim in this se
tion is to prove that a short R-proof 
an be trans-

formed into a narrow proof. This will allow us to prove lower bounds for the

size by proving suÆ
iently strong lower bounds on the width.

We shall use partial truth assignments 
alled simply restri
tions. The

following notation will be handy. For ` a literal and � 2 f0; 1g de�ne:

`

�

:=

(

` if � = 1

:` if � = 0

Further, for ` and � as above and C a 
lause de�ne the restri
tion of C by

` = � to be the 
lause:

C # ` = � :=

8

>

<

>

:

C if neither ` nor :` o

ur in C

f1g if `

�

2 C

C n f`

1��

g if `

1��

2 C.

Similarly, for a set of 
lauses C put C # ` = � := fC # ` = � j C 2 Cg.

Consider the e�e
t a restri
tion, say p = �, has on a resolution inferen
e:

X [ fqg Y [ f:qg

X [ Y

If p = q then the inferen
e trasnforms into

X f1g

X [ Y

or

Y f1g

X [ Y
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whi
h is not a resolution inferen
e. But it is an instan
e of a weakening rule:

Z

1

Z

2

provided that Z

1

� Z

2

that is obviously sound. Moreover, a restri
tion of a weakening is again an

instan
e of a weakening.

If p 6= q and p

�

2 X [ Y then the inferen
e be
omes

X # p = � [ fqg Y # p = � [ f:qg

f1g

whi
h is again not a resolution inferen
e. But we 
an simulate it by allowing

f1g as a new initial 
lause (axiom) in proofs.

Let R

0

be a proof system extending R by the weakening rule and by the

new axiom. The point is that a restri
tion of an R

0

-proof is again an R

0

-proof

(after transforming resolution inferen
es as des
ribed above). Clearly, lower

bounds on R

0

-proofs apply, in parti
ular, to R-proofs too.

The last pie
e of a usefull notation is w(C ` A), denoting the minimal

width of an R

0

-derivation of a 
lause A from C, and C `

k

A whi
h stands for

k � w(C ` A).

Lemma 2.7.1 If C # p = 0 `

k

A then C `

k+1

A [ fpg.

If C # p = 1 `

k

A then C `

k+1

A [ f:pg.

Proof :

We prove only the �rst part as the proof of the se
ond part is identi
al.

Assume that � = D

1

; : : : ;D

t

is an R

0

-derivation of A from C # p = 0 having

the width k. Put E

i

:= D

i

[fpg, for all i � t. We 
laim that �

0

= E

1

; : : : ; E

t

is essentially an R

0

-derivation of A [ fpg. The quali�
ation essentially will

be 
lear in a moment.

Assume �rst D

i

2 C # p = 0, say D

i

= C # p = 0 for some C 2 C.

Consider three 
ases:

1. :p 2 C: Then D

i

= f1g and so E

i

= f1; pg 
an be derived from the

axiom f1g by a weakening.

2. p 2 C: Then D

i

= C n fpg and hen
e E

i

= C is an initial 
lause from

C.

3. C \ fp;:pg = ;: Then D

i

= C and so E

i

= C [ fpg 
an be derived

from C by a weakening.
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Note that the extra line in the derivations of E

i

' has the width bounded

above by the width of 
lauses already in �

0

.

The 
ase when D

i

is derived in � by a resolution rule was already dis-


ussed when we motivated the extension of R to R

0

. The 
ase when D

i

is

obtained by the weakening rule is trivial.

q.e.d.

Lemma 2.7.2 For � 2 f0; 1g, assume that

C # p = � `

k�1

; and C # p = 1� � `

k

; :

Then

w(C ` ;) � max(k;w(C)) :

Proof :

By Lemma 2.7.1 the �rst part of the hypothesis implies C `

k

fp

1��

g.

Resolve fp

1��

g with all C 2 C 
ontaining fp

�

g; the width of all these

inferen
es is bounded by w(C). Therefore ea
h 
lause D 2 C # p = 1� � has

an R

0

-derivation from C of the width at most max(k;w(C)).

This, together with the se
ond part of the hypothesis of the lemma,


on
ludes the proof.

q.e.d.

Theorem 2.7.3 (Ben-Sasson and Wigderson[8℄) Let C be an unsatis�-

able set of 
lauses in literals p

i

;:p

i

, for i � n. Assume that C has a tree-like

R

0

-refutation with � 2

h


lauses.

Then:

w(C ` ;) � w(C) + h :

Proof :

We shall pro
eed by a double indu
tion on n and h. If n = 0 or h = 0

then ne
essarily ; 2 C and there is nothing to prove. Assume that for h

0

� 0

the statement is true for all h � h

0

and for all n � 0. We shall prove that

this is true also for h

0

+1 by indu
tion on n. By the above, we may assume

that n > 0, hen
e there is a literal in C.

Assume the last inferen
e in a refutation � (having � 2

h

0

+1


lauses) has

been:
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fpg f:pg

;

Hen
e one of the subproofs has the size � 2

h

0

. Assume that it is the subproof

�

0

ending with fpg. Restri
t �

0

by p = 0; it be
omes an R

0

-refutation of

C # p = 0. By the indu
tion hypothesis for h

0

:

w(C # p = 0 ` ;) � w(C # p = 0) + h

0

Similarly, the restri
tion of the subproof �

1

ending with f:pg by p = 1

be
omes a refutation of C # p = 1. It has, of 
ourse, � 2

h

0

+1


lauses but it

has � n� 1 atoms. So the indu
tion hypothesis for n� 1 implies:

w(C # p = 1 ` ;) � w(C # p = 1) + h

0

+ 1

Applying Lemma 2.7.2 
on
ludes the proof.

q.e.d.

Note that this immediately yields a lower bound to the size in terms of

a lower bound to the width.

Corollary 2.7.4 Every tree-like R

0

refutation of any C mus have the size

� 2

w(C`;)�w(C)

Mu
h more interesting is the following statement that shows that one


an derive a lower bound to the size from one to the width even for general,

not ne
essarily tree-like, R

0

-proofs.

Theorem 2.7.5 (Ben-Sasson and Wigderson [8℄) Let C be an unsatis-

�able set of 
lauses in literals p

i

;:p

i

, for i � n.

Then every R

0

-refutation must have the size at least

2


(

(w(C`;)�w(C))

2

n

)

:

Proof :

Let k be the number of 
lauses in an R

0

-refutation � of C. Let h � 1 be

a parameter. Later we shall spe
ify that h := d

p

2n log(k)e but this a
tual

value is not used in the argument; it is only used at the end to optimize the

bound.
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We shall prove that

w(C ` ;) � w(C) +O(

q

n log(k)) :

If n = 0 then ; 2 C and there is nothing to prove.

Suppose n > 0. Call a 
lause C in � wide if w(C) > h. Let s :=

(1�

h

2n

)

�1

.

By double indu
tion on n and on t we prove that if the number of wide


lauses in � is < s

t

then

w(C ` ;) � w(C) + h+ t :

Assume t = 0. Then there is no wide 
lause, i.e w(�) � h � w(C) + h.

Now assume t > 0. One of the 2n literals, say `, has to appear in at

least

s

t

h

2n

wide 
lauses. Restri
t � by ` = 1. The 
lauses 
ontaining ` will

be eliminated (they transform to f1g). Hen
e, in � # ` = 1, a refutation of

C # ` = 1, there remain less than

b �

s

t

h

2n

= s

t�1

wide 
lauses. By the indu
tion hypothesis for t� 1:

w(C # ` = 1 ` ;) � w(C # ` = 1) + h+ t� 1 :

Now apply to � the dual restri
tion ` = 0. This produ
es a refutation

� # ` = 0 of C # ` = 0 where the number of wide 
lauses is still < s

t

but

where the number of atoms is n� 1. Hen
e, by the indu
tion hypothesis for

n� 1:

w(C # ` = 0 ` ;) � w(C # ` = 0) + h+ t :

By applying Lemma 2.7.2 we get:

w(C ` ;) � w(C) + h+ t :

The parti
ular value of the parameter h yields the wanted upper bound

(using the estimate trivial t � log

s

(k)).

q.e.d.

In order to be able to prove via this theorem some lower bounds on the

size of resolution proofs, we need unsatis�able sets of 
lauses of small width

(perhaps even 
onstant) whi
h require wide R-proofs. We shall 
onstru
t

su
h sets of 
lauses in Se
tion 2.8.
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2.8 Random sparse linear systems

Consider an m� n matrix A over the two-element �eld F

2

.. We 
all su
h a

matrix `-sparse i� ea
h row 
ontains at most ` non-zero entries.

Let J

i

:= fj 2 [n℄ j A

ij

= 1g (hen
e jJ

i

j � ` if A is `-sparse). The linear

map from F

2

n

into F

2

m

de�ned by A is 
omputed as:

(A � x)

i

=

X

j

A

ij

x

j

=

M

j2J

i

x

j

:

Assume m > n. Hen
e Rng(A) is a proper subset of F

2

m

. Let b 2 F

2

m

be

any ve
tor outside of the range of A. In other words, the linear system:

A � x = b

has no solution (in F

2

). This unsolvability 
an be expressed as a tautology

�

b

(A) in a DNF as follows (we skip A from the notation of �

b

as we always


onsider only one matrix at a time):

�

b

:=

_

i2[m℄

_

�2f0;1g

jJ

i

j

;�

j2J

i

�

j

=1�b

i

^

j2J

i

x

�

j

j

Here we use the notation x

�

from se
tion 2.7. The formula says that there is

some bit i su
h that the ith bits of A �x and b di�er, whi
h itself is expressed

by saying that there is an evaluation � to bits x

j

of x that belong to J

i

whi
h

determines the ith bit of A � x as 1� b

i

, i.e. as di�erent from b

i

.

Note that the size of the formula is bounded above by O(m2

`

`), and that

the 
lauses of :�

b

have the width � `.

For the next de�nitions and statements let us �x parameters 1 � n < m

and ` � m, and an `-sparse m�n matrix A. The next de�nition is a spe
ial


ase of a de�nition [1, Def.2.1℄.

De�nition 2.8.1 A boundary of a set of rows I � [m℄, denoted �

A

(I), is

the set of j 2 [n℄ su
h that exa
tly one entry A

ij

equals 1 for i 2 I.

Let 1 � r � m and � > 0 be any parameters. Matrix A is an (r; �)-

expander i� for all I � [m℄, jIj � r, j�

A

(I)j � �`jIj.

Expanders simulate, in a sense, matri
es with disjoint J

i

's and of the

maximal size `. In su
h a 
ase it would hold that j�

A

(I)j = `jIj. An (r; �)-

expander a
hieves (as long as jIj � r) at least an �-per
entage of this maximal

value.
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We do not have any expli
it matrix A that has suitable expansion prop-

erties but the existen
e of su
h a matrix 
an be proved by a probabilisti


argument.

Consider the following random pro
ess yielding an `-sparse matrix A.

For every i 2 [m℄ and u � ` let j

i;u

be 
hosen independently and uniformly

at random from [n℄. Let J

i

� [n℄ be the set of these values for �xed i, and

de�ne A

i;j

= 1 i� j 2 J

i

.

The following theorem is a spe
ial 
ase of [1, Thm.5.1℄.

Theorem 2.8.2 For every Æ > 0 there is an ` � 1 su
h that for all suÆ-


iently large n the random `-sparse n

2

�n-matrix is an (n

1�Æ

; 3=4)-expander

with probability approa
hing 1.

Proof :

Let r � n

2

and ` � 1 be yet unspe
i�ed but �xed parameters; we shall

spe
ify the values later. Let A be an `-sparse n

2

� n-matrix 
onstru
ted in

the random pro
ess des
ribed above (so m = n

2

). We want to show that

Prob[A is not an (r; 3=4)-expander℄ �! 0 :

For t � r let p

t

be the probability that any one �xed set I of t rows in A

falsi�es the expansion property. Then

Prob[A is not an (r; 3=4)-expander℄ <

r

X

t=1

 

n

2

t

!

p

t

�

r

X

t=1

n

2t

p

t

:

Fix one su
h I, jIj = t. Then:

j

[

i2I

J

i

j � j�

A

(I)j+ 1=2[(

X

i2I

jJ

i

j)� j�

A

(I)j℄

as any j 2

S

i2I

J

i

n �

A

(I) belongs to at least two rows in I. The right hand

side is bounded above by 1=2(j�

A

(I)j + t`) and hen
e if it were j�

A

(I)j <

(3=4)`t then also

j

[

i2I

J

i

j < (7=8)`t :

Consequently,

p

t

� Prob[j

[

i2I

J

i

j < (7=8)`t℄ :

The right hand side is simply the probability that in pi
king t` elements of

[n℄ independently of ea
h other we sele
t less than (7=8)t` elements. If this



40 J. Kraj���
ek

happens then there must be a set of (1=8)t` steps among the t` steps when

we pi
k a point already sele
ted; the later event has a probability bounded

above by

t`

n

. Hen
e:

p

t

� Prob[j

[

i2I

J

i

j < (7=8)`t℄ �

 

t`

(1=8)t`

!

[

t`

n

℄

t`

8

� [O(

`r

n

)

`=8

℄

t

Putting all these inequalities together we see that the probability that A is

not an (r; 3=4)-expander is bounded above by a �nite geometri
 sum

r

X

t=1

n

2t

[O(

`r

n

)

`=8

℄

t

=

r

X

t=1

[n

2

O(

`r

n

)

`=8

℄

t

Substituting n

1�Æ

for r and taking ` � 1 large enough 
onstant (so that

Æ`=8 > 2) the base of the progression [n

2

O(

`r

n

)

`=8

℄ be
omes bounded above

by n

�
(1)

. Hen
e the sum approa
hes 0 as n >> 0.

q.e.d.

For the next few de�nitions and lemmas assume that A is an `-sparse

m � n-matrix that is an (r;

3

4

)-expander. For a set of rows I � [m℄ let

J(I) :=

S

i2I

J

i

, and let A

I

be the (m� jIj) � (n� jJ(I)j)-matrix obtained

from A by deleting all rows in I and all 
olumns in J(I).

The next lemma slightly generalizes [1, L.4.6℄.

Lemma 2.8.3 For any set of rows I � [m℄ of size jIj � r=2 there is

^

I � I,

j

^

Ij � 2jIj, su
h that

(�) For any i =2

^

I, jS

i

n

S

u2

^

I

S

u

j � `=2.

Moreover, for any

^

I of size j

^

Ij � r having this property (�), A

^

I

is an (r;

1

4

)-

expander. Furthermore, there exists the smallest (w.r.t in
lusion) su
h an

^

I.

Proof :

Assume jIj � r=2. Put I

0

:= I. Add in 
onse
utive steps t = 0; : : : to I

t

any one row i as long as

(�) jJ

i

\

[

k2I

t

J

k

j > `=2 :
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We 
laim that this pro
ess stops before t rea
hes jIj. Assume not, and let

I

0

= I

jIj

. Then, by (�), it holds

�

A

(I

0

) < `jIj+ (`=2)jIj = (3=4)`jI

0

j

This 
ontradi
ts the expansion property of A, as jI

0

j � r.

Let

^

I be the last I

t

in the pro
ess, so t < r=2 and j

^

Ij � 2jIj.

^

I 
learly has property (�). Thus we only need to verify the expansion

property of A

^

I

. Let K be a set of � r rows in A

^

I

. Then

�

A

^

I

(K) = �

A

(K) n

[

i2

^

I

J

i

(A)

As for all i 2 K n

^

I we have jJ

i

(A)\

S

k2

^

I

J

k

(A)j � `=2, this equality implies

that

j�

A

^

I

(K)j � j�

A

(K)j � (`=2)jKj � (3=4)`jKj � (`=2)jKj � (1=4)jKj :

q.e.d.

The next de�nition and lemma are from [29℄.

De�nition 2.8.4 1. Any I satisfying the 
ondition (�) from Lemma 2.8.3

is 
alled a safe set of rows.

2. A partial assignment � :� fx

1

; : : : ; x

n

g ! f0; 1g is 
alled safe i�

dom(�) =

S

i2I

J

i

, for some safe I.

We pi
k any su
h I and 
all it the support of �, denoted supp(�).

3. Let b 2 f0; 1g

m

. A safe partial assignment � with support I is a safe

partial solution of A � x = b i� for all J

i

�

S

u2I

J

u

,

L

j2J

i

�(x

j

) = b

i

.

4. For � a safe partial solution with support I, b

�

is an (m � jIj)-ve
tor

with the ith 
oordinate being b

i

�

L

j2J

i

\dom(�)

�(x

j

), for i su
h that

J

i

6� dom(�).

Ve
tor x

I


onsists of those variables not in J(I).

Note that if � is a safe solution with support I, and � is a solution of

A

I

� x

I

= b

�

, then � [ � is a solution of A � x = b.
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Lemma 2.8.5 Let I � I

0

� [m℄ be two safe systems, with jI

0

n Ij � r.

Assume that � is a safe assignment with support I. Let 


i

2 f0; 1g, i 2 I

0

nI,

be arbitrary.

Then � 
an be extended to a safe assignment �

0

with support I

0

su
h that

L

j2J

i

�

0

(x

j

) = 


i

, for all i 2 I

0

n I.

Proof :

By Lemma 2.8.3, A

I

is an (r;

1

4

)-expander. By the expansion property,

every subset of I

0

n I has a non-empty border in A

I

and hen
e, in parti
ular,


annot 
onstitute a linearly dependent set of rows of A

I

. Thus the linear

system

M

j2J

i

ndom(�)

x

j

= 


i

�

M

j2J

i

\dom(�)

�(x

j

)

has a solution �. Put �

0

:= � [ �.

q.e.d.

Theorem 2.8.6 (Kraj���
ek[29℄) Assume that A is an `-sparse m� n ma-

trix that is an (r; 3=4)-expander. Let b =2 Rng(A).

Then every R-proof of �

b

(A) must have the width at least � r=4.

Proof :

Let � be a resolution refutation of A � x = b, i.e. a proof of �

b

(A). Let w

denote the width of �.

We shall 
onstru
t a sequen
e of 
lauses C

0

; : : : ; C

e

o

urring in � and

a sequen
e of partial safe assignments �

t

:� fx

1

; : : : ; x

n

g ! f0; 1g for t =

0; : : : ; e, su
h that the following 
onditions are satis�ed:

1. C

0

:= ; is the end 
lause of �. Ea
h C

t+1

is a hypothesis of an inferen
e

in � yielding C

t

, and C

e

is an initial 
lause.

2. If x

j

o

urs in C

t

then x

j

2 dom(�

t

).

3. C

t

is false under the assignment �

t

.

4. jsupp(�

t

)j � 2w.

Put �

0

:= ;. Assume we have C

t

and �

t

, and that C

t

has been inferred

in � by:
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D

1

[ fx

j

g D

2

[ f:x

j

g

C

t

(= D

1

[D

2

)

Let I

0

� supp(�

t

) be a minimal safe set with some row 
ontaining j. It

exists, by Lemma 2.8.3, as long as jsupp(�

t

)j+ 1 � r=2; as jsupp(�

t

)j � 2w

this inequality follows if w < r=4.

By Lemma 2.8.5 there is a partial safe solution �

0

� �

t

. Take for �

t+1

�

�

0

a minimal safe assignment obeying 
onditions 2. Finally, take for C

t+1

the 
lause among D

1

[ fx

j

g, D

2

[ f:x

j

g made false by �

t+1

.

Now note that 
onditions on C

e

and �

e

lead to a 
ontradi
tion. C

e

is an initial 
lause and so �

e

makes true its negation whi
h is one of the


onjun
tions

V

j2J

i

x

�

j

j

in �

b

. In parti
ular, �

j2J

i

�

j

= 1 � b

i

. But that

violates the assumption that �

e

satis�es all equations of A � x = b evaluated

by �

e

.

We have 
onstru
ted the sequen
e under the assumption that w < r=4.

Hen
e w � r=4.

q.e.d.

Corollary 2.8.7 ([29℄) Assume that A is an `-sparse m�n matrix that is

an (r; 3=4)-expander. Let b =2 Rng(A). Then every R-proof of �

b

(A) must

have the size at least � 2


(

(r=4�`)

2

n

)

.

In parti
ular, for every Æ > 0 there is an ` � 1 su
h that for all suÆ
iently

large n there exists an `-sparse n

2

� n-matrix A su
h that �

b

(A) requires R-

proofs of size at least � 2


(n

1�Æ

)

.

Proof :

Apply Theorem 2.8.2 for Æ=2, to get ` � 1 and an `-sparse n

2

�n-matrix

A whi
h is an (n

1�Æ=2

; 3=4)-expander. By Theorem 2.8.6 every R-proof of

�

b

(A) must have the width at least 
(n

1�Æ=2

).

The width-size relation given in Theorem 2.7.5 it follows that the size of

any su
h proof must be at least exp(
(

(n

1�Æ=2

�`)

2

n

)), as ` bounds the width

of the initial 
lauses. This is 2


(n

1�Æ

)

.

q.e.d.
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2.9 Exer
ises

Exer
ise 2.9.1 Limited extension is a way how to translate formulas into

DNF formulas and preserving (un)satis�ability. It is analogous to the redu
-

tion of the general satis�ability problem to the satis�ability of sets of 
lauses.

Let A be any formula built from atoms p

1

; : : : ; p

n

. Introdu
e for ea
h subfor-

mula B of A (in
luding A itself) a new atom q

B

. Let Ext(A) of all 
lauses

of the form:

1. fq

B

;:p

i

g; f:q

B

; p

i

g, if B is atom p

i

.

2. fq

B

; q

C

g; f:q

B

;:q

C

g if B = :C.

3. f:q

B

; q

C

1

; q

C

2

g; fq

B

;:q

C

1

g; fq

B

;:q

C

2

g if B = C

1

_ C

2

.

4. f:q

B

; q

C

1

g; f:q

B

; q

C

2

g; fq

B

;:q

C

1

;:q

C

2

g if B = C

1

^ C

2

Compute the total length of all formulas in Ext(A) and prove that Ext(A)[

fq

A

g is satis�able if and only if A is satis�able.

Exer
ise 2.9.2 Analyze the argument in Theorem 2.1.1, and give an upper

bound on the number of 
lauses in a resolution refutation of any unsatis�able

set of k 
lauses formed from literals build from n atoms.

Exer
ise 2.9.3 Let an 9-de
ision tree be a de
ision tree bran
hing a

ording

to the truth value of a 
lause. Transform the proof of Theorem 2.2.4 into a


onstru
tion of an 9-de
ision tree (from �) and a lower bound to the height

of su
h trees solving the sear
h problem asso
iated with PHP

n

.

Exer
ise 2.9.4 Show that Lemma 2.2.1 
an be reversed: Turning a de
ision

tree upside down gives, essentially, an R

�

-refutation of C.

Show that a general, non-tree-like, R-refutation of C yields a bran
hing

program solving the sear
h problem, but not vi
e versa.

Prove the following theorem, showing that even in the 
ase of non-tree-

like proofs we 
an get, under spe
ial 
onditions, a 
orresponden
e between

bran
hing programs and R-proofs.

Theorem 2.9.5 ([34℄) The minimal number of 
lauses in a regular reso-

lution refutation of C, (where \regular\ means that on every path through the

refutation every atom is resolved at most on
e) equals to the minimal num-

ber of nodes in a read-on
e bran
hing program solving the sear
h problem

asso
iated with C (where \read-on
e \ means that on every path through the

bran
hing program every atom o

urs at most on
e as a label of an node).
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A proof 
an be found in [25, Chpt.4℄ but let me give a sket
h. For the

hard dire
tion (from a program to a proof) asso
iate with every node v in

the read-on
e program a 
lause C

v

having the property that every assignment

determining a path going through v falsi�es C

v

. If v is a leaf then C

v

is the


lause from C labelling v in the program. Assume that the node v is labelled

by atom p

i

and the edge (v; v

1

) is labelled by 1, and (v; v

0

) by 0.

We 
laim that C

v

1

does not 
ontain p

i

and C

v

0

does not 
ontain :p

i

.

This is be
ause � is read-on
e and so no path rea
hing v (and at least one

path does rea
h v as s is minimal possible) determines the value of p

i

. Hen
e

we 
ould prolong su
h path by giving to p

i

value 1 if p

i

2 C

v

1

or value 0 if

:p

i

2 C

v

0

. This new path would satisfy C

v

0

or C

v

1

respe
tively, 
ontradi
ting

the assumption above.

It follows that either one of the 
lauses C

v

1

; C

v

0


ontains none of p

i

;:p

i

,

or that C

v

0


ontains p

i

but not :p

i

and C

v

1


ontains :p

i

but nor p

i

. In the

former 
ase de�ne C

v

to be the 
lause 
ontaining none of p

i

;:p

i

, and in the

latter 
ase de�ne C

v

to be the resolution of 
lauses C

v

1

and C

v

0

w.r.t. atom

p

i

.

It is easy to verify (using an argument similar to the one above) that no

path through v satis�es C

v

.

The root of � has to be assigned the empty 
lause as all paths go through

it. Hen
e the 
onstru
ted obje
t is a regular resolution refutation.

Exer
ise 2.9.6 Prove the Craig interpolation theorem for propositional logi
,

as well as its monotone version (Lyndon theorem).

Exer
ise 2.9.7 Given a 
ir
uit C of size s formalize the statement that C

has a unique 
omputation on an input p. The formalization is a family of

impli
ations (one for ea
h output bit). Show that ea
h of these impli
ations

has a resolution proof of size O(s).

Exer
ise 2.9.8 Prove Theorem 2.4.1.

Exer
ise 2.9.9 Show that in order for Theorem 2.4.3 to hold we 
annot

repla
e the 
onsisten
y 
ondition in De�nition 2.4.2 by a simpler one: For

all u; v the label of the leaf in P

;

u;v

is valid for u; v.

Exer
ise 2.9.10 De�ne a linear equational 
al
ulus (LEC) to be a proof

system working with linear equations

a

1

x

1

+ : : : + a

n

x

n

= b
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over a �nite �eld. The rules allow to add two equations and to multiply

an equation by an element of the �eld. An LEC-refutation of equations

E

1

; : : : ; E

m

is an LEC-derivation of the equation 0 = 1 from E

1

; : : : ; E

m

.

Let the "size" of an equation be the number of non-zero 
oeÆ
ients. LEC is

sound and 
omplete (by Gauss elimination), if by 
ompleteness we mean that

every system of equations unsolvable in F is refutable. When 
ompleteness is


onsidered only w.r.t. the systems with no 0-1 solution then LEC is 
omplete

only for the two-element �eld F

2

. But not even all Boolean fun
tions 
an

be represented by a 
onjun
tion of linear equations and so LEC 
annot be


onsidered, even for F

2

, as a full propositional proof system in the sense of

[14℄.

Prove all these fa
ts and prove the e�e
tive interpolation for LEC.

Exer
ise 2.9.11 Prove a bound to the interpolantion for CP . Express the

bound in terms of n and M , a bound to the absolute values of 
oeÆ
ients

o

uring in a derivation.



Chapter 3

Frege systems and stronger

systems

In this 
hapter we depart from resolution towards parti
ular stronger systems

(general systems will be studied in Chapter ??). The most important among

them are Frege systems F and Extended Frege systems EF . We shall also

dis
uss in this 
hapter the Substitution Frege systems SF and the Quanti�ed

propositional 
al
ulus G.

3.1 Frege systems

The notion of a Frege system formalizes the usual 
al
ulus for propositional

logi
 everybody learns at s
hool. It has a language 
omplete for propositional

logi
 and is based on �nitely many axiom s
hemes (like A_:A) and inferen
e

rules (like modus ponens A; A! B = B).

De�nition 3.1.1 (Cook-Re
khow[14℄) Let L be any �xed �nite language


omplete for propositional logi
 (that is, all boolean fun
tions 
an be de�ned

in L).

A Frege rule (ta
itly in L) is a k + 1-tuple of formulas A

0

; : : : ; A

k

in

atoms p

1

; : : : ; p

n

written as:

A

0

; : : : ; A

k�1

A

k

;

su
h that any truth assignment � : fp

1

; : : : ; p

n

g ! f0; 1g satisfying all for-

mulas A

0

; : : : ; A

k�1

satis�es also A

k

.

47
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A Frege rule in whi
h k = 0 is 
alled a Frege axiom s
heme.

An instan
e of the rule is obtained by a simultaneous substitution of

arbitrary formulas B

i

for all p

i

.

The 
ondition posed on a Frege rule in the de�nition is the soudness of

the rule.

De�nition 3.1.2 (Cook-Re
khow[14℄) Let F be a �nite 
olle
tion of Frege

rules.

1. A Frege proof (an F -proof brie
y) of formula � from formulas �

1

; : : : ; �

u

is a �nite sequen
e �

1

; : : : ; �

k

of formulas su
h that �

k

= �, and su
h

that every �

i

is either one of �

1

; : : : ; �

u

, or is inferred from some earlier

�

j

's (j < i) by a rule of F .

2. F is impli
ationally 
omplete if and only if any � 
an be F -proved

from any set f�

1

; : : : ; �

u

g if every truth assignment satisfying all �

i

's

satis�es also � (i.e. � is a semanti
al 
onsequen
e of �

i

's).

3. F is a Frege proof system if and only if it is impli
ationally 
omplete.

One of the main features of Frege system is the robustness of the de�ni-

tion. We may vary the language, the proof format (tree-like or sequen
e-like),

and even pass to natural dedu
tion or sequent 
al
ulus formalizations, and

we always get a polynomially-equivalent (in the sense of polynomial simula-

tion) proof system. I shall not dis
uss the p-equivalen
e to sequent 
al
ulus

or natural dedu
tion as we do not dis
uss the formalizations mu
h in this


hapter (see Exer
ise 3.5.1 or [14℄). The �rst two statements made above

are the 
ontent of the following two theorems.

In the next theorem we shall 
on�ne ourselves to Frege systems whose

language 
ontains the DeMorgan language. The reason is that we have

de�ned in De�nition 1.0.1 proof systems using the set TAUT of DeMorgan

tautologies. If the language of a system does not 
ontain the DeMorgan

language we would have to spe
ify a parti
ular translation of DeMorgan

tautologies into the language and this is just obs
ures things.

Theorem 3.1.3 (Re
khow [41℄) Assume that F and F

0

are two Frege sys-

tems and that the languages of both 
ontain the DeMorgan language.

Then F and F

0

polynomially simulates ea
h other.

Moreover, the p-simulations 
an be 
hoosen so that both the number of

steps and the size of proofs in
rease at most proportionally and the depth

in
reases by a 
onstant.
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The only full published proof of the theorem I am aware of is in [25,

Chpt.4℄. I shall not repeat the proof here but I shall outline the main diÆ-


ulty and the main idea how to over
ome it.

Obviously it is enough to prove that any Frege system F in the DeMorgan

language p-simulates any Frege system F

0

in a language L 
ontaining the

DeMorgan language. If L were in fa
t just the DeMorgan langauge then the

p-simulation 
ould be done easily. In any F

0

-rule �

0

; : : : ; �

k

the formula �

k

semanti
ally follows from �

0

; : : : ; �

k�1

. By the impli
ational 
ompleteness of

F there is an F -proof � of �

k

from �

0

; : : : ; �

k�1

. Thus whenever we would

see an appli
ation of the rule in an F

0

-proof we 
ould simulate it in F by

(an instan
e of) proof �. It is easy to 
omputate that this in
reases the size

as well as the number of steps only proportionally.

When the langueg of F

0

is bigger than the DeMorgan language the nat-

ural approa
h would be to �rst represent all 
onne
tives in L by DeMor-

gan formulas and then pro
eed as before. However, a diÆ
ulty may arise.

Assume that L 
ontains the equivalen
e 
onne
tive �. In the DeMorgan

language we may de�ne p � q by (p ^ q) _ (:p ^ :q). If we translate inthis

way the formula

p

1

� (p

2

� (p

3

� : : : (p

n�1

� p

n

) : : :)

we obtain a formula of size 
(2

n

).

The way how to over
ome this diÆ
ulty is the following. Note that if

the nesting of �'s in a formula is k then the translation will have size O(2

k

).

Hen
e if we manage �rst to modify the original F

0

-proof (that we attempt

to p-simulate) so that every formula in it has only logarithmi
 depth then

the translation will work. In fa
t, this 
an be done. See [25, Lemma 4.4.14℄

for a detailed proof.

De�nition 3.1.4 A Frege proof �

1

; : : : ; �

k

is tree-like if and only if every

step �

i

is a hypothesis of at most one inferen
e in the proof.

Frege proof system F using only tree-like proofs is denoted F

�

.

Theorem 3.1.5 (Kraj���
ek[24℄) F

�

p-simulates F . In fa
t, any F -proof

of size m, with k steps, of depth d 
an be transformed into a tree-like proof

of the same formula that has size O(mk log(k)), O(k log(k)) steps and the

depth d+O(1).

Proof :
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Let �

1

; : : : ; �

k

be an F -proof of � . Derive 
onse
utively (in a tree-like

fashion) formulas �

i

:= �

1

^ : : :^ �

i

(bra
kets balan
ing the 
onjun
tion into

a binary tree of depth at most O(log(i))).

We 
laim that �

i+1

has a tree-like proof from �

i

with a O(i � log(i))

number of steps, size O(i � j�

i

j) and of the depth d + O(1). Obviously, the

following is suÆ
ient:

Claim For j � i, any �

j


an be proved from �

i

by a tree-like proof with

O(i � log(i)) steps, size O(log(i) � j�

i

j) and depth dp(�

i

) +O(1).

q.e.d.

No strong lower bounds are known for Frege systems. The following is

the best one.

Theorem 3.1.6 (Kraj���
ek[23℄) Any F -proof of :: : : : 1, the negation o
-


uring 2n-times, must have the size at least 
(n

2

) (the 
onstant impli
it in


 depends on the parti
ular system F ).

This theorem is a simple 
orollary of a general statement about the stru
-

ture of proofs, even in predi
ate logi
, from [22℄. We state it only for Frege

systems.

Theorem 3.1.7 (Kraj���
ek[22℄) For every Frege system F there is a 
on-

stant 
 > 0 su
h that the following holds.

If A has an F -proof � = B

1

; : : : ; B

k

with k steps there is another F -proof

C

1

; : : : ; C

k

su
h that:

1. The logi
al depth of formulas C

i

is bounded by 
 � k, all i � k.

2. There is a substitution � of formulas for atoms in C

i

's su
h that:

�(C

i

) = B

i

all i � k.

3.2 Substitution Frege systems

Instan
e of Frege rules are obtained by substitutions but the substitution it-

self is not a valid inferen
e rule in Frege systems. Substitution Frege systems

extend Frege systems by allowing the rule.
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De�nition 3.2.1 The substitution rule allows to substitute simultaneously

formulas for atoms:

A(p

1

; : : : ; p

n

)

A(B

1

; : : : ; B

n

)

:

A Frege system F augmented by the substitution rule is denoted SF .

We 
an eliminate an appli
ation of the substitution rule by repeating the

part of the proof before the inferen
e, with B

i

's substituted everywhere for

p

i

s. In su
h a transformation these repetitions 
an be nested and the proof

may grow exponentially.

In fa
t, this exponential in
rease in the number of steps is ne
essary. This

fa
t is due to Tseitin-Cubarjan [46℄. A simpler example than their original

one is provided by the following statement.

Lemma 3.2.2 ([23℄) Let F and SF be a frege and a Substitution Frege

systems respe
tively.

The formula :

(2

n

)

(1) has an SF -proof with O(n) steps but every F -proof

requires 
(2

n

) steps.

Proof :

De�ne A

n

:= :

(2

n

)

(1) with :

(k)

denoting k o

urren
es of :. Let B

k

=

p! (:)

2

k

(p).

SF -derives B

k

from B

k�1

ina 
onstant number of steps utilizing the

substitution rule: Substitute (:)

2

k�1

(p) for p in B

k�1

and apply modus

ponens. B

0

has a 
onstant size proof, so every B

k

has an SF -proof with

O(k) steps.

For the se
ond part of the statement assume that A

n

has an F -proof

with k steps. By Theorem 3.1.7 there is an F -proof of some formula B su
h

that, in parti
ular, the logi
al depth of B is O(k) and A

n

is a substitution

instan
e of B.

As B is a tautology, ne
essarily B = A

n

. Hen
e 
(2

n

) � k.

q.e.d.

Note that this statement does not exponentially separate F from SF ; the

point is that the speed-up it a
hieved on a formula that has itself exponential

size. In fa
t, no lower bounds at all are known for SF .
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3.3 Extended Frege systems

There is another way how to augment Frege systems to apparently stronger

proof systems. The idea is to allow the proof system to abbreviate (possibly

large) formulas by new atoms.

De�nition 3.3.1 (Cook-Re
khow[14℄) Let F be a Frege system. An ex-

tended Frege proof is a sequen
e of formulas A

1

; : : : ; A

k

su
h that every A

i

is either obtained from some previous A

j

's by an F - rule or has the form:

q � B

with the following 
onditions satis�ed:

1. Atom q does appear neither in B, nor in any A

j

for j < i.

2. Atom q does not appear in A

k

.

(If � is not in the language of F we use any �xed formula de�ning it.) A

formula of this form is 
alled an extension axiom, q is 
alled an extension

atom.

An extended Frege system EF is the proof system whose proofs are ex-

tended Frege proofs.

The possibility to introdu
e extension axiom in an extended Frege proof

is sometimes 
alled the "Extension rule" although it is not a rule in the

earlier sense.

Similarly as with the Substitution rule we 
an eliminate the extension

rule by 
onse
utively repla
ing all extension atoms by their de�ning for-

mulas. However, extension atoms may o

ur in de�ning formulas of other

extension atoms (introdu
ed later in the proof) and this nesting 
an 
ause

an exponential in
rease in size in this transformation. But if we have the

substitution rule this works well.

Lemma 3.3.2 A Substitution Frege system SF polynomially simulates any

Extended Frege system EF .

Proof :

Let q

1

� B

1

; : : : ; q

r

� B

r

be the extension axioms introdu
ed in an EF -

proof in this order. In fa
t, we may 
learly assume that these r extension

axioms form the �rst r steps of the proof.
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Now transform the original proof with steps A's into a new proof with

steps

q

r

� B

r

! (q

r�1

� B

r�1

! (: : : (q

1

� B

1

) : : :)! A :

This transformation uses only Frege rules.

Next apply to the last formula of this form the substitution rule by

substituting B

r

for q

r

, then B

r�1

for q

r�1

et
.. This eliminates (applying

modus ponens with formulas of the form C � C) the part

q

r

� B

r

! (q

r�1

� B

r�1

! (: : : (q

1

� B

1

) : : :)! : : :

It is easy to 
ompute that the size of the original proof in
reases at most

quadrati
ally in this pro
ess.

q.e.d.

Considerably more diÆ
ult is the opposite simulation. We shall give

its proof in Chapter ?? using bounded arithmeti
. A dire
t 
ombinatorial

p-simulation 
an be found in [31℄ or in [25, Se
.4.5℄.

Theorem 3.3.3 ([19, 31℄) Any extended Frege system EF polynomially

simulates any Substitution Frege system SF .

The following four fa
ts summarize further elementary but important

properties of Extended frege systems (see Exer
ises 3.5):

1. Extended Frege systems satisfy the analogue of Re
khow's Theorem

3.1.3.

2. There is no di�eren
e in measuring the 
omplexity of EF -proofs by the

size or by the number of steps: Any formula A having an EF -proof

with k steps has also an EF -proof of size O(k + jAj).

3. The minimal numbers of steps in a F -proof and in an EF -proof of a

formula are proportional to ea
h other.

4. Allowing the extension rule (see Exer
ise 3.5.4 for a pre
ise formula-

tion) in resolution 
reates a proof system p-equivalent to EF .

5. EF is p-equivalent to "Frege systems operating with 
ir
uits".
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I left to the end of the se
tion the sad issue of lower bouds for EF :

No lower bounds, even super-linear, are known. Cook and Re
khow [14℄

originally suggested that the pigeonhole prin
iplePHP

n

(see Chapter 1) may

separate EF from F . However, this is not true, the prin
iple has polynomial

size proofs in both EF and F . The upper bound in EF is simple and the

proof just formalizes a straightforward proof by indu
tion on n. The upper

bound in F is mu
h harder and requires to show that Frege system "
an


ount". We give here only the proof of the �rst upper bound; the proof of

the se
ond will be given in Chapter ?? via bounded arithmeti
.

Theorem 3.3.4 (Cook-Re
khow[14℄) The pigeonhole prin
iple PHP

n

has

an EF -proof of size polynomial in n.

Proof :

Let p

ij

be the atoms of PHP

n

; i 2 [n℄ and j 2 [n� 1℄. De�ne, using the

extension rule, new atoms q

uv

, for u 2 [n� 1℄ and v 2 [n� 2℄ by:

q

uv

:= p

uv

_ [p

nv

^ p

u(n�1)

℄

It is easy to see that there is a size n

O(1)

EF -derivation of :PHP

n�1

ex-

pressed in atoms q

uv

from :PHP

n

(expressed in atoms p

ij

).

Iterating this pro
es dedu
es :PHP

2

from :PHP

n

by p-size EF -proof.

But :PHP

2

has a refutation (of a 
onstant size).

q.e.d.

Theorem 3.3.5 (Buss[10℄) The pigeonhole prin
iple PHP

n

has an F -proof

of size polynomial in n.

The issue of whi
h tautologies form plausible 
andidates as being hard

for EF will be dis
ussed in Chapter ?? (see also [25, 26, 29℄).

3.4 Quanti�ed propositional 
al
ulus

It is most 
onvenient to de�ne the quanti�ed propositional logi
 G over

Gentzen's sequent 
al
ulus LK (we 
onsider only its propositional fragment

here).

The lines in a sequent 
al
ulus proof are not formulas but sequents, an

ordered pair of two �nite (possibly empty) sequen
es of formulas written as:

A

1

; : : : ; A

u

�! B

1

; : : : ; B

v

:
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Formulas A

1

; : : : ; A

u

form the ante
edent and formulas B

1

; : : : ; B

v

form the

su

edent of the sequent. Letters �;�;�; : : : will denote �nite sequen
es of

formulas, 
alled also 
edents.

The truth de�nition is extended from formulas to sequents as follows: A

truth assignment � to the atoms in a sequent � �! � satis�es the sequent

if and only if � either satis�es a formula from the su

edent � or it satis�es

the negation of a formula from the ante
edent �.

Note that, in parti
ular, the empty sequent ; �! ; (written also simply

�!) 
annot be satis�ed. The empty sequent plays in LK the role of the

empty 
lause in R.

De�nition 3.4.1 An LK-proof is a sequen
e of sequents in whi
h every

sequent is either an initial sequent, a sequent having one of the forms:

p �! p; 0 �!; �! 1

with p an atom, or is derived from previous sequents in the proof by one of

the following rules:

1. weakening rules

left

� �! �

A;� �! �

and right

� �! �

� �! �; A

2. ex
hange rules

left

�

1

; A;B;�

2

�! �

�

1

; B;A;�

2

�! �

and right

� �! �

1

; A;B;�

2

� �! �

1

; B;A;�

2

3. 
ontra
tion rules

left

�

1

; A;A;�

2

�! �

�

1

; A;�

2

�! �

and right

� �! �

1

; A;A;�

2

� �! �

1

; A;�

2

4. : : introdu
tion rules

left

� �! �; A

:A;� �! �

and right

A;� �! �

� �! �;:A

5. ^ : introdu
tion rules

left

A;� �! �

A ^B;� �! �

and

A;� �! �

B ^A;� �! �

and right

� �! �; A � �! �; B

� �! �; A ^B
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6. _ : introdu
tion rules

left

A;� �! � B;� �! �

A _B;� �! �

and

right

� �! �; A

� �! �; A _B

and

� �! �; A

� �! �; B _A

7. 
ut rule

� �! �; A A;� �! �

� �! �

Every rule ex
ept the 
ut rule introdu
es a new formula; su
h a formula

is 
alled the prin
ipal formula of the rule and theformulas from whi
h it is

inferred are 
alled the minor formulas of the rule. All other formulas in the

rule are 
alled the side formulas.

For a formula in � or � in the lower sequent of a rule, the same o

ur-

ren
e in the upper sequent(s) is 
alled the immediate an
estor of the formula.

The immediate an
estor(s) of a prin
ipal formula of a rule are the minor for-

mulas of the rule.

An an
estor of a formula is any formula obtained by repeating the im-

mediate an
estor step.

The following is well-known (and left as an Exer
ise 3.5.7).

Theorem 3.4.2 The system LK is sound and 
omplete. That is, all prov-

able sequents are satis�ed by all truth assignments and whenever a sequent

� �! � is satis�ed by all truth assignments then it has an LK-proof. More-

over, this proof does not need to use the 
ut-rule.

Quanti�ed propositional 
al
ulus is formed from the sequent 
al
ulus LK

by introdu
tion of propositional quanti�ers: 8xA(p; x) (meaning A(p; 0) ^

A(p; 1), and 9xA(p; x) (meaning A(p; 0) _A(p; 1).

Of 
ourse, any quanti�ed propositional formula 
an be equivalently writ-

ten without the quanti�ers. However, the quanti�er-free formula may be

exponentially longer. For example,

W

�

A(�) with � ranging over f0; 1g

n

has

size 
(2

n

jAj) but an equivalent quanti�ed formula 9x

1

: : : 9x

n

A(x) has size

only O(n) + jAj.

De�nition 3.4.3 Quanti�ed propositional 
al
ulus G extends LK by allow-

ing quanti�ed propositional formulas in sequents and by augmenting LK by

the following four quanti�er rules:
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1. 8:introdu
tion

left

A(B);� �! �

8xA(x);� �! �

and right

� �! �; A(p)

� �! �;8xA(x)

2. 9:introdu
tion

left

A(p);� �! �

9xA(x);� �! �

and right

� �! �; A(B)

� �! �;9xA(x)

where B is any formula. The atom p must not o

ur in the lower sequents

of 8:right and 9:left.

Proof system G p-simulates SF and is presumably stri
tly stronger. But

we do not know how to prove this.

Lemma 3.4.4 G p-simulates SF .

Proof :

The SF -proof is transformed into a G-proof line by line. A line 
onsisting

of a formula A is represented by the sequent �! A.

We shall only show how G simulates an appli
ation of the substitution

rule:

A(p

1

; : : : ; p

n

)

A(B

1

; : : : ; B

n

)

:

the rest being obvious (
f. Exer
ise 3.5.8).

To �! �(p

1

; : : : ; p

n

) apply n-times 8:right to derive

�! 8x

1

: : : 8x

n

A(x

1

; : : : ; x

n

) :

The sequent

A(B

1

; : : : ; B

n

) �! A(B

1

; : : : ; B

n

)

has a short G -proof. Hen
e

8x

1

: : : 8x

n

A(x

1

; : : : ; x

n

) �! A(B

1

; : : : ; B

n

)

follows by n appli
ations of 8:left. Then infer, via 
ut-rule, the wanted

sequent:

�! A(B

1

; : : : ; B

n

) :

q.e.d.

The proof system G 
an be strati�ed into subsystems G

�

1

; G

1

; G

�

2

; G

2

; : : :

and interesting relations between the subsystems 
an be proved. This will

be done in Chapter ?? using bounded arithmeti
.
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3.5 Exer
ises

The next �ve exer
ises ask for proofs of �ve statements, all from [14℄.

Exer
ise 3.5.1 Prove that F and LK (De�nition 3.4.1) p-simulate ea
h

other.

Exer
ise 3.5.2 Prove the analogue of Theorem 3.1.3 for Extended Frege

systems.

Exer
ise 3.5.3 Prove that any formula A having an EF -proof with k steps

has also an EF -proof of size O(k + jAj).

Exer
ise 3.5.4 De�ne Extended resolution ER as the resolution proof sys-

tem R augmented by all 
lauses from Ext(�), for all formulas �, as extra

initial 
lauses (
f. Exer
ise 2.9.1).

Prove that ER and EF polynomially simulate ea
h other.

Exer
ise 3.5.5 Prove that the minimal numbers of steps in a F -proof and

in an EF -proof of a formula are proportional to ea
h other. Hen
e measuring

the size of EF -proofs is the same as measiring the number of steps in F -

proofs.

Exer
ise 3.5.6 De�ne a notion of "a Frege system operating with 
ir
uits"

and prove thatit is p-equivalent with EF .

Cir
uit Frege systems are de�ned in [?℄. Somewhat di�erent formalization

is in [29℄.

Exer
ise 3.5.7 Prove that the sequent 
al
ulus de�ned in 3.4.1 is sound

and 
omplete (even without the 
ut-rule).

Exer
ise 3.5.8 Complete the details in the proof of Lemma 3.4.4.



Chapter 4

Constant depth Frege

systems

Constant depth Frege systems are natural subsystems of Frege systems. Res-

olution 
an be seen as depth 0 or 1 (depending on the formulation) Frege

system. The interest in these systems is two-fold. First, these are the most

interesting and, essentially, the strongest proof systems for whi
h we 
an

prove strog lower bounds. Se
ondly, formulas h�i

n

produ
ed in the trans-

lation of a �rst-order prin
iple � (
f. Chapter 1) have the depth bounded

by a 
onstant. In fa
t, proofs in some theories of bounded arithmeti
 of

su
h � yield a family of 
onstant-depth Frege proofs for h�i

n

's (
f.Chapter

??). Thus lower bounds for 
onstant depth Frege proofs imply independen
e

results for su
h theories.

4.1 De�nition of the systems and the PHP lower

bound

We shall 
onsider a Frege system F in the language 0, 1, : and _. The

depth of a formula is the maximum number of blo
ks of disjun
tions and of

negations when going from the formula to atomi
 subformulas. The indu
tive

de�nition is as follows.

De�nition 4.1.1 The depth of a formula A, denoted dp(A), is de�ned by

the following 
onditions:

1. dp(0) = dp(1) = dp(p) = 0, for any atom p.

59
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2. dp(:A) := dp(A), if A starts with :, and dp(:A) := 1 + dp(A) other-

wise.

3.

dp(A_B) =

8

>

>

>

<

>

>

>

:

max(dp(A); dp(B)) if both A and B start with _

1 +max(dp(A); dp(B)) if both A and B start with :

max(1 + dp(A); dp(B)) if B starts with _ and B does not

max(dp(A); 1 + dp(B)) if A starts with _ and B does not

A subsystem of F using only formulas of depth at most d is denoted F

d

.

Re
all the pigeonhole prin
iple formulas PHP

n

from Chapter 1. We

shall 
onsider it in the form saying that a relation 
annot be a graph of a

bije
tion between n + 1 and n. It will be 
onvenient to 
onsider instead

of proofs of PHP

n

refutations of the set :PHP

n

of the following formulas

where i's ranger over [n+ 1℄ while j's range over [n℄:

�

W

j

p

ij

, one for ea
h i.

�

W

i

p

ij

, one for ea
h j.

� :p

i

1

j

_ :p

i

2

j

, one for ea
h triple i

1

< i

2

and j.

� :p

ij

1

_ :p

ij

2

, one for ea
h triple i and j

1

< j

2

.

We are ready to state a major lower bound in proof 
omplexity, perhaps

the most important of all. We give the proof of the theorem at the end of

Se
tion 4.4 after developing some ma
hinery.

Theorem 4.1.2 ([33, 38℄) Let d � 2 and 0 < Æ < 5

�d

be arbitrary. Then

for suÆ
iently large n � 1, in any F

d

-refutation of :PHP

n

must o

ur at

least 2

n

Æ

di�erent formulas as subformulas. In parti
ular, any su
h proof

must have the size at least 2

n

Æ

.

It was M. Ajtai[2℄ who �rst proved that there are no polynomial size F

d

proofs PHP

n

. The �rst exponential lower bound for F

d

's have been a
tually

proved for di�erent formulas in Kraj���
ek [24℄ (
f. Se
tion ??). Subsequently

Ajtai's lower bound have been strenghten to the exponential one by inde-

pendent proofs in [33℄ and [38℄.
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4.2 PHP -de
ision trees

Let �(x

1

; : : : ; x

n

) be a propositional formula. Its truth value on a given truth

assignment 
an be determined by a de
ision tree (
f. Se
tion 2.2). A de
ision

tree bran
hes at a node a

ording to the truth value of a variable. Hen
e

as we travel in the tree from the root to a leaf we 
olle
t bigger and bigger

information about the assignment until the truth value of � is determined.

In prin
iple the depth of su
h a tree must be n, the number of all variables

(
f.Exer
ise 4.8.1).

We want to somehow simulate a non-existing truth assignment satisfying

:PHP

n

, and we will do it using a modi�
ation of de
ision trees. These new

trees will not have labels atta
hed to leaves.

De�nition 4.2.1 Let D � [n + 1℄ and R � [n℄. A PHP -tree over D;R is

indu
tively de�ned as follows:

1. A single node, a root, is a PHP -tree over any D;R.

2. For every i 2 D the following is a PHP -tree over D;R: The tree

bran
hes at the root a

ording to all j 2 R, and at a son of the root at

the bran
h j 
ontinues by a PHP -tree over D n fig; R n fjg.

3. For every j 2 R the following is a PHP -tree over D;R: The tree

bran
hes at the root a

ording to all i 2 D, and at a son of the root at

the bran
h i 
ontinues by a PHP -tree over D n fig; R n fjg.

A PHP -tree is a PHP -tree over [n+1℄; [n℄. (We shall often say just "a

tree" instead of "a PHP -tree".) The height of a tree T is denoted jjT jj. A

tree of the height � k is 
alled also a k-tree.

We think of the tree as bran
hing a

ording to queries f(i) =? and

f

(�1)

(j) =?, where f is a name for a (non-existing) bije
tion between [n+1℄

and [n℄. Every path in a tree determines a partial 1-to-1 map between [n+1℄

and [n℄; we identify the path with the partial map and the tree with the set

of all su
h maps 
orresponding to all paths.

Consider the simplest example; a tree of depth 1 bran
hing a

ording to

all answers to f(i) =?. A formula

W

j

p

ij

, an axiom of :PHP

n

, is intuitively

true at every leaf of the tree be
ause at any leaf one p

ij

is made true. On

the other hand, if we think of f as everywhere de�ned (and, in parti
ular, as

f(i) being de�ned) then the tree des
ribes all possibilities. Hen
e the formula
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W

j

p

ij

is "true" in the sense that it holds in all possibilities des
ribed by the

tree.

Now 
onsider formula :p

ij

_ :p

ik

for j 6= k, another axiom of :PHP

n

.

A suitable tree to use for the formula is a tree bran
hing �rst a

ording to

f

(�1)

(j) =? and then, at a bran
h 
orresponding to any u 2 [n+1℄, a

ording

to f

(�1)

(k) =? with answers from [n+ 1℄ n fug. At every path through the

tree either f(i) 6= j or f(i) 6= k and hen
e the formula is satis�ed. As

before, thinking of f as an inje
tive map that is onto, the bran
hing of the

tree des
ribes all possibilities. Hen
e again the formula is "true" in the sense

of being true in all situations des
ribed by a tree.

Our preliminary strategy is thus the following. We assign to all formulas

a tree and a subset of (the set of paths in) the tree where the formula is true.

A diÆ
ulty arises: As there is no bije
tion f , no tree 
an de
ide the truth

of all atoms. This implies that formulas may have di�erent trees atta
hed to

them and we need a way how to 
ompare them. Explaining more informally

would rather obfus
ate things so we laun
h into a formal treatment.

De�nition 4.2.2 1. M is the set of all partial bije
tions between [n+1℄

and [n℄. Maps from M are denoted �; �; 
; : : :. The size of � is the

size of its domain and it is denoted j�j.

2. � and � are in
ompatible, � ? � in symbols, i� � [ � =2 M. The fa
t

that � and � are 
ompatible will be denoted �jj�.

3. Let H � M and let T be a tree (ta
itly a PHP -tree). Tree T re�nes

set H, H / T in symbols, i� for all � 2 T either 8� 2 H;� ? � or

9
 2 H; 
 � �.

4. For T , S trees, T �S := f�[� j � 2 T; � 2 Sg. It is 
alled a 
ommon

re�nement of T and S.

5. For H �M and S a tree, the proje
tion of H on S is the set S(H) :=

f� 2 S j 9
 2 H; 
 � �g.

We shall often use the de�nition of re�nment in the following form: H/T

i� whenever an � 2 T is 
ompatible with some � 2 H then it 
ontains some


 2 H.

Throughtout this se
tion letters H;K; : : : will denote subsets ofM while

letters S and T are reserved for trees. As stated earlier, Greek letters �; �; : : :

denote elements of M.
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Lemma 4.2.3 If jÆj � n� jjSjj then 9
 2 S; 
jjÆ.

Proof :

Walk through the tree S answering queries a

ording to Æ whenever it

applies, and arbitrarily but 
onsistently with Æ otherwise. The assumption

that jÆj � n � jjSjj implies that we do not run into a 
ontradi
tion before

rea
hing a leaf of S. Map 
 is the map determined by the parti
ular path.

q.e.d.

Lemma 4.2.4 Assume jjSjj + jjT jj � n and H / S / T . Then also H / T .

Proof :

Assume Æ 2 T is 
ompatible with some � 2 H. We want to show that Æ


ontains some element of H.

By Lemma 4.2.3 9


0

2 S; 


0

jjÆ. By this, and by S/T , 9
 2 S; 
 � Æ. Su
h


 is ne
essarily 
ompatible with � and hen
e, by H / S, 9�

0

2 H;�

0

� 
.

Hen
e �

0

� Æ too.

q.e.d.

Lemma 4.2.5 Assume jjSjj + jjT jj � n. Then S � T is a PHP -tree su
h

that jjS � T jj � jjSjj+ jjT jj, and su
h that S / S � T and also T / S � T .

Proof :

The bound to the height of S � T is obvious. We prove that S / S � T ,

the se
ond statement is proved identi
ally.

Assume that � [ 
 2 S � T , with � 2 S and 
 2 T , is 
ompatible with

some � 2 S. Then ne
essarily � = �, i.e. � [ 
 
ontains an element of S.

q.e.d.

Lemma 4.2.6 Assume jjSjj + jjT jj � n and H / S / T . Then

1. T (S(H)) = T (H).

2. T (S) = T .

3. S(H) = S i� T (H) = T .
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Proof :

The in
lusion T (S(H)) � T (H) follows from the de�nition. For the

opposite in
lusion assume that � 2 T (H) be
ause � � 
 for some 
 2 H.

Using Lemma 4.2.3 S / T implies that 9� 2 S; � � �. Su
h � is then


ompatible with 
 and hen
e, as H / S, 9


0

2 H; 


0

� �. So we have




0

� � � � and so � 2 T (S(H)). This proves part 1.

Part 2. follows from part 1. by taking H := f;g. For part 3. assume

�rst S(H) = S. By parts 2. and 1.: T (S) = T , and T (S(H)) = T (H). So

T = T (H).

Finally, assume that T (H) = T . Let � 2 S. By Lemma 4.2.3 there

is � 2 T 
ompatible with �. By the assumption also � 2 T (H) and so

9
 2 H; 
 � �. But su
h 
 is 
ompatible with � and hen
e, by H / S,

9


0

2 H; 


0

� �. So � 2 S(H) as we wanted to show.

q.e.d.

Lemma 4.2.7 1. S(

S

i

H

i

) =

S

i

S(H

i

).

2. If H

0

;H

1

� T and H

0

\H

1

= ; then T (H

0

) \ T (H

1

) = ;.

3. If S / T , jjSjj+ jjT jj � n and H � S then T (S nH) = T n T (H).

Proof :

The �rst two propositions follow dire
tly from de�nitions. By Lemma

4.2.6 T (S) = T , hen
e the last proposition follows from the �rst two.

q.e.d.

4.3 k-evaluations

We 
ontinue with some �xed (and large enough) n � 1 and we shall also �x

a parameter 1 � k � n. Let � be a set of formulas in the atoms of PHP

n

that is 
losed under subformulas.

De�nition 4.3.1 A k-evaluation of � is a map

� 2 � �! H

�

� S

�

assigning to a formula � 2 � a k-tree S

�

and its subset H

�

, su
h that the

following four 
onditions are satis�ed:
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1. S

0

:= S

1

:= f;g, i.e. the tree 
onsisting of the root only. Further

H

0

:= ; and H

1

:= S

1

.

2. S

p

ij

is the depth 2 tree that �rst bran
hes a

ording to f(i) =? and

then a

ording to f

(�1

(j) =?. H

p

ij

:= f(i; j)g, the only path in S

p

ij

of

length 1.

3. S

:�

:= S

�

and H

:�

:= S

�

nH

�

, whenever :� 2 �.

4. Assume � =

W

i

�

i

is in � (where the big disjun
tion abbreviates arbi-

trarily bra
ketet binary disjun
tions). Then

[

i

H

�

i

/ S

�

and H

�

:= S

�

(

[

i

H

�

i

)

If H

�

= S

�

we say that � is "true" w.r.t. to the k-evaluation, (or simply

that it is "true" if the evaluation is �xed).

Lemma 4.3.2 Assume that (H;S) is a k-evaluation of all formulas o

uring

as subsformulas in an axiom of :PHP

n

, and that k � n� 2.

Then the axiom is "true" with respe
t to the evauation.

Proof :

Consider an axiom of the form � =

W

j

p

ij

for some �xed i 2 [n+ 1℄. By

De�nition 4.3.1 H

p

ij

= f(i; j)g and S

�

must re�ne the set H = f(i; j) j j 2

[n℄g. Note that H itself is a 1-tree and that H(H) = H.

Hen
e T (H) = T holds also in the 
ommon re�nment of H and S

�

by

Lemma 4.2.6, and by the same lemma again also S

�

= S

�

(H) = H

�

.

We leave the other axioms to Exer
ise 4.8.2.

q.e.d.

Now we prove that Frege rules are sound even for the notion of "true"

w.r.t. a k-evaluation.

Lemma 4.3.3 There exists a 
onstant 


F

� 1 su
h that if (H;S) is k-

evaluation of all formulas o

uring as subformulas in an instan
e of an F -

rule, k � n=


F

, and all hypotheses of the instan
e of the rule are "true"

w.r.t. the evaluation then also the 
on
lusion of the rule is "true".

The 
onstant 


F

depends only on the parti
ular rules in F .
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Proof :

Consider an F -rule of the form

A

1

(q

1

; : : : ; q

t

); : : : ; A

s

(q

1

; : : : ; q

t

)

A

s+1

(q

1

; : : : ; q

t

)

Let r be a number bigger than the number of subformulas in the rule.

Assume that (H;S) is a k-evaluation of formulas o

uring in some in-

stan
e

A

1

(B

1

; : : : ; B

t

); : : : ; A

s

(B

1

; : : : ; B

t

)

A

s+1

(B

1

; : : : ; B

t

)

of the rule, and su
h that k � n=r. We also assume that all

A

1

(B

1

; : : : ; B

t

); : : : ; A

s

(B

1

; : : : ; B

t

)

are "true" with respe
t to the evaluation, i.e.

H

A

i

(B

1

;:::;B

t

)

= S

A

i

(B

1

;:::;B

t

)

; for 1 � i � s :

Let � be all formulas o

uring in the instan
e, and �

0

its subset 
onsisting

of formulas C of the form A

0

(B

1

; : : : ; B

t

) where A

0

is a subformula of some

A

i

, i � s+ 1.

By the 
hoi
e of r, j�

0

j < r, and so there is a 
ommon re�nement T of

all S

C

, and jjT jj �

r�1

r

n (by Lemma 4.2.5). In parti
ular, jjT jj+ jjS

C

jj � n

for all C 2 �

0

.

Claim: The map de�ned by C 2 �

0

! T (H

C

) is a map of formulas in �

0

into the Boolean algebra of subsetes of T su
h that:

(a) The negation 
orresponds to the 
omplement: T (H

:C

) = T nT (H

C

).

(b) The disjun
tion 
orrespinds to the union: T (H

C_D

) = T (H

C

) [

T (H

D

).

(
) All hypotheses C = A

i

(B

1

; : : : ; B

t

), i � s, of the instan
e of the rule

get the value 1 in the Boolean algebra: T (H

C

) = T .

For part (a): If :C 2 �

0

, H

:C

= S

C

nH

C

, and hen
e T (H

:C

) = T n T (H

C

)

by Lemma 4.2.7.

For part (b) let C _ D 2 �

0

. We need to 
onsider 
ases distinguished

by the form of C and D; we shall treat only the hardest 
ase when both C

and D are themselves disjun
tions. Assume C =

W

u

C

u

and D =

W

v

D

v

. By

Lemma 4.2.7:

H

C_D

= S

C_D

(

[

u

H

C

u

) [ S

C_D

(

[

v

H

D

v

)
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hen
e by Lemmas 4.2.6 and 4.2.7:

T (H

C_D

) = T (S

C_D

(

[

u

H

C

u

)) [ T (S

C_D

(

[

v

H

D

v

)) =

T (

[

u

H

C

u

) [ T (

[

v

H

D

v

) =

T (S

C

(

[

u

H

C

u

)) [ T (S

D

(

[

v

H

D

v

)) =

T (H

C

) [ T (H

D

) :

Part (
) follows by Lemma 4.2.6:

T (H

A

i

(B)

) = T (S

A

i

(B)

) = T

for i � s.

The lemma follows noting that any Frege rule is valid in any Boolean

algebra (
f.Exer
ise 4.8.3).

q.e.d.

Our strategy for proving Theorem 4.1.2 is now 
lear. Having an al-

leged F

d

-refutation of :PHP

n

we take a k-evaluation (with small enough

k) of the set of all formulas o

uring in the refutation. This would lead

to 
ontradi
tion by Lemmas 4.3.2 and 4.3.3. Hen
e if we manage to 
on-

stru
t a k-evaluation of any small set of formulas we 
an 
on
lude that no

F

d

-refutation of :PHP

n


an be small.

4.4 The existen
e of k-evaluations

This se
tion is devoted to the 
onstru
tion of k-evaluations of small sets of

formulas. The quali�
ation small will mean of size at most 2

n

Æ

, for suitable

Æ > 0.

It is quite easy to �nd small sets whi
h have no k-evaluation with k < n,


f. Exer
ise 4.8.4, and that is insuÆ
ient for the key Lemmas 4.3.2 and 4.3.3.

This for
es us to employ a simpli�
ation pro
edure before trying to �nd a

k-evaluation with small k. The simpli�
ation will be done by a partial truth

assignment.

We shall think of the set M as of the set of partial bije
tions between a

subset of domain D and range R. D = [n+1℄ and R = [n℄ at the beginning,

as earlier.
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De�nition 4.4.1 Let �; � 2M. De�ne the restri
tion of � by � to be:

�

�

=

(

� n � if �jj�

undefined if � ? �

Further de�ne:

1. H

�

:= f�

�

j � 2 Hg.

2. D

�

:= D n dom(�).

3. R

�

:= R n rng(�).

4. n

�

:= jR

�

j(= n� j�j).

Our strategy in the 
onstru
tion of a k-evaluation of a set � will be the

following. We 
onstru
t the evaluation in steps. We start by de�ning the

evaluation for atoms and 
onstants in �: that is 
anoni
al by De�nition 4.3.1.

At every step we extend the k-evaluation to negations and to disjun
tions

of formulas for whi
h it is already de�ned (hen
e the number of steps is

bounded by the maximal depth of a formula in �). The 
ase of negations is

again 
anoni
al and only the 
ase of disjun
tion will 
ause us a problem. To

extend the de�nition to disjun
tions we will need to apply a restri
tion by

some �. The following lemma essentialy says that the part of the evaluation

already 
onstru
ted will still work after the restri
tion.

We 
ontinue using the 
onvention that S; T; : : : denote PHP -trees.

Lemma 4.4.2 Let � 2M be arbitrary. Then:

1. If H / S then H

�

/ T

�

.

2. If j�j+ jjSjj � n then S

�

is a PHP -tree over D

�

and R

�

.

3. If H / S then S

�

(H

�

) = (S(H))

�

.

We leave the proof to the Exer
ise 4.8.5. The next lemma is the key

te
hni
al step in the 
onstru
tion of k-evaluations.

Lemma 4.4.3 Let 0 < Æ < � < 1=5. Let H

i

� M, for i � s. Assume that

jjH

i

jj � k for all i � s. Assume that

k � n

Æ

and s � 2

k

and that n is large enough. Then there exists � 2M su
h that n

�

= n

�

and

su
h that there exist PHP -trees S

i

, i � s, over D

�

and R

�

, satisfying
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1. H

�

i

/ S

i

,

2. jjS

i

jj � k.

Proof :

Assume �rst that we have just one H; we shall 
onsider the 
ase of having

s sets H

i

at the end.

We shall des
ribe a game played by two players with the set H. In the

proof it will be played with H

�

a
tually but we 
onsider only H �rst not to


ompli
ate the notation.

At the beginning player I pi
k an h

1

2 H. Player II replies my some

Æ

1

2 M su
h that dom(h

1

) � dom(Æ

1

), rng(h

1

) � rng(Æ

1

), and su
h that

no proper submap of Æ

1

has this property. It may be that Æ

1

= h

1

or

that at least Æ

1

� h, some h 2 H: In that 
ase the game ends. Otherwise

ne
essarily Æ

1

? h

1

and the game moves to the next round. Generally, before

round t � 2, the players have 
onstru
ted sequen
es h

1

; : : : ; h

t�1

(the moves

of I) and Æ

1

� : : : � Æ

t�1

(the moves of II). At the t-th steps player I

pi
ks some h

t

2 H 
ompatible with Æ

t�1

; if no su
h h

t

exists the game stops.

Player II then extends Æ

t�1

to some Æ

t

2 M su
h that dom(h

t

) � dom(Æ

t

),

rng(h

t

) � rng(Æ

t

), and su
h that no proper submap of Æ

t


ontaining Æ

t�1

has this property. If Æ

t


ontains some h 2 H then the game stops, otherwise

the players move to the next round.

The use of this game is des
ribed in the following 
laim whi
h follows

immediately from the de�nition when the game stops.

Claim 1: For any �xed strategy of the player I 
onsider the set

S := fÆ

t

j Æ

1

� : : : � Æ

t

is a �nished play in some strategy of II g

Then the set S is a PHP -tree and H / S.

To simplify things we shall �x one strategy of I: We �x an ordering h

1

; h

2

; : : :

of H and player I always pi
ks in his move the �rst h in the ordering 
ompat-

ble with the previous move of II. We shall 
all player I using this startegy

I

fix

.

Let us 
all the set of all pairs (i; j) in all h

`

n Æ

`�1

the 
riti
al pairs of

the play. These are exa
tky the pairs for whi
h II is required to spe
ify f(i)

and f

(�1)

(j). If the number of 
riti
al pairs in all �nished games against

I

fix

is bounded by r then 
learly jjSjj � 2r. Hen
e we would like to show

that the number of 
riti
al pairs is bounded by k=2. However, it is easy to


onstru
t a set of small maps from M su
h that any �nished game must
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ontain � n=2 
riti
al pairs (
f. Exer
ise 4.8.6). This is the pla
e where we

employ a restri
tion by suitable �.

Assume we �x � 2 M and restri
t �rst H by �, and play the game on

H

�

(we 
ontinue to use the same ordering of elements of H for I

fix

). This

is the same as if we de�ned Æ

0

:= � and required h

1

and Æ

1

to 
ontain Æ

0

.

Claim 2: There exists � 2M, n

�

= n

�

, su
h that every play (ta
itly against

I

fix

) on H

�


ontains at most k=2 
riti
al pairs.

We shall prove the 
laim by 
ontradi
tion. Assume that there is no su
h

�. Hen
e for every � there is a play, resulting in the moves Æ

1

� : : : � Æ

t

of II, that 
ontains at least k=2 + 1 
riti
al pairs. In fa
t, we will trun
ate

the play when it rea
hes the (k=2 + 1)-st 
riti
al pair, so we shall assume

that there are exa
tly k=2 
riti
al pairs (this is only for a simpli�
ation of a


omputation). Fix one su
h play for ea
h �.

Now 
on
entrate on one �xed � and the asso
iated �xed play. Note that

all 
riti
al pairs are disjoint, and are also also disjoint from �. Hen
e the

set � 
ontaining � and all 
riti
al pairs is a
tually an element of M, and

j� j = j�j+ k=2.

Having � we 
annot a priori determine � but we 
an determine the �rst

move h

�

1

of I

fix

: It is the �rst h

�

2 H

�

that is 
ompatible with � .

Now note that we 
an a
tually en
ode by a small information the 
riti
al

pairs in h

�

1

and the �rst move Æ

1

of II: Criti
al pairs from h

�

1

form one of its

� 2

k

subsets (here we use that jjHjj � k), and the move of II is determined

by giving a value (resp. inverse value) of f for every i (resp. j) o

uring in

the 
riti
al pairs in h

�

1

. There is � 2(k=2) = k su
h i's and j's, and at most

n

�

values to 
hoose from: This is be
ause the values II 
hooses must be

outside the domain (resp. the range) of � and n� j� j � n� j�j = n

�

. Hen
e

there are at most (n

�

)

k

possibilities of II's a
tion on the 
riti
al pairs. All

together, we 
an en
ode II's �rst move Æ

1

by a number � (2n

�

)

k

.

On
e we know Æ

1

we repla
e in � by Æ

1

all 
riti
al pairs in h

�

1

, getting

some �

0

. But know we 
an re
onstru
t also the se
ond move h

�

2

of I

fix

: It is

the �rst h

�

2 H

�


ompatible with �

0

. Hen
e we pro
eed as before: En
ode

the II's se
ond move by a number � (2n

�

)

k

, and repla
e in �

0

all 
riti
al

pairs in h

�

2

by Æ

2

, et
.

There are at most k=2 moves before we get k=2 
riti
al pairs. Hen
e the

whole (trun
ated) play 
an be en
oded by � togerther with a k=2-tuple of

numbers � (2n

�

)

k

, i.e. by a number � (2n

�

)

k

2

=2

.

Be
ause � together with the auxiliari information determines �, the num-
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bers

a := the number of di�erent � of size n� n

�

=

 

n+ 1

n

�

! 

n

n

�

!

(n� n

�

)!

and

b := the number of di�erent � of size n� n

�

� k=2 =

 

n+ 1

n

�

� k=2

! 

n

n

�

� k=2

!

(n� n

�

� k=2)!

must satisfy the inequality:

a � b � (2n

�

)

k

2

=2

All this argument was for one set H. However, if we had s of them we

just en
ode by a number � s whi
h of the sets is the one in whi
h we have,

for a given �, a play with at least k=2 
riti
al pairs. Hen
e, if no suitable �

existed, we would have to have

a � s � b � (2n

�

)

k

2

=2

It is not diÆ
ult to 
ompute that this inequality does not hold if the param-

eters satisfy the hypotheses of the lemma.

q.e.d.

Now we are going to use a restri
tion � in order to 
onstru
t a k-

evaluation. We will need a notion of a formula restri
ted by � de�ned as

follows.

p

�

ij

=

8

>

<

>

:

1 i 2 dom(�) ^ �(i) = j

0 f(i; j)g ? �

p

ij

otherwise

and then take for �

�

the formula � with all atoms p

ij

repla
ed by p

�

ij

.

Lemma 4.4.4 Let 0 < Æ < � < 5

�d

. Then for suÆ
iently large n � 1 every

set � of size at most 2

n

Æ

and 
losed under subformulas there exists a map �,

j�j = n� n

�

, and an n

Æ

-evaluation of �

�

.
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Proof :

Let s = 2

n

Æ

and k = n

Æ

. Assume that j�j � s. Pi
k �

0

> 0 su
h

that 0 < Æ < �

d

0

< �

0

< 5

�d

. We shall 
onstru
t the restri
tion � and the

k-evaluation of �

�

in d steps.

Put �

0

:= ; and let �

0

be the 
anoni
al (by De�nition 4.3.1) 2-evaluation

of the depth 0 formulas in �, i.e. of the 
onstants and the atoms. In step

1 � t � d we assume that we already have restri
tions �

0

� : : : � �

t�1

with

n

�

`

= n

�

`

0

and a k-evaluation �

t�1

of all depth � t� 1 formulas in �

�

t�1

.

To extend the evaluation to depth t formulas we apply Lemma 4.4.3

with n := n

�

t�1

and the parameters Æ and �

0

�xed earlier. This will give

us a restri
tion on the universe [n + 1℄ n dom(�

t�1

), [n℄ n rng(�

t�1

), i.e. a

restri
tion �

t

� �

t�1

on [n+1℄, [n℄. By Lemma 4.4.2, �

�

t

t�1

will still work for

the depth � t� 1 formulas and this evaluation is extended to an evaluation

�

t

of depth � t formulas in �

�

t

by the virtue of Lemma 4.4.3.

The �nal � := �

d

and � := �

d

satisfy the requirements of the lemma with

� := �

d

0

.

q.e.d.

Proof of Theorem 4.1.2:

We are now ready to prove the theorem. For the sake of 
ontradi
tion

assume that � is an F

d

-refutation of :PHP

n

with less than 2

n

Æ

di�erent

formulas. Let � be the set of all formulas o

uring in � as subformulas.

Take the � and the k-evaluation (with k := n

Æ

) of �

�

provided by Lemma

4.4.4. For large enough n it holds that n

Æ

< n=


F

, where 


F

is the 
onstant

from Lemma 4.3.3. By Lemmas 4.3.2 and 4.4.2, the axioms of (:PHP

n

)

�

=

:PHP

n

�

are "true" w.r.t. the evaluation. By Lemma 4.3.3 all steps in �

are "true" too. But the last formula, the 
onstant 0, is not "true". That is

a 
ontradi
tion.

4.5 Counting prin
iples

The PHP -prin
iple says that there is no pairing between sets of sizes dif-

fering by 1. More general prin
iples 
an be 
onsidered. Fix m � 2. The


ounting modulo m prin
iple says that a set with n elements 
annot be par-

titioned into m-element blo
ks unless its size is divisible by m.
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The propositional formulation of the prin
iple will use atoms q

e

, one for

ea
h m-element subset e of [n℄. The set of m-element subsetes of [n℄ will be

denoted simply

�

[n℄

m

�

.

De�nition 4.5.1 The axioms of the :Count

n

m

are:

1. :q

e

_ :q

f

, whever e; f 2

�

[n℄

m

�

are in
ompatible (denoted e ? f); e 6=

f ^ e \ f 6= ;.

2.

W

e:i2e

q

e

, for all i 2 [n℄.

Count

n

m

is the disjun
tion of the negations of all axioms of :Count

n

m

.

We shall leave it as an advan
ed Exer
ise (see 4.8.7) for the reader to

modify the ma
hinery of PHP -trees and k-evaluations to Count

n

m

. In par-

ti
ular, Count

m

-trees over [n℄ bran
h a

oring to queries i 2?, ea
h bran
h


orresponding to one e 2

�

[n℄

m

�


ontaining i and 
onsistent with blo
ks on the

path to the node. Everything will then work analouglsy as in the proof of

Theorem 4.1.2 and we get the following lower bound.

Theorem 4.5.2 For any m � 2 and d � 3 there is Æ > 0 su
h that for all

suÆ
iently large n not divisible by m, in any F

d

-refutation of :Count

n

m

must

o

ur at least 2

n

Æ

di�erent subformulas. In parti
ular, any su
h refutation

must have the size at least 2

n

Æ

.

4.6 Relation of PHP and Count

m

prin
iples

By Theorems 4.1.2 and 4.5.2 neither PHP prin
iple nor Count

m

prin
iples

have subexponential F

d

-proofs. It is thus natural to study the strength of

F

d

when augmented by all instan
es (of a priori bounded depth) of either

PHP or Count

m

as extra axioms.

Lemma 4.6.1 For any m � 2 there are d � 2 and 
 � 1 su
h that for all

n � 1 there are F

d

-proofs of size n




of PHP

n

from instan
es of the Count

m

prin
iple.

Proof :

Consider the set N 
onsisting of disjoint 
opies of [n + 1℄ and [n℄, and

further m� 2 disjoint 
opies of [n℄. Hen
e jN j = m � n+ 1. Assume f is a

bije
tion between [n+ 1℄ and [n℄. Then the set of all blo
ks of the form

fi; f(i); : : : ; f(i)g



74 J. Kraj���
ek

with i 2 [n+1℄ and f(i)' taken from all m� 1 
opies of [n℄, form a partition

of [N ℄ into m-element blo
ks. This violates an instan
e of the Count

N

m

-

prin
iple.

This informal argument 
an be made formal quite easily (
f. ?? or Ex-

er
ise 4.8.8).

q.e.d.

The opposite dire
tion is mu
h more interesting.

Theorem 4.6.2 ([42, 7℄) Let m � 2 be �xed. For any d � 2 there exists

Æ > 0 su
h that for all n � m large enough and not divisible by m the

following holds:

In any F

d

-proof of Count

n

m

from instan
es of PHP must o

ur at least

2

n

Æ

di�erent subformulas. In parti
ular, any su
h proof must have the size

at least 2

n

Æ

.

Proof :

First it is easy to see that several instan
es of PHP are equivalent, over

F

d

by short proofs, to just one instan
es: Just de�ne the instan
e by de�niton

by 
ases; it is the �rst instan
e in the list for whi
h PHP -fails, or something

trivial otherwise.

Let this one instan
e be the instan
e for PHP

N

for formulas  

ij

(built

from the atoms of Count

n

m

) repla
ing the atoms p

ij

of PHP

N

. In parti
ular,

i 2 [N + 1℄ and j 2 [N ℄.

Let � be all formulas o

uring in an F

d

-proof of Count

n

m

from the instan
e

of PHP

N

. If � were small there would be � (a partialm-partition of [n℄) and

a k-evaluation (H;S) of all formulas in �

�

making all axioms of :Count

n

�

m

"true". Hen
e also the :PHP

N

( 

ij

)

�

is "true".

Let T be a Count

m

-tree re�ning all trees S

 

�

ij

, and de�ne the map:

(i; j) 2 [N + 1℄� [N ℄! A

ij

:= T (S

 

�

ij

)

We think of A

ij

simply as of sets of partial m-partitions of n

�

.

Claim: The following identities hold:

S

j

A

ij

= T ,

S

i

A

ij

= T , A

i

1

j

\A

i

2

j

=

; if i

1

6= i

2

, and A

ij

1

\A

ij

2

= ; if j

1

6= j

2

.

The 
laim follows from the fa
t that the instan
es of the PHP is "true"

w.r.t. the k-evaluation.
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The 
laim leads to a 
ontradi
tion as 
ounting the size of

S

ij

A

ij

�rst by

rows or by 
olumns leads to two di�erent values: (N + 1) � jT j and N � jT j.

Hen
e no su
h k-evaluatin 
an exists and 
onsequently the proof 
annot


ontain only a small number of formulas. The parti
ular values of parameters

are the same as in Theorems 4.1.2 or 4.5.2.

q.e.d.

The mutual relation of 
ounting prin
iples with di�erent moduli m is

more 
ompli
ated.

4.7 Mutual relations of 
ounting prin
iples

We shall look at mutual relations between 
ounting prin
iples in this se
tion.

The �rst statement simpli�es a bit what moduli we need to 
onsider.

Lemma 4.7.1 Let m � 2 and let p

1

; : : : ; p

k

be all prime divisors of m.

There there are d � 2 and 
 � 1 su
h that

1. Count

n

m

, n not divisible by m, 
an be derived by an F

d

-proof of size n




from instan
es of Count

p

i

, all i � k.

2. Any Count

n

p

i

, n not divisible by p

i

, 
an be derived by an F

d

-proof of

size n




from an instan
e of Count

m

.

We shall not prove the lemma here,as it is mu
h easier to formalize via

bounded arithmti
, 
f. ??.

The lemma means that when studying the mutual relation we 
an 
on
en-

trate just on 
ounting prin
iples with moduli that are primes. The following

theorem has be �rst prove inthe form of the non-existen
e of polynomial

upper bound in [4, 6, 43℄.

Theorem 4.7.2 ([11℄) Let p; q � 2 be two �xed di�erent primes. For any

d � 2 there exists Æ > 0 su
h that for all n � q large enough and not divisible

by q the following holds:

In any F

d

-proof of Count

n

q

from instan
es of Count

p

must o

ur at least

2

n

Æ

di�erent subformulas. In parti
ular, any su
h proof must have the size

at least 2

n

Æ

.

The proof will not be given in this draft.
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4.8 Exer
ises

Exer
ise 4.8.1 Show that any formula � de
idable by a de
ision tree of

depth k is equivalent to a k-DNF, i.e. a formula whi
h is a disjun
tion of


onjun
tions, ea
h of size at most k, and that the same holds for :�.

On the other hand, show that if both � and :� are expressible as k-DNF

then � 
an be de
ided by a de
ision tree of depth � k

2

.

Exer
ise 4.8.2 Prove that all axioms of :PHP

n

are "true" w.r.t. a k-

evaluation, as long as k � n� 2. (
f. Lemma 4.3.2)

Exer
ise 4.8.3 Prove that any Frege rule is sound in any Boolean alge-

bra B: If hypotheses of an instan
e of the rule get value 1

B

then also the


on
lusion of the rule gets value 1

B

.

Exer
ise 4.8.4 Find small sets, say of size n

O(1)

, of formulas that have no

k-evaluation with k < n.

Exer
ise 4.8.5 Prove Lemma 4.4.2.

Exer
ise 4.8.6 Constru
t a set of 
onstant size maps from M su
h that

any �nished game must 
ontain � n=2 
riti
al pairs (
f. Lemma 4.8.3).

Exer
ise 4.8.7 De�ne the notion of Count

m

-tree and the 
orresponding

notion of k-evaluations, and prove Theorem 4.5.2.

Exer
ise 4.8.8 Prove Lemma 4.6.1.
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