
The Cook-Reckhow definition

Jan Kraj́ıček

Faculty of Mathematics and Physics
Charles University∗

The Cook-Reckhow paper [6] introduced the notions of propositional proof
systems and polynomial simulations among them, described several classes of
logical propositional calculi and compared them with regards to their efficiency,
and introduced the pigeonhole principle tautology PHPn that is the prime ex-
ample of a tautology hard to prove in weaker systems ever since, rivaled only by
the tautology proposed earlier by Tseitin [34]. It also showed that the central
question whether there exist a propositional proof system allowing polynomial
size proofs of all tautologies is equivalent to a central question of complexity
theory whether the class NP is closed under complementation.

Classical proof theory of first-order logic developed in the first half of the
twentieth century assigned to proofs several combinatorial characteristics and
some of them can be perceived as measures of complexity; for example, the
height of a proof tree. Primary emphasis was on constructions producing various
normal forms of proofs and the combinatorial characteristic helped to measure
the progress of normalization constructions. The question about the minimum
length of a proof of a statement (measured by either the number of steps or by
the size, i.e. the number of symbols) was also studied, primarily in the context
of speed-up results; references [12, 27, 9, 28, 29] can serve as illustrations of
this research. The results rest on constructions underlying the undecidability
of the Halting problem or Gödel’s Incompleteness theorem, and do not give any
insight1 into analogous problems in propositional logic.

It was the Cook-Reckhow 1979 paper [6] which defined the area of research
we now call proof complexity. There were earlier papers which contributed to
the subject as we understand it today, the most significant being Tseitin’s [34].
But none of them introduced general notions2 that would allow to make an ex-
plicit and universal link between lengths-of-proofs problems and computational
complexity theory.

∗Sokolovská 83, Prague, 186 75, The Czech Republic, krajicek@karlin.mff.cuni.cz
1In fact, Parikh [28] introduced theory PB (called now I∆0, cf.[20, 23]) which later in the

1980s turned out to be important for the development of proof complexity.
2Tseitin’s paper [34] offers no motivation for the research reported there but one of the

motivations were questions we now formulate as the P vs. NP problem (another motivation
was computer processing of natural languages) and the special role the Entscheidungsproblem
for propositional calculus plays in them (personal communication).

1

In this note we shall highlight three particular definitions from the paper:
of proof systems, p-simulations and the formula PHPn, and discuss their role
in defining the field. We will also mention some related developments and open
problems. In particular, we shall show that the general definition of proof sys-
tems that has seemingly little to do with how ordinary logical calculi are defined
is actually equivalent to the calculi definition with a more general treatment of
logical axioms than is usual (Section 1), we shall present the optimality prob-
lem stemming from the notion of simulations (Section 2), and we shall discuss
the role of the PHPn formula in proof complexity lower bounds, its limitations
and modern variants aimed at strong proof systems (Section 3). Paper [6] also
discusses few measures of complexity of proofs other than the proof size and
describes some relations among them; we shall not discuss this and instead we
refer the reader to available literature.

The Cook-Reckhow paper [6] had a precursor [7], an extended abstract that
summarized some research presented later in [6], as well as from Reckhow’s
PhD Thesis [33]. This earlier paper differs from [6] in several aspects: it uses
simulations (see Sec.2) as opposed to the latter finer notion of p-simulations, and
it contains neither Extended Frege system nor the PHP tautology. It presents a
rather succinct version of the construction underlying Reckhow’s theorem that
was replaced in [6] by a similar statement for Extended Frege systems with
much easier (and more illuminating) proof (cf. Sec.2). It also treats in detail
the sequent calculus that is only glanced over in [6], and it derives some super-
polynomial lower bounds, using Tseitin’s results in [34], for weak proof systems
such as tree-like resolution or semantic trees.

The aim of this note is to give an idea to the non-expert reader about the
main ideas stemming from [6] and about the fundamental problems of proof
complexity. Further information about proof complexity, its basic as well as
advanced parts, and about topics in mathematical logic and complexity theory
it relates to can be found in [20, 23].

1 Definition of proof systems

The main example of a logical propositional calculus to keep in mind is a Frege
system. It is any calculus operating with propositional formulas over a complete
basis of logical connectives (i.e. all Boolean functions can be defined in the
language), having a finite number of sound axiom schemes and inference rules
that are implicationally complete. The latter term means that if a formula A
is a logical consequence of formulas B1, . . . , Bm then it can be derived from
them in the calculus. An example of a complete language is the DeMorgan
language with constants 0, 1 and connectives ¬,∨ and ∧. We shall denote by
TAUT the set of tautologies in this language and we shall tacitly assume that
TAUT ⊆ {0, 1}∗, with formulas being encoded by binary strings in some natural
way.

There is a number of such systems described in logic text-books and they are
often called Hilbert-style, referring to Hilbert’s work in proof theory [14, 15, 16].

2

The form of calculi is based on Frege’s [10], hence the name Cook and Reckhow
[6] chose for this class of propositional calculi.

The calculi are sound (every provable formula is a tautology) and complete
(every tautology is provable). In addition, the key property singled out by [6]
is that to recognize whether a string of symbols is a valid proof in the calculus
or not is computationally feasible: it can be done by a p-time algorithm. This
leads to the following fundamental definition.

Definition 1.1 (Cook-Reckhow [6])
A propositional proof system is any p-time computable function

f : {0, 1}∗ → {0, 1}∗

such that
TAUT = Rng(f) .

Any w ∈ {0, 1}∗ such that f(w) = A is called an f-proof of A.

Cook and Reckhow [6, Def.1.3] actually define more generally a proof system
for any L ⊆ {0, 1}∗ by the condition L = Rng(f), and consider proof systems
for the set of tautologies in any fixed language.

A Frege system F can be represented by a function f which takes a string
w and maps it to the last formula of w, if w is a sequence of formulas that
forms a valid F -proof, or to constant 1 if w is not an F -proof. The soundness
of F implies that Rng(f) ⊆ TAUT and its completeness implies the opposite
inclusion TAUT ⊆ Rng(f).

It is easy to see that a number of other classes of propositional calculi consid-
ered in mathematical logic literature fit the definition in the same sense as Frege
systems do. These calculi include resolution, sequent calculus or natural deduc-
tion. Less usual examples of propositional proof systems can be constructed as
follows. Take a consistent first-order theory axiomatized by a finite number of
axioms and axiom schemes that is sound and contains some simple base theory
(in order to guarantee both the correctness and the completeness) and inter-
pret it as a proof system: a proof of formula A is a proof in the theory of the
formalized statement A ∈ TAUT. Yet another examples are logic calculi that
are set-up to prove the unsatisfiability of formulas: these can be interpreted as
proof systems by accepting a refutation of ¬A as a proof of A.

In addition, the general form of the definition allows us to interpret various
calculations in algebra as propositional proofs. Here it is more natural to speak
about refutation systems. If we have a CNF formula that is a conjunction of
clauses Ci, we can represent each Ci by a constraint of an algebraic form and
use a suitable algebraic calculus to derive the unsolvability of the formula. For
example, a clause

p ∨ ¬q ∨ r

together with the requirement that we look for 0−1 solution can be represented
by polynomial equations

(1− p)q(1− r) = 0 , p2 − p = 0 , q2 − q = 0 , r2 − r = 0

3

the first equation states that the clause contains a true literal while the last
three equations force 0− 1 solutions over any integral domain. In this case we
can use a calculus deriving elements of the ideal generated by the equations
representing similarly all clauses of the formula, trying to derive 1 as a member
of the ideal and thus demonstrating the unsolvability of the equations and hence
the unsatisfiability of the formula.

Another approach is to represent the clause as integer linear inequalities

p + (1− q) + r ≥ 1 , 1 ≥ p, q, r ≥ 0

and use some integer linear programing algorithm to derive the unsolvability of
the system of inequalities representing the whole CNF formula. It is a great
advantage of Definition 1.1 that it puts all these quite different formal system
under one umbrella.

Proof systems can be also defined equivalently in a relational form. A rela-
tional propositional proof system is a binary relation P (x, y) that we interpret
as the provability relation y is a proof of x. It is required that it is p-time
decidable and that for any formula A it holds:

A ∈ TAUT iff ∃wP (A,w) .

This is closer in form to logical calculi (and can be represented by the function
version as Frege systems were before) but it is equally general: a functional
proof system f is represented by the relation f(y) = x.

A proof system f is p-bounded iff there exists c ≥ 1 such that for all A,
|A| > 1,

A ∈ TAUT ⇒ ∃w(|w| ≤ |A|c) f(w) = A .

In the relational form this would read

A ∈ TAUT ⇒ ∃w(|w| ≤ |A|c) P (A,w)

and combining this with the soundness we get

x ∈ TAUT ⇔ ∃y(|y| ≤ |x|c)P (x, y) .

The right-hand side expression has the well-known general form in which any
NP set can be defined. Hence we get as a simple but important corollary to the
definition the following statement (the second equivalence uses Cook’s theorem:
the NP-completeness of SAT, cf.Cook [4]).

Theorem 1.2 (Cook - Reckhow [6])
A p-bounded proof system exists iff TAUT ∈ NP iff NP = coNP.

This theorem determines

Problem 1.3 (Main problem of proof complexity)
Is there a p-bounded proof system for TAUT?

4

By Theorem 1.2 showing that no p-bounded proof system exists would imply, in
particular, that P 6= NP because P is closed under complementation. On the
other hand, defining a p-bounded proof system f would allow to witness various
coNP-properties by short witnesses (f -proofs); [7] mentions the property that
two graphs are not isomorphic.

One may consider variants of the definition of proof systems when the prov-
ability relation is not necessarily decidable by a p-time algorithm but only by
more general algorithm; for example, using some randomness. My view is that
this changes the basic problems of proof complexity substantially. While it may
link propositional proof systems with various other proof systems considered in
different parts of complexity theory, it is not clear that it will shed light on proof
complexity proper. This may change if some of these other parts of complexity
theory advance significantly on their own fundamental open problems.

The Cook-Reckhow definition is handy for establishing Theorem 1.2 and
the connection to complexity theory but the reader may wonder if it does not
deviate from logical form of calculi too much. In fact, it can be shown that
every proof system can be p-simulated (in the sense of the next section) by a
Frege system whose set of axioms is not given just by a finite number of axiom
schemes but is possibly infinite but easy to recognize (in p-time, in particular)
sparse subset of TAUT. Doing this precisely is rather technical and we refer the
reader to [24, 20, 23].

2 Simulations among proof systems

When studying the problem whether some proof system is p-bounded it is useful
to be able to compare two proof systems with respect to their efficiency. The
following two notions3 are aimed at that.

Definition 2.1 (Cook-Reckhow [6])
Let f, g be two proof systems. A simulation of g by f is any function

h : {0, 1}∗ → {0, 1}∗

such that for all w ∈ {0, 1}∗, |h(w)| ≤ |w|c, for some independent constant c ≥ 1
and all |w| > 1, and such that

f(h(w)) = g(w) .

Simulation h is p-simulation if it is p-time computable.
Proof system f (p-)simulates g (f ≥ g and f ≥p g in symbols, respectively)

iff there is a (p-)simulation of g by f .

In other words, the statement that f ≥ g says that if we replace f by g we
can speed-up proofs at most polynomially, while the statement that f ≥p g says
that we can even efficiently translate g-proofs into f -proofs. Both these relations

3P-simulations are also defined in Cook [5].

5

are quasi-orderings (we get partial orderings after factoring by the equivalence
relations of mutual simulations).

There are other options how to define a quasi-ordering of proof systems. In
particular, if we did not insist in Definition 1.1 that all proof systems prove tau-
tologies in the same language (we have defined TAUT using the DeMorgan lan-
guage only) but allowed tautologies in different languages then a (p-)simulation
should allow to translate also formulas and not just proofs. By insisting that the
target set is TAUT we forced that such a translation of formulas is incorporated
into the definition of particular proof systems that may operate with formulas in
other languages or even with polynomials or other objects. In fact, considering
instead of propositional proof systems proof systems for any coNP-complete set
we ought to allow p-reductions between such sets and TAUT.

However, for positive results (as is Theorem 2.2 bellow) p-simulations allow
to formulate the strongest possible statements while strongest negative results
(obtained by proving a super-polynomial lower bound for f -proofs of formulas
for which there are polynomial size g-proofs) talk about super-polynomial speed-
ups and hence about the non-existence of simulations. Thus the two types of
simulations serve their purpose very well.

Cook and Reckhow [6] compared various logical proof systems in terms of p-
simulations; the following statement summarizes their most memorable results
in this respect.

Theorem 2.2 (Cook-Reckhow[6])

1. All Extended Frege systems in all languages p-simulate each other.

2. Frege systems and propositional parts of natural deduction and of sequent
calculus mutually p-simulate each other.

3. Extended Frege system EF and Tseitin’s Extended resolution ER are p-
equivalent and they are p-simulated by any Frege system with the substi-
tution rule.

Extended Frege systems EF were defined in [6] in a direct analogy with Extended
resolution ER of Tseitin [34]. Any such system starts with a Frege system and
allows, in addition, to abbreviate formulas by new atoms and use these in proofs.
In particular, during an EF-proof we can take a new atom q (an extension atom)
not used so far and not occurring in the target formula A to be proved, any
formula D not containing q, and introduce the equivalence q ≡ D (represented
in the language of the system) as a new extension axiom. Note that EF is
not a Frege system as the introduction of extension axioms does not fit the
schematic way Frege axioms are supposed to be defined. The first statement in
the theorem is a weaker version of Reckhow’s theorem [33] which is stated for
Frege systems. The version for Extended Frege system is much easier to prove
(see [20, 23] for published proofs of the stronger version).

For the definition of natural deduction see [31], for sequent calculus see any
of [11, 20, 23] (the sequent calculus part of the statement is just mentioned in [6]

6

while natural deduction is treated in detail). The substitution rule allows to infer
from a formula B(p1, . . . , pm) its arbitrary substitution instance B(C1, . . . , Cm)
in one inference. A Substitution Frege system SF is a Frege system augmented
by this rule. It was proved later in [8] (indirectly) and in [24] (an explicit
p-simulation) that EF actually p-simulates SF as well.

An illuminating description of EF is that it is essentially a Frege system that
operates with circuits rather than with formulas; this has been made precise in
[17]. Perhaps even more useful is the statement that the minimum size s of
an EF-proof of formula A is proportional to the minimum number of steps in
a Frege proof of A and |A|, or to the minimum number of different formulas
that need to occur as subformulas in any Frege proof of A and |A|, cf. [6] or
[20, 23]. Hence moving from F to EF means that we are replacing the size
as the measure of complexity of Frege proofs by the number of steps. This is
interesting because from the point of view of mathematical logic the number of
steps is a very natural complexity measure.

Extended Frege system is also important because of its relation to a partic-
ular theory PV introduced by Cook [5] at the same time (he used ER in his
paper). This is discussed in S. Buss’s article in this volume. Theory PV (stands
for Polynomially Verifiable) allows to formalize a number of standard compu-
tational complexity constructions and arguments. Understanding the power of
proof system EF and, in particular, showing that it is not p-bounded, is con-
sidered in the field as the pivotal step towards solving the Main problem and
proving that NP 6= coNP. In particular, it is also known that any super-
polynomial lower bound for EF implies that NP 6= coNP is consistent with PV
(cf. [23, Sec.12.4]).

We shall mention one problem formulated only later in [24] which is, however,
natural and is implicit in the definition of simulations.

Problem 2.3 (Optimality problem)
Is there a proof system that (p-)simulates all other proof systems?

Such a maximal proof system is called (p-)optimal after [24]. We have (names
for) three types of proof systems whose existence is considered by most re-
searchers unlikely: p-bounded, p-optimal and optimal. Every p-bounded or
p-optimal proof system is also optimal and this rules out three out of eight
possibilities for the existence/non-existence of objects of these three types. At
present we cannot rule out any of the remaining five scenarios:

• A p-bounded, p-optimal proof system P1 exists.

Having such an ideal proof system we do not need to consider any other:
even searching for proofs in any other proof system can be reduced to
searching for P1-proofs. (We ignore here that p-reductions themselves
increase polynomially the time complexity of a proof search algorithm
and may transform a combinatorially transparent one into a complex one,
cf. the last paragraph of this section.)

7

• A p-bounded proof system P2 exists but no p-optimal does.

While p-size P2-proofs would exist for each tautology, finding them may
be difficult and it may help to consider different proof systems for different
(classes of) tautologies.

• A p-optimal proof system P3 exists but no p-bounded does.

Here we can restrict our attention to P3: it is also optimal and search for
proofs in any proof system can be replaced by a search for P3-proofs.

• An optimal proof system P4 exists but no p-bounded or p-optimal does.

Proving lengths-of-proofs lower bounds (or upper bounds, for that matter)
can be restricted to P4 but proof search may benefit from considering
different proof systems for different classes of tautologies.

• None of these ideal objects exist.

This appears to be the most likely scenario.

At present we cannot rule out that a Frege system is one of P1, . . . , P4. The
Optimality problem is related to a surprising number of varied topics in proof
theory (quantitative Gödel’s theorem), finite model theory, structural complex-
ity, and some other (cf. [23, Chpt.21]).

An interesting question left-out by [6] as well as in later literature is how to
compare proof search algorithms. A tentative definition was proposed in [23,
Sec.21.5].

3 Hard tautologies and the PHPn formula

In order to prove lengths-of-proofs lower bounds for a proof system we start
with a suitable candidate tautology that we conjecture to be hard to prove (i.e.
requiring long proofs) therein. A particular tautology for this purpose based
on the pigeon-hole principle was proposed in [6]. The formula, to be denoted
PHPn, is built from atoms pij with i ∈ [n] := {1, . . . , n} and j ∈ [n − 1], for
n ≥ 2. Thinking of pij as representing the atomic statement that i maps to j,
we can express that the map is defined at i by the clause∨

j

pij (1)

the fact that j can be the value of at most on i by∨
i1 6=i2

¬pi1j ∨ ¬pi2j (2)

and the fact that i maps to at most one value by∨
j1 6=j2

¬pij1 ∨ ¬pij2 . (3)

8

Taking the conjunction of these clauses for all choices of i and j states that

{(i, j) ∈ [n]× [n− 1] | pij = 1}

is the graph of an injective map from [n] into [n− 1]. No such map exists and
hence the negation of the conjunction is a tautology. This leads to the following
definition.

Definition 3.1 (Cook-Reckhow [6])
For any n ≥ 2, PHPn is the disjunction of negations of clauses in (1) for

all i ∈ [n] and in (2) for all j ∈ [n− 1] and in (3) for all i ∈ [n].

In fact, to reach a contradiction we do not need the assumption that it is the
graph of a function, a multi-function suffices (if i occupies more values j it is
harder to be injective). In other words, we do not need to include the clauses
from (3) and [6] did not included them. Nowadays the definition of PHPn as
formulated above is more customary and proving lower bounds for it yields
stronger results than for the more economical version (the principle assumes
more and hence it is logically weaker).

Cook and Reckhow [6] showed that it is possible to prove PHPn in Extended
Frege systems by a proof of size polynomial in n (note that the size of PHPn

is also polynomial in n). In fact, they introduced EF in order to formalize
smoothly the inductive argument: from an assignment violating PHPn we can
define (using the extension rule) an assignment violating PHPn−1. Hence PHPn

has also a proof in Frege systems with a polynomial number of steps (but having
large size). Buss [3] improved the result (by a different construction formalizing
counting) and proved that Frege systems actually also admit polynomial size
proofs of PHPn.

On the other hand, in a breakthrough result, Haken [13] proved a first lower
bound for resolution using PHPn and the same formula was proved to be hard
for constant depth subsystems of any Frege system in the DeMorgan language by
Ajtai [1] (Haken’s lower bound was exponential while Ajtai’s super-polynomial
- its rate was later improved to exponential too by [25, 30]). The same for-
mula (represented by polynomial equations similarly as in Section 1.1) served
to Razborov [32] for his lower bound for polynomial calculus, an algebraic proof
system manipulating polynomials.

There is an important variant of the PHP formula considered first by Paris,
Wilkie and Woods [26] in the context of bounded arithmetic: allow i to range
over a much bigger set than [n]; for example, over [2n] or even [n2]. Similarly
as the PHP principle is related to counting these weak PHP principles relate
to approximate counting and [26] showed that they can be sometimes used in
place of PHP proper and that, crucially, they are easier to prove. Their proof
(formulated using bounded arithmetic) gives quasi-polynomial size proofs in
constant depth Frege systems of formulas formalizing these weaker principles
for n ≥ 2.

Even if the formula PHPn itself cannot be used as a hard example for proof
systems like F or EF, formulas formalizing a form of a weak PHP in a different

9

way possibly can. It has been an insight of Wilkie (result reported in [20,
Sec.7.3]) that the dual weak PHP for p-time functions is important in bounded
arithmetic (this has been much extended by Jeřábek [17, 18, 19]). The principle
says that no p-time function g when restricted to any {0, 1}n can can be onto
{0, 1}2n. Now take an arbitrary b ∈ {0, 1}2n\Rng(gn), where gn is the restriction
of g to {0, 1}n, and define propositional formula

τb(gn)

expressing ∀x ∈ {0, 1}ngn(x) 6= b. The formula uses n atoms for bits of x and
further poly(n) atoms for bits of the computation y of gn on x and says, in a
DNF form, that either y is not a valid computation on input x or the output of
the computation differs from b. Clearly

τb(gn) ∈ TAUT ⇔ b /∈ Rng(gn) .

These formulas were defined in [2, 21] and lead to the theory of proof complexity
generators proposing several candidate tautologies of the form above as possibly
hard for strong (or all) proof systems. The reader may find an overview of the
theory in [22, Chpts.29 and 30] (no need to read the first 28 chapters).

Acknowledgements:
I thank Sam Buss, Bruce Kapron, Igor C. Oliveira and Jan Pich for com-

ments on earlier versions of this paper.

References

[1] M. Ajtai, The complexity of the pigeonhole principle, in: Proc. IEEE 29th

Annual Symp. on Foundation of Computer Science, (1988), pp. 346-355.

[2] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson,
Pseudorandom generators in propositional proof complexity, SIAM J. on
Computing, 34(1), (2004), pp.67-88.

[3] S. R. Buss, Polynomial size proofs of the propositional pigeonhole principle,
J. Symbolic Logic, 52, (1987), pp.916-927.

[4] S. A. Cook, The complexity of theorem proving procedures, in: Proc. 3rd

Annual ACM Symp. on Theory of Computing (STOC), (1971), pp. 151-158.
ACM Press.

[5] S. A. Cook, Feasibly constructive proofs and the propositional calculus, in:
Proc. 7th Annual ACM Symp. on Theory of Computing (STOC), (1975),
pp. 83-97. ACM Press.

[6] S. A. Cook and R. A. Reckhow, The relative efficiency of propositional
proof systems, J. Symbolic Logic, 44(1), (1979), pp.36-50.

10

[7] S. A. Cook and R. A. Reckhow, On the lengths of proofs in the propositional
calculus, in: Proc. of the Sixth Annual ACM Symposium on the Theory of
Computing, May 1974, pp.135-148.

Corrections in SIGACT News, 6, (1974), pp.15-22.

[8] M. Dowd, Propositional representations of arithmetic proofs, PhD Thesis,
University of Toronto, (1979).

[9] A. Ehrenfeucht and J. Mycielski, Abbreviating proofs by adding new ax-
ioms, Bull. A.M.S., 77, (1971), pp.366-367.

[10] G. Frege, Begriffsschrift: eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens, Halle, (1879).

[11] G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathema-
tische Annalen, 112, (1936), pp.493-565.

[12] K. Gödel, Über die Länge von Beweisen, Ergenbnisse eirtes Mathematis-
chen Kolloquiums, Heft 7, (1936), pp.23-24.

[13] A. Haken, The intractability of resolution, Theoretical Computer Science,
39, (1985), pp.297-308.

[14] D. Hilbert and W. Ackermann, Principles of Mathematical Logic. Chelsea.
(1950). Translation of 1938 German edition.

[15] D. Hilbert and P. Bernays, Grundlagen der Mathematik. I, in: Die
Grundlehren der mathematischen Wissenschaften 40, Berlin, New York:
Springer-Verlag, (1934).

[16] D. Hilbert and P. Bernays, Grundlagen der Mathematik. II, in: Die
Grundlehren der mathematischen Wissenschaften 50, Berlin, New York:
Springer-Verlag, (1939).

[17] E. Jeřábek, Dual weak pigeonhole principle, Boolean complexity, and de-
randomization, Annals of Pure and Applied Logic, 129, (2004), pp.1-37.

[18] E. Jeřábek, Approximate counting in bounded arithmetic, J. of Symbolic
Logic, 72(3), (2007), pp.959-993.

[19] E. Jeřábek, Approximate counting by hashing in bounded arithmetic, J. of
Symbolic Logic, 7493), (2009), pp.829-860.

[20] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory,
Encyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge
University Press, (1995).

[21] J. Kraj́ıček, On the weak pigeonhole principle, Fundamenta Mathematicae,
Vol.170(1-3), (2001), pp.123-140.

11

[22] J. Kraj́ıček, Forcing with random variables and proof complexity, London
Mathematical Society Lecture Note Series, No. 382, Cambridge University
Press, (2011).

[23] J. Kraj́ıček, Proof complexity, Encyclopedia of Mathematics and Its Appli-
cations, Vol. 170, Cambridge University Press, to appear in 2019.

[24] J. Kraj́ıček and P. Pudlák, Propositional proof systems, the consistency of
first-order theories and the complexity of computations, J. Symbolic Logic,
54(3), (1989), pp.1063-1079.

[25] J. Kraj́ıček, P. Pudlák, and A. Woods, An Exponential Lower Bound to the
Size of Bounded Depth Frege Proofs of the Pigeonhole principle”, Random
Structures and Algorithms, 7(1), (1995), pp.15-39.

[26] J. Paris, A. J. Wilkie and A. Woods, Provability of the Pigeonhole Principle
and the Existence of Infinitely Many Primes, Journal of Symbolic Logic,
53(4), (1988), pp.1235-1244.

[27] A. Mostowski, Sentences undecidable in formalized arithmetic, North-
Holland, Amsterdam, (1952).

[28] R. Parikh, Existence and feasibility in arithmetic, J. Symbolic Logic, 36,
(1971), pp.494-508.

[29] R. Parikh, Some results on the length of proofs, Trans. A.M.S., 177, (1973),
pp.29-36.

[30] T. Pitassi, P. Beame, and R. Impagliazzo, Exponential lower bounds for
the pigeonhole principle, Computational Complexity, 3, (1993), pp.97-308.

[31] D. Prawitz, Natural deduction, A proof-theoretic study, Stockholm, (1965).

[32] A. A. Razborov, Lower Bounds for the Polynomial Calculus, Computational
Complexity, 7(4), (1998), pp.291-324.

[33] R. A. Reckhow, On the lengths of proofs in the propositional calculus,
PhD.Thesis, Dept. of CS, University of Toronto, (1976).

[34] G. S. Tseitin, On the complexity of derivations in propositional calculus, in:
Studies in mathematics and mathematical logic, Part II, ed. A.O.Slisenko,
(1968), pp.115-125.

12

