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Abstrat

We de�ne the notion of a ombinatoris of a �rst order struture,

and a relation of overing between �rst order strutures and proposi-

tional proof systems. Namely, a �rst order strutureM ombinatorially

satis�es an L-sentene � i� � holds in all L-strutures de�nable inM .

The ombinatoris Comb(M) of M is the set of all sentenes ombi-

natorially satis�ed in M . Struture M overs a propositional proof

system P i� M ombinatorially satis�es all � for whih the assoiated

sequene of propositional formulas h�i

n

, enoding that � holds in L-

strutures of size n, have polynomial size P -proofs. That is, Comb(M)

ontains all � feasibly veri�able in P . Finding M that overs P but

does not ombinatorially satisfy � thus gives a super polynomial lower

bound for the size of P -proofs of h�i

n

.

We show that any proof system admits a lass of strutures overing

it; these strutures are expansions of models of bounded arithmeti.

We also give, using strutures overing proof systems R

�

(log) and PC,

new lower bounds for these systems that are not apparently amenable

to other known methods. We de�ne new type of propositional proof

systems based on a ombinatoris of (a lass of) strutures.

We ontinue here researh into what ould be alled in�nite limits of

polynomially bounded propositional proof systems. Although this is best

explained on examples and formal de�nitions, the reader deserves a quik
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explanation for this somewhat bizarre statement. A propositional proof

system in a general sense is simply a non-deterministi algorithm aepting

exatly the set of propositional tautologies in DeMorgan language. The

main problem is the NP vs. oNP problem. This is a question whether some

propositional proof system admits polynomial size proofs of all tautologies

(i.e. whether some proof system an run in polynomial time). For a few

partiular proof systems based on logi or algebrai aluli (e.g. resolution or

Nullstellensatz) super-polynomial lower bounds are known. All these lower

bounds an be proved for a very uniformly given sequenes of tautologies:

For n � 1, the n-th tautology asserts the validity of a ombinatorial priniple

on strutures of size n (e.g. the pigeonhole priniple). The priniple an be

formulated as a statement that a sentene in a �rst-order language (or in

a simple 2nd order extension allowing for natural formulation of Ramsey

theorem and alike) has no model (of size n). The sentene then makes sense

over arbitrary strutures in the language, even in�nite. The general theory

of limits of proof systems we are after says that given a proof system P , if

instanes of a priniple � for n � 1 are valid and proved by P in length

polynomial in n then � holds true (in the de�nable sense - see De�nition

1.1) in a lass of �rst-order strutures assoiated with P . Suh a lass of

strutures is informally alled a overing lass of P . If a overing lass is an

elementary lass, i.e. the lass of models of a theory, we shall all the theory

a overing theory.

In fat, any P admits a overing lass and one an take for the lass a

lass of suitable generi expansions of models of bounded arithmeti. How-

ever, we look for model-theoretially natural lasses as this then yields an

insight into lower bounds for P . There are two prominent examples known

at present. The tree-like resolution proof system R

�

(in fat, its extension

R

�

(log)) orresponds to the lass of all in�nite strutures ([12, 15℄). Here

"orresponds to" means that the overing relation atually haraterizes all

�rst order priniples with polynomial size R

�

(log)-proofs. The seond exam-

ple is Nullstellensatz and polynomial alulus over a �nite prime �eld F

p

. Its

overing lass is the lass of Euler strutures with a suitable Grothendiek

ring ([14℄).

In this paper we �rst de�ne the notion of the ombinatoris of a �rst

order struture M and give few examples. Then we reall the translation

of �rst-order priniples into propositional formulas; we onsider a partiular

translation that produes a set of lauses (or a set of polynomial equations).

In the third setion we de�ne the overing relation between �rst order

strutures and propositional proof systems, formalizing a relation that ex-
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ists between all strutures and (an extension) of tree-like resolution, and

between Euler strutures and Nullstellensatz and polynomial alulus over

a �nite prime �eld. Struture M overs a propositional proof system P

i� M ombinatorially satis�es all � for whih the assoiated sequene of

propositional formulas h�i

n

, enoding that � holds in L-strutures of size

n, have polynomial size P -proofs. Finding M that overs P but does not

ombinatorially satisfy � thus gives a super polynomial lower bound for the

size of P -proofs of h�i

n

.

We use the overing theories for (an extension of) tree-like resolution

[12, 15℄, and for Nullstellensatz and polynomial alulus systems over a �nite

prime �eld [14℄ to give new lower bounds for these systems, for priniples that

are not apparently amenable to other known methods. This is in Setion 4.

In Setion 5 we give a general desription of a overing lass of any P as

expansions of models of bounded arithmeti.

Finally, in the last setion, we show that (lasses of) strutures with r.e.

ombinatoris an be seen as propositional proof systems in a natural way.

De�nitions of unde�ned notions in model theory and proof omplexity

an be found in [7℄ and [12℄ respetively. Logarithms are base 2 and [n℄ :=

f0; : : : ; n� 1g.

1 Combinatoris of a struture

Let L be any �rst order relational language with onstants and with equality.

The prohibition of general funtion symbols is not essential but it simpli�es

some de�nitions. A suitable general language is the language of direted

graphs: a binary relation symbol and onstants; any theory is interpretable

in a theory in this language (see e.g. [9℄

1

).

Let M be a �rst order struture with at least two di�erent elements. To

avoid any onfusion we shall assume that L is disjoint from the language of

M . The quali�ation de�nable means de�nable with parameters, unless it

is spei�ed otherwise. An L-struture is de�nable in M if, for some k > 1,

its universe is a de�nable subset of M

k

and all L-relations are de�nable in

M .

Let � be an L-sentene.

1

This is the only referene I know of where this is expliitly stated and proved. However,

undoubtedly other authors had to use a similar statement earlier.
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De�nition 1.1 M ombinatorially satis�es �, M j=



� in symbols, i� �

holds in all L-strutures de�nable in M . The ombinatoris of M is the set

Comb(M) := f� j M j=



�g

It would be, perhaps, equally natural to onsider L-strutures inter-

pretable in M (e.g. in the sense of being de�nable in M

eq

) rather than only

de�nable.

2

But for our purposes the given de�nition suÆes.

As all �nite strutures are de�nable in allM of size at least 2, Comb(M)

is a subset of sentenes valid in �nite strutures (hene the name ombina-

toris ofM). It is learly dedutively losed. Moreover, it an be non-trivial,

i.e. bigger than just prediate logi but smaller than the set of all sentenes

valid in �nite strutures.

Example 1.2 Let R be the real losed �eld in the language of ordered �elds.

Comb(R) violates the pigeonhole priniple (PHP) but still upholds that there

is no bijetion between a set and the set minus one point (the ontoPHP), and

that there is no injetive map of A

2

into A (the weak pigeonhole priniple

WPHP), if jAj > 1.

The PHP is violated by many maps in R; for example, map x > 0 to

x + 1 and leave x � 0 in plae. The ontoPHP holds as semi-algebrai

bijetions preserve Euler harateristi and the harateristis of a set and

the set minus one point di�er, f. [5℄. The WPHP holds for dimension

reasons.

Example 1.3 Let C be the omplex �eld in the language of rings. Comb(C)

ontains Comb(R), as C is de�nable in R, but it is di�erent. Namely, C

ful�lls PHP; this is a theorem of Ax [1℄. However, the dual statement:

Any f : A! A that is onto must be one-to-one

is learly not in Comb(C) (e.g. x! x

2

).

Ax's theorem states that for any algebrai set A any one-to-one polyno-

mial map p : A! A must be onto. For a proof of the Ax's theorem utilizing

ompatness see e.g. [18, p.2, Thm.1.3℄. The proof works equally well in

a bigger generality and gives the following statement: Any 89 L-sentene

2

The di�erene is that the universe of a de�nable struture is a de�nable set and the

equality is absolute, while in an interpretable struture the universe an be a quotient

of a de�nable set modulo a de�nable relation, or a quotient of a quotient, et., and the

equality is not absolute.
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� that is valid in all �nite L-strutures is also ombinatorially valid in all

strutures that are elementarily equivalent to ultraproduts of loally �nite

strutures (in the ase of C it is the ultraprodut of algebrai losures of

�nite �elds).

Example 1.4 If M is pseudo-�nite (i.e., elementarily equivalent to an ul-

traprodut of �nite strutures) then Comb(M) onsists exatly of �'s valid

in all �nite strutures.

As the theory of M gets stronger, Comb(M) gets weaker.

Example 1.5 If M is a model of Peano arithmeti PA (or even its subthe-

ory I�

0

1

) that is �

0

1

-sound (M satis�es the same universal sentenes that are

true in the standard model N) then Comb(M) onsists exatly of � provable

in prediate logi.

This follows straightforwardly from the ompleteness theorem whih an

be formalized in I�

0

1

, f. [6℄.

We mention two problems whose motivation will be lear later.

Problem 1.6 Charaterize strutures M whose ombinatoris Comb(M)

ontains the following priniple of �nite ombinatoris: Every partial order-

ing has a minimal element.

The quali�ation haraterize means that we look for a property of suh

strutures of a natural model-theoreti harater. For example, strutures

ombinatorially satisfying PHP are those admitting ordered weak Euler

harateristi on de�nable sets, f. [17℄.

Problem 1.7 When is Comb(M) reursively enumerable? Are there some

mathematially interesting strutures with non-trivial but reursively enu-

merable ombinatoris? Are Comb(C) and Comb(R) r.e.?

2 First order priniples and propositional formu-

las

A sentene � gives raise to an in�nite sequene of propositional formulas.
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De�nition 2.1 The propositional language hLi onsists of onnetives 1

(true), 0 (false), :, of _ and ^ of unbounded arity, and of in�nitely many

atoms

p

R

i

1

;:::;i

k

one for every relation symbol R(x

1

; : : : ; x

k

) 2 L and every hoie of natural

numbers i

1

; : : : ; i

k

The next de�nition realls a standard notation [12℄.

De�nition 2.2 Let � be an L-sentene and n � 1 a natural number. De�ne

the propositional formula h�i

n

in language hLi by indution on the logial

omplexity of �:

1. hi = ji

n

is 1 i� i = j, otherwise it is 0, for any i; j < n.

2. hR(i

1

; : : : ; i

k

)i

n

:= p

R

i

1

;:::;i

k

, for any i

1

; : : : ; i

k

< n

3. h:�i

n

:= :h�i

n

4. h� Æ	i

n

:= h�i

n

Æ h	i

n

, for Æ = _;^

5. h9x;�(x)i

n

:=

W

i<n

h�(i)i

n

6. h8x;�(x)i

n

:=

V

i<n

h�(i)i

n

The formula h�i

n

is, in general, a onstant depth formula while some

proof systems operate with only restrited lass of formulas (like resolution

with lauses) or even with formulas that are not DeMorgan (like algebrai

proof systems), or even do not operate with formulas at all (like a general

NP algorithms). Stritly speaking, this does not need to onern us as, by

de�nition, a proof system proves all tautologies in DeMorgan language. For

example, a general formula is enoded for resolution by limited extension.

However, the tautologies we onsider are of speial form and there is

a better way of reahing propositional formulas of the CNF form. The

sentene � is valid in all �nite strutures i� its Herbrandization �

H

is; �

H

is an 98 formula and :�

H

is a CNF formula.

The Herbrandization of a prenex formula �:

9x

1

8y

1

: : : 9x

k

8y

k

;�(x; y)

� open formula in DNF form, is

9x

1

: : : 9x

k

;�(x; y

1

=h

1

(x

1

); y

2

=h

2

(x

1

; x

2

); : : : ; y

k

=h

k

(x)))
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where h

i

are new funtion symbols. As we do not allow funtion symbols,

eah h

i

is replaed by (i+ 1)-ary relation symbol H

i

(x

1

; : : : ; x

i

; z), and �

H

is de�ned to be the disjuntion of the formula

9x

1

: : : 9x

k

9y

1

: : : 9y

k

;H

1

(x

1

; y

1

) ^H

2

(x

1

; x

2

; y

2

) ^ : : :

^ H

k

(x; y

k

) ^ �(x; y

1

; : : : ; y

k

)

together with the formula

9x

1

8y

1

:H

1

(x

1

; y

1

) _ : : : _ 9x

1

; : : : ; x

k

8y

k

:H

k

(x

1

; : : : ; x

k

; y

k

)

Hene h�

H

i

n

is a DNF formula and so, possibly always replaing � by �

H

,

we may assume heneforth without loss of generality that all � translate to

a sequene of DNF formulas h�i

n

.

3

An analogous translation is used in [19, 20℄.

3 Covering theories for proof systems

Let M be a struture and P a proof system.

De�nition 3.1 The symbol P `

�

h�i

n

denotes the existene of P -proofs of

h�i

n

of size n

O(1)

, for all n � 1.

M overs P i� � 2 Comb(M) whenever P `

�

h�i

n

.

Our main goal in this researh is to �nd, given P , a rih lass of strutures

M de�ned by some ombinatorial, model-theoreti or geometri property,

and overing P . We use the informal term overing lass of P for any suh

lass. The point is that one an then use strutures in the overing lass

for proving lower bounds for P : to prove super-polynomial lower bound for

h�i

n

it is suÆient to �nd M in the lass suh that M 6 j=



�.

3

The referee pointed out that it is not a priori lear that two logially equivalent

sentenes give two sequenes of tautologies of polynomially related proof omplexity. This

will be indeed true for any P ontaining R

�

(log) as (the Herbrand translation of) one

sentene has polynomial size R

�

(log)-proofs from the other one (i.e. one does not operate

with the Herbrand translation of the equivalene but with proofs of one sentene from the

other one).
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3.1 First example: an extension of tree-like resolution

Resolution R is naturally a subsystem of sequent alulus LK, allowing no

onnetives exept the negation. The following de�nition augments R as to

orrespond to LK-proofs of the �-depth 0 (as de�ned in [10℄ or [12, Def.

12.2.3℄).

De�nition 3.2 ([15℄) (a) R

+

is a refutation proof system that works with

lauses C formed by onjuntions D

i

of literals `

i;j

:

C =

[

i

fD

i

g ; D

i

=

^

j

`

i;j

The inferene rules are:

C

1

[ f

V

j

`

j

g C

2

[ f:`

0

1

; : : : ;:`

0

k

g

C

1

[ C

2

provided `

0

1

; : : : ; `

0

k

are among `

j

's and k � 1, and

C

1

[ f

V

j<u

`

j

g C

2

[ f

V

j<v

`

u+j

g

C

1

[ C

2

[ f

V

j<u+v

`

j

g

(b) Let f : N ! N be a funtion. The R(f)-size of an R

+

-proof is the

minimum S suh that the proof has at most S lauses and eah on-

juntion of literals ourring in lauses has size at most f(S).

We shall use a phrase R(f)-proofs of size S rather than R

+

-proofs of

R(f)-size S.

() Tree-like versions of proof systems are denoted by the supersript

�

:

R

�

, R(f)

�

.

Obviously, R(1) is just R, while R(log) is the �-depth 0 subsystem of LK.

Theorem 3.3 ([12, L.9.5.2℄) Any struture overs R

�

(log).

The theorem is valid in a stronger sense than is aptured by the notion

of overing. Namely, a priniple has polynomial size R

�

(O(1)) proofs i� it

is provable in prediate logi and, if it is not, then it requires exponential

size R

�

(log) proofs. This �rst example of a overing lass is from [12℄,

where the lower bound part of the theorem is a speial ase of a more
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general statement about searh trees. The upper bound (priniples provable

in prediate logi have polynomial size R

�

(O(1))-proofs) follows from the

simulation of bounded arithmeti by R

+

onstruted already in [10℄. See

[15℄ for further disussion. We state now expliitly this stronger version

of Theorem 3.3 as it will be used in Theorem 4.1. For the sake of the

ompleteness of the presentation we also outline the onstrution from [12℄.

Theorem 3.4 ([12, L.9.5.2℄,[10℄) Let � be a �rst order sentene. Then

there are � > 0 and k � 1 suh that the following holds:

(1) If :� has an in�nite model then h�

H

i

n

requires R

�

(log)-proof of size

at least 2

�n

1=2

, for all n � 1.

(2) If � is valid in all in�nite strutures then h�

H

i

n

admits R

�

(k)-proofs

of size polynomial in n, for all n � 1 for whih h�i

n

is a tautology.

Proof-sketh:

Let � be an L-sentene and L

H

the relational language of �

H

. If � an

be violated in an in�nite struture, so an be �

H

. Let M be an in�nite L

H

-

struture in whih :�

H

holds. Let k � 1 be the maximal arity of a relation

symbol in L

H

(hene k depends on L and on the number of quanti�ers in �

only). Let n � 1.

Assume that � is an R

�

(log) refutation of h�

H

i

n

of size s = 2

t

, i.e. the

sizes of the onjuntions in lauses are bounded by t.

A partial bijetion F between a subset dom(F ) � [n℄ and a subset

rng(F ) �M determines a partial truth assignment �

F

to atoms of h�

H

i

n

:

If p

R

i

1

;:::;i

m

is an atom and fi

1

; : : : ; i

m

g � dom(F ) then �

F

gives the atom

the truth value of R(F (i

1

); : : : ; F (i

m

)) in M .

Construt a sequene of lauses C

i

from � and partial bijetions F

i

be-

tween subsets of [n℄ and ofM by the following proess. Put C

0

:= ;, F

0

:= ;

and �

0

:= �. Pik a lause C

1

in � splitting the proof tree in a 1=3-2=3 fash-

ion of Spira's lemma. Consider two ases: (a) there is F � F

0

suh that

�

F

fores C

1

true, and (b) there is no suh F . In ase (a) take for F

1

some

F � F

0

with the property and of minimal size. In ase (b) take F

1

:= F

0

.

Clearly jF

1

j � tk.

In ase (a) we delete from � everything above C

1

, in ase (b) everything

that is not above C

1

. The resulting tree �

1

is a proof of (a) either the empty

lause from the original initial lauses and from a lause fored true by F

1

,

(b) or it is a proof from original initial lauses of a lause that an never be

fored true by any F � F

1

.
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Next we analogously pik C

2

splitting �

1

in the 1=3-2=3 fashion and

de�ne F

2

and �

2

identially, and ontinue in this proess until we reah, in

step w, �

w

of size 1. Any �

i

in the proess is a proof from original initial

lauses or from lauses fored true by F

i

of a lause that an never be fored

true by any F � F

i

. Note that w � log

3=2

s � O(t).

Now we reah a ontradition: C

w

must be an original initial lause

that annot be fored true by F � F

w

. However, as M satis�es :�

H

,

as long as there is a room to extend F

w

suh F exists. That is, we get a

ontradition if n�jdom(F

w

)j � tk. Hene t � 
((n=k)

1=2

) and so s � 2

�n

1=2

for � = 
(k

�1=2

). This explains part (1).

In part (2) the hypothesis implies that �

H

is provable in prediate al-

ulus. The simulation of �rst order proofs (of bounded arithmeti even) in

[10℄ produes a tree-like R

+

-proof of polynomial size (there is no #-funtion

so we do not get a quasi-polynomial bound). The sizes of the onjuntions

in the lauses are bounded by the size of the open kernel of �

H

, i.e. by some

onstant k � 1 independent of n (in the ase of bounded arithmeti the

bound gets polylogarithmi beause we work with sharply bounded kernels

instead).

q.e.d.

Riis [20℄ has reently proved a sharper version of Theorem 3.4 for R

�

.

Namely, under the same assumptions: In (1) h�i

n

require R

�

-proofs of size

2


(n)

rather than 2


(n

1=2

)

, and in (2) h�i

n

have polynomial size R

�

-proofs

(so k = 1). Riis [20℄ stresses the dihotomy form of his theorem under the

name "omplexity gap".

The idea to use pure model theory for lower bounds in proof omplexity

(via the relation formalized here as overing) is from [14℄ where our seond

example is proved.

3.2 Seond example: algebrai proof systems

An algebrai proof system seeks to prove that f

0

2 hf

1

; : : : ; f

k

i, given poly-

nomials f

i

2 F [x℄ over a �eld F . A proof of the ideal membership in the

so alled Nullstellensatz proof system NS (f.[2℄), is a k-tuple g

1

; : : : ; g

k

of

polynomials from F [x℄ suh that

P

i�1

g

i

� f

i

= f

0

. The degree of the NS

proof is max

i�1

deg(g

i

f

i

).

A proof of the ideal membership in polynomial alulus PC is a sequene

of polynomials h

1

; : : : ; h

t

suh that h

t

= f

0

, and suh that every h

j

is either

10



one of f

1

; : : : ; f

k

, or is derived from earlier h

1

; : : : ; h

j�1

by one of the two

rules: g

1

, g

2

entail any F -linear ombination of g

1

, g

2

, and g entails any

x

i

� g. The degree of the PC proof is max

i

deg(h

i

). We shall denote the

systems NS/F and PC/F respetively when we want to stress the partiular

underlying �eld F .

Polynomials are enoded using the dense notation, i.e. by listing all

oeÆients, even zero, of all monomials up to the degree of the polynomial.

For F �nite the size of the ode of f is thus proportional to n

deg(f)

, n the

number of variables. Hene polynomial size NS- or PC- proofs over �nite

�elds are exatly proofs of bounded degree.

Given propositional formula  with binary _ and ^ de�ne polynomial

 

�

by: for atom p, p

�

:= p. Further, ( _�)

�

:=  

�

��

�

and (: )

�

:= 1� 

�

(the truth values true and false are represented by 0 and 1 respetively).

Note that deg( 

�

) depends on the logial depth of  only.

Now take a �rst order sentene �, and we assume that it is in the Her-

brand form. Assign to � the following set of polynomials:

�

P

j2[n℄

p

H

t

i

1

;:::;i

t

;j

= 1, one for eah t = 1; : : : ; k, and i

1

; : : : ; i

t

; j 2 [n℄

� p

H

t

i

1

;:::;i

t

;j

1

�p

H

t

i

1

;:::;i

t

;j

2

= 0, one for eah t = 1; : : : ; k, and i

1

; : : : ; i

t

; j

1

; j

2

2

[n℄

� [H

1

(i

1

; j

1

)^ : : : H

k

(i

1

; : : : ; i

k

; j)^:�(i; j)℄

�

= 0, one for eah hoie of

i's and j's in [n℄

� p

2

� p = 0, any atom p.

Solutions to the polynomial system are in one-to-one orrespondene

with satisfying assignments of :h�i

n

. Hene h�i

n

is a tautology i� the

polynomial system has no solution i� the polynomials generate the trivial

ideal (the last set of polynomials allows to look only on solutions in F rather

than in F

alg

, the algebrai losure of F , in order to apply Nullstellensatz).

Hene, whenever we work with algebrai systems we shall work with the

polynomial system as the propositional translation of �, and we shall denote

the systems also h�i

n

.

Theorem 3.5 ([13, Thm.5.5℄) For NS and PC over a �nite prime �eld

F

p

and any � it holds:

NS=F

p

`

�

h�i

n

i� PC=F

p

`

�

h�i

n

That is, a struture overs NS=F

p

i� it overs PC=F

p

.

11



De�nition 3.6 ([14, Def.2.1℄) LetM be a �rst-order struture. Def

k

(M)

is the lass of subsets ofM

k

de�nable inM (with parameters) and Def

1

(M)

is the union

S

k

Def

k

(M).

Let R be a ommutative ring with unity. A funtion

� : Def

1

(M) �! R

is an abstrat Euler harateristi on M over R i� it satis�es the following

onditions:

1. �(fag) = 1, any a 2M

k

.

2. �(A [ B) = �(A) + �(B), whenever A;B;A [B 2 Def

1

(M) and A,

B are disjoint.

3. �(A�B) = �(A) � �(B), whenever A;B;A�B 2 Def

1

(M).

4. �(A) = �(B), whenever A;B 2 Def

1

(M) and there is a de�nable

bijetion between A and B.

5. �(A) =  � �(B), whenever  2 R, A;B 2 Def

1

(M) and there is a

de�nable map f with domain A and range B suh that eah its �ber

f

(�1)

(b), b 2 B, has Euler harateristi �(f

(�1)

(b)) = .

A pair (M , �=R) satisfying this onditions is alled Euler struture.

Theorem 3.7 ([14, Thm.6.1℄) Let F

p

be a �nite prime �eld.

Then any struture M admitting Euler harateristi over all Z=(p

�

),

� � 1, overs NS/F

p

, and hene also PC/F

p

.

4 Examples of new lower bounds

In this setion we give examples of appliations of the overing theories and

we derive lower bounds for priniples of a type that does not seem to be

easily amenable to other known methods.

Let T be the theory of �elds in the usual language of rings exept that

+ and � are represented by relations, and let T

q

be T together with the

axiom that the harateristi is some spei� q > 0. Consider the following

statements obviously valid for �nite �elds:

�

1

A �eld of harateristi q is perfet:

^

T

q

! 8y9x; x

q

= y

12



�

2

A �eld is ommutative:

^

T ! 8x; y;x � y = y � x

�

3

A �eld is not algebraially losed (a speial ase):

^

T ! 9y

1

; y

2

8x;x

2

+ y

1

x+ y

2

6= 0

�

4

A �eld annot be ordered:

^

T ! :A

where A is a sentene in the language of T augmented by < and

expressing that < is a linear ordering respeting the �eld operations.

�

5

Two �elds of di�erent harateristi annot share a ommon universe:

^

T

0

q

0

! :

^

T

00

q

00

where q

0

, q

00

are two di�erent primes and T

0

, T

00

two opies of theory

T in disjoint languages.

Theorem 4.1 All priniples �

1

; : : : ;�

5

require proofs of size exp(n


(1)

) in

R

�

(log).

Proof :

We apply Theorem 3.4. It is enough to �nd in�nite models (�elds) in

whih the respetive priniples fail.

�

1

: There is an in�nite imperfet �eld of harateristi q.

�

2

: Quaternions.

�

3

: C.

�

4

: R.

�

5

: Two ountable �elds of di�erent harateristi an sit on N.

q.e.d.

Theorem 4.2 Let p > 0 be prime. Then priniples �

i

, i = 2; 3; 4, require

proofs of superpolynomial size (i.e., of non-onstant degree) in both NS=F

p

and PC/F

p

.

13



Proof :

We apply Theorem 3.7. The real �eld R admits Euler harateristi in

Z (see [14℄ or [5℄) and hene also in all Z=(p

�

). Quaternions and omplex

numbers are interpretable in R and so admit suh Euler harateristi too.

Thus examples in ases �

i

, i = 2; 3; 4, from the proof of Theorem 4.1 work

here equally well (via Theorem 3.7).

q.e.d.

To prove a similar lower bound for �

1

it would be enough to onstrut

an imperfet �eld of harateristi q that admits Euler harateristi in all

Z=(p

�

), � � 1. To prove a lower bound for �

5

one would need to amalga-

mate two ountable �elds (in disjoint languages) of di�erent harateristi

admitting the Euler harateristi into one struture admitting it too. A

starting point an be a theorem Hrushovski [8℄ that it is possible to amal-

gamate two algebraially losed �elds of di�erent harateristis (strongly

minimal strutures, in partiular) into one strongly minimal struture.

5 A generi onstrution

In this setion we desribe a lass of strutures overing a given proof system

P . It is a lass of ertain expansion of models of bounded arithmeti and

its de�nition expliitly refers to P . Thus it is not a good overing lass in

the sense that it does not bring new insight about the system. However,

it was one of the original motivations for overing theories to understand

ombinatoris behind onstrutions of the expansions via model theoreti

foring and it o�ers some intuition how to searh for a useful overing lass

for any P .

Let M be an arbitrary ountable model of true arithmeti in the usual

language, and let n 2 M be any non-standard element. Denote by M

n

the

struture with the universe fu 2 M j u < ng in language L

n

: L

n

is the

language with a relation symbol R

X

for every subset X � (M

n

)

k

, all k � 1,

that is de�nable inM . Note that M

n

satis�es indution for all L

n

-formulas.

Let P be a proof system. Proofs, formulas and evaluations are enoded

by relations on M

n

. Let Prf

P

(a; �; �; ) be a �rst order L

n

-formula suh

that for some ` 2 N the �

1

1

formula 9U � m

`

;Prf

P

(m;�; �; U) de�nes the

relation "� is a P -proof of size � m of �".

Similarly let Sat(a; �; �; Æ) be a �rst order formula suh that for some

` the �

1

1

formula 8V � m

`

;Sat(m;�; �; V ) de�nes the relation "� � m is

14



a truth evaluation satisfying formula � � m". Here we use the fat that

the property inside "..." is polynomial-time and hene also, in partiular,

expressible by a �

1

1

-formula. Suh formulas exist by Fagin's theorem (or by

a diret onstrution, f. [11, 12℄).

Consider formula Rfn

P

with set variables �; �; ; Æ; �:

8x; [Prf

P

(x; �; �; ) ^  � x

`

℄ ! (Æ � x

`

! Sat(x; �; �; Æ))

Note that Rfn

P

is valid in M

n

.

Let L

0

be any language extending L

n

. De�ne a lass C

P

onsisting of L

0

-

strutures that are expansions ofM

n

and that satisfy Rfn

P

for all instanes

obtained by substituting for �; �; ; Æ; � de�nable relations. The lass C

P

is

non-empty; for example, it ontains all expansions of M

n

in whih the new

L

0

-relations are de�nable already in M

n

. Suh struture satis�es Rfn

P

beause M

n

does.

We assume that P is strong enough in the next theorem. If a partiular

proof system does not satisfy the hypothesis we an replae it by a stronger

proof system that does; a overing lass of the stronger system is also a

overing lass of the original weaker one.

Theorem 5.1 Let P be a proof system that ontains a Frege system F , and

let C

P

be the assoiated lass of strutures. Then any struture from C

P

overs P .

Proof :

Assume that some N 2 C

P

does not over P . That means that there is

� suh that

(i) all h�i

k

, k 2 N, have polynomial size P -proofs

(ii) but � =2 Comb(N).

We use the assumption P � F to strengthen (i). Let D be a new unary

prediate symbol not in L

0

, and let �

D

be the relativization of � to D. Then

we have

(i') all h�

D

i

k

, k 2 N, have polynomial size P -proofs.

This is beause there are, given k, polynomial size (DeMorgan) formulas �

ij

(i; j < k) with atoms for statements u 2 D (u < k) suh that Frege system

F proves in polynomial size that �

ij

de�ne a graph of a bijetion between
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D and some initial segment f0; 1; : : : ; w � 1g of k. This is beause F an

ount (see [3℄ or [12℄).

Property (ii) means that there is an L-struture K � M

t

n

de�nable in

N that violates �. Struture K de�nes an evaluation for atoms of h�

D

i

k

,

k = n

t

, that does not satisfy the formula; in partiular, prediate D is

interpreted by the universe of K. On the other hand, as M is a model of

true arithmeti, there is � 2 L

n

that is a P proof of h�i

k

. This gives an

instane of Rfn

P

that is not true, violating the de�nition of the lass C

P

.

q.e.d.

Problem 5.2 For whih proof systems P does it hold that if P `

�

h�i

n

then

also P `

�

h�

D

i

n

? In partiular, does this hold for resolution?

Any struture ombinatorially satisfying � also ombinatorially satis�es

�

D

. Hene if the problem is answered negatively for a proof system P , no

overing lass for P an haraterize priniples with polynomial P -proofs

exatly.

4

The simplest ase in Theorem 5.1 is when L

0

extends L

n

by L, and

N 2 C

P

expands M

n

by an L-struture on M

n

with a suitable property.

Suh expansions an be onstruted, in priniple, by foring (see [11℄, [12℄).

We remark that for many proof systems the axiom sheme Rfn

P

is

atually equivalent to an indution sheme for formulas of partiular form

(depending on the system) or, equivalently, to a priniple that any linear

ordering de�nable by formulas of a partiular type has the least element

(this motivates Problem 1.6). See [15℄ for desription of this for resolution

and its extension, and [12℄ for a more general information.

One would like to further replae Rfn

P

or the equivalent indution ax-

iom by a transparent ombinatorial priniple, as it is done for R

�

(log) and

NS=F

p

, PC=F

p

by their overing theories. However, for these proof systems

the ombinatorial haraterization of polynomial provability is valid only for

proofs of h�i

n

and not for proofs of arbitrary sequenes of tautologies. One

might not be able to replae Rfn

P

by a transparent ombinatorial priniple

without the restrition to uniform sequenes h�i

n

. No suh general hara-

terization is known for any proof system at present. On the other hand, the

restrition to h�i

n

may allow suh ombinatorial desription of polynomial

provability for stronger systems. Partiularly interesting would be the ases

of resolution R and utting planes proof system CP.

4

I owe this remark to the referee.
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6 Strutures as proof systems

If Comb(M) is r.e., then it de�nes a proof system. Little bit more generally

we de�ne

De�nition 6.1 Let C be a lass of strutures. Put Comb(C) :=

T

M2C

Comb(M).

Assume that Comb(C) is reursively enumerable, and let M be a Turing ma-

hine that enumerates the set.

De�ne a proof system A

C

as follows: a string � is a proof of formula �

in the system i�

� � is a quadruple h�; n; w

1

; w

2

i where � 2 Comb(C), w

1

is a omputa-

tion of M ertifying this membership, and w

2

is an R

�

(log)-proof of

� from h�i

n

.

We shall denote the proof system A

M

when C onsists of just a single stru-

ture M .

Reall that a proof system P polynomially simulates a proof system Q

i� there is a polynomial time algorithm translating any Q-proof � of � into

a P -proof �

0

of the same formula, and that P simulates Q i� suh �

0

exists

polynomially bounded in the length of � (but is not neessarily onstruable

by a polynomial time algorithm).

Lemma 6.2 Let C be a lass of in�nite strutures suh that Comb(C) is

reursively enumerable. Then

1. A

C

polynomially simulates R

�

(log).

2. If 	 2 Comb(C) then A

C

`

�

h	i

n

.

3. C overs A

C

.

4. Assume P `

�

hRfn

P

i

n

, all n 2 N. If all strutures in C over a proof

system P then A

C

simulates P .

Proof :

Parts 1. and 2. of the lemma are diret onsequenes of the de�nition

A

C

.

Part 3. follows from Theorem 3.4. Assume 	 =2 Comb(C), and that

	 is already in the Herbrand form. Hene there is an in�nite struture
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M 2 C in whih 	 ombinatorially fails. For the sake of ontradition

assume that A

C

`

�

h	i

n

, say h	i

n

's are provable in size n

k

, k � 1 a suitable

onstant. This means that h	i

n

is provable in R

�

(log) from some h�i

m

for

some � 2 Comb(C) (also in Herbrand form); neessarily m � n

k

. More

preisely, all lauses of :h�i

m

are provable in size � n

k

from the lauses of

:h	i

n

.

Now � holds in M . So we an take the assumed proof of any one lause

of :h�i

m

and apply the same onstrution as in the proof of Theorem 3.4,

using M as the referene struture. The only di�erene is that we do not

pik F

0

:= ; but any minimal F

0

suh that no F � F

0

makes the lause of

:h�i

m

true. Suh F

0

exists by the fat that � holds inM . The ontradition

is reahed as before, using that 	 fails in M .

We shall use bounded arithmeti for Part 3.. By the hypothesis of Part 3

the proof system P polynomially proves formulas hRfn

P

i

n

. Hene Rfn

P

2

Comb(C). Further, R

�

(log) augmented by instanes of hRfn

P

i

n

simulates

P; this follows from the fat that R

�

(log) simulates the theory S

2

2

(�) ([10℄,

[15℄) and this theory proves that Rfn

P

implies that all �'s with a P-proof

are tautologies. In partiular, S

2

2

(�) proves the impliation

(Æ � x

`

^ Sat(x; �; �

0

; Æ)) ! �

where � is the assignment onsisting of p, atoms of �, and �

0

in the an-

teedent is the set oding the formula �.

q.e.d.

Note that the hypothesis of part 3. is satis�ed by many proof systems,

e.g. by R(log) or F (f. [16, 12℄). In fat, with a more sophistiated

formulation of Rfn

P

one an show that R

�

(log) also satis�es the hypothesis.

The �rst example restates Example 1.5.

Example 6.3 M is a sound model of I�

0

1

then A

M

is de�ned (i.e., Comb(M)

is reursively enumerable) and A

M

= R

�

(log).

Reall that M is pseudo-�nite i� it is elementarily equivalent to an ul-

traprodut of �nite strutures.

Example 6.4 If M is pseudo-�nite then Comb(M) is a omplete �

0

1

set

and hene A

M

is not de�ned.
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This is beause Comb(M) is then exatly the set of sentenes true in

�nite strutures and Trahtenbrot's theorem applies.

Example 6.5 Weak Euler harateristi is a funtion satisfying properties

1.-4. of De�nition 3.6. The lass of strutures admitting weak Euler har-

ateristi has reursively enumerable ombinatoris.

The ombinatoris of the lass is axiomatized by instanes of the ontoPHP

priniple, as by [14℄ this priniple haraterizes weak Euler strutures.

Note that examples from Problem 1.7 would also give examples of these

new "struture based" proof systems.

Aknowledgement: I am indebted to the anonymous referee for valuable

omments and suggestions, and to S. Buss (San diego) for suggesting few

language orretions.
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