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FREGE SYSTEMS
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Abstract. Let L be a first-order language and Φ and Ψ two Σ11 L-sentences that cannot be satisfied

simultaneously in any finite L-structure. Then obviously the following principle ChainL,Φ,Ψ(n,m) holds:

For any chain of finite L-structures C1, . . . , Cm with the universe [n] one of the following conditions must

fail:

1. C1 |= Φ,

2. Ci ∼= Ci+1 , for i = 1, . . . , m − 1,

3. Cm |= Ψ.

For each fixed L and parameters n,m the principle ChainL,Φ,Ψ(n,m) can be encoded into a propositional

DNF formula of size polynomial in n, m.

For any language L containing only constants and unary predicates we show that there is a con-

stant cL such that the following holds: If a constant depth Frege system in DeMorgan language proves

ChainL,Φ,Ψ(n, cL · n) by a size s proof then the class of finite L-structures with universe [n] satisfying Φ can

be separated from the class of those L-structures on [n] satisfying Ψ by a depth 3 formula of size 2log(s)
O(1)

and with bottom fan-in log(s)O(1).

§1. Introduction. A proof system P admits feasible interpolation if from a P-
proof ð of

¬αn(x, y) ∨ ¬ân(x, z) ,

x = (x1, . . . , xn) and x, y, z disjoint tuples of variables, one can infer some algo-
rithmic information about separating two sets

Un := {a ∈ {0, 1}n | ∃yα(a, y)}

and
Vn := {a ∈ {0, 1}n | ∃zâ(a, z)} .

Most often this means that there is an algorithm, using ð as an advice string
and running in time polynomial in the length of ð, that separates the two sets. But
sometimes a different type of information is deduced (amonotone circuit, a winning
strategy for a two-player game, a span program, a linear program, etc.).
Feasible interpolation was proposed [10] and developed [23, 3, 12] primarily
as a method for proving lengths-of-proofs lower bounds: Any two disjoint NP -
sets that it is not possible to separate by an algorithm specified in the particular
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interpolation theorem for P give rise to formulas αn and ân such that any P-proof of
the disjunction ¬αn ∨¬ân must be long for n >> 0. And as a lower bound method
feasible interpolation is very successful, applying to the widest range of various
proof systems among all lower boundmethods: from logical systems like resolution
R [12], to geometric proof systems like cutting planes CP or LK(CP) [20, 13], to
algebraic systems like theNullstellensatz systemNS or Polynomial calculus PC [22],
to the OBDD proof system [14], and others. In fact, even when the method fails
for a proof system P, meaning that no feasible separating algorithm can be deduced
from the existence of a short proof, it still provides a valuable information. Namely
such a failure implies that the proof search for P cannot be done feasibly either (the
so called non-automatizability of P, cf. [4]).
To show that a proof system P does not admit feasible interpolation one looks
for two disjoint NP -sets U and V that it is hard to separate (e.g., there is no
polynomial-time separating algorithm) but for which the formulas expressing the
disjointness of Un := U ∩ {0, 1}n with Vn := V ∩ {0, 1}n have short P-proofs.
No disjoint NP -pair U,V is proved to be hard to separate in this sense at present
(it would imply, in particular, that P 6= NP ) but there are several pairs conjec-
tured to have this property. These are derived from various encryption schemes
and the hardness of their separation follows from the conjectured security of the
schemes.
This argument towards the impossibility of feasible interpolation was applied
first to Extended Frege system EF in [15] (using RSA encryption scheme) and
was then modified for Frege system F [4], and eventually even for constant depth
Frege systems Fd in [2] (they used Diffie-Hellman scheme). There are differences,
however. While the results onEF andF show the (conditional) impossibility of even
sub-exponential interpolating circuits, the result onFd yields only quasi-polynomial
lower bound on such circuits.
In this paper we formulate a form of feasible interpolation for constant-depth
Frege systems. The interpolating circuits will have quasi-polynomial size but also
constant depth. It is easy to prove (unconditionally, using the parity lower bound
of [9, 25]) that Fd does not admit sub-exponential size constant depth interpolating
circuits.
As strong lower bounds for systems Fd are already known (and, in fact, we utilize
the hardness of PHP for Fd ’s in our construction) our aim is mainly to make a
first step towards resurrecting feasible interpolation in some form for strong proof
systems.
This is a paper in proof complexity and we shall assume that the reader is ac-
quainted with the most basic and well-established notions of the area but we will
not assume any prior knowledge of feasible interpolation results. The basic notions
whose knowledge is assumed include constant depth Frege systems in DeMor-
gan language, bounded arithmetic theory V 01 of [5] (denoted V

0 in [7]) and the
Paris-Wilkie [17] translation of bounded formulas to a sequence of constant-depth
propositional formulas. We will also use the hardness of the pigeon-hole principle
PHP for systems Fd but we will recall explicitly the specific result (in the language
of model-theory) used. Relevant background can be found in [11, 7], the definition
of proof systems Fd and of PHP also in [8, 21].
Notation: [n] stands for {1, . . . , n}.
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§2. The isomorphism-chain principle. In this section we consider first-order and
propositional formalizations of the principle we will study. Let L be a first-order
language. We will consider only finite relational languages that may contain also
constants but not functions symbols of non-zero arity. This is chiefly because
functions are represented for the propositional translation by their graphs anyway.
Let Φ = ∃Xφ(X ) and Ψ = ∃Yø(Y ) be two Σ11 L-sentences that cannot be
satisfied simultaneously in any finite L-structure. Then obviously the following
chain principle holds for any n,m ∈ N :

For any chain of finite L-structures C1, . . . , Cm with the universe [n] one of the
following conditions must fail:

1. C1 |= Φ,
2. Ci ∼= Ci+1, for i = 1, . . . , m − 1,
3. Cm |= Ψ.

For any fixed L and parameters x, y the chain principle can be formulated by a
bounded first-order formula ChainL,Φ,Ψ(x, y) as follows. The formula uses

• names for all second-order witnesses S and T of the both Σ11-sentences Φ and
Ψ respectively,

• indexed names ci and Ri for all constant symbols c and relation symbols R in
L (intended to describe the i-th L-structure Ci) for i ≤ y, and

• indexed names for binary relations Hi (intended to be the graphs of the iso-
morphism between Ci and Ci+1) for i < y.

and says that

• either the structure C1 with the universe [x] and language L interpreted by
c1, . . . , R1, . . . does not satisfy φ(S),

• or the structure Cy with the universe [x] and language L interpreted by

cy , . . . , Ry , . . . does not satisfy ø(T ),
• or there is 1 ≤ i < y such that Hi is not a graph of an isomorphism from Ci
onto Ci+1.

Incorporating suitable Skolem functions among the second-order witnesses X and
Y we may assume without a loss of generality that both formulas φ and ø are
universal formulas with the open kernels in a CNF.
For any fixed n,m the instance ChainL,Φ,Ψ(n,m) can be encoded into a propo-
sitional DNF formula of size polynomial in n,m. This is the standard Paris-
Wilkie translation (see [11, Chpt.9] or [7]). The propositional formula, denoted
〈ChainL,Φ,Ψ〉n,m, is built from atoms corresponding to atomic sentences in the lan-
guage of formula ChainL,Φ,Ψ(n,m) with parameters from [n] or [m].

§3. The idea of chain feasible interpolation. We shall now describe the idea of
the form of feasible interpolation we will study. We will call it chain feasible
interpolation or simply chain interpolation.
Assume you want to prove the chain principle ChainL,Φ,Ψ(x, y), with L, Φ and
Ψ fixed. One way how to prove it is to show, by induction on i ≤ y, that Ci |= Φ.
Case i = 1 is condition (1) of ¬ChainL,Φ,Ψ(x, y). Condition (2) then implies the
induction step

Ci |= Φ→ Ci+1 |= Φ
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as an isomorphism between Ci and Ci+1 maps a witness to Φ in Ci to a witness
in Ci+1. Hence if we had induction for the formula Ci |= Φ (with the induction
parameter i) then Cy |= Φ would follow, and we could conclude the proof by
bringing this to a contradiction with condition (3). However, the formula

Ci |= Φ

is a Σ11-property of i , definable by a bounded Σ
1,b
1 -formula. The argument just

outlined can be thus run through in a theory having induction for Σ1,b1 -formulas;
this is theory V 11 of [5] (denoted V

1 in [7]), see also [11]. This theory corresponds
to Extended Frege systems EF and hence the chain principle has polynomial size
EF-proofs as long as the incompatibility of Φ and Ψ:

A |= ¬Φ ∨ ¬Ψ

(A is a free second order object ranging over L-structures on [x]) is provable in V 11 .
In particular, the example from [15] that shows (conditioning upon the security of
RSA) that EF does not admit (ordinary) feasible interpolation also shows that it
does not admit chain interpolation either.
Another possibility how to prove the chain principle is to explicitly define, in
terms of a witness S for Φ in C1 and isomorphisms H1, . . . ,Hi−1, a witness for
Φ in Ci . However, the depth of formulas defining such a witness grows linearly
with i and hence this can be performed again in EF but presumably not even in
Frege systems F. In fact, using the standard witnessing argument these two proof
strategies are essentially equivalent.
There is yet another way how to prove the chain principle that comes to mind,
and it is this one that is potentially formalizable in Frege or in constant depth
Frege systems. Assume we can find a first order L-sentence ã such that for all
L-structures A:

A |= Φ ⇒ A |= ã

and also
A |= Ψ ⇒ A |= ¬ã .

That is, the property of structures A to satisfy ã separates the class of structures
satisfying Φ from the class of those satisfying Ψ.
It is straightforward to see that theory V 01 proves for any first-order L-sentence ã
that Ci ∼= Ci+1 implies

Ci |= ã ⇒ Ci+1 |= ã.

Hence as long as we can prove in V 01 instances of the interpolation implications
above:

C1 |= Φ ⇒ C1 |= ã

and
Cy |= Ψ ⇒ Cy |= ¬ã ,

we can refute the chain principle in the theory.
For any fixed first-order L-sentence ã the property of structures A with the
universe [n] that A |= ã is expressible as a symmetric AC 0-property of A. Hence
a little bit more generally we could take an AC 0-property separating the class of
structures satisfying Φ from the class of those satisfying Ψ in place of ã, and run
the argument through in a constant depth Frege system.
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The (somewhat naive) idea behind the chain feasible interpolation is that this
ought to be essentially the only way how constant depth Frege systems can prove
the chain principle shortly. We now formulate this working conjecture as an
open problem in a form weaker than the informal account above. In particu-
lar, we do not ask for the provability of the interpolating implications but only
for their validity, and we also do not require the symmetry of the interpolating
property.

Open problem 3.1. Let L be a first-order language containing relation symbols
or constants. Let Φ and Ψ by two Σ11 L-sentences that cannot be simultaneously
satisfied in any finite L-structure.
Is it true that for every d ≥ 1 there is d ′ ≥ 1 such that the following holds for all
sufficiently large m ≥ n ≥ 1:

• If there is a size s Fd -proof of 〈ChainL,Φ,Ψ〉n,m then there is a property of L-

structures with the universe [n] definable by a depth d ′ circuit of size 2s
o(1)

that
separates the class ofL-structures on [n] satisfying Φ from those satisfying Ψ?

§4. The unary case. In this section we answer affirmatively Problem 3.1 for the
case of languages L containing constants and unary predicate symbols but not
relational symbols of arity bigger than 1. In this case even d ′ = 3 irrespective of

what d is and the size bound is even quasi-polynomial 2log(s)
O(1)

.
The unary case already allows one to define interesting pairs of Σ11 sentences as
the next couple of examples demonstrates.

Examples. (1) Let L consists of one unary predicateW . Formula Φ says that
the cardinality of W is even by stating the existence of a complete pairing on W
while Ψ says similarly (there exists a pairing on W leaving exactly one point out)
that it is odd. The chain principle is then related to the parity principle, and the
exponential lower bound for parity principle in Fd (implied by [16, 19]) implies that
the chain principle has no short Fd proofs even for chains of length 1.
(2) For the same L as in (1) one can Σ11-define that the cardinality ofW is at east
n/2 (by saying that there is a 2-to-1 map from the universe into W ) and at most
n/4 (by saying analogously that there is a 1-to-4 map from W into the universe).
The chain principle then relates to the weak pigeonhole principle which is known
to have quasi-polynomial size proofs in Fd for d sufficiently large [18, 11]. Hence
the chain principle has also quasi-polynomial size Fd proofs for chains of length 1
but, as will follow from our theorem, not for general chains.

Theorem 4.1. Let L be a first-order language containing unary relation symbols or
constants. Let Φ andΨ by two Σ11 L-sentences that cannot be simultaneously satisfied
in any finite L-structure.
Then there is constant cL ≥ 1 such that for every d ≥ 1 there is c ≥ 1 such that the
following holds for all n large enough:

• If there is a size sn Fd -proof of 〈ChainL,Φ,Ψ〉n,cL·n then there is a property of L-

structures with the universe [n] definable by a depth 3 formula of size 2log(sn)
c

and

bottom fan-in log(sn)
c
that separates the class of L-structures on [n] satisfying

Φ from the class of those satisfyingΨ.



INTERPOLATION FOR CONSTANT DEPTH FREGE SYSTEMS 779

Proof. A constant e in language L can be represented by a unary predicate
representing x = e and so without a loss of generality we may assume that L
contains no constants but only ℓ unary predicates P1, . . . , Pℓ . Put cL := 2ℓ .
Fix d ≥ 1. Assume for the sake of a contradiction that for all c ≥ 1 there are
arbitrarily large k such that 〈ChainL,Φ,Ψ〉k,cL·k has a size sk Fd -proof but no depth 3

formula of size at most 2log(sk)
c

and bottom fan-in log(sk)
c
separates the class of

L-structures on [k] satisfying Φ from the class of those satisfying Ψ.
By compactness there is a non-standard model N∗ of true arithmetic and a non-
standard element n ∈ N∗ \ N such that, in N∗, there is a size sn Fd -proof Π of
〈ChainL,Φ,Ψ〉n,cL·n but for all standard c ∈ N no depth 3 formula of size at most
2log(sn)

c

and bottom fan-in log(sn)
c
separates the class of structures on [n] satisfying

Φ from the class of those satisfying Ψ.
By a 1-type α(x) we shall mean any conjunction of the form

ç1 ∧ · · · ∧ çℓ

where çi is either Pi(x) or ¬Pi (x). 1-types are in an obvious 1-to-1 correspondence
with elements of {0, 1}ℓ .
For a 1-type α(x) and an L-structure A let rα(A) be the number of elements of
A satisfying the type α(x). Clearly the sum

∑

α rα(A), α ∈ {0, 1}ℓ , equals to the
cardinality of the universe ofA, and two finite structures A andB with universes of
the same cardinality are isomorphic iff rα(A) = rα(B) for all 1-types α.
For t ≥ 0 and a 1-typeα, κα,t is anL-sentence formalizing ”rα(A) ≥ t”, meaning
that for all structures A, A |= κα,t iff rα(A) ≥ t. Sentence κα,t is defined as follows:

∃x1, . . . , xt [
∧

i 6=j

xi 6= xj ∧
∧

i

α(xi )]

where 1 ≤ i, j ≤ t. The propositional translation 〈κα,t〉n of the sentence is of the
form

∨

a1,...,at

[
∧

i

α(ai )]

where a1, . . . , at range over subsets of [n] of t different elements. The conjunction
∧

i α(ai ) has ℓ · t literals (as each α(ai) is an ℓ-term). Hence 〈κα,t〉n is a DNF
formula with top fan-in

(

n
t

)

≤ nt , bottom fan-inO(t) and total size bounded above
by O(tnt).
For c ≥ 1 define the c-spectrum ∆c(A) of a structure A with universe [n] to be
the unique conjunction

∧

α∈{0,1}ℓ

Γα

valid in A where each Γα is

• either 〈κα,t〉n ∧ ¬〈κα,t+1〉n , for some t < log(sn)
c
,

• or 〈κα,log(sn)c 〉n .

In other words, the c-spectrum counts exactly the number of elements of each type
as long as it is less than log(sn)

c
or says that it is at least log(sn)

c
.

Note that each c-spectrum is a constant size conjunction of DNFs and CNFs,
each with top fan-in ≤ nt and bottom fan-in O(t). Note also that the number of
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different c-spectra is bounded above by

(log(sn)
c)2

ℓ

= log(sn)
O(c) .

Claim 1. In N∗ there is a non-standard c∗ and two L-structures A and B with
universe [n] such that:

1. A |= Φ.
2. B |= Ψ.
3. Structures A and B have the same c∗-spectrum: ∆c∗(A) = ∆c∗(B).

Proof. Toprove the claimassume for the sakeof contradiction that the c∗-spectra
of any pair of structures A, B with universe [n] satisfying Φ and Ψ respectively are
different, for any non-standard c∗. By overspill this must be true also for some
standard c. But then formula

∨

A′

∆c(A
′)

where A′ ranges over L-structures on [n] satisfying Φ is a formula separating L-
structures on [n] satisfying Φ from those satisfying Ψ. Applying DeMorgan rules

this formula can be transformed into a depth 3 formula of bottom fan-in log(sn)
O(c)
.

As the number of different c spectra is log(sn)
O(c)
, the size of the formula is 2log(sn)

O(c)

.
This contradicts our assumption about n and the claim follows. ⊣

Fix a non-standard element c∗ and two L-structures A and B with universe [n]

obeying the claim. Also fix any non-standard element w < log(sn)
c∗
but satisfying

for all standard c:
log(sn)

c
< w .

Note that for all 1-types α it holds that rα(A) = rα(B) as long rα(A) < w or
rα(B) < w.
Let us enumerate the 1-types asα1, . . . , α2ℓ in such away that for some 1 ≤ i0 ≤ 2

ℓ

it holds
rαi (A) ≥ w iff i ≥ i0 .

By the remark above then also

rαi (B) ≥ w iff i ≥ i0

and
rαi (A) = rαi (B) , for i < i0 .

Let us simplify the notation and for a structureD denote rαi (D) simply ri(D).
We are going to define a chain ofL-structuresC1, . . . , CcL·n on [n]. Each structure
will be uniquely determined by a 2ℓ-tuple r1, . . . , r2ℓ ≥ 0 of numbers such that
∑

i ri = n as follows: Element a ∈ [n] has type αi iff

r1 + · · ·+ ri−1 < a ≤ r1 + · · ·+ ri .

We define first two auxiliary chain D1, . . . , Dp and E1, . . . , Eq in steps 0, . . . , 2ℓ . In
step 0 putD1 to be a permutation ofA so that the elements are ordered in accordance
of the orderingα1, . . . , α2ℓ of the 1-types, and likewise letE1 be a suitable reordering
of B.
For i = 1, . . . , 2ℓ we assume that chainsD1, . . . , Du and E1, . . . , Ev we defined in
steps prior to step i and that they satisfy:

rj(Du) = rj(Ev) , for all j < i.
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Consider three cases:

1. ri(Du) = ri (Ev): then neither chain is extended and we move to step i + 1 if
i < 2ℓ or stop if i = 2ℓ .

2. ri(Du) > ri(Ev): Extend the D-chain by structures Du+1, . . . , Du+t where
t = ri(Du)− ri(Ev), with Du+j being determined by the 2ℓ-tuple

r1(Du), . . . , ri−1(Du), ri (Du)− j, ri+1(Du) + j, ri+2(Du), . . . , r2ℓ (Du) .

Hence we will have ri(Du+t) = ri (Ev). Note that necessarily ri(Ev) ≥ w.
3. ri(Du)<ri(Ev): Dually to case 2. extend the E-chain by structures Ev+1,. . . ,
Ev+t where t = ri(Ev)− ri (Du), with Ev+j being determined by the 2ℓ -tuple

r1(Ev), . . . , ri−1(Ev), ri (Ev)− j, ri+1(Ev) + j, ri+2(Ev), . . . , r2ℓ (Ev) .

Hence we will again have ri (Du) = ri (Ev+t), and that necessarily ri(Du) ≥ w.

Assume that the final chains are

D1, . . . , Dp and E1, . . . , Eq .

Define the chain C1, . . . , CcL·n to be

A,D1, . . . , Dp, Eq , . . . , E1, B, B, . . . , B

with suitably many copies of B at the end. In the construction of the two chains
above new structures are added in step i only if the i-th type has at least w elements
in A and B. Each element gets moved in the worst case through all 1-types. Hence
we may certainly estimate that p + q ≤ 2ℓ · (n − w) and hence p + q + 2 < cL · n
too and the chain is well-defined. (We could have made this more economical and
construct a chain of length n rather than cL · n but at the expense of a much more
cumbersome definition of Ci andHi .)
Now we shall define a model of bounded arithmetic that we will extend shortly
to another one. Let I ⊆e N∗ be a cut in N∗ defined as

I := {u ∈ N∗ | u < 2log(sn)
k

for some standard k} .

Note that for every u ∈ I it holds in N∗:

u < 2w
1/k

, for all standard k .

Define M = (I,X ) to be the following two-sorted model of theory V 01 : Its first-
order part is the cut I and its second-order partX are all subsets of I coded inN∗.
In particular, the Fd -proof Π we started with as well as the chain of structures Ci
are in X . The structureM clearly satisfies V 01 .

Claim 2. There is X ∗ ⊇ X such that for M∗ = (I,X ∗) the following properties
hold :

1. M∗ is a model of V 01 .
2. There is f ∈ X ∗ such that in M∗ f is a bijection from [w + 1] onto [w]. In
particular, the bijective pigeonhole principle PHPw fails inM∗.

Proof. To prove the claim recall from above that every number u in I satisfies

u < 2w
1/k

, for all standard k .

We may abbreviate this as u < 2w
o(1)

.
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Hence the length of any set inX is 2w
o(1)

as well and, in particular, any Fd ′ -proof

in X (for any d ′) has size 2w
o(1)

too. By the exponential lower bound for constant
depth Frege proofs of PHP in [1, 16, 19] this implies thatX ∗ contains no constant
depth Frege proof of the bijective PHPw .
By the standard model-extension results this yields the existence X ∗ with the
required properties. See [11] for details. This proves the claim. ⊣

Working insideM∗ weare going to define (by a bounded formula) binary relations
Hi (x, y) that will be isomorphisms between Ci and Ci+1. For the first pair C1 = A
and C2 = D1 let H1 be the graph of an automorphism of A (definable in N∗,
hence in X ) reordering the elements of A as required in the construction of the
chain. Analogously, for the pair Ci = E1 and Ci+1 = B, let Hi be the graph of the
inverse of a suitable automorphism reordering B into E1. For the pair Ci = Dp
and Ci+1 = Eq let Hi be the graph of the indentity. Similarly for the pairs B,B in
the last segment of the chain Hi is the graph of the identity too.
For the remaining non-trivial case of a pairCi , Ci+1 from the subchainD1, . . . , E1
we proceed as follows. By the construction of the chain the two structures are given
by two 2ℓ-tuples differing only slightly. If Ci is given by

r1, . . . , rt−1, rt , rt+1, rt+2, . . . , r2ℓ

then Ci+1 is given by

r1, . . . , rt−1, rt + 1, rt+1 − 1, rt+2, . . . , r2ℓ

or by

r1, . . . , rt−1, rt − 1, rt+1 + 1, rt+2, . . . , r2ℓ .

We shall assume the former. Moreover, we know that both rt and rt+1 − 1 are at
least w.
Define Hi to be the graph of mapping hi : [n] → [n] defined as follows. For
bi := r1 + · · ·+ rt (definable from Ci and Ci+1) put:

1. hi(a) := a, if a ≤ bi − w or a > bi + w + 1,
2. hi(a) := bi + 1 + f(a − bi), if bi < a ≤ bi + w + 1,
3. hi(a) := bi − w + f(−1)(a + w − bi), if bi − w < a ≤ bi .

We are ready to complete the proof of the theorem. Assuming that no interpolat-
ing formulawith the parameters described in the theorem exists we have constructed
a model M∗ of V 01 in which the chain principle ChainL,Φ,Ψ(n, cL · n) fails, as wit-
nessed by the chain C1, . . . , CcL·n and relations Hi . Because theory V

0
1 proves

the soundness of all systems Fd , any standard d , there cannot be an Fd -proof of
〈ChainL,Φ,Ψ〉n,cL·n in X

∗. In particular, there is no such proof in X either. By the
definition ofX this means that inN∗ no Fd -proof of 〈ChainL,Φ,Ψ〉n,cL·n has size less
than sn (as sn ∈ I ).
This proves the theorem. ⊣

It would be interesting to avoid the use of thePHP lower bound for constant depth
Frege systems in the proof and to extend the theorem to the non-unary languages.
Both these advances are necessary should we hope to extend the chain interpo-
lation in some form to Frege systems. This is because Frege systems can count
and thus can count the isomorphism invariants rα(A). For the same reason F also
admits polynomial size proofs of PHP, cf. [6]. But at present I am not aware of
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an argument ruling out, for any L, a chain interpolation for Frege systems with
the interpolating property being definable by a subexponential circuit, dropping the
condition of constant depth. In fact, this can be proved for unary languages but
they do not define the interesting disjoint NP -pairs discussed in the introduction.
For extending the theorem to thenon-unary case observe thatd ′ fromProblem3.1
cannot be fixed anymore. The following example was pointed out by Neil Thapen;
it is a special case of a principle defined in [24]. Take a k-ary relation symbol
R(x1, . . . , xk) and define Φ to be ∃x1∀x2 . . . R(x1, . . . , xk), and Ψ := ¬Φ. Any
interpolating property thus defines Φ and the lower bound of [25, 9] implies that no

depth k − 1 circuit can have size 2n
o(1)

.
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