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Abstract. We shall discuss several situations in which it is possible to
extract from a proof, be it a proof in a first-order theory or a proposi-
tional proof, some feasible computational information about the theorem
being proved. This includes extracting feasible algorithms, deterministic
or interactive, for witnessing an existential quantifier, a uniform family
of short propositional proofs of instances of a universal quantifier, or a
feasible algorithm separating a pair of disjoint NP sets.

1 Universal theories

Let L be a language that has a function symbol corresponding to every poly-
nomial time algorithm, say as represented by clocked polynomial time Turing
machines. We shall assume that polynomial time relations are represented by
their characteristic functions and hence the only relation symbol is the equality,
which we regard as a logical symbol.

Every function symbol from L has a canonical interpretation on the set of
natural numbers N which we identify with the set of all binary words {0, 1}∗; the
resulting L-structure will be called the standard model. Let T be the universal
theory of the standard model.

Theory PV of Cook [7] can be thought of as a subtheory of T : its language
has a symbol for every polynomial time algorithm as they are built in Cobham’s
theorem [6] by repeated composition and limited recursion on notation, and its
axioms are universal statements codifying the equations defining this process
(see also [5, 8, 13]).

1.1 Witnessing existential formulas

Assume
T ⊢ ∃yA(x, y)

where A is an open formula. Herbrand’s theorem implies that there are terms
t1(x), . . . , tk(x) such that

T ⊢
∨

i

A(x, ti(x)) .
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As the class of polynomial time functions is closed under definitions by cases
distinguished by a polynomial time property, it follows that there is one term
t(x) such that

T ⊢ A(x, t(x)) .

In particular, the polynomial time algorithm defined by t(x) witnesses in the
standard model the validity of the sentence ∀x∃yA(x, y).

Consequences of this simple witnessing are various independence results (con-
ditioned upon complexity theoretic hypotheses). For example, let h be a one-way
permutation (cf. [1]). As h must be surjective the sentence

∀y∃x h(x) = y

is valid. But it is not provable in T as the witnessing algorithm would compute
the inverse function to h (which is supposed to be impossible).

Another example can be given by a hash function g that always outputs less
bits than the input has. Then there must be a collision pair of any length:

∀x∃y1, y2 [ y1 6= y2 ∧ |x| = |y1| = |y2| ∧ g(y1) = g(y2) ]

but this sentence cannot be provable in T as the witnessing algorithm would
find a collision pair (which is supposed to be hard).

For the final example let P be a propositional proof system in the sense of
Cook and Reckhow [9], i.e. a polynomial time function whose range is exactly
the set of propositional tautologies. Any π such that P (π) = τ is called a P -proof
of τ . The completeness of P can be stated as

∀x∃y [ Fla(x) → ( SatNeg(x, y) ∨ P (y) = x ) ]

where Fla(x) and SatNeg(x, y) are open L-formulas formalizing that x is a

propositional formula and that y is a truth assignment satisfying the negation

of x, respectively. Then unless P = NP this is unprovable in T as a witnessing
algorithm could be used to decide SAT.

1.2 Witnessing ∃2-formulas

Assume
T ⊢ ∃y∀zA(x, y, z)

where A is an open formula. Herbrand’s theorem implies (see [22, 13]) that there
are terms t1(x), t2(x, y1), . . . , tk(x, z1, . . . , zk−1) such that

T ⊢
∨

i

A(x, ti(x, z1, . . . , zi−1), zi) . (1)

This can be interpreted as an interactive algorithm witnessing the existential
quantifier in the following way (cf. [21]). The computation is performed by a
polynomial time Student and a Teacher of unlimited powers. Upon receiving an
input x the Student computes his first candidate witness y1 := t1(x) and sends



it to the Teacher. If indeed ∀zA(x, y1, z) holds she will acknowledge it and the
computation stops. Otherwise she will send to the Student a counter-example z1:
a string such that ¬A(x, y1, z1). The Student then computes the next candidate
witness y2 := t2(x, y1) and sends it to the Teacher, and so on.

The validity of the disjunction in (1) implies that the Student will find a valid
witness in at most k rounds. In order to guarantee that the total time of the
Student is polynomial in the length of x one needs to assume that the universal
quantifier is bounded: ∀z < s(x).

An interesting statement of this logical form is the following maximization
principle. Let R(x, y) be a polynomial time relation and assume

∀xR(x, 0) ∧ ∀x, y (R(x, y) → |y| ≤ |x|) .

The principle says that for any x there is a solution y of maximal size:

∀x∃y∀z [ R(x, y) ∧ (R(x, z) → |z| ≤ |y|) ] .

For example, the principle implies the existence of a maximal clique in a graph.
Kraj́ıček, Pudlák and Takeuti [22] proved that there are polynomial time rela-
tions R for which the principle is not provable in T unless NP ⊆ P/poly.

1.3 Universal formulas

Assume
T ⊢ A(x)

where A is an open formula. Herbrand’s theorem implies that there are finitely
many axioms ∀y1, . . . , yk B(y1, . . . , yk) of T and for each of them finitely many
k-tuples of terms t1(x), . . . , tk(x) such that A(x) is provable already from all
these finitely many instances

B(t1, . . . , tk) .

To avoid an excessive notation we shall assume that instances of only one axiom
∀yB(y) are used and that the open formula B(y) has only one free variable y.
Hence for some terms s1(x), . . . , sk(x)

B(s1) ∧ . . . ∧ B(sk) ⊢ A(x) . (2)

Formula A(x) defines a polynomial time predicate and hence is computable by a
(uniform) family of polynomial size circuits that we shall denote ||A(x)||n, and
similarly ||B(si(x))||n for the other formulas.

What we want to derive is a propositional implication
∧

i

||B(si(x))||n → ||A(x)||n . (3)

The qualification ’propositional’ is not quite true as we use circuits rather than
formulas. But one can either define a propositional calculus operating directly
with circuits (cf. [10]) or replace circuits by formulas written using auxiliary



variables used to define the circuit computations, as in the proof of the NP-
completeness of SAT.

Implication (3) need not to be, in fact, a tautology as in the first-order
derivation of (2) some equality axioms could have been used. Hence there is a
finite set E of instances of equality axioms by terms in x such that

∧

E∈E

||E||n ∧
∧

i

||B(si(x))||n → ||A(x)||n . (4)

Moreover, (4) is now valid as a propositional formula. This means that if we
interpret atomic formulas as propositional atoms then the implication is valid
under all truth assignments. Hence there is a template propositional derivation
(in any proof system containing at least resolution) and proofs of (4) for specific
n ≥ 1 are obtained by replacing in the whole template derivation propositional
atoms by translations || . . . ||n of the atomic formulas from (2) (and of the equality
axioms from E).

The interesting thing on which a correspondence between theories and propo-
sitional proof systems rests is that for a subtheory S of T whose set of axioms
is in NP one can define a proof system PS that admits p-bounded proofs of all
|| . . . ||n-translations of term instances of all axioms of S (and of all equality ax-
ioms), and hence also of all || . . . ||n-translations of the universal consequences of
S. Moreover, for natural S such a proof system is often defined quite naturally
as well. For example, for Cook’s PV [7] the corresponding proof system is the
Extended Frege system (or, equivalently) the Extended Resolution. See [18, 13]
for details.

2 Theories of bounded induction

Let us recall first the concept of NP search problems.

2.1 NP search problems

A NP search problem is determined by a polynomial time relation R(x, y) such
that it holds

∀x∃yR(x, y) ∧ ∀x, y (R(x, y) → |y| ≤ |x|O(1)) .

The task is: given x find a solution y such that R(x, y). Note that the solution
needs not to be unique, i.e. R is not necessarily a graph of a function.

The relative complexity of two NP search problems R(x, y) and S(u, v) can
be compared by a p-reduction. A p-reduction of R to S is a pair of polynomial
time functions f(x) and g(x, v) such that

S(f(x), v) → R(x, g(x, v)) .

The interpretation of the reduction is this: if we want to find a solution y for x
in R we take a solution v for f(x) in S and compute from it y := g(x, v).



There is a variety of classes of NP search problems that are p-equivalent
(mutually p-reducible), often characterized by a problem with a transparent
combinatorial meaning. A prominent example is the class PLS (polynomial local
search), cf.[4, 24]. It is given by a polynomial time relation S(x, y) defining the
set of possible solutions {y | S(x, y)} for x (we assume it contains 0 and the size
of any possible solution is polynomially bounded in |x|), an integer valued cost
function c(x, y) and a neighborhood function N(x, y) such that

S(x, y) → [ S(x, N(x, y)) ∧ c(x, N(x, y)) ≤ c(x, y) . ]

Both functions c(x, y) and N(x, y) are polynomial time. The task is to find a
locally optimal solution, i.e. a string y such that

S(x, y) ∧ c(x, N(x, y)) = c(x, y) .

2.2 NP induction

Extend T by adding as new axioms formulas expressing induction

[ B(0) ∧ ∀i < x (B(i) → B(i + 1)) ] → B(x) (5)

for all bounded existential formulas (the so called E1-formulas) of the form

B(x) := ∃y < s(x) C(x, y)

with C an open formula. Formula C can have other free variables (parameters).
Every E1-formula defines an NP predicate and vice versa, every NP predicate
can be defined by such a formula. We shall call this extension of T as NP−IND.

Assume
NP − IND ⊢ ∃yA(x, y) (6)

A open. The witnessing can be analyzed using the Herbrand’s theorem from
Subsection 1.2 although other methods are available (cf.[3, 13]). We shall explain
the idea on a special case for which the easier form of Herbrand’s theorem from
Subsection 1.1 suffices.

Assume that the formula in (6) is provable from T using just one induction
axiom up to t(x)

[ B(0) ∧ ∀i < t(x) (B(i) → B(i + 1)) ] → B(t(x))

for a formula B without any parameters (this is what allows us to use the
simpler version of Herbrand’s theorem). Assume also that C(0, 0) is valid, and
that C(x, y) implies y < s(x) to ease the notation. Then (using the deduction
lemma) T proves, in particular, the formula

[ (i < t(x) ∧ C(i, zi)) → ∃zi+1 C(i + 1, zi+1) ] ∨ ∃y A(x, y) . (7)

and
∀z¬C(t(x), z) ∨ ∃y A(x, y) . (8)



Using the witnessing from Subsection 1.1 to (7) we get a polynomial time al-
gorithm f(x, i, zi) that either finds a witness y for A(x, y) or a witness zi+1 for
C(i + 1, zi+1). Hence if we start from the triple (x, 0, 0) and iterate f we either
find suitable y or a witness z to C(t(x), z). But in the latter case we apply a
witnessing function for (8) to find y.

From this process we do not get a polynomial time witnessing algorithm.
But it shows that the NP search problem defined by A is p-reducible to a PLS
problem: interpret f as a neighborhood function and t(x) − i as a cost function
on a suitable set of possible solution (the triples above). See Buss and Kraj́ıček
[4] for details (and another proof).

2.3 NP length induction

One may extend T by a set of formulas expressing a weaker form of induction,
the so called length induction (after Buss [3]):

[ B(0) ∧ ∀i < |x| (B(i) → B(i + 1)) ] → B(|x|)

again for all E1-formulas, and denote the resulting theory NP − LIND.
By Kraj́ıček, Pudlák and Takeuti [22] the theory NP − LIND is stronger

than T unless NP ⊆ P/poly. On the other hand Buss [3] has proved that
NP − LIND is conservative over T w.r.t. existential formulas. Hence existen-
tial formulas provable in NP − LIND can be witnessed by polynomial time
algorithms.

2.4 Witnessing E2-formulas in NP-IND and NP-LIND

E2-formulas are formulas of the form ∃y < s(x)∀z < t(x, y) A(x, y, z). E2-
formulas provable in NP−IND can be witnessed by a polynomial time algorithm
with an access to an NP oracle (cf.[3]). If an E2-formula is proved using NP-
LIND only it can be witnessed by a polynomial time algorithm which queries an
NP oracle but only (O(log n) times (cf.[12]). It may be interesting to point out
that the predicates in this class (i.e. 0/1-functions) are precisely those decidable
in logarithmic space with an access to an NP oracle.

2.5 Induction for predicates in PH

Predicates in Polynomial Hierarchy (PH) are defined by bounded formulas (no
restriction on the quantifier complexity). Theory PH-IND augments T by adding
the induction axiom for all bounded formulas. By [3] the same theory would be
obtained if we added only PH-LIND: an IND axiom for a bounded formula
with k quantifiers can be deduced from a LIND axiom for a formula with k + 1
quantifiers.

Analysis of witnessing of existential formulas provable in PH-IND is done
using various classes of NP search problems. The original characterization of
[19] used NP search problems related to the soundness of fragments of quantified



propositional calculus. These characterizations have been greatly simplified and
their combinatorial structure has been made more transparent using NP search
problems defined in terms of games, cf. [26, 23, 27, 28].

3 Propositional proof systems

A proof system for propositional logic (see Subsection 1.1) is p-bounded if there
is a constant c ≥ 1 such that any tautology τ has a P -proof of size at most
|τ |c. Cook and Reckhow [9] noted that a p-bounded proof system exists iff NP
is closed under complementation. It is thus expected that no such proof system
exists and to prove this is the fundamental problem of proof complexity (cf. [15]).

Given a proof system P we would like to find an explicit infinite family of
tautologies whose P -proofs cannot be polynomially bounded (such tautologies
are called informally hard). For many proof systems explicit examples of hard
tautologies are known but all these proof systems are weaker than the usual
text-book propositional calculus based on a finite number of axioms schemes
and inference rules (a Frege system in the terminology of [9]).

It is a very interesting problem to find such hard tautologies for Frege systems
or even for stronger systems. In demonstrating the hardness of the formulas
one would not hesitate to use a plausible hypothesis from the computational
world, e.g. a hypothesis of the form that every circuit performing a specific task
must be large. Several other fundamental problems of complexity theory were
reduced to a hypothesis of this form. Examples include the conjectures that
the classes P and NP differ, that a universal derandomization is possible or
that a cryptographically strong pseudo-random generator exists (see [14] for a
discussion).

3.1 Feasible interpolation

Let αn(x, y) and βn(x, z) be size nO(1) propositional formulas having common
variables x = (x1, . . . , xn). Consider disjunctions

¬αn(x, y) ∨ ¬βn(x, z) . (9)

These disjunctions express the disjointness of sets

U :=
⋃

n

{x ∈ {0, 1}n | ∃yαn(x, y)}

and
V :=

⋃

n

{x ∈ {0, 1}n | ∃zβn(x, z)} .

These sets are in NP/poly and in NP if the formulas are defined uniformly in n.
The idea of feasible interpolation is that having short proofs of the disjunc-

tions (9) in a proof system P it ought to be possible to separate sets U and V by
some feasible algorithm. The intended use is in the opposite direction: having a



pair of disjoint NP sets hard to separate (such pairs are conjectured to exists in
cryptography) allows to define formulas (the disjunctions above) hard for P .

This lower bound method is quite successful and applies to the most varied
class of proof systems among all lower bound methods. Proof systems admitting
some form of feasible interpolation include resolution, cutting planes proof sys-
tem, algebraic and geometric proof systems, or the OBDD proof system. Most
recent references (as well as some history) can be found in [16, 25].

Feasible interpolation does not, however, work for strong proof systems. For
example, assume h(x) is a one-way permutation and b(x) is its hard bit (cf.
[1]). Assume in addition that there are polynomial size P -proofs of formulas
expressing that h is injective; using the notation from Subsection 1.3 the formulas
are

||x 6= y → h(x) 6= h(y)||n .

In such a case it is easy to see that the disjunctions expressing the disjointness
of sets

Ui := {y ∈ {0, 1}n | ∃x(h(x) = y ∧ b(x) = i}, for i = 0, 1

have short P -proofs as well. But an algorithm that would separate these sets
would at the same time compute the hard bit, and that is (conjectured to be)
impossible. This applies with h = RSA to Extended Frege systems by [20], and
there are similar constructions also for some weaker systems (cf.[2]).

3.2 Feasible disjunction property

A proof of feasible interpolation for a proof system P usually establishes a
stronger property: There exists an algorithm that upon receiving a P -proof of a
disjunction α ∨ β of two formulas in disjoint sets of variables finds a P -proof of
one of them.

Let us point out a property that can be assumed (for the purpose of proving
lengths-of-proofs lower bounds) to hold for all proof systems. Following [17] we
call it the feasible disjunction property (fdp).

A proof system P has fdp if there exists a constant c ≥ 1 such that whenever
a disjunction

α1 ∨ . . . ∨ αk (10)

of k formulas with no two having a variable in common has a P -proof of size s
then one of αi has a P -proof of size at most sc.

A simple observation is that a proof system P that does not have fdp cannot
be p-bounded. Assume for a simplicity that a P -proof of a formula is at least as
long as the formula. Then all formulas αi in (10) have size at most s, at least
one of them must be a tautology but it does not have p-bounded proofs.

The feasible disjunction property appeared in a connection with the so called
proof complexity generators. These are propositional tautologies of a certain
specific form and they are proposed as candidate hard formulas for strong proof
systems. The analysis of their hardness is quite related to various forms of wit-
nessing theorems as above. It is consistent with the present knowledge that



although feasible interpolation does not apply to strong proof systems, some of
its features can be salvaged even in strong systems for these specific formulas,
enough to deduce lengths-of-proofs lower bounds (see [17] for a background and
references).
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13. J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory, En-

cyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge University
Press, (1995).
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