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1 Circuit Complexity and the Polynomial-Time Hierarchy

We now show that although P/poly contains undecidable problems, it is unlikely to contain even
all of NP. This implies that circuits, despite having the advantage of being non-uniform, may not
be all that powerful.

Theorem 1.1 (Karp-Lipton). If NP ⊆ P/poly, then PH = ΣP
2 ∩ ΠP

2 .

The original paper by Karp and Lipton credits Sipser with sharpening the result.

Proof. Suppose to the contrary that NP ⊆ P/poly. We’ll show that this implies ΣP
2 = ΠP

2 . From
the collapsing Lemma from Lecture 9 this will prove the Theorem.

(For convenience we use the dual form vs. what we did in class. It avoids a negation at the inner
level.) Let A ∈ ΠP

2 . Therefore there exists a polynomial-time TM M and a polynomial p such that

x ∈ A⇔ ∀y1 ∈ {0, 1}p(|x|) ∃y2 ∈ {0, 1}p(|x|). (M(x, y1, y2) = 1).

The idea behind the proof is as follows. The inner predicate in this definition,

ϕ(x, y1) = 1⇔ ∃y2 ∈ {0, 1}p(|x|). (M(x, y1, y2) = 1),

is an NP predicate. NP ⊆ P/poly implies that there exists a circuit family {Cϕ} of size at most
q(|x| + |y1|) for some polynomial q computing this inner predicate. Given that |y1| is p(|x|), this
is q1(|x|) = q(|x| + |y1|) for some polynomial q1. We would like to simplify the definition of A
using this circuit family. by

x ∈ A⇔ ∃circuit [Cϕ] ∀y1 ∈ {0, 1}p(|x|). Cϕ correctly computes f(x, y1) and Cϕ(x, y) = 1.

This would putA in ΣP
2 , except that it is unclear how to efficiently verify that Cϕ actually computes

the correct inner relation corresponding to ϕ.

To handle this we modify the construction using the search-to-decision reduction for NP to say
that there is a polynomial-size multi-output circuit C ′ϕ that on input (x, y1) finds an assignment y2
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that makes M(x, y1, y2) = 1 if one exists. Let q′ be the polynomial bound on the encoding of the
circuit as a function of |x|.

(Technically, we need to create a modified version of ϕ suitable for this reduction where

ϕ′(x, y1, y
′
2, ) = 1⇔ ∃y′′2 ∈ {0, 1}p(|x|)−|y

′
2|. (M(x, y1, y

′
2, y
′′
2) = 1).

Here y′2 acts as a prefix of the assignment y2 in the earlier definition of ϕ. Note that we also have
ϕ′ ∈ NP. Therefore, using the assumption NP ⊆ P/poly, ϕ′ is computed by a polynomial size
circuit family Cϕ′ as before. The circuit to produce y2, if it exists, runs the circuit family Cϕ′ on
increasing lengths of y′2 beginning with |y′2| = 0 and ending with |y′2| = p(|x|). Since the input
size varies, we need to include circuits for all of the input sizes in our guessed circuit.)

Now observe that since ϕ(x, y1) = 1 iff there is a y2 ∈ {0, 1}p(|x|) such that M(x, y1, y2) = 1 we
have

x ∈ A⇔ ∃[C ′ϕ′ ]{0, 1}q
′(|x|)∀y1 ∈ {0, 1}p(|x|). (M(x, y1, C

′
ϕ(x, y1)) = 1).

SinceM is polynomial-time computable and C ′ϕ(x, y1) is polynomial-time computable given [C ′ϕ],
x, and y1 as inputs, this shows that A ∈ ΣP

2 .

This proves that ΠP
2 ⊆ ΣP

2 . This also implies that ΣP
2 = ΣP

2 ∩ ΠP
2 and that PH collapses to the

ΣP
2 ∩ ΠP

2 level, finishing the proof.

We now prove that even very low levels of the polynomial time hierarchy cannot be computed by
circuits of size nk for any fixed k. This result, unlike our previous Theorem, is unconditional; it
does not depend upon our belief that the polynomial hierarchy is unlikely to collapse.

Theorem 1.2 (Kannan). For all k, ΣP
2 ∩ ΠP

2 6⊆ SIZE(nk).

Proof. We know that SIZE(nk) ( SIZE(nk+1) by the circuit hierarchy theorem. To prove this
Theorem, we will give a problem in SIZE(nk+1) and ΣP

2 ∩ ΠP
2 that is not in SIZE(nk).

We first show that such a problem can be found in ΣP
4 and then use Karp-Lipton Theorem above

to say that it must be found at lower levels. The general idea of the argument is that we can use
quantifiers to say that a circuit C of a certain size is not equivalent to any circuit of at most some
smaller size:

∀circuits C ′. (size(C ′) ≤ nk) ∃input y. C(y) 6= C ′(y).

We know that such circuits of relatively small size exist but we need to settle on a fixed circuit C
and define a function based on it. To do this we use quantifiers to fix the lexicographically first
such circuit.

For each n, let Cn be the lexicographically first circuit on n inputs such that size(Cn) ≥ nk+1

and Cn is not equivalent to any circuit of size at most nk. (For lexicographic ordering on circuit
encodings, we’ll use the notation ≺.) Let {Cn}∞n=0 be the corresponding circuit family and let A
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be the language decided by this family. By our choice of Cn, A 6∈ SIZE(nk). Also, size(A) is at
most knk+1.

Claim: A ∈ ΣP
4 .

The proof of this claim involves characterizing the set A using a small number of quantifiers. By
definition, x ∈ A if and only if

∃[C] ∈ {0, 1}p(|x|) (size(C) ≥ |x|k+1 ∧ C(x) = 1∧
∀[C ′] ∈ {0, 1}p(|x|) [size(C ′) ≤ |x|k → ∃y ∈ {0, 1}|x|. C ′(y) 6= C(y)]∧
∀[D] ∈ {0, 1}p(|x|). ( ([D] ≺ [C]) ∧ (size(D) ≥ |x|k+1))→
∃[C ′′] ∈ {0, 1}p(|x|)([size(C ′′) ≤ |x|k) ∧ (∀y′ ∈ {0, 1}|x|. C ′′(y′) = D(y′)))

The second condition states that the circuit C is not equivalent to any circuit C ′ of size at most nk.
The third condition enforces the lexicographically-first requirement; i.e., if there is a lexicographically-
earlier circuit D of size at least |x|k+1, then D is equivalent to a circuit C ′′ of size at most |x|k.
These conditions uniquely identify C and x is in A iff C(x) = 1. When we convert this formula
into prenex form, all quantifiers, being in positive form, do not flip. This gives us that x ∈ A iff
∃[C]︸︷︷︸ ∀[C ′]∀[D]︸ ︷︷ ︸ ∃y ∃[C ′′]︸ ︷︷ ︸ ∀y′︸︷︷︸ . φ for a certain quantifier free polynomially decidable formula φ.

Hence A ∈ ΣP
4 .

This proves the claim and imples that ΣP
4 6⊆ SIZE(nk). We finish the proof of the Theorem by

analyzing two possible scenarios:

a. NP 6⊆ P/poly. In this simpler case, for some B ∈ NP ⊆ ΣP
2 ∩ΠP

2 , B 6∈ P/poly. This implies
that B 6∈ SIZE(nk) and proves, in particular, that ΣP

2 ∩ ΠP
2 6⊆ SIZE(nk).

b. NP ⊆ P/poly. In this case, by the Karp-Lipton Theorem, A ∈ ΣP
4 ⊆ PH = ΣP

2 ∩ΠP
2 because

the polynomial time hierarchy collapses, and we are done.

This finishes the proof of the Theorem.
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