CSE 531: Computational Complexity I

Winter 2016

Lecture 10: Circuit Complexity and the Polytime Hierarchy

Feb 8, 2016

Lecturer: Paul Beame

Scribe: Paul Beame

1 Circuit Complexity and the Polynomial-Time Hierarchy

We now show that although P/poly contains undecidable problems, it is unlikely to contain even all of NP. This implies that circuits, despite having the advantage of being non-uniform, may not be all that powerful.

Theorem 1.1 (Karp-Lipton). *If* NP \subseteq P/poly, *then* PH = $\Sigma_2^P \cap \Pi_2^P$.

The original paper by Karp and Lipton credits Sipser with sharpening the result.

Proof. Suppose to the contrary that NP \subseteq P/poly. We'll show that this implies $\Sigma_2^P = \Pi_2^P$. From the collapsing Lemma from Lecture 9 this will prove the Theorem.

(For convenience we use the dual form vs. what we did in class. It avoids a negation at the inner level.) Let $A \in \Pi_2^P$. Therefore there exists a polynomial-time TM M and a polynomial p such that

$$x \in A \Leftrightarrow \forall y_1 \in \{0,1\}^{p(|x|)} \exists y_2 \in \{0,1\}^{p(|x|)}. (M(x,y_1,y_2)=1)$$

The idea behind the proof is as follows. The inner predicate in this definition,

$$\varphi(x, y_1) = 1 \Leftrightarrow \exists y_2 \in \{0, 1\}^{p(|x|)}. (M(x, y_1, y_2) = 1),$$

is an NP predicate. NP \subseteq P/poly implies that there exists a circuit family $\{C_{\varphi}\}$ of size at most $q(|x| + |y_1|)$ for some polynomial q computing this inner predicate. Given that $|y_1|$ is p(|x|), this is $q_1(|x|) = q(|x| + |y_1|)$ for some polynomial q_1 . We would like to simplify the definition of A using this circuit family. by

$$x \in A \Leftrightarrow \exists \text{circuit } [C_{\varphi}] \forall y_1 \in \{0,1\}^{p(|x|)}. C_{\varphi} \text{ correctly computes } f(x,y_1) \text{ and } C_{\varphi}(x,y) = 1.$$

This would put A in Σ_2^{P} , except that it is unclear how to efficiently verify that C_{φ} actually computes the correct inner relation corresponding to φ .

To handle this we modify the construction using the search-to-decision reduction for NP to say that there is a polynomial-size multi-output circuit C'_{φ} that on input (x, y_1) finds an assignment y_2

that makes $M(x, y_1, y_2) = 1$ if one exists. Let q' be the polynomial bound on the encoding of the circuit as a function of |x|.

(Technically, we need to create a modified version of φ suitable for this reduction where

$$\varphi'(x, y_1, y'_2,) = 1 \Leftrightarrow \exists y''_2 \in \{0, 1\}^{p(|x|) - |y'_2|}. (M(x, y_1, y'_2, y''_2) = 1).$$

Here y'_2 acts as a prefix of the assignment y_2 in the earlier definition of φ . Note that we also have $\varphi' \in NP$. Therefore, using the assumption $NP \subseteq P/poly$, φ' is computed by a polynomial size circuit family $C_{\varphi'}$ as before. The circuit to produce y_2 , if it exists, runs the circuit family $C_{\varphi'}$ on increasing lengths of y'_2 beginning with $|y'_2| = 0$ and ending with $|y'_2| = p(|x|)$. Since the input size varies, we need to include circuits for all of the input sizes in our guessed circuit.)

Now observe that since $\varphi(x, y_1) = 1$ iff there is a $y_2 \in \{0, 1\}^{p(|x|)}$ such that $M(x, y_1, y_2) = 1$ we have

$$x \in A \Leftrightarrow \exists [C'_{\varphi'}] \{0,1\}^{q'(|x|)} \forall y_1 \in \{0,1\}^{p(|x|)}. (M(x,y_1,C'_{\varphi}(x,y_1))=1).$$

Since *M* is polynomial-time computable and $C'_{\varphi}(x, y_1)$ is polynomial-time computable given $[C'_{\varphi}]$, *x*, and y_1 as inputs, this shows that $A \in \Sigma_2^{\mathsf{P}}$.

This proves that $\Pi_2^P \subseteq \Sigma_2^P$. This also implies that $\Sigma_2^P = \Sigma_2^P \cap \Pi_2^P$ and that PH collapses to the $\Sigma_2^P \cap \Pi_2^P$ level, finishing the proof.

We now prove that even very low levels of the polynomial time hierarchy cannot be computed by circuits of size n^k for any fixed k. This result, unlike our previous Theorem, is *unconditional*; it does not depend upon our belief that the polynomial hierarchy is unlikely to collapse.

Theorem 1.2 (Kannan). *For all* k, $\Sigma_2^P \cap \Pi_2^P \not\subseteq \mathsf{SIZE}(n^k)$.

Proof. We know that $SIZE(n^k) \subseteq SIZE(n^{k+1})$ by the circuit hierarchy theorem. To prove this Theorem, we will give a problem in $SIZE(n^{k+1})$ and $\Sigma_2^P \cap \Pi_2^P$ that is not in $SIZE(n^k)$.

We first show that such a problem can be found in Σ_4^P and then use Karp-Lipton Theorem above to say that it must be found at lower levels. The general idea of the argument is that we can use quantifiers to say that a circuit C of a certain size is not equivalent to any circuit of at most some smaller size:

$$\forall \text{circuits } C'. \ (size(C') \le n^k) \exists \text{input } y. \ C(y) \ne C'(y).$$

We know that such circuits of relatively small size exist but we need to settle on a fixed circuit C and define a function based on it. To do this we use quantifiers to fix the lexicographically first such circuit.

For each n, let C_n be the lexicographically first circuit on n inputs such that $size(C_n) \ge n^{k+1}$ and C_n is not equivalent to any circuit of size at most n^k . (For lexicographic ordering on circuit encodings, we'll use the notation \prec .) Let $\{C_n\}_{n=0}^{\infty}$ be the corresponding circuit family and let A be the language decided by this family. By our choice of C_n , $A \notin SIZE(n^k)$. Also, size(A) is at most kn^{k+1} .

<u>Claim</u>: $A \in \Sigma_4^P$.

The proof of this claim involves characterizing the set A using a small number of quantifiers. By definition, $x \in A$ if and only if

$$\begin{split} \exists [C] \in \{0,1\}^{p(|x|)} & (size(C) \geq |x|^{k+1} \wedge C(x) = 1 \\ & \bigwedge \forall [C'] \in \{0,1\}^{p(|x|)} \ [size(C') \leq |x|^k \rightarrow \exists y \in \{0,1\}^{|x|}. \ C'(y) \neq C(y)] \\ & \bigwedge \forall [D] \in \{0,1\}^{p(|x|)}. \ (\ ([D] \prec [C]) \wedge (size(D) \geq |x|^{k+1})) \rightarrow \\ & \exists [C''] \in \{0,1\}^{p(|x|)} ([size(C'') \leq |x|^k) \wedge (\forall y' \in \{0,1\}^{|x|}. \ C''(y') = D(y'))) \end{split}$$

The second condition states that the circuit C is not equivalent to any circuit C' of size at most n^k . The third condition enforces the lexicographically-first requirement; *i.e.*, if there is a lexicographicallyearlier circuit D of size at least $|x|^{k+1}$, then D is equivalent to a circuit C'' of size at most $|x|^k$. These conditions uniquely identify C and x is in A iff C(x) = 1. When we convert this formula into prenex form, all quantifiers, being in positive form, do not flip. This gives us that $x \in A$ iff $\exists [C] \quad \forall [C'] \forall [D] \quad \exists y \exists [C''] \quad \forall y' \quad \phi$ for a certain quantifier free polynomially decidable formula ϕ . Hence $A \in \Sigma_4^P$.

This proves the claim and imples that $\Sigma_4^P \not\subseteq SIZE(n^k)$. We finish the proof of the Theorem by analyzing two possible scenarios:

- a. NP $\not\subseteq$ P/poly. In this simpler case, for some $B \in NP \subseteq \Sigma_2^P \cap \Pi_2^P$, $B \notin P/poly$. This implies that $B \notin SIZE(n^k)$ and proves, in particular, that $\Sigma_2^P \cap \Pi_2^P \nsubseteq SIZE(n^k)$.
- b. NP \subseteq P/poly. In this case, by the Karp-Lipton Theorem, $A \in \Sigma_4^P \subseteq PH = \Sigma_2^P \cap \Pi_2^P$ because the polynomial time hierarchy collapses, and we are done.

This finishes the proof of the Theorem.