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Abstra
t

We show that the feasible interpolation property is robust for some

proof systems but not for others.

Let A

1

; : : : ; A

m

� f0; 1g

n

. A semanti
 derivation, de�ned in [6℄, of

B � f0; 1g

n

from A

i

's is a sequen
e C

1

; : : : ; C

k

of subsets of f0; 1g

n

su
h

that C

k

= B and ea
h C

j

is either one of A

i

's or derived from some earlier

C

j

1

; C

j

2

, j

1

; j

2

< j by the semanti
 rule: E;F infer G i� G � E \ F .

Of 
ourse, B 
an be derived from A

i

's i� B �

T

i

A

i

, in whi
h 
ase m�1

steps suÆ
e. However, if we add a 
ondition that all C

j

's are from some


lass X � exp(f0; 1g

n

) (ta
itly assuming that A

i

's and B are in X ) then

this trivial derivation may not be possible anymore. We 
all derivations

restri
ted to X X -derivations.

Example 1: Let R � exp(f0; 1g

n

) be the 
lass of sets de�nable by a 
lause.

That is, every set in R is de�nable by a disjun
tion of literals. The R-

derivations are a semanti
 version of resolution.

Example 2: Let CP

M

� exp(f0; 1g

n

) be the 
lass of sets de�nable by an

integer linear inequality with all 
oeÆ
ients bounded in absolute value by

�
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M . This is a semanti
 version of 
utting planes proof system with bounded


oeÆ
ients.

1

Example 3: Let PC

d

� exp(f0; 1g

n

) be the 
lass of sets de�nable by a

polynomial of degree at most d over some �xed �nite prime �eld F

p

. This

is a semanti
 version of polynomial 
al
ulus.

The reason for introdu
tion of semanti
 derivations in [6℄ was that for

some proof systems (those suspe
table to an approa
h to feasible interpo-

lation via 
ommuni
ation 
omplexity) feasible interpolation 
an be derived

for the semanti
 version of the system (we use this term informally only).

In parti
ular, both R-derivations and CP

M

-derivations admit monotone fea-

sible interpolation (and hen
e also exponential lower bounds to the size of

proofs 
an be proved) and this 
an be extended to their various general-

izations, 
f. [7, 6, 8℄. Feasible interpolation, albeit not monotone, holds

also for PC

d

. This is be
ause one inferen
e using the semanti
 rule for PC

d


an be simulated in polynomial 
al
ulus of degree at most 2(p � 1)d (
f.

[3, Thm.2.6℄), and polynomial 
al
ulus admits feasible interpolation by [4℄.

However, the feasible interpolation for polynomial 
al
ulus does not 
ome

from properties of sets de�nable by low degree polynomials (su
h as the low


ommuni
ation 
omplexity in the sense of De�nition 2) but from a global

property of the proof system; namely, the set of polynomials derivable in a

�xed degree forms a ve
tor spa
e with parti
ular properties. We shall show

that the feasible interpolation is a robust property for X -derivations, if it

is proved via 
ommuni
ation 
omplexity method of [6℄. The quali�
ation

robust is formalized by the following notion.

De�nition 1 Let � � 0 be arbitrary and let X � exp(f0; 1g

n

) be a 
lass

of sets. An �-approximate X -derivation is a semanti
 derivation using sets

C � f0; 1g

n

su
h that there is D 2 X for whi
h jC4Dj � �2

n

(C4D is the

symmetri
 di�eren
e).

Let U , V be two NP sets of x's from f0; 1g

n

. We assume that U and V

are de�ned by 3CNF formulas � and � in variables x

1

; : : : ; x

n

and y

1

; : : : ; y

s

,

and x

1

; : : : ; x

n

and z

1

; : : : ; z

t

respe
tively. That is, x 2 U i� there is y su
h

that (x; y) satis�es �, and similarly for V , (x; z) and �.

To formulate the theorem and its proof we need to re
all a notion from

[6℄ related to this situation.

1

The restri
tion to bounded 
oeÆ
ients is just for 
onvenien
e, allowing as to talk

only about boolean 
ommuni
ation 
omplexity later on. The general 
ase 
an be treated

similarly using the real 
ommuni
ation 
omplexity, 
f. [8℄.
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De�nition 2 ([6, Def.4.3℄) Let A � f0; 1g

n+s+t

, and let u; v 2 f0; 1g

n

,

q

u

2 f0; 1g

s

and r

v

2 f0; 1g

t

. Consider three tasks:

1. De
ide whether (u; q

u

; r

v

) 2 A.

2. De
ide whether (v; q

u

; r

v

) 2 A.

3. If (u; q

u

; r

v

) 2 A 6� (v; q

u

; r

v

) 2 A �nd i � n su
h that u

i

6= v

i

.

These tasks 
an be solved by two players, one knowing u; q

u

and the other one

knowing v; r

v

. The 
ommuni
ation 
omplexity of A, CC(A), is the minimal

number of bits they need to ex
hange in the worst 
ase in solving any of

these three tasks.

Consider one task:

4. If (u; q

u

; r

v

) 2 A and (v; q

u

; r

v

) =2 A either �nd i � n su
h that u

i

=

1 ^ v

i

= 0, or learn that there is some u

0

satisfying u

0

� u (i.e. every

bit satis�es u

0

i

� u

i

) and (u

0

; q

u

; r

v

) =2 A.

(Note that the two players are not supposed to �nd su
h u

0

, and that the two


ases in 4. are not ne
essarily ex
lusive.)

The monotone 
ommuni
ation 
omplexity of A w.r.t. U , MCC

U

(A), is

the minimal t � CC(A) su
h that the task 4. 
an be solved 
ommuni
ating

at most t bits in the worst 
ase.

Now we 
an give an interpolation theorem for approximate derivations.

If the two NP sets U and V are disjoint, a proof of the disjointness is a

proof of simultaneous unsatis�ability of the two 3CNFs de�ning the sets. In

parti
ular, a semanti
 derivation of U \ V = ; is the derivation of ; from

the sets de�ned by the 3-
lauses of the two 3CNFs.

Theorem 3 Let � � 0 be arbitrary and let X � exp(f0; 1g

n+s+t

) be a 
lass

of sets. Assume that U and V are two disjoint NP subsets of f0; 1g

n

, and

that there is an �-approximate X -derivation of U \ V = ; with k steps.

1. Assume that CC(C) � t for any C 2 X . Then there exists a boolean


ir
uit D of size at most (k + 2n)2

O(t)

, and a set W � f0; 1g

n

su
h

that jW j � �k2

n

and su
h that D separates U nW and V nW .

2. Assume that U satis�es the following monotoni
ity 
ondition: if (u; q

u

)

satis�es � and u

0

� u then (u

0

; q

u

) satis�es �. Further assume that

MCC

U

(C) � t for all C 2 X . Then there is a monotone boolean

3




ir
uit D of size at most (k+n)2

O(t)

, and a set W � f0; 1g

n

su
h that

jW j � �k2

n

and su
h that D is 
onstantly 1 on U nW and is 
onstantly

0 on V nW .

Proof :

We shall assume that the reader is familiar with the argument in [6,

Se
.5℄ proving the feasible interpolation for semanti
 derivations, and we

only des
ribe where it needs to be appended.

Two players, one given u 2 U and the other one v 2 V , sear
h for bit

i su
h that u

i

6= v

i

. They use a derivation of U \ V = ; for this purpose,

building a path through the derivation from the end line (set ;) ba
k to one

of the initial sets, always progressing from the 
on
lusion of an inferen
e to

one of its two hypotheses. Every set A on the path should have the property

that (u; q

u

; r

v

) =2 A as well as (v; q

u

; r

v

) =2 A (this the players 
an de
ide

using CC(A) bits of 
ommuni
ation).

As none of the initial sets has this property, sooner or later the players

�nd A su
h that (u; q

u

; r

v

) 2 A 6� (v; q

u

; r

v

) 2 A, and they �nd i su
h that

u

i

6= v

i

using CC(A) bits (via 
lause 3. of De�nition 2). This strategy of the

players 
an be turned into a boolean 
ir
uit of size (k + 2n)

O(t)

separating

sets U and V , 
f. [6, Thm.2.3℄.

Assume now that the derivation is not an X -derivation but only �-

approximate X -derivation. For any set A in the derivation let A

�

be a


anoni
ally 
hosen set from X su
h that jA4A

�

j � �2

n

. Further assume

that ;

�

= ; and that A = A

�

for all initial sets. The players pro
eed as

before, but using sets A

�

in pla
e of A.

As long as both u, v are outside W :=

S

A

(A4A

�

), A runs over the k

sets in the derivation, the players will �nd A

�

su
h that (u; q

u

; r

v

) 2 A

�

6�

(v; q

u

; r

v

) 2 A

�

and 
onsequently a bit i with u

i

6= v

i

. Hen
e one gets a


ir
uit separating U nW from V nW .

The argument from [6, Se
.5℄ in the monotone 
ase 
an be modi�ed


ompletely analogously.

q.e.d.

The monotone version is 
onsidered be
ause there are exponential lower

bounds for monotone 
ir
uits separating the set of graphs with a k-
lique

from (k�1)-
olorable graphs (
f. [1℄), while lower bounds for general 
ir
uits

are known only under some unproven 
onje
tures.

The hypothesis about the monotone 
ommuni
ation 
omplexity of sets

in X is satis�ed for R and CP

M

(
f. [6℄) and hen
e the theorem applies to
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�-approximate versions of theses derivations. In parti
ular, one gets lower

bounds for su
h derivations. This is be
ause the exponential 
ir
uit lower

bound for monotone 
ir
uits separating the set of graphs with a 
lique of size

k := b

p

n
 + 1 from the set of graphs that are k-
olorable holds also if the


ir
uit is allowed small error (the argument as presented in [2℄ literally says

that no small monotone 
ir
uit 
an separate a lot of graphs from the �rst set

from a lot of graphs from the se
ond set). Hen
e, by an argument analogous

to the lower bound proof in [6, Se
.7℄, one gets the following proposition.

Corollary 4 Let U be the set of graphs on n verti
es having a 
lique of size

b

p

n
+ 1, and let V be the set of b

p

n
-
olorable graphs.

Assume that � � 2

n

(1=2�
(1))

. Then:

1. Every �-approximate R-derivation of U \ V = ; must have at least

2


(n

1=4

)

steps.

2. Every �-approximate CP

M

-derivation of U \ V = ; must have at least

2


(n

1=4

)

M

O(logn)

steps.

Proof :

If � � 2

n

(1=2�
(1))

and let W be a set of at most �2

(

n

2

)

graphs on n

verti
es, then

jUnW j

jU j

= jU j

(1�o(1))

and similarly for V . The argument in [2℄

then straightforwardly yields that every monotone 
ir
uit separating U nW

from V nW must have size at least 2


(n

1=4

)

.

The MCC of R-sets is O(log n) and of CP

M

-sets it is O(log(Mn) +

log(n) log(Mn)), by [6, Thms.6.1 and 6.4℄. Using this in Theorem 3 yields

upper bounds on the sizes of the separating 
ir
uits in terms of k, and


omparing these with the lower bound 2


(n

1=4

)

entails the lower bounds on

k.

q.e.d.

Feasible interpolation of polynomial 
al
ulus does not transfer to feasible

interpolation of approximate PC

d

-derivations. This 
an be seen as follows.

Let �

1

; : : : ; �

k

be any 
lauses that are unsatis�able, and let A

1

; : : : ; A

k

�

f0; 1g

n

be the sets de�ned by these 
lauses. So

T

i

A

i

= ;. Take the trivial

derivation: A

1

; A

1

\A

2

; : : : ; A

1

\: : :\A

k

. Ea
h of the k�1 sets in this deriva-

tions are de�nable by a depth two formula of small size (there are 2k � 1

di�erent subformulas other than literals in total). By the approximation

method of [10, 11℄ there are polynomials f

i

over any �nite prime �eld F

p

of

5



degree at most (p�1)

2

`

2

su
h that ea
h set V (f

i

) := fx 2 f0; 1g

n

j f

i

(x) = 0g

di�ers from A

1

\ : : :\A

i

in at most 2ke

�

`

p

2

n

points, with ` � 1 any param-

eter. In parti
ular, the trivial derivation is �-approximate PC

d

-derivation, if

� � 2ke

�

p

d

p(p�1)

.

A more general way of de�ning approximate derivations is as follows.

Let J � exp(f0; 1g

n

) be a non-empty 
lass of sets 
losed downwards, i.e.

D � C 2 J implies D 2 J . In parti
ular, ; 2 J . A J -approximate X

derivation 
an use sets C su
h that there is D 2 X for whi
h C4D 2 J .

In the �-approximate derivations one just takes for J sets of size at most

�2

n

. It would be interesting to know if for some J the J -approximate

PC

d

-derivations have super-polynomial speed-up over PC

d

-derivations but

still admit feasible interpolation. For example, if we take for J the sets

that 
an be in
luded in a degree d

0

hypersurfa
e, then the J -approximate

PC

d

-derivations admit feasible interpolation as they are in
luded in PC

dd

0

-

derivations (same argument as after Example 3).

If X -derivations admit non-monotone feasible interpolation only rather

than monotone, one gets at least a 
onditional lower bound for the number

of steps in the derivations of the disjointness of two sets based on RSA as

in [9℄. The 
ondition is then the 
onje
tured se
urity of RSA.
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