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Abstract

We show that the feasible interpolation property is robust for some
proof systems but not for others.

Let Aj,..., A, C {0,1}". A semantic derivation, defined in [6], of
B C {0,1}" from A;’s is a sequence C1,...,C} of subsets of {0,1}" such
that Cp = B and each Cj is either one of A;’s or derived from some earlier
Cj,,Cjyy J1,J2 < j by the semantic rule: E, F infer G if G D ENF.

Of course, B can be derived from A;’s iff B D [; A;, in which case m —1
steps suffice. However, if we add a condition that all C}’s are from some
class X C exp({0,1}") (tacitly assuming that A;’s and B are in X) then
this trivial derivation may not be possible anymore. We call derivations
restricted to X X-derivations.

Example 1: Let R C exp({0, 1}") be the class of sets definable by a clause.
That is, every set in R is definable by a disjunction of literals. The R-
derivations are a semantic version of resolution.

Example 2: Let CPy; C exp({0,1}") be the class of sets definable by an
integer linear inequality with all coefficients bounded in absolute value by
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M. This is a semantic version of cutting planes proof system with bounded
coefficients.!

Example 3: Let PCy C exp({0,1}") be the class of sets definable by a
polynomial of degree at most d over some fixed finite prime field F,,. This
is a semantic version of polynomial calculus.

The reason for introduction of semantic derivations in [6] was that for
some proof systems (those suspectable to an approach to feasible interpo-
lation via communication complexity) feasible interpolation can be derived
for the semantic version of the system (we use this term informally only).
In particular, both R-derivations and CPjs-derivations admit monotone fea-
sible interpolation (and hence also exponential lower bounds to the size of
proofs can be proved) and this can be extended to their various general-
izations, cf. [7, 6, 8]. Feasible interpolation, albeit not monotone, holds
also for PCy. This is because one inference using the semantic rule for PCy
can be simulated in polynomial calculus of degree at most 2(p — 1)d (cf.
[3, Thm.2.6]), and polynomial calculus admits feasible interpolation by [4].
However, the feasible interpolation for polynomial calculus does not come
from properties of sets definable by low degree polynomials (such as the low
communication complexity in the sense of Definition 2) but from a global
property of the proof system; namely, the set of polynomials derivable in a
fixed degree forms a vector space with particular properties. We shall show
that the feasible interpolation is a robust property for X-derivations, if it
is proved via communication complexity method of [6]. The qualification
robust is formalized by the following notion.

Definition 1 Let € > 0 be arbitrary and let X C exp({0,1}") be a class
of sets. An e-approximate X-derivation is a semantic derivation using sets
C C {0, 1}™ such that there is D € X for which |CAD| < e2™ (CAD is the
symmetric difference).

Let U, V be two NP sets of z’s from {0,1}". We assume that U and V'
are defined by 3CNF formulas « and 8 in variables x4, ...,z and y1, ..., ys,
and z1,...,x, and zq,...,z respectively. That is, T € U iff there is § such
that (Z,7) satisfies «, and similarly for V', (Z,Z) and .

To formulate the theorem and its proof we need to recall a notion from
[6] related to this situation.

!The restriction to bounded coefficients is just for convenience, allowing as to talk
only about boolean communication complexity later on. The general case can be treated
similarly using the real communication complexity, cf. [8].



Definition 2 ([6, Def.4.3]) Let A C {0,1}""% and let u,v € {0,1}",
q* €{0,1}* and r* € {0,1}*. Consider three tasks:

1. Decide whether (u,q"“,r") € A.
2. Decide whether (v,q",r") € A.
3. If (u,q",r") € A% (v,q",7r") € A find i <n such that u; # v;.

These tasks can be solved by two players, one knowing u, q" and the other one
knowing v,r". The communication complexity of A, CC(A), is the minimal
number of bits they need to exchange in the worst case in solving any of
these three tasks.

Consider one task:

4. If (u,q",r?) € A and (v,q",r") ¢ A either find i < n such that u; =
1 Awv; =0, or learn that there is some u' satisfying u' > u (i.e. every
bit satisfies u) > u;) and (u',q%,r") ¢ A.

(Note that the two players are not supposed to find such v', and that the two
cases in 4. are not necessarily exclusive.)

The monotone communication complezity of A w.r.t. U, MCCy(A), is
the minimal t > CC(A) such that the task 4. can be solved communicating
at most t bits in the worst case.

Now we can give an interpolation theorem for approximate derivations.
If the two NP sets U and V are disjoint, a proof of the disjointness is a
proof of simultaneous unsatisfiability of the two 3CNF's defining the sets. In
particular, a semantic derivation of U NV = () is the derivation of () from
the sets defined by the 3-clauses of the two 3CNF's.

Theorem 3 Let € > 0 be arbitrary and let X C exp({0,1}* 75T be a class
of sets. Assume that U and V are two disjoint NP subsets of {0,1}", and
that there is an e-approzimate X -derivation of UNV = () with k steps.

1. Assume that CC(C) < t for any C € X. Then there exists a boolean
circuit D of size at most (k + 2n)2°W and a set W C {0,1}" such
that |W| < €k2™ and such that D separates U\ W and V\ W.

2. Assume that U satisfies the following monotonicity condition: if (u,q")
satisfies o and u' > u then (u',q") satisfies a. Further assume that
MCCy(C) <t for all C € X. Then there is a monotone boolean



circuit D of size at most (k+n)2°®  and a set W C {0,1}" such that
|W| < €k2™ and such that D is constantly 1 on U\W and is constantly
0onV\W.

Proof :

We shall assume that the reader is familiar with the argument in [6,
Sec.5] proving the feasible interpolation for semantic derivations, and we
only describe where it needs to be appended.

Two players, one given v € U and the other one v € V, search for bit
1 such that u; # v;. They use a derivation of U NV = () for this purpose,
building a path through the derivation from the end line (set (}) back to one
of the initial sets, always progressing from the conclusion of an inference to
one of its two hypotheses. Every set A on the path should have the property
that (u,q",r") ¢ A as well as (v,q",r") ¢ A (this the players can decide
using CC(A) bits of communication).

As none of the initial sets has this property, sooner or later the players
find A such that (u,q", ") € A # (v,¢%,r¥) € A, and they find i such that
u; # v; using CC(A) bits (via clause 3. of Definition 2). This strategy of the
players can be turned into a boolean circuit of size (k + 2n)°®) separating
sets U and V, cf. [6, Thm.2.3].

Assume now that the derivation is not an X’-derivation but only e-
approximate X-derivation. For any set A in the derivation let A* be a
canonically chosen set from X such that |[AAA*| < €2". Further assume
that 0* = () and that A = A* for all initial sets. The players proceed as
before, but using sets A* in place of A.

As long as both u, v are outside W := [J4(AAA*), A runs over the k
sets in the derivation, the players will find A* such that (u,q¢",r?) € A* #
(v,q%, V) € A* and consequently a bit ¢ with u; # v;. Hence one gets a
circuit separating U \ W from V' \ W.

The argument from [6, Sec.5] in the monotone case can be modified
completely analogously.

q.e.d.

The monotone version is considered because there are exponential lower
bounds for monotone circuits separating the set of graphs with a k-clique
from (k—1)-colorable graphs (cf. [1]), while lower bounds for general circuits
are known only under some unproven conjectures.

The hypothesis about the monotone communication complexity of sets
in & is satisfied for R and CP)ys (cf. [6]) and hence the theorem applies to



e-approximate versions of theses derivations. In particular, one gets lower
bounds for such derivations. This is because the exponential circuit lower
bound for monotone circuits separating the set of graphs with a clique of size
k:= [v/n] + 1 from the set of graphs that are k-colorable holds also if the
circuit is allowed small error (the argument as presented in [2] literally says
that no small monotone circuit can separate a lot of graphs from the first set
from a lot of graphs from the second set). Hence, by an argument analogous
to the lower bound proof in [6, Sec.7], one gets the following proposition.

Corollary 4 Let U be the set of graphs on n vertices having a clique of size
|vn| +1, and let V' be the set of |\/n|-colorable graphs.

Assume that € < gnt/2 80 pp o

1. Every e-approzimate R-derivation of U NV = () must have at least
20(nt/%) steps.

2. Every e-approzimate CPyr-derivation of U NV = () must have at least

20(nl/4)
0Togn) steps.

Proof :

Ife< 9gn(272MW) L nd let W be a set of at most €2(2) graphs on n
vertices, then % = |U](1=°() and similarly for V. The argument in [2]
then straightforwardly yields that every monotone circuit separating U \ W
from V' \ W must have size at least 20(n'/")

The MCC of R-sets is O(logn) and of CPys-sets it is O(log(Mn) +
log(n)log(Mn)), by [6, Thms.6.1 and 6.4]. Using this in Theorem 3 yields
upper bounds on the sizes of the separating circuits in terms of k, and
comparing these with the lower bound 22(n'"") entails the lower bounds on
k.

q.e.d.

Feasible interpolation of polynomial calculus does not transfer to feasible
interpolation of approximate PC4-derivations. This can be seen as follows.
Let aq,...,a; be any clauses that are unsatisfiable, and let Aq,..., Ay C
{0,1}™ be the sets defined by these clauses. So (); A; = (. Take the trivial
derivation: Ay, A1NAs,...,A1N...NAg. Each of the k—1 sets in this deriva-
tions are definable by a depth two formula of small size (there are 2k — 1
different subformulas other than literals in total). By the approximation
method of [10, 11] there are polynomials f; over any finite prime field F, of



degree at most (p—1)2¢2 such that each set V (f;) := {z € {0,1}" | f:(%) = 0}
¢

differs from A; N...N A; in at most 2ke 72" points, with £ > 1 any param-

eter. In particular, the trivial derivation is e-approximate PCy-derivation, if

__Vd_
€ > 2ke r-1),

A more general way of defining approximate derivations is as follows.
Let J C exp({0,1}") be a non-empty class of sets closed downwards, i.e.
D C C € J implies D € J. In particular, ) € J. A J-approximate X
derivation can use sets C such that there is D € X for which CAD € J.
In the e-approximate derivations one just takes for J sets of size at most
€2". It would be interesting to know if for some J the J-approximate
PC4-derivations have super-polynomial speed-up over PCq4-derivations but
still admit feasible interpolation. For example, if we take for [J the sets
that can be included in a degree d’ hypersurface, then the J-approximate
PC4-derivations admit feasible interpolation as they are included in PCyg-
derivations (same argument as after Example 3).

If X-derivations admit non-monotone feasible interpolation only rather
than monotone, one gets at least a conditional lower bound for the number
of steps in the derivations of the disjointness of two sets based on RSA as
in [9]. The condition is then the conjectured security of RSA.
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