An Application of Boolean Complexity to Separation Problems in Bounded Arithmetic

Samuel R. Buss
Department of Mathematics
University of California, San Diego

Jan Krajíček
Mathematics Institute
Czechoslovakian Academy of Sciences, Prague

September 11, 1998

Abstract

We develop a method for establishing the independence of some $\Sigma^b_1(\alpha)$-formulas from $S^1_2(\alpha)$. In particular, we show that $T^1_2(\alpha)$ is not $\forall \Sigma^b_1(\alpha)$-conservative over $S^1_2(\alpha)$.

We characterize the Σ^b_1-definable functions of T^1_2 as being precisely the functions definable as projections of polynomial local search (PLS) problems.

Although it is still an open problem whether bounded arithmetic S^1_2 is finitely axiomatizable, considerable progress on this question has been made: S^i_{2+1} is $\forall \Sigma^b_{i+1}$-conservative over T^1_2 [3], but it is not $\forall \Sigma^b_{i+1}$-conservative unless $\Sigma^p_{i+2} = \Pi^p_{i+2}$ [10], and in addition, T^1_2 is not $\forall \Sigma^b_{i+1}$-conservative over S^1_2.

*Supported in part by NSF grants DMS-8902480 and INT-8914569. Part of this work performed while visiting the Czechoslovakian Academy of Sciences. Email address: sbuss@ucsd.edu.

†Supported in part by NSF grant INT-8914569. Part of this work performed while visiting the Univ. of Illinois, Champaign-Urbana. Email address: krajicek@csearn.bitnet.
unless $\text{LogSpace}^{n^2} = \Delta^p_{i+1}$ [8]. In particular, S_2 is not finitely axiomatizable provided that the polynomial time hierarchy does not collapse [10].

For the theory $S_2(\alpha)$ these results imply (with some additional arguments) absolute results: $S_2^{i+1}(\alpha)$ is $\forall \Sigma_{i+1}^p(\alpha)$-conservative but not $\forall \Sigma_{i+2}^p(\alpha)$-conservative over $T_2(\alpha)$, and $T_2(\alpha)$ is not $\forall \Sigma_{i+1}^p(\alpha)$-conservative over $S_2^{i}(\alpha)$. Here α represents a new uninterpreted predicate symbol adjoined to the language of arithmetic which may be used in induction formulas; from a computer science perspective, α represents an oracle.

In this paper we pursue this line of investigation further by showing that $T_2^i(\alpha)$ is also not $\forall \Sigma_{i+1}^p(\alpha)$-conservative over $S_2^{i}(\alpha)$. This was known for $i = 1, 2$ by [9, 17], see also [2], and our present proof uses a version of the pigeonhole principle similar to the arguments in [2, 9].

Perhaps more importantly, we formulate a general method (Theorem 2.6) which can be used to show the unprovability of other $\Sigma^b_{i}(\alpha)$-formulas from $S_2^{i}(\alpha)$. We demonstrate this by showing that an iteration principle, a $\Sigma^b_{i}(\alpha)$-formula, is also unprovable in $S_2^{i}(\alpha)$. This iteration principle is provable in $T_2^i(\alpha)$.

Our methods are analogous in spirit to the proof strategy of [8]: prove a witnessing theorem to show that provability of a $\Sigma_{i+1}^b(\alpha)$-formula A in $S_2^{i}(\alpha)$ implies that it is witnessed by a function of certain complexity and then employ techniques of boolean complexity to construct an oracle α such that the formula A cannot be witnessed by a function of the prescribed complexity. Our formula A shall be $\Sigma^b_{i}(\alpha)$ and thus we can use the original witnessing theorem of [2]. The boolean complexity used is the same as in [8], namely Hastad’s switching lemmas [6].

Johnson, Papadimitriou and Yannakakis [7] introduced a class of polynomial local search (PLS) problems. In the final section of this paper, we provide a characterization of the Σ^b_{i}-definable (multivalued) functions of T^1_2, by showing that for any PLS problem L, the existence of local optima for L can be expressed as a $\forall \Sigma^b_{i}$ formula provable in T^1_2, and conversely, by showing that every $\forall \Sigma^b_{i}$-formula provable in T^1_2 can be witnessed by a function which is a projection of a PLS problem.

We assume the reader is familiar with bounded arithmetic and with the basics of boolean complexity. A reference on boolean complexity is [6] and on bounded arithmetic is [2] or the broader survey in the monograph [5]. The boolean circuits used in this paper are always constructed with unbounded fanin AND’s and OR’s in alternating levels; NOT gates are not used, instead
input signals p may be negated (denoted \overline{p}).

1 Some Boolean Complexity

(1.1) For $k, m \geq 1$, $i \geq 0$ we shall consider the set $B_{k,i}(m)$ of m^{k+i} Boolean variables $p_{x_1,\ldots,x_k,y_1,\ldots,y_i}$, where $0 \leq x_1,\ldots,x_k, y_1,\ldots,y_i < m$. The set $B_{k,i}(m)$ is partitioned into m^{k+i-1} blocks $(B_{k,i}(m))_j$ of the form $(B_{k,i}(m))_j = \{p_{x_1,\ldots,x_k,y_1,\ldots,y_i,z} : z < m\}$; where j is the tuple $\langle x_1,\ldots,x_k,y_1,\ldots,y_{i-1}\rangle$. We shall henceforth use \bar{x} as an abbreviation for x_1,\ldots,x_k. Note that $B_{k,0}(m)$ is the set of variables $p_{\bar{x}}$ with $\bar{x} < m$.

(1.2) A restriction ρ is a partial truth evaluation of propositional variables, i.e., a partial map into $\{0, 1\}$. Instead of saying that $\rho(p)$ is undefined we shall write $\rho(p) = *$.

(1.3) $\Sigma_j^{S,t}$ is the class of depth $(j + 1)$ circuits with arbitrary variables, with top gate (level $j + 1$) OR and at most S gates in each of the levels $2, 3, \ldots, j + 1$, and with bottom gates (level 1) of arity at most t. Recall our convention that all circuits have unbounded fanin ANDs and ORs in alternating levels.

(1.4) $\mathbb{R}_{+_{k,i,m}}(q)$, $0 < q < 1$, is the probability space of restrictions ρ defined on $B_{k,i}(m)$ as follows: for any j and for any $p \in (B_{k,i}(m))_j$, $\rho(p) = s_j$ with probability q and $\rho(p) = 1$ with probability $1 - q$, where $s_j = *$ with probability q and $s_j = 0$ with probability $1 - q$.

The probability space $\mathbb{R}_{-_{k,i,m}}(q)$ is defined in the same way as $\mathbb{R}_{+_{k,i,m}}(q)$ except that the values 0 and 1 of ρ are interchanged.

(1.5) For $i \geq 1$, η_i is the map from $B_{k,i}(m)$ onto $B_{k,i-1}(m)$ defined by:

$$\eta_i(p_{\bar{x},y_1,\ldots,y_i}) = p_{\bar{x},y_1,\ldots,y_{i-1}}.$$
For ρ in $B_{k,i,m}^+(q)$, $g(\rho)$ is a restriction assigning value 1 to every variable \(p_{x_1,\ldots,y_{i-1},s} \) which was given * by ρ such that for some $s < t < m$, the variable \(p_{x_1,\ldots,y_{i-1},t} \) was also assigned * by ρ. Thus $g(\rho)$ changes all but one * in every block \((B_{k,i}(m))_j \) into 1 (if there were any *’s). If ρ is from $B_{k,i,m}^-(q)$, then the map $g(\rho)$ is defined identically using 0 instead of 1.

$\eta(\rho)$ is abbreviation for the composition of restrictions \(\gamma^i \) of ρ. The effect of the restriction $\eta(\rho)$ is, in each block of variables, to rename one (if any) *’ed variable $p_{x_1,\ldots,y_{i-1}}$ to $p_{x_1,\ldots,y_{i-1}}$. If there are multiple *’ed variables in a block then only one is renamed and the rest are mapped to 1 (respectively, 0).

(1.6) The next lemma is Hastad’s second switching lemma, see [6].

Lemma (Hastad) Let C be a S_{j+1} circuit with variables from $B_{k,i}(m)$, $i,j \geq 1$, and $0 < q < 1$. Assume that a restriction ρ is randomly chosen from $B_{k,i,m}^+(q)$ or $B_{k,i,m}^-(q)$. Then the probability that the function \((C \mid \rho) \mid \eta(\rho) \) is not computable by a S_j circuit with variables from $B_{k,i-1}(m)$ is at most $S \cdot (6qt)^i$.

The function $(C \mid \rho) \mid \eta(\rho)$ is defined in the obvious way: first partially evaluate and rename variables by ρ and η and then compute as C.

(1.7) Now we shall consider particular circuits $D_{i,m}^\ell(\vec{x})$ of depth i, one for every choice of $x_1,\ldots,x_k < m$. These circuits compute modified Sipser functions, see [6], and are defined by

\[
D_{i,m}^\ell(\vec{x}) = \text{AND} \quad \text{OR} \quad \cdots \quad Q_i^{i-1} \quad Q_i^0 \quad \cdots \quad Q_i^0 \quad \cdots \quad Q_i^{i-1} \quad \text{AND} \quad \text{OR} \quad \cdots
\]

where Q_i^{i-1} (resp. Q_i^0) is AND if i is even (resp. odd) and is OR otherwise. Our logarithms are always base 2. Note that for distinct tuples \vec{x}, the circuits $D_{i,m}^\ell(\vec{x})$ contain distinct propositional variables. The parameter ℓ is introduced for technical reasons and its value will be fixed in the proof of Lemma 1.8.
The next lemma is also due to Hastad [6]. As our parameters are slightly different from those in [6] we include a brief proof-sketch.

We say that circuit C contains circuit D if by renaming and/or erasing some variables we can transform C into D.

Lemma Let $\ell, m, i \geq 1$ and $x_1, \ldots, x_k < m$ and D be $D_{i,m}^{\ell}(\vec{x})$. Let $q = \left(\frac{2\ell \log(m)}{m}\right)^{1/2}$ and assume $q \leq 1/5$. For m sufficiently large, the following hold:

(a) Assume $i \geq 2$ and that a restriction ρ is randomly chosen from $\mathbb{R}^\pm_{k,i,m}(q)$ if i is odd or from $\mathbb{R}^-_{k,i,m}(q)$ if i is even. Then the probability that $(D \mid \rho) \mid \eta_i(\rho)$ does not contain $D_{i-1,m}^{\ell}(\vec{x})$ is at most $\frac{1}{3}m^{-\ell+i-1}$.

(b) Assume $i = 1$ and that a restriction ρ is randomly chosen from $\mathbb{R}^+_1(m, q)$. Then with probability at least $1 - \frac{1}{6}m^{-\ell+k}$ all m^k circuits $D_{1,m}^{\ell}(\vec{x})$, for every choice of $x_1, \ldots, x_k < m$, are collapsed by $|\rho| \mid \eta_1(\rho)$ to $*$ or 0, and with probability at least $1 - \frac{1}{6}m^{-\ell+k}$, at least $((\ell - 1) \log(m))^{1/2}m^{k-\ell/2}$ symbols are assigned.

Proof (Sketch, see [6]): (a) assume that $i \geq 2$ is odd and ρ is chosen randomly from $\mathbb{R}^+_1(m, q)$ (the case of i even is analogous). Then a depth 2 subcircuit of D is an OR of m ANDs each of them of size $\left(\frac{2\ell m \log(m)}{m}\right)^{1/2}$:

$$\text{OR}_{y_{1} \leq \ldots \leq y_{i}} \text{AND}_{y_{i} < \left(\frac{2\ell m \log(m)}{m}\right)^{1/2}} p_{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{i}}.$$

Each AND corresponds to one class $(B_{k,i}(m))_{j}$ of the decomposition of $B_{k,i}(m)$. An AND gate takes value s_j with probability at least

$$1 - (1 - q)^{\left(\frac{2\ell m \log(m)}{m}\right)^{1/2}} = 1 - \left(1 - \left(\frac{2\ell \log(m)}{m}\right)^{1/2}\right)^{\left(\frac{2\ell m \log(m)}{m}\right)^{1/2}} > 1 - e^{-\ell \log(m)} > 1 - \frac{1}{6}m^{-\ell},$$

for m sufficiently large. Thus with probability at least $1 - \frac{1}{6}m^{-\ell+i-1}$ this is true of all m^{i-1} ANDs on level 1.

For each depth two subcircuit (OR of ANDs), the expected number of ANDs for which the value of s_j is equal to $*$ instead of 0 is:
\(m \cdot q = (2\ell m \log(m))^{1/2} \), and, in fact, there are at least \((\ell - 1) m \log(m) \) \(\frac{1}{2} \)’s among \(s_j \)’s with probability at least \(1 - \frac{1}{\sqrt{q}} m^{-\ell} \). This is seen by the following argument:

Let \(r_u \) be the probability that exactly \(u \) of the \(s_j \)’s corresponding to ANDs of the OR gate, are equal to \(\ast \). Then

\[
 r_u = \left(\frac{m}{u} \right) \left(\frac{2\ell \log(m)}{m} \right)^{u/2} \left(1 - \left(\frac{2\ell \log(m)}{m} \right)^{1/2} \right)^{m-u} .
\]

For \(u \leq (\ell m \log(m))^{1/2} \) it holds that \(r_u/r_{u-1} \geq \sqrt{2} \) and, as \(r_{(\ell m \log(m))^{1/2}} < 1 \), we get the estimate:

\[
 \sum_{u=0}^{(\ell m \log(m))^{1/2}} r_u \leq 4 \cdot r_{(\ell m \log(m))^{1/2}} \sum_{u=0}^{\infty} 2^{-u/2} \leq 4 \left(\frac{\sqrt{2}}{1-2^{-1/2}} \right)^{(1-2^{-1/2}) (\ell m \log(m))^{1/2}} \cdot r_{(\ell m \log(m))^{1/2}} \leq \frac{1}{6} m^{-\ell},
\]

for \(m \) sufficiently large. (The next-to-last inequality used \(m \geq 49\ell \log m \) which follows from \(q \leq 1/5 \).)

As there are \(m^{i-2} \) ORs on level 2 at \(D \), the probability that every such OR gets assigned at least \(\left(\frac{1}{4} (\ell - 1) m \log(m) \right)^{1/2} \)’s is at least \(1 - \frac{1}{6} m^{-\ell+i-2} \). This proves part (a). Part (b) is proved completely analogously.

Q.E.D. Lemma 1.8

\[2 \quad \text{Oracle computations of witnessing functions} \]

(2.1) A polynomial time oracle machine \(M \) is a Turing machine running in polynomial time and querying an oracle; for different oracles the machine may compute different functions. Thus we think of the machine as described independently of a specific oracle.
A \(\Sigma^f_i\)-oracle machine is a pair \((M, B(x))\), where \(B(x)\) is a \(\Sigma^f_i\)-formula and \(M\) is a polynomial-time oracle machine. For the rest of this section, \(\alpha\) is a \((k + i)\)-ary predicate symbol.

For a particular predicate \(\alpha \subseteq \mathbb{N}^{k+i}\), \(B(x)\) defines a subset of \(\mathbb{N}\), i.e., an oracle, and \((M, B(x))\) computes a particular function. We shall denote by \(M^\alpha\) machine \(M\) with the oracle \(B(x)\).

A circuit oracle is a function \(C\) assigning to each \(u \in \mathbb{N}\) a boolean circuit \(C_u\) with variables from some \(B_{k,i}(m)\), \(m = m(u)\) being a function of \(u\) and \(k, i\) fixed. For a particular \(\alpha \subseteq \mathbb{N}^{k+i}\), the circuit oracle \(C\) defines a subset \(C^\alpha\) of \(\mathbb{N}\) of those \(u\) for which \(C_u\) computes 1 when propositional variables are assigned truth values according to:

\[
p_{x_1, \ldots, x_k, y_1, \ldots, y_i} = 1 \quad \text{iff} \quad (x_1, \ldots, x_k, y_1, \ldots, y_i) \in \alpha.
\]

For \(M\) an oracle Turing machine and \(\alpha \subseteq \mathbb{N}^{k+i}\), we let \(M^\alpha\) denote the machine \(M\) using the oracle \(C^\alpha\). The context will always distinguish between the two definitions (2.2) and (2.3) of \(M^\alpha\).

For \(S, t\) and \(m\) functions of \(u\), a circuit oracle is called \(\Sigma^S_j^{S, t}\)-circuit oracle with variables from \(B_{k,i}(m)\) if \(C_u\) is a \(\Sigma^S_j^{S(u), t(u)}\)-circuit with variables from \(B_{k,i}(m(u))\) for all \(u\).

There is a close correspondence between the \(\Sigma^f_i\)-oracles and \(\Sigma^S_i^{S, t}\)-circuit oracles with variables from \(B_{k,i}(m)\), with \(S = 2^{(\log m)^c}\), \(t = \log S\) and \(m = 2^{(\log m)^c}\) (see [4]). Namely, if \((M, B(x))\) is as in (2.2), then the oracle \(B(x)\) is equivalent to a family of \(\Sigma^S_i^{S, t}\) circuits \(C_u\) with variables from \(B_{k,i}(m)\), with \(S, t, m\) bounded as above for some constant \(c\) depending on the runtimes of \(M\) and \(B\). As \(B(x) \in \Sigma^f_i\), \(B(x)\) may be computed by making \(i\) blocks of existential/universal guesses and then running for polynomial time. Hence, for each \(u\), a \(\Sigma^S_i^{S, t}\) circuit \(C_u\) with variables from \(B_{k,i}(m)\) (\(m = 2^{(\log m)^{O(1)}}\)) may be constructed that computes \(B(u)\) by letting \(i\) levels of OR’s and AND’s in \(C_u\) correspond to blocks of existential and universal guesses, respectively, and at the bottom of the circuit, expressing a polynomial time execution of \(B\) (performed after all nondeterministic choices are finished), as either an OR of AND’s of fanin \(\leq t\) or an AND of OR’s of fanin \(\leq t\) (if \(i\) is odd or even, respectively). Merging adjacent OR’s (respectively, AND’s) in the second
and third levels from the bottom of the circuit, makes C_u have depth $i + 1$ as desired.

Thus any $\Sigma^b_i(\alpha)$-oracle may be viewed as a Σ^S_{i+1}-circuit oracle with variables from $B_i(:m)$ and S_i, t, m bounded in terms of u as above. The converse is not true; however, any such Σ^S_{i+1}-circuit oracle may nonetheless be viewed as analogous to a non-uniform $\Sigma^b_i(\alpha)$-oracle.

(2.4) Fix m; let $[m]$ denote the set $\{0, 1, \ldots, m - 1\}$. A $(k-u)$-dimensional cylinder in $[m]^k$ is any set of the form:

$$\{(x_1, \ldots, x_k) \in [m]^k; x_i = a_1, \ldots, x_u = a_u\}$$

for any fixed values $i_1 < \ldots < i_u$ and $a_1, \ldots, a_u < m$. There are $\binom{k}{r} m^{k-r}$ many r-dimensional cylinders in $[m]^k$.

(2.5) For a $k + i$-ary predicate, denote by $A^{i,\alpha}(a, x_1, \ldots, x_k)$ the $\Pi^b_i(\alpha)$-formula:

$$\forall y_1 < a \exists y_2 < a \cdots Q y_{i-1} < a Q'y_i \left(\frac{1}{2} \ell a \log a \right)^{1/2} \alpha(x_1, \ldots, x_k, y_1, \ldots, y_i).$$

Thus $A^{i,\alpha}$ has $(k + 1)$ free variables. The parameter ℓ relates to ℓ in (1.7) and its value will be fixed later.

Let $\beta(x_1, \ldots, x_k)$ be a k-ary predicate symbol and let $B(a, \beta)$ be a bounded formula containing β in which a is the only free variable, in which every quantifier is bounded by a, which contains no function symbols, and in which every occurrence of β has k bound variables as arguments. Obviously, $B(a, \beta)$ depends only on the values of $\beta(a_1, \ldots, a_k)$ where $a_1, \ldots, a_k < a$.

Define $B(a, A^{i,\alpha})$ to be the $\Sigma^b_{\infty}(\alpha)$-formula obtained from $B(a, \beta)$ by replacing all occurrences of $\beta(x_1, \ldots, x_k)$ by $A^{i,\alpha}(a, x_1, \ldots, x_k)$.

We shall assume B begins with an existential quantifier, so B is $\exists x < a D$. A witness for $B(a, \ldots)$ is a value for z such that $D(a, z, \ldots)$ holds. We shall see examples of such formulas in the next section.

(2.6) The next theorem is the main technical result of this paper.
Theorem Assume $i, k \geq 1$ and that a, $A^i\alpha$ and $B(a, \beta)$ are as in (2.5). Assume also that M is a polynomial time oracle machine with a $\Sigma^b_{i+1}(\alpha)$-oracle, such that for every $\alpha \subseteq \mathbb{N}^k \times \mathbb{N}$ the machine M^α computes from input a some witness to formula $B(a, A^i\alpha)$.

Then there is a constant $c \geq 1$ such that for m sufficiently large there is a $Q \subseteq \mathbb{N}^k$ and a Σ^b_{i+1}-circuit oracle C^1 with variables from $B_{k,0}(m)$ so that the following conditions hold:

(i) for all u, $m(u) = m$, $S(u) = 2^{(\log m)^c}$ and $t(u) = \log S = (\log m)^c$,

(ii) for every r-dimensional cylinder U in $[m]^k$, $r = 1, \ldots, k$,

$$|U \setminus Q| \geq m^{r-1/2}$$

(iii) for every $a^0 \subseteq \mathbb{N}^k$ s.t. $a^0 \cap Q = \emptyset$, machine M^a computes on input m a witness to formula $B(m, a^0)$.

Note that for any given m, $S(u), t(u)$, and $m(u)$ are constants independent of u and that the variables of the Σ^b_{i+1}-circuit oracle are of the form p_{x_1, \ldots, x_k}, with $x_1, \ldots, x_k < m$, and thus M^a is correctly defined for any $a^0 \subseteq \mathbb{N}^k$.

To better understand Theorem 2.6, first consider a converse of it: if N is a Turing machine which, given an input m and given a Σ^b_{i+1}-circuit oracle C involving variables p_x, always outputs a witness for $B(m, a^0)$, then the same Turing machine N can find a witness for $B(m, A^i\alpha)$ when given m as input and given a Σ^b_{i+1}-circuit oracle C' with variables from $B_{k,i}(m)$. This converse is easily proved if C' is defined from C by replacing variables p_x by Π^b_{i+1} subcircuits for $A^i\alpha$ (with variables from $B_{k,i}(m)$) — note that in C, variables p_x give the truth values of $a^0(x)$, while in C', variables p_x, y_1, \ldots, y_l give truth values of $a(x, y_1, \ldots, y_l)$.

Since a $\Sigma^b_{i+1}(\alpha)$-oracle can be translated into a Σ^b_{i+1}-circuit oracle with variables from $B_{k,i}(m)$, Theorem 2.6 essentially states that the converse can be partially reversed, at least for a^0’s that avoid the set Q. The set Q is small in the sense that, in any cylinder, at least a fraction $1/\sqrt{m}$ of the k-tuples from the cylinder are not in Q (and hence may be a^0).

Another way to think about Theorem 2.6 is as follows: Suppose there is a machine M that finds witnesses for $B(a, A^i\alpha)$ with a $\Sigma^b_{i+1}(\alpha)$-oracle. Since $A^i\alpha$ is a Π^b_i-formula, M has the power to ask existential questions involving $A^i\alpha$. The point of Theorem 2.6 is that M does not have very much more
power; namely, if M asks instead $\Sigma_{i+1}^{S_1}$-circuit oracle queries about β, then M can find a witness for $B(a, \beta)$ for many β’s (the ones that avoid Q).

Proof of the theorem: The proof consists of several steps, employing heavily the lemmas from section 1.

1. Choose m sufficiently large so that Lemma 1.8 holds and fix $a = m$. Let $\ell \geq i + 2k$.

2. For technical reasons (Lemma 1.8), we forbid into a any members $(x_1, \ldots, x_k, y_1, \ldots, y_i)$ with $x_1, \ldots, x_k, y_1, \ldots, y_i - 1 \geq m$ or with $y_i \geq (\frac{1}{2}m\log(m))^{1/2}$; this can be done without loss of generality because of the form of the bounded quantifiers in B and in $A^i\alpha$.

Clearly the truth value of $A^i\alpha(a, x_1, \ldots, x_k)$ is computed by the circuit $D_{\ell, m}^i(x_1, \ldots, x_k)$ under the evaluation of variables:

\[p_{x_1, \ldots, x_k, y_1, \ldots, y_i} = 1 \iff (x_1, \ldots, x_k, y_1, \ldots, y_i) \in \alpha. \]

3. Let $E(x)$ be the $\Sigma_{i+1}^b(a)$-oracle of the oracle machine. Since the machine M is polynomial time, any number u occurring in the computation is bounded by $2^{O(1)}$. For any $u < 2^{O(1)}$, the truth value of $E(u)$ is computed by a $\Sigma_{i+1}^{S_1}$-circuit C_u with variables from $B_{k,i}(m)$, where $S \leq 2^{O(1)}$ and $t = \log(S)$, for c large enough.

Thus we henceforth think of M as being a $\Sigma_{i+1}^{S_1}$-circuit-oracle (with variables from $B_{k,i}(m)$) machine with S, t, m constants.

4. Let ρ_j be randomly chosen restrictions from $\mathbb{R}_{k,j,m}^\epsilon(q_j)$, for $j = i, i - 1, \ldots, 1$, where ϵ_j is if j is odd and if j is even, and $q_j = \left(\frac{2^{(i-j)\log(m)}}{m}\right)^{1/2}$.

We are interested in what the effect of the composed restriction

\[\kappa = \rho_1 \mid \eta_1(\rho_1) \mid \rho_{i-1} \mid \eta_{i-1}(\rho_{i-1}) \mid \ldots \mid \rho_1 \mid \eta_1(\rho_1) \]

is on the circuits C_u and $D_{i,m}^\ell(x_1, \ldots, x_k)$

5. By (1.8), any circuit $D_{j,m}^{\epsilon_j-i}(x_1, \ldots, x_k)$ contains, after being restricted by $\rho_j \mid \eta_j(\rho_j)$, the circuit $D_{j-1,m}^{\epsilon_j-i-1}(x_1, \ldots, x_k)$ with probability at least $1 - \frac{1}{4}m^{-i-1}$, and thus this is true for all m^k circuits $D_{j,m}^{\epsilon_j-i}(x_1, \ldots, x_k)$
obtained by considering all values of $x_1, \ldots, x_k < m$, with probability at least
\[1 - \frac{1}{3} m^{-\ell+k+i-1}. \]

6. Applying successively the restrictions $\rho_j \mid \eta_j(\rho_j)$, with $j = i, \ldots, 2$, to $D^\ell_{i,m}(x_1, \ldots, x_k)$, transforms the circuit into
\[(D^\ell_{i,m}(x_1, \ldots, x_k)) \mid \rho_i \mid \eta_i(\rho_i) \mid \ldots \mid \rho_2 \mid \eta_2(\rho_2), \]
and therefore, by the preceding paragraph, with probability at least
\[1 - \frac{1}{3}(i-1)m^{-\ell+k+i-1} \]
each of these m^k circuits contains the circuit $D^{\ell-i+1}_{1,m}(x_1, \ldots, x_k)$.

7. To establish condition (ii) of the theorem, we have to be more careful in assessing what happens to $D^{\ell-i+1}_{1,m}(x_1, \ldots, x_k)$ after being restricted by the randomly chosen $\mid \rho_1 \mid \eta_1(\rho_1)$.
Let U be any r-dimensional cylinder; $r \geq 1$. Then analogously to part (b) of Lemma 1.8 and by reasoning similar to the proof of Lemma 1.8(a), with probability at least
\[1 - \frac{1}{6} m^{-(\ell+i-1+r)}, \]
there are at least
\[m^r \left(\frac{(\ell-i) \log(m)}{m} \right)^{1/2} \geq m^{r-1/2} \]
many $*$'s assigned to the m^r many circuits corresponding to $(x_1, \ldots, x_k) \in U$. At the same time, with probability at least
\[1 - \frac{1}{6} m^{-\ell+i-1+r} \]
one of these circuits collapses to 1. Summing up, with probability at least
\[1 - \frac{1}{3} m^{-\ell+i-1+r}, \]
all \(m^r \) circuits corresponding to \((x_1, \ldots, x_k) \in U\) collapse to either * (i.e. to \(p_{x_1, \ldots, x_k}\)) or to 0, with at most \(m - m^{r-1/2} \) collapsing to 0.

Counting over all cylinders of dimension \(\geq 1\), the above holds for all such cylinders \(U \) with probability at least

\[
1 - \sum_{r=1}^{k} \left(\frac{1}{3} m^{-\ell+i-1+r} m^{k-r} \binom{k}{r} \right) = 1 - \frac{1}{3} m^{-\ell+i-1+k} \sum_{r=1}^{k} \binom{k}{r} \geq 1 - \frac{1}{3} m^{-\ell+i-1+k} 2^k \geq 1 - \frac{1}{3} m^{-\ell+i-1+2k}.
\]

8. Now we turn our attention to what effect \(\kappa \) has on the oracle circuits \(C_u \).

By Lemma 1.6, any \(\Sigma_{j+1}^{S,t} \) circuit with variables from \(B_{k,j}(m) \) is transformed by the restriction \(\rho_j \mid \eta_j(\rho_j) \) into a \(\Sigma_j^{S,t} \)-circuit with variables from \(B_{k,j-1}(m) \) with probability at least

\[
1 - S(6q_it)^t.
\]

Therefore with probability at least

\[
1 - S(6t)^t \left(\sum_{j \equiv i \left(q_j \right)} \right) \geq 1 - S(6t)^t \cdot (q_i)^t
\]

(since \(q_i \geq q_{i-1} \geq \ldots \geq q_1 \)), a \(\Sigma_{i+1}^{S,t} \) circuit \(C_u \) with variables from \(B_{k,i}(m) \) is transformed by \(\kappa \) into a \(\Sigma_i^{S,t} \)-circuit \(C_u^1 \) with variables from \(B_{k,0}(m) \). It follows that with probability at least

\[
1 - S^2 \cdot i \cdot (6q_it)^t
\]

\(C_u^1 = C_u \upharpoonright \kappa \) is a \(\Sigma_1^{S,t} \)-circuit, for all \(u < S \). In other words, every circuit oracle that \(M \) may query collapses to a \(\Sigma_1^{S,t} \) with this probability. It is easy to compute that for \(m \) large enough (w.r.t. \(\ell \) and \(c \)):

\[
1 - S^2 \cdot i \cdot (6q_it)^t \geq 1 - 2^{-\frac{1}{2} \log(m)}^{\epsilon + \epsilon}.
\]
9. By 6. and 7., κ collapses every $D'_{i,m}(x_1,\ldots,x_k)$ into p_{x_1,\ldots,x_k} or 0, with “cylinder property” of 7. satisfied, with probability at least

$$1 - \frac{1}{3}(i-1)m^{-\ell+i-1} - \frac{1}{3} m^{-\ell+i-1+2k} \geq 1 - \frac{i}{3} m^{-\ell+i-1+2k}.$$

By 8., with probability at least

$$1 - 2^{-\frac{3}{8}\log(m)^{\epsilon+1}},$$

every $C'_u = C_u \upharpoonright \kappa$ is a $\Sigma_1^{S,t}$-circuit with variables from $B_{k,0}(m)$.

Thus both these events happen, for random $\kappa = \rho_t \upharpoonright \eta_k(\rho_t) \upharpoonright \ldots \upharpoonright \rho_1 \upharpoonright \eta_1(\rho_1)$, with probability at least:

$$1 - \frac{i}{3} m^{-\ell+i-1+2k} - 2^{-\frac{3}{8}\log(m)^{\epsilon+1}} \geq 1 - \frac{i}{3m} - \frac{1}{8} \geq \frac{1}{2},$$

since $\ell \geq i + 2k$, for m large enough.

10. By 9., there is at least one κ satisfying conditions at 8. Define

$$Q = \{(x_1,\ldots,x_k) \mid D'_{i,m}(x_1,\ldots,x_k) \upharpoonright \kappa = 0\}.$$

Q satisfies property (ii) of Theorem 2.6 by 7.

Define the $\Sigma_1^{S,t}$-circuit oracle by

$$C'_u := C_u \upharpoonright \kappa.$$

Now, condition (iii) of Theorem 2.6 is satisfied by construction.

Q.E.D. Theorem 2.6

(2.7) Observe that the above proof works even if S is considerably larger: up to $S = 2^{m^{\frac{1}{2}\epsilon}}$, $\epsilon > 0$ fixed. In other words, we can allow the machine M to run in time $2^{m^{\frac{1}{2}\epsilon}}$. The only modification to the proof is to the calculations in 8., recall that $t = \log S$.

13
3 The Pigeonhole Principle

In this section we apply Theorem 2.6 to show the unprovability of a weak form of the pigeonhole principle in $S^i_1(a)$.

(3.1) Let $\beta(x_1, x_2, x_3)$ be a predicate symbol. Let $WPHP(a, \beta)$ be the formula:

$$(\forall u_1, u_2, v_1, v_2, w < a)[(\beta(u_1, u_2, w) \land \beta(v_1, v_2, w)) \rightarrow (u_1 = v_1 \land u_2 = v_2)]$$

$$\land (\forall u_1, u_2, v, w < a)[(\beta(u_1, u_2, v) \land \beta(u_1, u_2, w)) \rightarrow v = w]$$

$$\rightarrow (\exists u_1, u_2 < a)(\forall v < a)(\neg \beta(u_1, u_2, v)).$$

If we think of a pair of numbers $x_1, x_2 < a$ as coding a single number $< a^2$, then the formula $WPHP$ says that $\beta(x_1, x_2, x_3)$ does not define the graph of a one-to-one function from a^2 to a. Clearly $WPHP$ is $\Sigma^b_1(\beta)$-formula.

(3.2) Let $\alpha(x_1, x_2, x_3, y_1, \ldots, y_i)$ be a $(i + 3)$-ary predicate symbol and $A^{i, \alpha}(a, x_1, x_2, x_3)$ be the $\Pi^i_1(\alpha)$-formula defined in (2.5). Then we have:

Theorem (Paris-Wilkie-Woods) For all $i \geq 0$, $WPHP(a, A^{i, \alpha})$ is provable by $T^2_1(\alpha)$.

Proof In [15] it was shown that $WPHP(a, \beta)$ is provable in $I\Delta_0(\beta) + \Omega_1$, and thus also in $T^2_1(\beta)$. Already [2] has observed that this proof can be carried out in $T^2_1(\beta)$. This implies the theorem.

Q.E.D. Theorem 3.2

(3.3) **Theorem** Let $i \geq 0$. The $\Sigma^{i+2}_1(\alpha)$-formula $WPHP(a, A^{i, \alpha})$ is not provable in $S^i_{1+2}(\alpha)$.

Proof Case $i = 0$ was proved in [9]. We use Theorem 2.6 to essentially reduce the case $i > 0$ to the case $i = 0$ (we include the $i = 0$ argument here too).

Let $i \geq 1$ and assume that $S^i_{1+2}(\alpha)$ proves $WPHP(a, A^{i, \alpha})$. Then by the “main theorem” for bounded arithmetic [2], the formula $WPHP(a, A^{i, \alpha})$ is witnessed by a $\Sigma^P_{i+2}(\alpha)$-function, i.e., by a function which is computed by a
polynomial time oracle machine M with a $\Sigma^{b}_{i+1}(\alpha)$-oracle $E(x)$. We shall consider only α's such that $A^{i,\alpha}$ defines a partial 1-1 function from a^2 to a; in other words, such that

$$(\forall u_1, u_2, v_1, v_2, w < a)[(A^{i,\alpha}(a, u_1, u_2, w) \land A^{i,\alpha}(a, v_1, v_2, w)) \rightarrow (u_1 = v_1 \land u_2 = v_2)]$$

$$\land (\forall u_1, u_2, v, w < a)[(A^{i,\alpha}(a, u_1, u_2, v) \land A^{i,\alpha}(a, u_1, u_2, w)) \rightarrow v = w]$$

For such α's, M^α on input a, will witness the truth of $WPHP(\alpha, \beta)$ by producing as output values $u_1, u_2 < a$ such that

$$(\forall v < a)(\neg A^{i,\alpha}(a, u_1, u_2, v);$$

in other words, M^α outputs values for u_1, u_2 such that the partial function defined by $A^{i,\alpha}$ is undefined at the pair u_1, u_2.

We now apply Theorem 2.6 with $B(a, \beta)$ the Σ^{b}_{2}-formula which is the prenex form of $WPHP(a, \beta)$. Theorem 2.6 implies, for all m sufficiently large, there is a $\Sigma^{S,t}_{1}$-circuit oracle, C^1_α, with variables from $B_{3,0}(m)$, where $S = 2^{\log(m)^c}$ and $t = \log(m)^c$, and there is a $Q \subseteq [m]^3$ such that whenever $\alpha^0 \subseteq [m]^3$ and $\alpha^0 \cap Q = \emptyset$, the machine M^{α^0} outputs a witness to $B(m, \alpha^0)$.

We show that this is impossible. To prove this, we shall build an oracle α^0 for which $M^{\alpha^0}(a)$ fails to witness $B(m, \alpha^0)$ — the oracle is constructed by executing $M^\alpha(m)$ and creating sets X^+_i and X^-_i at the i-th oracle query. The set X^+_i (respectively, X^-_i) is a set of triples that is forced to be in α^0 (respectively, out of α^0). Initially, $X^+_0 = \emptyset$ and $X^-_0 := Q$. Let Γ be the first circuit-oracle query. There are two possibilities:

(a) There is $\alpha \subseteq [m]^3$, $X^+_0 \subseteq \alpha$, $\alpha \cap X^-_0 = \emptyset$, such that α is a graph of partial 1-1 map from m^2 ($= m \times m$) to m, and $C^1_{u_1}$ evaluates to 1,

(b) There is no α satisfying (a).

In Case (a), since $C^1_{u_1}$ is a $\Sigma^{S,t}_{1}$-circuit, it is an OR of AND's of size $\leq t$; thus, $C^1_{u_1}$ can be forced true by specifying the the truth values $\leq t = (\log m)^c$ atoms. Choose any partial evaluation ξ that forces $C^1_{u_1}$ true such that ξ sets $\leq t$ values and is consistent with conditions in (a). Form X^+_1 (respectively, X^-_1) by adding to X^+_0 (respectively, to X^-_0) all (x_1, x_2, x_3) such that p_{x_1,x_2,x_3} given value 1 (respectively, value 0) by ξ. Now answer YES to the machine and resume its computation.
In Case (b) put $X_i^+ := X_0^+$, $X_i^- := X_0^-$, answer NO, and resume the computation.

Arriving at the $(i + 1)$-st query, we have already defined X_i^+, X_i^- so that

$$|X_i^+| \leq i(\log m)^c, \quad |X_i^- \setminus Q| \leq i(\log m)^c,$$

and $X_i^+ \cap X_i^- = \emptyset$, and the answers to the first i oracle queries have been fixed, for any graph α of a partial 1-1 function with $X_i^+ \subseteq \alpha$ and $\alpha \cap X_i^- = \emptyset$.

Form X_{i+1}^+ analogously as above.

At the end of computation (which has $\leq (\log m)^c$ steps), we define

$$X^+ = \bigcup_i X_i^+, \quad X^- = \bigcup_i X_i^-$$

and then we have that

$$|X^+| \leq (\log m)^{2c}, \quad |X^- \setminus Q| \leq (\log m)^{2c}$$

with $Q \subseteq X^-$. Furthermore, for all partial 1-1 maps α such that $\alpha \supseteq X^+$ and $\alpha \cap X^- = \emptyset$, the oracle queries of $M^\alpha(\alpha)$ are fixed and thus the output (u_1, u_2) of M^α is the same; in other words, there is a fixed output (u_1, u_2) which witnesses $WPHP(m, \alpha(x_1, x_2, x_3))$ for all such α. But this is impossible: since Q was chosen to satisfy Theorem 2.6(ii), there are at least $m^{1/2}$ v’s such that $(u_1, u_2, v) \notin Q$, and thus at least $(m^{1/2} - (\log m)^{2c}) \geq 1$ such v’s not in X^-. Hence we can set $\alpha = X^+ \cup \{(u_1, u_2, v)\}$ for some v such that $\alpha \cap X^- = \emptyset$, but obviously (u_1, u_2) then does not witness $WPHP(m, \alpha)$.

Q.E.D. Theorem 3.3

(3.4) **Corollary** $T_j^i(\alpha)$ is not $\forall \Sigma_j^0(\alpha)$-conservative over $S_j^i(\alpha)$, $i \geq 1$.

Actually, $T_j^i(\alpha)$ is not $\forall \Sigma_j^0(\alpha)$-conservative over any $S_j^i(\alpha)$, $i \geq 1, j \geq 2$.

Proof The corollary follows from Theorems 3.2 and 3.3.

Use Remark (2.7) for the second part.

Q.E.D. Corollary 3.4

The second part of Corollary 3.4 complements [12] where it was shown that T_{j+1}^i is not Π_j^0-conservative over T_j^i, $i, j \geq 1$.

16
4 The Iteration Principle

(4.1) The previous section showed that T^2_1 is not $\forall \Sigma^0_2(\alpha)$-conservative over
$S^i_2(\alpha)$ by reducing — via Theorem 2.6 — the general case $i > 2$ to the base
case which is essentially equivalent to the case where $i = 2$. In this section,
we give a example of another proof of the same result; the most important
novel feature, is that now the base case corresponds to $i = 1$. For this, we
need to prove a useful analogue of Theorem 2.6.

(4.2) A $\Delta^S_{1\ell}$-circuit C with variables from $B_{k,0}(m)$ is a pair of $\Sigma^S_{1\ell}$-circuits
C^+ and C^- with variables from $B_{k,0}(m)$ such that C^+ by definition computes
the value of the $\Delta^S_{1\ell}$-circuit and C^- must compute its negation.

A $\Delta^S_{1\ell}$-circuit oracle with variables from $B_{k,0}(m)$ is a family of $\Delta^S_{1\ell}$-
circuits with variables from $B_{k,0}(m)$, one for each oracle query, analogously
to the definitions of (2.3). S, t and m may depend on u as before.

(4.3) Theorem Assume $i, k \geq 1$ and that $\alpha(\bar{x}, \bar{y})$, A^i,α and $B(a, b)$ are as
in (2.5). Assume also that M is a polynomial time oracle machine with a
$\Sigma^b_k(\alpha)$-oracle, such that for every $\alpha \subseteq \mathbb{N}^{k+i}$ the machine M^α computes from
input a some witness to the formula $B(a, A^i,\alpha)$.

Then there is a constant $c \geq 1$ such that for m sufficiently large there is a
$Q \subseteq \mathbb{N}^k$ and a $\Delta^S_{1\ell}$-circuit oracle C with variables from $B_{k,0}(m)$ so that the
following conditions hold:

(i) for all $u, m(u) = m, S(u) = 2^{(\log m)^r}$ and $t(u) = \log S = (\log m)^c$,

(ii) for every r -dimensional cylinder U in $[m]^k$, $r = 1, \ldots, k$,

$$|U \setminus Q| \geq m^{r-1/2}$$

(iii) for every $\alpha^0 \subseteq \mathbb{N}^k$ s.t. $\alpha^0 \cap Q = \emptyset$, machine M^{α^0} computes on input m a
witness to formula $B(m, \alpha^0)$. (Recall that M^{α^0} operates with the circuit
oracle C^{α^0} instead of the original Σ^b_1-oracle.)

The difference between Theorems 2.6 and 4.3 that the former assumes
M has a Σ^b_k oracle and states the existence of a $\Sigma^S_{1\ell}$-circuit oracle, whereas
the latter assumes M has a Σ^b_k oracle and states the existence of a $\Delta^S_{1\ell}$-circuit
oracle. Having a $\Delta^S_{1\ell}$-circuit oracle is analogous to having only an oracle for
(a polynomial time function of) α, in the same way that having a $\Sigma_{1}^{S,t}$-circuit oracle was analogous to having a Σ_{1}^{b}-oracle. More precisely, when we construct an α by simulating M with a $\Delta_{1}^{S,t}$-circuit, if an oracle query answer has not yet been forced, then it will always be possible to force the oracle query to a desired Yes/No answer by setting only a relatively small number (namely, $\leq t$) many values of α. This is because both $C^{\alpha,+}$ and its complement $C^{\alpha,-}$ are OR’s of small AND’s; and thus either a Yes or No answer may be forced by setting values of α to make one AND true in $C^{\alpha,+}$ or in $C^{\alpha,-}$ (respectively).

Proof The proof of Theorem 4.3 is nearly identical to the proof of Theorem 2.6 except for the last step. Before the last step of the proof, A^{i}^{α}’s have been collapsed to circuits consisting a single AND gate, and the Σ_{1}^{b}-oracle has been collapsed to a $\Sigma_{1}^{S,t}$-oracle C^{1} (with variables from $B_{k,1}(m)$ in this case).

After one more random restriction (from $\mathbb{R}_{k,1,m}^{+}$) the AND gates of the A^{i}^{α}’s collapse, with high probability, to 0 or to p_{f} with the cylinder property (ii) valid, exactly as in the proof of Theorem 2.6; It remains to consider what this final restriction does to the circuit C^{1}: since C^{1} is a family of $\Sigma_{1}^{S,t}$-circuits, it certainly remains one after being restricted; in addition, by the switching lemma (Lemma 1.6), its complement $\neg C^{1}$ becomes, with high probability, a family of $\Sigma_{1}^{S,t}$-circuits too. In other words, after the final restriction, the circuit oracle becomes a $\Delta_{1}^{S,t}$-circuit oracle with variables from $B_{k,0}(m)$.

The computations of the probabilities are identical to the proof of Theorem 2.6.

Q.E.D. Theorem 4.3

(4.4) We shall consider an *iteration principle* $\text{Iter}_{0}(f,a)$ which states

“If f satisfies the three conditions

1. $0 < f(0)$,
2. $\forall x < a, f(x) = a \lor f(x) < f(f(x))$, and
3. $\forall x < a, f(x) \leq a$,

then there exists a $b < a$ such that $f(b) = a$.”

Note that $\text{Iter}_{0}(f,a)$ is expressible by a Σ_{1}^{b}-formula.

Theorem The formula $(\forall x)\text{Iter}_{0}(f,x)$ is provable in $T_{1}^{1}(f)$ but not in $S_{1}^{1}(f)$.

18
\textbf{Proof} To see that $T_2^I \vdash \text{Iter}_0(f, a)$, let $\varphi(u)$ be the Σ^b_1-formula
\[(\exists x \leq u)(u < f(x) \land f(x) \leq a).\]
Then clearly, $T_2^I(f)$ proves $\varphi(0)$ by (1) of the definition of Iter_0. Also, $T_2^I(f)$ proves
\[u \leq a - 2 \land \varphi(u) \rightarrow \varphi(u + 1);\]
to prove this, note that if x_u witnesses $\varphi(u)$ then either $f(x_u) = u + 1$ or $f(x_u) > u + 1$, and in the former case, $f(f(x_u))$ is witness for $\varphi(u + 1)$, and in the latter case, x_u is already a witness for $\varphi(u + 1)$. Now, by Σ^b_1-IND, $T_2^I(f)$ can prove that $\varphi(a - 1)$ holds and a witness b for $\varphi(a - 1)$ must satisfy $f(b) = a$.

Now, for the sake of a contradiction, assume $S_1^I(f) \vdash \text{Iter}_0(f, a)$. Then there is a polynomial time Turing machine with an oracle for the function f such that, on input a, if f satisfies conditions (1)-(3) of the definition of Iter_0, then M outputs a value $b < a$ so that $f(b) = a$. We prove this is impossible by constructing an f for which M fails.

For fixed M, take a sufficiently large and start the computation of M on a. After the i-th oracle query of M, we will have values $0 = r_0 < r_1 < \cdots < r_i < i$ and values s_1, \ldots, s_m such that $t + m \leq i$ and such that we have specified the values $f(r_j) = r_{j+1}$ for all $j < t$ and we have specified the values $f(s_j) = 0$ for all $j \leq m$ and such that no other values of f have been specified. In particular, the value of $f(r_i)$ has not been specified. Thus, after i oracle queries, $\leq i$ values of f have been specified (t and m vary with i, of course).

Suppose the $(i + 1)$-st oracle query is for the value of $f(u)$. If $f(u)$ has already been specified, no action is taken and the computation of M continues with the already specified valued. If $u \neq r_i$, then specify that $f(u) = 0$; this makes u one of the s_j’s. Otherwise, if $u = r_i$, fix $f(u)$ to be equal to the first value $r_{i+1} > r_i$ for which the value of f has not yet been specified.

At the end of M’s computation, f has been defined consistently and so that conditions (1)-(3) are satisfied. Since M runs for at most $|a|^c$ steps for some constant c, we take a large enough so that $a > |a|^c$. Clearly M can not reliably output a value b such that $f(b) = a$; since, for any particular b either b is among r_i’s and then $f(b) < a$, or it is possible to set $f(b) = 0$ consistently with conditions (1)-(3).
Q.E.D. Theorem 4.4
(4.5) For technical reasons, we slightly generalize the iteration principle to a principle \(\text{Iter}(f, a, a_0)\) by replacing conditions (1) and (2) by:

\[
(1') \quad a_0 < a \land a_0 < f(a_0).
\]

\[
(2') \quad (\forall x < a)(a_0 \leq f(x) \Rightarrow f(x) = a \lor f(x) < f(f(x))).
\]

Obviously, \(\text{Iter}_0(f, a)\) is just \(\text{Iter}(f, a, 0)\).

It is interesting to note that the iteration principle is a simplified form of a Skolemization of the induction axiom for \((\exists y \leq x)\alpha(x, y)\) (compare to Krajíček [9]). To see this, let the Skolemization of the induction axiom for \((\exists y \leq x)\alpha(x, y)\) be

\[
(\alpha(0, 0) \land \forall x, y \leq a ((\alpha(x, y) \land y \leq x) \Rightarrow (\alpha(x + 1, g(x, y)) \land g(x, y) \leq x + 1))
\]

\[
\Rightarrow (\exists b \leq a)\alpha(a, b).
\]

Consider the pairing function \([x, y] := x(a + 1) + y\) and let \(f\) be the function such that

\[
f([x, y]) = \begin{cases}
[x + 1, g(x, y)] & \text{if } y \leq x < a \text{ and } \alpha(x, y) \\
(a + 1)^2 & \text{if } x = a \text{ and } \alpha(x, y) \\
0 & \text{otherwise}
\end{cases}
\]

It is easy to see that if the hypothesis of the Skolemization is satisfied, then \(f\) satisfies the hypothesis of \(\text{Iter}(f, (a + 1)^2, 0)\) and thus \(\text{Iter}(f, (a + 1)^2, 0)\) implies that there is a pair \([x, y] < (a + 1)^2\) such that \(f([x, y]) = (a + 1)^2\). From the definition of \(f\), \(x = a\) and \(\alpha(a, y)\) and \(y < a\), i.e., \((\exists b \leq a)\alpha(a, b)\) is true.

(4.6) A unary function \(f : a \rightarrow a\) can be coded as a binary relation \(\beta(x, i)\) on \(a \times \{0, 1\}\) by letting \(\beta(x, i)\) be true if and only if the \(i\)-th bit of the binary representation of \(f(x)\) is equal to 1. The predicate \(\beta\) is called the bit graph of \(f\). A formula \(f(x) = y\) is then equivalent to the sharply bounded formula

\[
y < a \land (\forall i < |a|)((y)_i = 1 \Leftrightarrow \beta(x, i)),
\]

where \((y)_i\) denotes the \(i\)-th bit of the binary representation of \(y\). So by standard techniques, any \(\Sigma^b_1\)-formula \(C(f)\) involving \(f\) can be rewritten as an equivalent \(\Sigma^b_1\)-formula \(C'(\beta)\) containing \(\beta\) instead of \(f\) (see Theorem 2.2 of [2]). Furthermore, w.l.o.g., every occurrence of \(\beta\) in \(C'(\beta)\) has only bound
variables as arguments. This allows us to generalize the concept of $A_i^{i, a}$ from (2.5) to functions; namely, with $k = 2$, $A_i^{i, a}(a, x_1, x_2)$ can be viewed as the bit graph of a function $F_i^{i, a} : a \to a$ so that $F(x_1)$ has x_2-th bit equal to 1 if $A_i^{i, a}(a, x_1, x_2)$ holds.

This treatment of functions as relations also translates to oracle machines, namely, one oracle query about a function’s value can be replaced by $|a|$ many queries about the bit graph of the function.

Let $\text{Iter}(F_i^{i, a}, a, a_0)$ be the Σ_+^{i+1}-formula obtained by first expressing $\text{Iter}(f, a, a_0)$ as an equivalent Σ_1^i-formula involving the bit graph β of f instead of f, and then replacing every $\beta(y, z)$ by the formula $A_i^{i, a}(a, y, z)$.

(4.7) Theorem For $i \geq 0$, the $\Sigma_+^{i+1}(\beta)$-formula $\text{Iter}(F_i^{i, \beta}, a, a_0)$ is provable in $T_i^{i+1}(\beta)$ but not in $S_+^{i+1}(\beta)$.

Proof The proof that Σ_+^{i+1}-IND implies the iteration principle is completely analogous to the proof of the first part of Theorem 4.4; we leave it to the reader to check the details.

It remains to show that $S_+^{i+1}(\beta)$ does not prove $\text{Iter}(F_i^{i, \beta}, a, a_0)$; assume, for the sake of a contradiction, that it does prove this. Then, by [2], $\text{Iter}(F_i^{i, \beta}, a, a_0)$ is \mathcal{U}_{i+1}-witnessed, i.e., there is a polynomial time Turing machine M with a $\Sigma_+^{i}(\beta)$-oracle that on inputs a and a_0 produces a witness for $\text{Iter}(F_i^{i, \beta}, a, a_0)$. By the Collapsing Theorem 4.3 this implies that for many functions $f : a \to a$, $\text{Iter}(f, a, a_0)$ is “nearly” $\mathcal{U}_i(f)$-witnessed. More precisely, there is a polynomial time machine M^β and for any sufficiently large m a $\Delta_1^{S_f}$-circuit oracle C with variables from $B_{k, 0}(m)$ so that $S = 2^{\log m}$ and $t = \log S$ for some constant c, and there is a set $Q \subseteq m \times \log(m)$ with the cylinder property (ii) of Theorem 4.3 holding, such that whenever $f : m \to m$ is coded by $\beta \subseteq m \times \log(m)$ with $\beta \cap Q = \emptyset$ and whenever $m_0 < m$, then the machine M with circuit-oracle C outputs a witness to $\text{Iter}(f, m, m_0)$. Since we will consider only functions f which satisfy the hypotheses 1', 2' and 3 of the iteration principle, the witness output by M will be a value b such that $f(b) = m$.

We shall prove that no such machine M with $\Delta_1^{S_f}$-circuit oracle C exists; this suffices to show that S_+^{i+1} does not prove $\text{Iter}(F_i^{i, \beta}, a, a_0)$.

Our strategy is to diagonalize against an execution of M to produce a β which codes a function f satisfying the three hypotheses of the iteration principle but for which M fails to output a value b such that $f(b) = m$.

21
Each time an M makes an oracle query we shall set sufficiently many values of β so as to fix the answer to the query (no matter how β is extended in the future). We shall adopt the convention that $\beta(x, j)$ will be false if $x \geq m$ or if $j > \log m$. We also adopt the convention that whenever a truth value of $\beta(x, j)$ is set (that is the value of the j-th bit of $f(x)$ is specified), then the rest of the the values $\beta(x, s)$, for $s \leq \log m$, are set (so that the value of $f(x)$ is completely specified). Thus, at any point during the construction of β, if $x < m$, then either $f(x)$ is completely unspecified or a value for $f(x)$ has been chosen.

We construct β by executing M with a fixed, sufficiently large m: after the q-th query of M we shall have constructed a partial relation $\beta_q \subseteq m \times \log m$ which defines a partial function $f_q : m \to m$. (A partial relation is a partially specified relation in which some values of β_q are set and others are yet undefined.) Initially, we let the domain $\text{dom}(f_0)$ of f_0 be the set of x for which $\langle x, j \rangle$ is in Q, for some j and set f’s value to be zero on its domain. And β_0 is the corresponding partial relation; namely, $\beta_0(x, s) = 0$ iff $\langle x, j \rangle \in Q$ for some $j \leq \log m$. We let m_0 be the least value not in $\text{dom}(f_0)$ and begin the execution of M on the inputs m and m_0.

For conceptual clarity, we shall transform the Δ_1^{st}-circuits of the oracle circuits which use the function f in place of the relation β. Each circuit C_u^\pm consists of an OR of AND’s, each of fanin $\leq t$ (recall that the family C contains a pair of circuits C_u^+, C_u^- for each possible oracle query u). The literals in the AND’s are assertions of the form $\beta(x, s)$ or $\lnot \beta(x, s)$. Each such literal may be replaced by an OR of the at most $m/2$ assertions $f(x) = y$ compatible with the assertion. After this replacement, the circuit may be put back into disjunctive normal form, yielding a circuit which consists of an OR of AND’s, each of fanin $\leq t$ — now each input to an AND is an assertion of the form $f(x) = y$. Each AND may obviously be thought of as specifying a partial map with domain of size $\leq t$. For the rest of this proof, we shall consider the C_u^\pm’s as being in this form, as it makes our arguments easier to understand (this doesn’t change the argument in any essential way).

After M’s k-th oracle query, we shall have defined a partial function $f_k \supseteq f_{k-1} \supseteq \cdots \supseteq f_0$ and a sequence $m_0 < m_1 < \cdots < m_{s_k}$ satisfying the following conditions:

1. $|\text{dom}(f_k)| \leq |\text{dom}(f_0)| + kt^2 \leq \sqrt{m \log m} + k(\log m)^2$.

2. For $j < s_k$, $f_k(m_j) = m_{j+1}$; and $f_k(m_{s_k})$ is undefined.
(3) For all \(v \in \text{dom}(f_k) \setminus \{m_0, \ldots, m_{s_k-1}\} \), \(f_k(v) = 0 \).

(4) \(s_k \leq kt \) and \(m_{s_k} \leq \sqrt{m \log m + kt^2} \).

(5) Any \(f \supseteq f_k \) gives the same answers as \(f_k \) to \(M \)'s first \(k \) oracle queries.

These five conditions are clearly already fulfilled for \(k = 0 \) at the beginning of \(M \)'s execution (conditions (1) and (4) holds because the cylinder property (ii) of Theorem 4.3 is satisfied by \(Q \)). We must ensure that these conditions remain true for the entire computation of \(M \) — note that these conditions imply that \(f_k \) can be extended (in many ways) to a total function satisfying the hypotheses of the iteration principle.

Now we describe how to define \(f_{k+1} \) at \(M \)'s \((k + 1)\)-st oracle query. Suppose \(M \)'s \((k + 1)\)-st query is \(u \), so the oracle answer is computed by the \(\Delta^S \)-circuit \(C_u \) consisting of two \(\Sigma^S \)-circuits \(C_u^+ \) and \(C_u^- \) computing each other's complements. We will define \(f_{k+1} \) from \(f_k \) adding at most \(t^2 \) elements to the domain so that one of \(C_u^+ \) and \(C_u^- \) is forced to be true and so that conditions (1)-(5) hold.

The circuits \(C_u^\pm \) each comprise an OR and AND's; each AND is a conjunction of \(\leq t \) statements of the form \(f(x) = y \). Thus each AND corresponds in the obvious way to a partial function \(g \) with domain of cardinality \(\leq t \) (namely, \(g \) is the minimal partial function such that \(f = g \) satisfies the AND). Let \(\text{pf}(C_u^+) \), respectively, \(\text{pf}(C_u^-) \) be the set of partial functions corresponding to the AND's of the circuits \(C_u^+ \), respectively, \(C_u^- \). It is an elementary fact, that for any \(g \in \text{pf}(C_u^+) \) and any \(h \in \text{pf}(C_u^-) \) there must be a value \(x \) such that that \(g(x) \) and \(h(x) \) are defined and are unequal; otherwise there would be a total function \(f \supseteq g \cup h \) which would satisfy both \(C_u^+ \) and \(C_u^- \).

If there is no \(g \in \text{pf}(C_u^+) \) which is compatible with \(f_k \) then \(f_k \) already forces \(C_u^- \) true and we set \(f_{k+1} := f_k \). Otherwise, pick any \(g_1 \in \text{pf}(C_u^+) \) which compatible with \(f_k \) and choose \(m_{s_k+1} \) to be least number greater than \(m_{s_k} \) which is not in \(\text{dom}(g_1) \cup \text{dom}(f_k) \). Let \(k_1 \) be the partial function with \(\text{dom}(k_1) \) equal to \(\text{dom}(f_k) \cup \text{dom}(g_1) \cup \{m_{s_k}\} \) and defined by

\[
k_1(x) = \begin{cases} f_k(x) & \text{if } x \in \text{dom}(f_k) \\ m_{s_k+1} & \text{if } x = m_{s_k} \\ 0 & \text{if } x \in \text{dom}(g_1) \setminus \text{dom}(f_k) \text{ and } x \neq m_{s_k}. \end{cases}
\]
Now if k_1 forces either C_u^+ or C_u^- to be true, we set $f_{k+1} := k_1$. Otherwise, note that for each $h \in pf(C_u^-)$ there is at least one value in $\text{dom}(k_1) \cap \text{dom}(h)$; in other words, there are at most $t - 1$ values in $\text{dom}(h) \setminus \text{dom}(k_1)$. Now pick an arbitrary $g_1 \in pf(C_u^+)$ which is compatible with k_1 and choose $m_{s_k + 2}$ to be equal to the least value greater than $m_{s_k + 1}$ not in $\text{dom}(g_1) \cup \text{dom}(k_1)$. Define the partial function k_2 from k_1, g_1 and $m_{s_k + 2}$ in exactly the same fashion as k_1 was defined from f_k, g_1 and $m_{s_k + 1}$. As before, either k_2 forces one of C_u^+ or C_u^- to be true and we set $f_{k+1} := k_2$; or we have that for all $h \in pf(C_u^-)$, there are at most $t - 2$ values in $\text{dom}(h) \setminus \text{dom}(k_2)$. We iterate this process until we find a k_t with $t \leq t$ such that k_t forces one of C_u^+ and C_u^- to be true; then we set $f_{k+1} := k_t$. It is straightforward to verify that f_{k+1} satisfies conditions (1)-(5).

The above completes the definition of the f_k’s. Since M runs in polynomial time we choose c so that $M(m)$ makes $k \leq (\log m)^c$ queries. f_k is the partial function constructed at the end of the above process. By condition (4), we have

$$m_{s_k} \leq \sqrt{m \log m + k \cdot t^2}$$
$$\leq \sqrt{m \log m + (\log m)^c (\log m)^2 c}$$
$$< m$$

for m sufficiently large. Likewise $|\text{dom}(f_k)| << m$. Now M cannot reliably output a witness to the iteration principle Iter(f, m, m_0) since, for any output value b of $M(m)$, we may extend f_k to a total function f, such that f satisfies the hypotheses 1’, 2’, 3 of the iteration principle and such that $f(b) \neq a$; namely, if $b \neq m_{s_k + 1}$ let f have value 0 whenever f_k is undefined, and if $b = m_{s_k + 1}$ let $f(m_{s_k}) = m_{s_k} + 1$ and otherwise have value 0 whenever f_k is undefined.

Q.E.D. Theorem 4.7.

5 T_2^1 and Polynomial Local Search

(5.1) In [7] a Polynomial Local Search problem (PLS-problem) L is defined to be a maximization problem satisfying the following conditions: (we have made some inessential simplifications to the definition in [7])
For every instance \(x \in \{0, 1\}^* \), there is a set \(F_L(x) \) of solutions, an integer valued cost function \(c_L(s, x) \) and a neighborhood function \(N_L(s, x) \).

- The binary predicate \(s \in F_L(x) \) and the functions \(c_L(s, x) \) and \(N_L(s, x) \) are polynomial time computable. And there is a polynomial \(p_L \) so that for all \(s \in F_L(x) \), \(|s| \leq p_L(|x|) \). Also, \(0 \in F_L(x) \).

- For all \(s \in \{0, 1\}^* \), \(N_L(s, x) \in F_L(x) \).

- For all \(s \in F_L(x) \), if \(N_L(s, x) \neq s \) then \(c_L(s, x) < c_L(N_L(s, x), x) \).

- The problem is solved by finding a locally optimal \(s \in F_L(x) \), i.e., an \(s \) such that \(N_L(s, x) = s \).

It follows from these conditions that there is a polynomial time computable \(M_L(x) \) such that \(M_L(x) > c_L(s, x) \) for all \(s \in F_L(x) \).

A PLS-problem \(L \) can be expressed as a \(\Pi_1^b \)-sentence saying that the conditions above hold; if these are provable in \(T_1^1 \) then we say \(L \) is a PLS-problem in \(T_1^1 \). The formula \(\text{Opt}_L(x, s) \) is the \(\Delta_1^b \)-formula \(N_L(s, x) = s \).

(5.2) *Theorem* Let \(L \) be a PLS-problem in \(T_1^1 \). Then \(T_1^1 \vdash (\forall x)(\exists y)\text{Opt}_L(x, y) \).

Proof It is known [2] that \(T_1^1 \) proves the \(\Sigma_1^b \)-MIN axioms; this immediately implies also the \(\Sigma_1^b \)-MAX principle. Arguing informally in \(T_1^1 \), we have that, for all \(x \), there is a maximum value \(c_0 < M_L(x) \) satisfying \((\exists s \in F_L(x))(c_L(s, x) = c_0)\). Taking \(s \) to be witness for this last formula, \(s \) is globally optimal and hence satisfies \(\text{Opt}_L(x, s) \), and the theorem is proved. Q.E.D. Theorem 5.2

(5.3) Now we establish a converse to Theorem 5.2. We shall use the definition of the formula \(\text{Witness} \) from [2]. We also adopt the convention that witnesses are efficiently coded, i.e., for every \(\Sigma_1^b \)-formula \(C(\bar{u}) \) there is a term \(t_C(\bar{u}) \) so that any witness for \(C(\bar{u}) \) must be \(\leq t_C(\bar{u}) \), as in Theorem 5.3 of [2].

Theorem Let \(\theta(a) \) be a \(\Sigma_1^b \)-formula such that \(T_1^1 \vdash (\forall x)\theta(x) \). Then there is a PLS-problem \(L \) in \(T_1^1 \) such that \(T_1^1 \) proves
\[
(\forall x)(\forall s)(\text{Opt}_L(x, s) \rightarrow \text{Witness}_L^{1,s}(s, x)).
\]
The point of the previous two theorems is that, on one hand, any PLS-problem can be expressed as a \(\Sigma^b_1 \)-defined function in \(T^1 \) and that, conversely, any \(\Sigma^b_1 \)-function of \(T^1 \) can be expressed as a PLS-problem composed with a projection function.

Proof If \(T^1 \) proves \((\forall x) \theta(x) \), then by free-cut elimination, there is a \(T^1 \)-proof \(P \) in the Gentzen sequent calculus system LKB of the sequent \(\theta(u_1) \) such that every sequent in \(P \) is of the form

\[
A_1(\vec{u}), \ldots, A_k(\vec{u}) \rightarrow B_1(\vec{u}), \ldots, B_k(\vec{u})
\]

where \(\vec{u} \) is a vector of \(r \) free variables (which includes the variable \(u_1 \)) and where all the formulas \(A_i \) and \(B_i \) are \(\Sigma^b_1 \)-formulas.

We shall prove by induction on the number of proof steps that any sequent of the above form provable in \(T^1 \) corresponds computationally to a PLS-problem. Namely, there is a PLS-problem \(L' \) such that (1) inputs to \(L' \) are (encodings of) \(k + r \)-tuples \(\langle m_1, \ldots, m_r, v_1, \ldots, v_k \rangle \) where \(m_1, \ldots, m_r \) are values for the variables \(u_1, \ldots, u_r \) and (2) for input a tuple \(\langle \vec{m}, \vec{v} \rangle \), the locally optimal solutions are the \(k + r + 1 \)-tuples of the form \(\langle \vec{m}, \vec{v}, w \rangle \) with the same \(\vec{m} \) and \(\vec{v} \) values such that if each \(v_i \) witnesses \(A_i(\vec{m}) \) then \(w \) is a witness for one of the formulas \(B_i(\vec{m}) \). From such problem \(L' \) we get problem \(L \) satisfying the requirement of the theorem by adding to each \(L' \)-solution \(\langle \vec{v}, w \rangle \) a new neighbour \(w \) with higher cost, provided \(w \) is a witness to \(\theta \).

The existence of the PLS-problem is obvious for initial sequents, which by definition contain only atomic formulas. The induction step splits into cases depending on the final inference of the proof \(P \). The cases where the final inference is a propositional inference or a structural inference other than cut are very simple, requiring only minor changes to the PLS-problem. The case where the final inference of \(P \) is an \(\exists \) : right inference

\[
\Gamma \rightarrow \Delta, A(t) \quad t \leq s, \Gamma \rightarrow \Delta, (\exists x \leq s)A(x)
\]

can be handled easily also: the induction hypothesis states that there is a PLS problem \(L \) that applies to the upper sequent. We now sketch how to modify \(L \) to construct a PLS problem \(L' \) that works for the lower sequent. First, let \(c_L(s, x) = c_L(s, x) + 1 \) for \(s \in F_L(x) \). Inputs \(\langle \vec{m}, v_0, \vec{v} \rangle \) to \(L' \) that provide witnesses to \(\Gamma \) are assigned cost \(0 \) and have as neighbour the
input \(\langle \bar{m}, \bar{v} \rangle\) to \(L\). An output \(\langle \bar{m}, \bar{v}, w \rangle\) of \(L\) has as its \(L'\)-neighbour a tuple \(\langle \bar{m}, v_0, \bar{v}, w' \rangle\) with cost \(M_L(\langle \bar{m}, \bar{v} \rangle) + 1\), where \(w' = w\) or \(w' = \langle t(\bar{m}), w \rangle\), whichever provides a witness to a formula in the succedent \(\Delta, (\exists x \leq s) A\). It is easily checked that \(L'\) has the desired properties.

Similarly the case where the final inference of \(P\) is an \(\exists: \text{left}\) or a \(\forall: \text{left}\) is handled by simple modifications to the PLS-problem. The case where the final inference is a \(\forall: \text{right}\) is more complicated: it is comparable to the case where the final inference is an induction rule (treated below) and we leave it to the reader.

In the case where the final inference of \(P\) is a cut inference

\[
\frac{\Pi \rightarrow A \quad A \rightarrow \Delta}{\Pi \rightarrow \Delta}
\]

we have, by the induction hypothesis, two PLS-problems \(L_1\) and \(L_2\) which apply to the upper sequent. A PLS problem for the lower sequent is formed as a “composition” of PLS problems. (To simplify this case, we assume w.l.o.g. that the cut formula \(A\) is the only formula in the succedent (antecedent) of the left (right, resp.) upper sequent.) By coding, the PLS problems \(L_1\) and \(L_2\) can be modified to have domains \(F_{L_1}\) and \(F_{L_2}\) disjoint. The local optima (outputs) of the PLS problem \(L_1\) can have as neighbours inputs to \(L_2\). By adding \(M_{L_1}(\cdots)\) to the cost function of \(L_2\), the cost of any \(L_2\)-solution is greater than the cost of any \(L_1\)-solution. This makes it possible to arrange that any local optimum of the PLS combined problem can be found by applying \(L_2\) to a local optimum of \(L_1\). We leave the precise details to the reader.

Finally consider the case where the final inference of \(P\) is an induction inference

\[
\frac{A(0, \bar{u}) \rightarrow A(0, \bar{u} + 1, \bar{v})}{A(0, \bar{u}) \rightarrow A(t(\bar{u}), \bar{v})}
\]

w.l.o.g., there are no side formulas to the induction inference.\(^*\) Given a PLS problem \(L\) for the upper sequent, we form a PLS-problem \(L'\) for the lower sequent. The general idea is, of course, that \(L'\) is an exponentially long iteration of instances of \(L\). First, the set \(F_{L'}(\langle \bar{m}, \bar{v} \rangle)\) is the set of tuples

\(^*\)This is because we may conjoin and disjoin any side formulas, which must be \(\Sigma_1^0\)-formulas, into the induction formula. This modification uses only propositional inferences.
\((m_0, z, s)\) where \(m_0 < t(\bar{m})\) and \(s \in F_L((m_0, \bar{m}, z))\); thus \(F_L\) is a disjoint union of solution spaces for instances of \(L\). We define

\[
c_{L'}((m_0, z, s), (\bar{m}, v)) = m_0 \cdot M + c_L(s, (m_0, \bar{m}, z))
\]

where \(M\) is a function of \((m, \bar{z})\) and is large enough to dominate \(M_L(s)\) whenever \(m_0 < t(\bar{m})\) and \(s \in F_L((m_0, m, z))\). The neighbourhood function is defined so that

\[
N_{L'}((m_0, z, s), (\bar{m}, v)) = (m_0, z, N_L(s, (m_0, \bar{m}, z)))
\]

except when \(s = N_L(s, (m_0, \bar{m}, z))\), in which case, for \(m_0 < t(\bar{m})-1\), we set

\[
N_{L'}((m_0, z, s), (\bar{m}, v)) = (m_0 + 1, z', (m_0 + 1, \bar{m}, z'))
\]

where \(z'\) is the last component of \(s\), i.e., the witness for \(A(m_0 + 1, \bar{m})\). When \(m_0 = t(\bar{m})-1\), then

\[
N_{L'}((m_0, z, s), (\bar{m}, v)) = (\bar{m}, v, z').
\]

This last case gives a local optimum for \(L'\). It is easy to check (and we leave it to the reader) that \(L'\) gives a PLS problem that solves the lower sequent of the induction inference.

Q.E.D. Theorem 5.3

(5.4) There are two open problems concerning PLS problems and \(T_1^1\) that are interrelated by Theorems 5.2 and 5.3. First, can any PLS problem \(L\) be PLS reduced in the sense of \([7]\) to a PLS-problem which has, for all inputs, a unique local optimum? And second, is it true that whenever \(T_2^1\) proves \((\exists x \leq t)A\) with \(A \in \Sigma_1^b\) then there exists a \(\Sigma_1^b\)-formula \(B\) such that \(T_1^1\) proves \((\exists! x \leq t)B\) and \(B \rightarrow A\)? These questions are not apparently equivalent since even if local optima are unique, they may not be provably unique in \(T_1^1\).

Papadimitriou [13] has introduced two classes \(PLF\) and \(PLDF\) of search problems and showed that \(PLDF \subseteq PLF\).\(^1\) A \(PLDF\) search problem \(L\) has, for every input \(x\) a directed graph \(N_x(c, c')\) on nodes \(c, c' < t(x)\) for some

\(^1\)In a later paper [14], the classes \(PLF\) and \(PLDF\) were renamed to \(PPA\) and \(PPAD\), respectively.
term of Bounded Arithmetic, such that every node has indegree and out degree \(\leq 1 \). In addition, it is assumed that \(N_x(c, c') \) is a polynomial time predicate of \(x, c, \) and \(c' \) and that if there exists a value \(c' \) (resp., \(c \)) such that \(N_x(c, c') \) holds, then it can be computed in polynomial time from \(x \) and \(c \) (resp., from \(x \) and \(c' \)). On input a pair \(\langle x, c_0 \rangle \) such that \(c_0 \) has indegree 0 in \(N_x \), the problem is to find a node that has outdegree 0; such a node must exist since the directed graph is finite. However, it is unlikely that \(T_{12} \) can prove that PLDF problems must have solutions since the pigeon-hole principle can be reduced to the statement that a PLDF problem has a solution. For instance, if \(f \) and \(g \) are new function symbols, we can define a graph \(N(c, c') \) by the condition \(f(c) = c' \) and \(g(c') = c \). Now if \(g \) is further presumed to be the inverse of \(f \) then the pigeonhole principle for \(f \) is equivalent to the statement that if \(N \) has a node of indegree 0 then \(N \) must have a node of outdegree 0. However, by [16, 11, 1], the pigeonhole principle for \(f \) is not provable even in \(T_2(f) \). Thus \(T_2(f, g) \) does not prove the existence of solutions for this PDLF problem.

References

