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Abstra
t

We de�ne the notion of approximate Euler 
hara
teristi
 of de�n-

able sets of a �rst order stru
ture. We show that a stru
ture admits a

non-trivial approximate Euler 
hara
teristi
 if it satis�es weak pigeon-

hole prin
iple WPHP

2n

n

: two disjoint 
opies of a non-empty de�nable

set A 
annot be de�nably embedded into A, and prin
iple CC of 
om-

paring 
ardinalities: for any two de�nable sets A, B either A de�nably

embeds in B or vi
e versa. Also, a stru
ture admitting a non-trivial

approximate Euler 
hara
teristi
 must satisfy WPHP

2n

n

.

Further we show that a stru
ture admits a non-trivial dimension

fun
tion on de�nable sets i� it satis�es weak pigeonhole prin
iple WPHP

n

2

n

:

for no de�nable set A with more than one element 
an A

2

de�nably

embed into A.

An abstra
t Euler 
hara
teristi
 (E
) on a �rst order stru
ture assigns

to de�nable sets values in a 
ommutative ring su
h that basi
 properties of


ounting with �nite sets are ful�lled (we re
all the formal de�nition from [6℄

in Se
tion 2). Not all stru
tures admit nontrivial E
. For example, if there

is a de�nable bije
tion between a de�nable set and the set plus one other

point (i.e., the so 
alled onto-pigeonhole prin
iple ontoPHP fails), then 0 = 1

in the ring and everything is trivial. In fa
t, the validity of the ontoPHP


hara
terizes stru
tures admitting the weak E
, 
f.[6℄ or Theorem 2.2. The

�
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ordinary PHP: a de�nable set 
annot be de�nably embedded into its proper

subset, 
hara
terizes stru
tures where the weak E
 is partially ordered, 
f.[9℄.

Important variants of the pigeonhole prin
iple are the so 
alled weak

pigeonhole prin
iples; while PHP prin
iples say in some form or other that

a bigger set 
annot embed into a smaller one, WPHP prin
iples assert that

a set 
annot embed into a mu
h smaller set. The parti
ular de�nition of the

quali�
ation mu
h determines various forms of WPHP. WPHP prin
iples

are prominent in proof 
omplexity and in bounded arithmeti
, a bridge be-

tween 
omplexity theory and logi
. One motivation for the 
urrent resear
h

is the 
olle
tion of open problems about the provability of WPHPs in weak

formal systems, 
f.[5℄. These problems amount to 
onstru
tions of models

(of various weak arithmeti
s) in whi
h WPHPs fail, and one wants to under-

stand general properties of su
h models. Another motivation is somewhat

more general. In [1, 6, 9, 7℄ it was shown that the validity of forms of PHP

and of some other 
ounting prin
iples (e.g. the modular 
ounting prin
iples,


f.[1, 6℄) in a stru
ture is equivalent to the existen
e of an abstra
t Euler


hara
teristi
 for sets de�nable in the stru
ture with parti
ular properties

(depending on the parti
ular 
ounting prin
iples). Hen
e it is interesting

to �nd out if WPHPs 
an be also 
hara
terized by the existen
e of some

natural invariants of de�nable sets.

We shall 
onsider two variants of WPHP:

� WPHP

2n

n

: Two disjoint 
opies of a non-empty de�nable set A 
annot

be de�nably embedded into A.

� WPHP

n

2

n

: For no de�nable set A with more than one element 
an A

2

de�nably embed into A.

It will not be diÆ
ult to see that WPHP

n

2

n

prin
iple 
hara
terizes stru
-

tures that admit a non-trivial dimension fun
tion (in the sense of S
hanuel

[12℄; we shall re
all the de�nition in Se
tion 3) on their de�nable sets. The


ase of WPHP

2n

n

is more involved and requires an introdu
tion of a new in-

variant of de�nable sets whi
h we shall 
all approximate Euler 
hara
teristi


(aE
).

The idea of aE
 is that similarly as E
 formalizes 
ounting, aE
 will

formalize approximate 
ounting: aE
 
ounts the size of de�nable sets but

with a possible error, the error being a negligible per
entage. This is an im-

portant issue in 
omplexity theory (and in bounded arithmeti
) as for some


omplexity 
lasses the exa
t 
ounting is hard (e.g., given a polynomial-time

set the fun
tion - of x - that 
ounts the number of elements in the set below
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x is generally assumed not to be polynomial-time) while an approximate


ounting (the fun
tion 
ounts the number of elements with some bounded

error) is possibly mu
h simpler. We shall show that a stru
ture admits a

non-trivial approximate Euler 
hara
teristi
 if it satis�es weak pigeonhole

prin
iple WPHP

2n

n

and the prin
iple CC of 
omparing 
ardinalities (this

prin
iple and its two variants were 
onsidered in [9℄):

� CC: For any two de�nable sets A, B either A de�nably embeds in B

or vi
e versa.

On the other hand, a stru
ture admitting a non-trivial approximate Euler


hara
teristi
 must satisfy WPHP

2n

n

.

One would like to avoid using the CC prin
iple in the 
onstru
tion. That

would then give an exa
t 
hara
terization of stru
tures with non-trivial aE


as those satisfying WPHP

2n

n

. CC 
ould be avoided, in prin
iple, if it would

hold that any stru
ture satisfying WPHP

2n

n


an be expanded to a stru
ture

still satisfying WPHP

2n

n

but also satisfying CC. We do not know if this is

true.

The paper is organized as follows. In Se
tion 1 we give few preliminaries

on semirings. Se
tion 2 re
alls de�nitions of (ordered) E
 and fa
ts about

them from [6, 9℄. The dimension fun
tion and WPHP

n

2

n

are 
onsidered in

Se
tion 3. The de�nition of aE
 and the 
onne
tion to WPHP

2n

n

are in

Se
tion 4. Se
tion 5 o�ers several examples of stru
tures and their aE
'.

More ba
kground information 
an be found in [6, 9, 7℄.

1 Preliminaries on semirings

A semiring, or a rig in an equivalent terminology, is a stru
ture (R; 0; 1;+; �)

having properties like a ring, ex
ept that (R; 0;+) may be only a semigroup.

We shall 
onsider only 
ommutative semirings. Examples are N, N[x℄ or

generally ordered rings without the "negatives"

1

.

A semiring important for us is 
onstru
ted from sets de�nable in a stru
-

ture M as follows. Let Def(M) be the 
olle
tion of subsets of all M

k

, k � 1,

that are de�nable in M with parameters. Two de�nable sets A, B are

equivalent, A � B, i� there is a de�nable bije
tion between them. The set

g

Def(M) := Def(M)= �, together with zero 0 := ;= �, one 1 := fag= � (a

any element), and operations + - disjoint union, and � - Cartesian produ
t

1

Hen
e the name rig, e.g. in [12℄. A full de�nition 
an be found there.
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forms a semiring. We shall denote the quotient map from Def(M) to

g

Def(M)

by [: : :℄.

A partially ordered ring R is R together with a subset P � R su
h that

0; 1 2 P , P + P � P , P � P � P , and if 0 6= x 2 P then �x =2 P . P are the

non-negative elements of R and the partial ordering x � y is given by the


ondition y � x 2 P .

For a an element of a semiring and k 2 N, k�a denotes the s
alar multiple

a+ : : : + a, k-times.

De�nition 1.1 Let (S; 0;�;�) be a linearly ordered 
ommutative semi-

group and R a linearly ordered semiring.

The linearly ordered 
ommutative semiring R[x

S

℄ 
onsists of elements

that are �nite R-linear 
ombinations of expressions x

u

, u 2 S. Formally,

R[x

S

℄ is the set of partial �nite fun
tions f : S ! R with the addition

de�ned 
oordinate-wise and the multipli
ation de�ned by the rule: (f �g)(s) =

P

u+v=s

f(u) � g(v). The linear ordering is the lexi
ographi
 ordering given

by: f < g i� f(u) <

R

g(u), where u 2 S is the maximal (in <

S

) in the

domains of both f and g su
h that f(u) 6= g(u).

Note that R[x

S

℄ is a ring if R is a ring. We shall use this 
onstru
tion

for R one of N (natural numbers), Q (rationals) or R (reals), and S being

the additive semigroup of the non-negative reals (R

�0

; 0;+;�).

2 Euler 
hara
teristi


The abstra
t Euler 
hara
teristi
 on �rst-order stru
tures has been de�ned

in [6℄. Its variant, the weak E
, is a spe
ial 
ase of a general 
onstru
tion by

S
hanuel [12℄. He de�ned (in our terminology) the weak Euler 
hara
teristi


and the dimension fun
tion on any distributive 
ategory. However, I shall

follow [6, 9℄ and 
onsider only the 
ategory of sets and maps de�nable in a

stru
ture.

De�nition 2.1 ([6, Def.2.1℄) Let M be a �rst-order stru
ture. Let R be

a 
ommutative ring with unity. A fun
tion

� : Def(M) �! R

is an Euler 
hara
teristi
 on M over R i� it satis�es the following 
on-

ditions: �(fag) = 1 for any a 2 M

k

, � is additive on disjoint unions and
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multipli
ative on Cartesian produ
ts, and � fa
tors through the quotient map

[: : :℄ : Def(M)!

g

Def(M).

The last 
ondition is that

� �(A) = 
 � �(B), whenever 
 2 R, A;B 2 Def(M) and there is a

de�nable map f with domain A and range B su
h that ea
h its �ber

f

(�1)

(b), b 2 B, has Euler 
hara
teristi
 �(f

(�1)

(b)) = 
.

The fun
tion �=R is a weak Euler 
hara
teristi
 i� �=R satis�es all 
ondi-

tions but the last one. Euler 
hara
teristi
 is sometimes 
alled strong Euler


hara
teristi
, in order to distinguish it from the weak one.

One 
an state the de�nition of weak E
 in a more algebrai
 language:

The weak E
 is the quotient map [: : :℄ : Def(M) !

g

Def(M) 
omposed with

a semiring-homomorphism of

g

Def(M) into a ring. We use the de�nition

expli
itly referring to Def(M) as it allows for the formulation of the �fth,

�ber, 
ondition. That 
ondition is important for various appli
ations (e.g.

[6℄) and it has also the ni
e property that it implies, together with 
ondition

2., all other 
onditions, 
f. [6℄.

If M admits a weak E
 then there exists a universal one with the target

ring denoted K

0

(M) - the Grothendie
k ring of the stru
ture, 
f. [6, 9℄.

The following theorem 
hara
terizes when a stru
ture admits a weak Eu-

ler 
hara
teristi
. No su
h transparent 
hara
terization is known for strong

E
, but there is also the universal strong E
 (see [9℄).

Theorem 2.2 ([6, Thm.3.1℄) M admits a nontrivial weak Euler 
hara
-

teristi
 i� it satis�es the onto pigeonhole prin
iple ontoPHP: There is no

de�nable set and a de�nable bije
tion between the set plus one other point

and the set.

De�nition 2.3 ([9, Def.4.2℄) A weak Euler 
hara
teristi
 �=R on M is

partially ordered if R is partially ordered and the range of � is a subset of

the non-negative elements of R. Equivalently, if A � B are de�nable sets

then �(A) � �(B).

Theorem 2.4 ([9, Thm.4.3℄) M admits an ordered weak Euler 
hara
-

teristi
 i� it satis�es the ordinary pigeonhole prin
iple PHP: There is no

de�nable set and a de�nable inje
tion of the set into a proper subset of it-

self.
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3 Dimension

Dimension of de�nable sets (in a spe
ial 
ase of the de�nition by S
hanuel

[12℄) is a semiring-homomorphism of

g

Def(M) into a semiring in whi
h 1+1 =

1. For a part of the next de�nition we need to introdu
e a partial ordering

on a semiring S. De�ne the relation a � b by the 
ondition a+ b = b. If S

satis�es 1 + 1 = 1 then the relation is a partial ordering (1 + 1 = 1 implies

the re
exivity).

De�nition 3.1 ([12℄,[9, Se
.9℄) An abstra
t dimension fun
tion on M is

a fun
tion

d : Def(M)! S

where S is a semiring in whi
h 1 + 1 = 1, su
h that d fa
tors through

[ ℄ : Def(M)!

g

Def(M) and d=� is a semiring homomorphism.

We say that dimension d is non-trivial i� d(A

2

) > d(A) for all in�nite

de�nable sets A.

Semirings S in whi
h 1 + 1 = 1 
an be transparently given in the "log-

arithmi
" notation as an upper semilatti
e (S;�1;�; 0;_;�) in whi
h 0

be
omes �1, + be
omes the semilatti
e union _ with partial ordering �,

1 be
omes 0 and � be
omes �.

It will be 
onvenient to think of �1 as an extra element of the universe

of (S;�1;�; 0;_;�) outside of S. Then (S;�1;�; 0;_;�) is uniquely

determined by the partially ordered semigroup (S; 0;�;�) in whi
h 0 is the

minimal element and a � b implies a� 
 � b� 
. On the other hand, having

a partially ordered semigroup (S; 0;�;�) we 
an adjoin a new element �1,

stipulate that �1� a = �1 and �1 < a for all a 2 S, and de�ne _ from

the ordering. In this way there is a 
orresponden
e between semirings where

1 + 1 = 1 and partially ordered semigroups. One 
an restate the de�nition

of a dimension as a fun
tion d from

g

Def(M) n f[;℄g into a partially ordered

semigroup (S; 0;�;�) su
h that:

� d([fag℄) = 0,

� d([A℄) � d([B℄), if A de�nably embeds into B,

� d([A

_

[B℄) = max(d([A℄); d([B℄)),

� d([A�B℄) = d([A℄) � d([B℄).
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Note that the 
ondition of the non-triviality of d implies that for all k �

1, d(M

k+1

) > d(M

k

) (otherwise it would also hold that d(M

2k

) � d(M

k

),

violating the non-triviality 
ondition). In fa
t, similarly d(A

k+1

) > d(A

k

),

for any in�nite de�nable A. Furthermore, the nontriviality also implies that

d(A) 6= 0 for any in�nite de�nable A.

The next proposition is a 
hara
terization of stru
tures admitting a non-

trivial dimension fun
tion.

Theorem 3.2 M admits a non-trivial dimension fun
tion i� it satis�es the

weak pigeonhole prin
iple WPHP

n

2

n

: There is no de�nable set A with at least

two elements and a de�nable embedding of A

2

into A.

Proof :

Assume that M admits a non-trivial dimension fun
tion. Hen
e d(A

2

) >

d(A) for all in�nite de�nable sets A. This inequality prevents a de�nable

embedding of A

2

into A as su
h an embedding would imply d(A

2

) � d(A).

As WPHP

n

2

n

automati
ally holds for �nite sets, M satis�es WPHP

n

2

n

.

For the opposite dire
tion assume that M satis�es WPHP

n

2

n

. It is suf-

�
ient to show that dim(A

2

) > dim(A) in the universal dimension fun
tion

dim : Def(M) ! D(M), de�ned in [9℄. The 
onstru
tion of the universal

dim is simple. De�ne an equivalen
e relation � on Def(M) by: A � B

i� for some k; ` 2 N, A de�nably embeds into k 
opies of B and B de�n-

ably embeds into ` disjoint 
opies of A. The semiring D(M) is Def(M)= �,

and the universal dimension fun
tion d is the quotient map. To prove that

dim(A

2

) > dim(A) we need to show, for in�nite de�nable A, that A

2


an-

not de�nably embed into k 
opies of A, any k 2 N. Assume f is su
h a

de�nable embedding. De�ne another embedding g : A

4

! A

2

by mapping

�rst (x; y; z; t) 2 A

4

to (f(x; y); f(z; t)) 2 (k � A)

2

, and thinking of (k � A)

2

as k

2


opies of A

2

mapping this further by f into k

3


opies of A. Using

parameters for k

3

distin
t elements of A, k

3

�A embeds into A

2

.

q.e.d.

If the stru
ture satis�es also the CC prin
iple we 
an de�ne a 
ombina-

torially more transparent dimension fun
tion with values in (R

�0

; 0;+;�).

De�nition 3.3 Let M be a stru
ture and let dim : Def(M)! D(M) be the

universal dimension fun
tion. De�ne Æ : Def(M)! R

�0

[f�1g by putting

Æ(;) = �1 and de�ning Æ(A) for non-empty A as the in�mum of all

k

`

su
h

that k; ` � 1 and dim(A

`

) � dim(M

k

) in D(M).
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Note that as A is a subset of some power of M the number Æ(A) is

de�ned.

Theorem 3.4 Let M be a stru
ture satisfying both WPHP

n

2

n

and CC. Then

Æ is a non-trivial dimension fun
tion and Æ(M

k

) = k, for all k � 1.

Proof :

As Æ(A) depends on dim(A) only, Æ fa
tors through [: : :℄, Æ(fag) = 0,

Æ(A) � Æ(B) if A de�nably embeds into B, and Æ(A

_

[B) = max(Æ(A); Æ(B)).

The CC prin
iple is used in verifying the last 
ondition.

Claim: Æ(A �B) = Æ(A) + Æ(B), for all de�nable A and B.

Assume �rst dim(A

`

) � dim(M

k

) and dim(B

v

) � dim(M

u

). Then

dim(A

`v

� B

`v

) � dim(M

kv

�M

`u

). As

kv+`u

`v

=

k

`

+

u

v

, this shows that

always Æ(A �B) � Æ(A) + Æ(B).

We need to prove that the inequality 
annot be stri
t. By CC either A

de�nably embeds in B or vi
e versa. Assume the former.

Consider �rst the 
ase that Æ(A) = 0. So for any `, dim(A

`

) � dim(M

u

`

)

su
h that

u

`

`

goes to 0 as ` grows. Now assume that dim(B

`

) � dim(M

k

).

So for all t � 1, dim((A �B)

t`

) � dim(M

tk+u

`t

). But

tk+u

`t

`t

goes to

k

`

as t

grows. Hen
e Æ(A�B) = Æ(B) and the equality is proved in this 
ase.

Next 
onsider the 
ase Æ(A) > 0. Let � be the in�mum of all

u

v

su
h

that B

v

embeds in A

u

. By Æ(A) > 0 this is well-de�ned. By WPHP

n

2

n

(and

the argument as at the end of the proof of Theorem 3.2), � � 1. By CC,

either B

v

embeds in A

u

or vi
e versa. So �

�1

is the in�mum of all

u

v

su
h

that A

v

embeds in B

u

.

We may 
onveniently but somewhat loosely say that "B

�

�1

embeds in

A" and "A

�

embeds in B". This pre
isely means that for

u

v

arbitrarily 
lose

to � (resp. �

�1

), B

v

embeds in A

u

(resp. A

v

in B

u

).

Now assume that (A�B)

`

embeds in M

k

. Then, using the terminology

above, B

(1+�

�1

)`

embeds in M

k

. So Æ(B) �

k

`(1+�

�1

)

. Similarly A

(1+�)`

embeds in M

k

and Æ(A) �

k

`(1+�)

.

But

k

`(1+�

�1

)

+

k

`(1+�)

=

k

`

, whi
h shows that Æ(A) + Æ(B) � Æ(A �B).

Finally, Æ(M

k

) = k follows from the fa
t that dim(M

t+1

) > dim(M

t

),

for all t � 1.

q.e.d.
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Lemma 3.5 Assume that M is a stru
ture satisfying prin
iples WPHP

2n

n

and CC. Then D(M) n f�1g satis�es the 
an
ellation law:

d

0

� d = d

1

� d! d

0

= d

1

Proof :

Let A

0

, A

1

and B be de�nable sets with dimension d

0

, d

1

and d respe
-

tively. Assume that d

0

� d = d

1

� d but d

0

6= d

1

. By CC this means that

either d

0

< d

1

or d

1

< d

0

; assume the former. Then, again by CC, any �nite

number of 
opies of A

0

embeds in A

1

.

By d

0

� d = d

1

� d it follows that A

1

�B embeds in k 
opies of A

0

�B,

some k � 1. On the other hand, 2k 
opies of A

0

embed in A

1

, so also 2k


opies of A

0

� B embed in A

1

� B, and hen
e also in k 
opies of A

0

� B.

This violates the WPHP

2n

n

prin
iple.

q.e.d.

We 
on
lude the se
tion with a notion of independen
e in partially or-

dered semigroups that will be useful in the next se
tion. It stems from the

fa
t that a partially ordered semigroup S satisfying 
an
ellation naturally

generalizes to a Q-ve
tor spa
e.

De�nition 3.6 Let (S; 0;�;�) be a partially ordered semigroup with the


an
ellation law. A set D � S n f0g is independent i� for any n � 1, any

d

1

; : : : ; d

n

2 D, and any u

i

; v

i

2N for i � n it holds:

� If

P

i

u

i

� d

i

=

P

i

v

i

� d

i

then u

i

= v

i

for all i � n.

The following is obvious.

Lemma 3.7 Let (S; 0;�;�) be a partially ordered semigroup with the 
an-


ellation law. Then fdg is an independent set for any non-zero d 2 S. Hen
e

there is a non-empty maximal independent subset of S.

4 Approximate Euler 
hara
teristi


In 
omplexity theory the error in approximate 
ounting of A � f0; 1g

n

is

a per
entage that gets smaller as n in
reases. In our ideal situation with

in�nite ambient spa
e the error will be in�nitesimal.
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De�nition 4.1 Let R be a partially ordered ring. De�ne three relations on

R:

1. a << b i� for all k 2 N, k � a < b.

2. a

_

�b i� for any rational q > 1 there are k; ` 2 N su
h that

`

k

< q and

k � a < ` � b.

3. a _=b i� a

_

�b ^ b

_

�a.

The general idea of axioms of aE
 is to repla
e all original equalities

a = b (or inequalities a � b) in De�nitions 2.1 and 2.3 by a _=b (or by a

_

�b).

De�nition 4.2 A weak approximate Euler 
hara
teristi
 on M (aE
) is a

fun
tion

� : Def(M)! R

where R is a partially ordered ring, satisfying the following inequalities for

all de�nable sets A, B:

1. �(A) = jAj, for �nite A.

2. �(A

_

[B) _=�(A) + �(B).

3. �(A�B) _=�(A) � �(B).

4. �(A)

_

��(B), if A is de�nably embedded into B.

One 
ould de�ne strong aE
 by adding, whenever f : A ! B is a de�nable

map and 
 2 R, the 
ondition

� �(A) _=
 � �(B), if 8b 2 B �(f

(�1)

(b)) _=
.

However, a pair of 
onditions of the form:

� �(A)

_

�
 � �(B), if 8b 2 B �(f

(�1)

(b))

_

�
.

� 
 � �(B)

_

��(A), if 8b 2 B 


_

��(f

(�1)

(b)).

for f : A 7! B is de�nable and inje
tive and 
 2 R is useful for proving

inequalities of the following type. For C � A�B, if �(C) �

1

2

�(A�B) then

there is b 2 B su
h that the se
tion C

b

:= fa 2 A j (a; b) 2 Cg has aE
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�(C

b

)

_

�

1

2

�(A). We shall not get into details about strong aE
 as we do not

use it anywhere in the paper.

We shall see in the proof of the next theorem that the �rst 
ondition is

largely 
osmeti
: Whenever � satis�es 
onditions 2: - 4:, it 
an be modi�ed

on �nite sets in order to satisfy the �rst 
ondition too

2

.

Theorem 4.3 If a stru
ture M admits a non-trivial weak approximate Eu-

ler 
hara
teristi
 then it satis�es weak pigeonhole prin
iple WPHP

2n

n

: There

is no de�nable set A 6= ; and a de�nable embedding of two disjoint 
opies

of A into A.

On the other hand, if M satis�es WPHP

2n

n

and prin
iple CC: For any

two de�nable sets A and B, either A de�nably embeds in B or vi
e versa,

then it admits a non-trivial weak approximate Euler 
hara
teristi
.

Proof :

Consider the �rst part. Assume that � is a weak aE
. We �rst observe

that �(A) > 0 for all non-empty A. As ; � A, �(;) = 0

_

��(A) and so

0 � �(A). Further, a singleton embeds into A, i.e. 1

_

��(A) and hen
e

0 6= �(A). So 0 < �(A).

To prove WPHP

2n

n

, assume for the sake of 
ontradi
tion that two 
opies

of a non-empty A embed intoA. Then �(A

_

[A)

_

��(A). We have 2�(A) _=�(A

_

[A)

and so 2�(A)

_

��(A). This means that there are k; ` 2 N with

`

k

> 1 arbi-

trarily 
lose to 1, su
h that 2k�(A) � `�(A). Taking su
h k; ` with

`

k

< 2

gives a 
ontradi
tion with 0 < �(A): 0 < �(A) implies 0 < (2k� `)�(A) and

hen
e `�(A) < 2k�(A).

The proof of the se
ond part of the theorem is divided into several 
laims.

First note that WPHP

2n

n

implies WPHP

n

2

n

and soM does admit (by Se
tion

3) nontrivial dimension fun
tion.

Re
all the universal dimension fun
tion dim on Def(M) from the proof

of Theorem 3.2. As dim fa
tors through the quotient map [: : :℄ : Def(M)!

g

Def(M), we shall sometimes write dim(a) = d instead of dim(A) = d for

some A with [A℄ = a. Then dim is the quotient map given by the equivalen
e

relation

9k; ` � 1; a � k � b ^ b � ` � a

where � is the partial ordering in

g

Def(M) indu
ed by the embedability

in Def(M). By CC the ordering is, in fa
t, linear. We shall denote by

2

In fa
t, as pointed out by the referee, for reasons of 
omplexity of � (or when applying

the 
onstru
tion to in
omplete theories) it 
ould be best to simply remove 
ondition 1.

altogether.
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(S; 0;�;�) the linearly ordered semigroup obtained from D(M) by deleting

�1.

Fix d 2 S; i.e. d is the dimension of a non-empty set. Let E

d

�

g

Def(M)

be the set of all a 2

g

Def(M) of dimension d, together with 0. Clearly,

(E

d

; 0;+) is a sub-semigroup of the additive semigroup of

g

Def(M).

Claim 1: (E

d

; 0;+) homomorphi
ally maps onto a sub-semigroup of the

additive semigroup of the non-negative reals (R

�0

; 0;+), su
h that only 0

maps to 0.

To prove the 
laim �x an element e 2 E

d

. For any non-zero a 2 E

d

de�ne the set of rational numbers

C

e

(a) := f

`

k

j k � a � ` � e; both k; l � 1g

As the dimensions of a and e are the same, there is some ` su
h that a � ` �e

and so C

e

(a) is non-empty. De�ne the real number 


e

(a) � 0 to be the

in�mum of C

e

(a).

First note that a
tually 


e

(a) > 0: We have e � m � a for some m � 1,

and so k � a � ` � e implies k � a � (`m) � a. If it were that 


e

(a) = 0 we


ould �nd k; ` � 1 su
h that

`

k

<

1

2m

, i.e. 2`m < k and the inequality

k � a � (`m) � a would show that WPHP

2n

n

fails in M for a set A for whi
h

[A℄ = (`m) � a.

Further de�ne 


e

(0) := 0. The map




e

: (E

d

; 0;+)! (R

�0

; 0;+)

is a homomorphism: If k � a � ` � e and k

0

� a

0

� `

0

� e, then (kk

0

) � (a+ a

0

) �

(k

0

`+ `

0

k) � e. So C

e

(a) +C

e

(a

0

) � C

e

(a+ a

0

).

But similarly one shows that C

e

(a)+C

e

(a

0

) is downward 
o�nal in C

e

(a+

a

0

) (this part is analogous to the proof of the 
laim in the proof of Theorem

3.4). Assume k � (a+ a

0

) � ` � e. We need to demonstrate that u � a � v � e,

u

0

� a

0

� v

0

� e for some u; v; u

0

; v

0

� 1 su
h that

v

u

+

v

0

u

0

is arbitrarily 
lose

to

`

k

. To simplify the notation let us write a � 


a

0

(a) � a

0

(meaning that we


an �nd m;n � 1 with

n

m

arbitrarily 
lose to 


a

0

(a) su
h that m � a � n � a

0

)

and similarly a

0

� 


a

(a

0

) � a. Then the assumption k � (a + a

0

) � ` � e

implies k(1 + 


a

0

(a)) � a

0

� ` � e (in the proper formulation with m, n this is

k(m + n) � a

0

� `m � e obtained from k � (a + a

0

) � ` � e by �rst multiplying

both sides by m and then repla
ing m �a by n �a

0

) and k(1+


a

(a

0

)) �a � ` �e.

So it is enough to show that

`

k(1 + 


a

0

(a))

+

`

k(1 + 


a

(a

0

))

=

`

k
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WPHP

2n

n

implies 


a

(a) = 1 and as 


a

(a

0

) � 


a

0

(a) � 


a

(a) we have 


a

(a

0

) �




a

0

(a) � 1. That the inequality 
annot be stri
t follows by CC: Either

m � a � n � a

0

or n � a

0

� m � a, i.e. either

n

m

2 C

a

0

(a) or

m

n

2 C

a

(a

0

). This

proves the 
laim.

Note that the same argument works equally well in a more general situ-

ation (whose spe
ial 
ase is Claim 1).

Claim 2: 


[A℄

([B℄) � 


[A

0

℄

([B

0

℄) = 


[A�A

0

℄

([B �B

0

℄), whenever both sides are

de�ned.

Claim 3: D(M) is linearly ordered. Further, if dim(A) < dim(B), then k


opies of A embed in B, for any k � 1.

D(M) is 
learly linearly ordered. Assume that k 
opies of A do not

embed in B. Then, by CC, B embeds into k 
opies of A and so dim(B) �

dim(A) whi
h 
ontradi
ts the assumption that dim(A) < dim(B).

Note that the 
onstru
tion of Claim 1 also yields the following 
hara
-

terization of the relation 


a

(b) = 1.

Claim 4: For a; b 2 E

d

de�ne a � b i� there are de�nable sets A and B

with [A℄ = a and [B℄ = b and dim(A4B) < d (A4B is the symmetri


di�eren
e). Then a � b i� 


a

(b) = 1.

Denote by [A℄

�

the �-
lass of [A℄. By Claims 1 and 4, [A℄

�

maps additive

semigroup (E

d

; 0;+) into (R

�0

; 0;+). So we want to de�ne the aE
 as

[A℄

�

taking the value in the dire
t sum of 
opies of (R

�0

; 0;+), graded by

(S; 0;�;�), i.e. in R[x

S

℄. A homomorphism of (E

d

;+) into (R

>0

;+) is a

positive multiple of 


a

(x), any a 2 E

d

by Claim 1, and hen
e we de�ne the

aE
 in the following way.

Let fe

d

g

d

be a �xed set of points, one from ea
h E

d

for ea
h dimension

d 6= �1. Let fun
tion E : d 2 S ! �

d

2 R

>0

be arbitrary. De�ne map

�

E

: Def(M)! R[x

S

℄

for a non-empty de�nable A by

�

E

(A) := �

d




e

d

([A℄) � x

dim(A)

We will show in Claims 5 and 6 that one 
an 
hoose points fe

d

g

d

and fun
tion

E so that �

E

is the desired aE
.

Intuitively, one would like to have e

d

's the \unit d-dimensional 
ubes" in

whi
h 
ase all �

d

's 
ould be equal to 1. However, in a general situation there
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is no su
h obje
t and so we pi
k e

d

's arbitrarily and use �

d

's for a re
ti�
ation

of the values, so that they obey 
onditions 1. and 3. of De�nition 4.2.

Claim 5: Assume e

0

is the [: : :℄-
lass of a �nite set with n � 1 elements

and �

0

= n. Then for any �nite A: �

E

(A) = jAj.

The value of �

E

(A) is n times the in�mum of all

`

k

su
h that k 
opies of

A embed into an `n-element set. The in�mum is 
learly

jAj

n

.

The next 
laim will ultimately follow from Claim 2 and 
ould be proved

dire
tly if we 
ould use an indu
tion on the dimension. However, we need to

pro
eed more generally in order to apply to any possible semigroup S where

an indu
tion argument is not available.

Claim 6: For any � there is a set fe

d

g

d6=�1

with e

d

2 E

d

and fun
tion E

with �

0

= � su
h that the resulting fun
tion �

E

satis�es the multipli
ative


ondition 3. of De�nition 4.2.

By Lemmas 3.5 and 3.7 semigroup S satis�es the 
an
ellation law and

there is a non-empty maximal independent (in the sense of De�nition 3.6)

subset D � S n f0g. Let A

d

, d 2 S n f0g, be some �xed sets su
h that

[A

d

℄ = e

d

2 E

d

.

De�ne �

d

, for d 6= 0, as follows. If d 2 D, �

d

:= 1. If d =2 D then, by the

maximality of D, there are n, d

i

and u

i

; v

i

for i � n, and u � 1 su
h that

X

i

u

i

� d

i

+ u � d =

X

i

v

i

� d

i

(by the 
an
ellation law we may assume that d appears only on one side of

the equation; similarly we 
ould assume that u

i

v

i

= 0 for all i � n). Then

de�ne:

�

d

:= 


[�

i

A

v

i

d

i

℄

([�

i

A

u

i

d

i

�A

u

d

℄)

1=u

where �

i

is a Cartesian produ
t. The intuition behind this de�nition is this:

A

d

's for d 2 D are postulated to have the "unit size". The "right size" of

A

d

for d =2 D is then 
omputed using a relation between Cartesian produ
ts

involving the set and some unit size sets, thinking that the Cartesian u-th

power in
reases the size to exponent u.

By the equality

P

i

u

i

�d

i

+u �d =

P

i

v

i

�d

i

the sets �

i

A

v

i

d

i

and �

i

A

u

i

d

i

�A

u

d

have the same dimension and so the term de�ning �

d

is well-de�ned. By

the usual manipulations with linear equalities (this we 
an do having the


an
ellation law) there is, for any given d, the minimal u for whi
h an

equality like

P

i

u

i

�d

i

+u �d =

P

i

v

i

�d

i

holds and all other equalities of this
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type are its integer multiple. This shows that the value of �

d

is independent

of the 
hoi
e of the parti
ular equation and u. Here we use the property




[A℄

([B℄) � 


[A

0

℄

([B

0

℄) = 


[A�A

0

℄

([B � B

0

℄) from Claim 2 (and we shall use it

repeatedly without further mentioning).

To demonstrate the multipli
ative property �

E

(U) � �

E

(V ) = �

E

(U � V )

assume that dim(U) = d

0

and dim(V ) = d

1

. Then we want to show:

�

d

0




[A

d

0

℄

([U ℄)�

d

1




[A

d

1

℄

([V ℄) = �

d

0

�d

1




[A

d

0

�d

1

℄

([U � V ℄)

As




[A

d

0

℄

([U ℄)


[A

d

1

℄

([V ℄) = 


[A

d

0

�A

d

1

℄

([U�V ℄) = 


[A

d

0

�A

d

1

℄

([A

d

0

�d

1

℄)


[A

d

0

�d

1

℄

([U�V ℄)

and




[A

d

0

�A

d

1

℄

([A

d

0

�d

1

℄)

�1

= 


[A

d

0

�d

1

℄

([A

d

0

�A

d

1

℄)

it is enough to show that:

�

d

0

�

d

1

= �

d

0

�d

1




[A

d

0

�d

1

℄

([A

d

0

�A

d

1

℄)

The values of the �' are 
omputed from some linear dependen
e relations in

S involving integer s
alar multiples of d

0

, d

1

and d

0

� d

1

respe
tively. By

taking some 
ommon multiple we may assume that the dimensions appear

in the liner dependen
ies with s
alar u � 1. In parti
ular,

�

d

0

= 


[B

0

℄

([B

1

�A

u

d

0

℄)

1=u

and �

d

1

= 


[C

0

℄

([C

1

�A

u

d

1

℄)

1=u

where B

0

; B

1

; C

0

; C

1

are Cartesian produ
ts of A

d

's for some d 2 D (i.e. of

the sets we postulated to have unit size, so we may think of B

0

; B

1

; C

0

; C

1

as "unit 
ubes"). It holds:




[B

0

℄

([B

1

�A

u

d

0

℄)

1=u




[C

0

℄

([C

1

�A

u

d

1

℄)

1=u

= 


[B

0

�C

0

℄

([B

1

�C

1

�(A

d

0

�A

d

1

)

u

℄)

1=u

=




[B

0

�C

0

℄

([B

1

� C

1

�A

u

d

0

�d

1

℄)

1=u




[A

u

d

0

�d

1

℄

([(A

d

0

�A

d

1

)

u

℄)

1=u

The left-hand side is �

d

0

�

d

1

, while the right-hand side is �

d

0

�d

1




[A

d

0

�d

1

℄

([A

d

0

�

A

d

1

℄). This proves the 
laim.

We are ready now to prove the se
ond part of the theorem. Take E

provided by Claim 6, with �

0


hosen so as to satisfy the hypothesis of Claim

5. Hen
e the map �

E

satis�es 
onditions 1. and 3. of De�nition 4.2, by

Claims 5 and 6.
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Condition 4. is satis�ed for any E . Assume A embeds into B. Then

either dim(A) < dim(B) or dim(A) = dim(B). In the former 
ase, by

Claim 3, even dim(A) << dim(B). In the latter 
ase 


[B℄

([A℄) � 1, so




e

([A℄) � 


e

([B℄) for e = e

dim(A)

, and so �

E

(A) � �

E

(B).

It remains to verify 
ondition 2.: Let A, B be two disjoint de�nable sets

and assume �rst that dim(A) < dim(B). Then �

E

(A [ B) = �

E

(B) and

�

E

(A) << �

E

(B), so �

E

(A [B) _=�

E

(A) + �

E

(B) (as x

dim(A)

<< x

dim(B)

).

Next assume dim(A) = dim(B). Then even �

E

(A [B) = �

E

(A) + �

E

(B)

by Claim 1.

q.e.d.

It would be interesting to avoid using prin
iple CC in the theorem. This


ould be done if, for example, every stru
ture satisfying WPHP

2n

n

had an

expansion still satisfying WPHP

2n

n

but also satisfying CC. Is this true?

Also, when 
ould the role of (R

�0

; 0;+;�) (both as 
oeÆ
ients or as

degrees) in R[x

S

℄ be taken by (Q

�0

; 0;+;�)?

5 Examples

We 
on
lude the paper by few examples of well-known stru
tures to illustrate

some fa
ts and notions dis
ussed in the paper.

1. Example: reals R.

The real 
losed �eld R satis�es the ontoPHP (as bije
tions need to pre-

serve E
 and E
 of a set and of the set plus one point di�er; R admits E


- see e.g. [4℄) but 
learly not PHP or WPHP

2n

n

. Hen
e R admits neither

ordered E
 nor aE
. On the other hand R admits a dimension fun
tion (see

e.g. [4℄) and satis�es WPHP

n

2

n

(by dimension reasons). R also satis�es CC,


f. [9℄.

2. Example: 
omplex numbers C.

Complex numbers satisfy PHP (by a theorem of Ax [2℄) and hen
e the

other three (W)PHP prin
iples too. The universal E
 is thus ordered and

so it is also aE
. The Grothendie
k ring K

0

(C) is huge; for example, it


ontains the ring of 
omplex polynomials in 
ontinuum many unknowns (
f.

[9℄). Prin
iple CC fails for C.

3. Example: stru
tures with global ranks.
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Let d : Def(M) ! S be a dimension fun
tion with (S;�1; 0;_;�;�)

linearly ordered. De�ne

deg

d

: Def(M)! N [ f1g

as the maximum n 2 N s.t. there are n disjoint subsets of A ea
h of the

same d-dimension as A, and deg

d

(A) :=1, if no su
h n exists.

A good example of su
h d is Morley rank RM in almost strongly min-

imal stru
tures

3

; values of deg

RM

are in N, for example, for strongly

minimal stru
tures. As a simple spe
i�
 example we take the stru
ture

M := (N; su
). As noted in [9, Se
.8℄, M satis�es WPHPs while obviously

not ontoPHP. De�nable subsets A � M

n

are disjoint unions of sets A

i

of

the form

U

1

� : : :� U

n

where ea
h U

i

� N is either �nite or 
o-�nite. De�ne d(A) to be the

maximum number of 
o-�nite in some A

i

. deg

d

has values in N.

De�ne fun
tion � : Def(M)! N[x

S

℄ by

�(A) := deg

d

(A) � x

d(A)

Then � is an aE
.

To see this note that for A �nite, d(A) = 0 and deg

d

(A) = jAj. So

�(A) = jAj � x

0

= jAj.

For the additivity 
onditions let d(A) = u � v = d(B). If u < v,

deg

d

(A

_

[B) = deg

d

(B), so

�(A

_

[B) = deg

d

(A

_

[B)x

v

= �(B) � �(A) + �(B) :

If u = v, deg

d

(A

_

[B) = deg

d

(A) + deg

d

(B), and

�(A

_

[B) = (deg

d

(A) + deg

d

(B))x

v

= �(A) + �(B) :

For the opposite inequality �(A) + �(B)

_

��(A

_

[B) write

�(A) + �(B) = deg

d

(A)x

u

+ deg

d

(B)x

v

If u < v, deg

d

(A)x

u

<< x

v

, so �(A) + �(B)

_

��(B) � �(A

_

[B). If u = v,

�(A) + �(B) = �(A

_

[B).

3

As pointed out by the referee, more generally one 
an take Las
ar rank in stru
tures

of �nite Las
ar rank.
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I leave it to the reader to 
he
k the other two properties required from

aE
.

4. Example: pseudo-�nite �elds.

Let F be an ultraprodu
t of �nite �elds F

q

's. Chatzidakis, van den

Dries and Ma
intyre [3℄ assign to all de�nable A in F a pair (�; d), with

� a positive rational and d a natural number su
h that for some X in the

ultra�lter and all q 2 X it holds:

jA(F

q

)� � � q

d

j = O(q

d�

1

2

)

This also yields an aE


A �! � � x

d

2 Q[x℄

(
hanging values for �nite A to jAj).

5. Example: bounded arithmeti
.

This is another example of a stru
ture satisfying WPHP

2n

n

but not on-

toPHP. Let (M; 0; 1;�;�) be a 
ountable non-standard model of true arith-

meti
 with ternary relations � and � for graphs of additions and multipli-


ation instead of the fun
tions themselves. Let n 2 M be a non-standard

number and M

n

the substru
ture with the universe [0; : : : ; n℄.

One 
an �nd a bije
tion f (not de�nable in M

n

) between [0; : : : ; n℄ and

[0; : : : ; n�1℄ (and so enfor
ing a failure of ontoPHP) su
h that the expanded

stru
ture still satis�es WPHP

2n

n

(and also indu
tion for all formulas, possibly


ontaining symbol f); this follows from [10, 8, 11℄, see also [9℄.

It is an interesting open problem in bounded arithmeti
 whether we 
an

similarly violate by f one of the weak pigeonhole prin
iples, but in a way

so that indu
tion for all formulas is maintained. This has 
lose relations to

propositional proof 
omplexity too.

Let us 
lose by a general remark the referee made and whi
h I 
on-

sider important. The 
onstru
tions in the paper do not really use the

fa
t that we operate with a semiring derived from a �rst-order stru
ture.

Semiring

g

Def(M) is more here important than the 
lass of de�nable sets

Def(M). Combinatorial properties of stru
tures are re
e
ted in �rst-order

properties of

g

Def(M) (for example, WPHP

2n

n

implies that

g

Def(M) satis�es

8x; y; z;x+x+y+z 6= x+z and CC implies the validity of 8x; y9z; (x+z =

y _ y + z = x)) and that is the only way the prin
iples are used in the 
on-

stru
tions. Thus it 
ould make a good sense to work purely abstra
tly with

18



semirings. Furthermore, this abstra
t approa
h allows to split the ques-

tion about the importan
e of CC (raised at the end of Se
tion 4) into two

separate questions. First, 
an one �nd a 
ommutative semiring satisfying

WPHP

2n

n

but not admitting nontrivial weak aE
? And se
ondly, 
an su
h

a semiring take the form of

g

Def(M) for some �rst order stru
ture M?
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