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Abstract

We define the notion of approximate Euler characteristic of defin-
able sets of a first order structure. We show that a structure admits a
non-trivial approximate Euler characteristic if it satisfies weak pigeon-
hole principle WPHPZ": two disjoint copies of a non-empty definable
set A cannot be definably embedded into A, and principle CC of com-
paring cardinalities: for any two definable sets A, B either A definably
embeds in B or vice versa. Also, a structure admitting a non-trivial
approximate Euler characteristic must satisfy WPHP%”.

Further we show that a structure admits a non-trivial dimension )
function on definable sets iff it satisfies weak pigeonhole principle WPHP, :
for no definable set A with more than one element can A2 definably
embed into A.

An abstract Euler characteristic (Ec) on a first order structure assigns
to definable sets values in a commutative ring such that basic properties of
counting with finite sets are fulfilled (we recall the formal definition from [6]
in Section 2). Not all structures admit nontrivial Ec. For example, if there
is a definable bijection between a definable set and the set plus one other
point (i.e., the so called onto-pigeonhole principle ontoPHP fails), then 0 = 1
in the ring and everything is trivial. In fact, the validity of the ontoPHP
characterizes structures admitting the weak Ec, cf.[6] or Theorem 2.2. The
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ordinary PHP: a definable set cannot be definably embedded into its proper
subset, characterizes structures where the weak Ec is partially ordered, cf.[9].

Important variants of the pigeonhole principle are the so called weak
pigeonhole principles; while PHP principles say in some form or other that
a bigger set cannot embed into a smaller one, WPHP principles assert that
a set cannot embed into a much smaller set. The particular definition of the
qualification much determines various forms of WPHP. WPHP principles
are prominent in proof complexity and in bounded arithmetic, a bridge be-
tween complexity theory and logic. One motivation for the current research
is the collection of open problems about the provability of WPHPs in weak
formal systems, cf.[5]. These problems amount to constructions of models
(of various weak arithmetics) in which WPHPs fail, and one wants to under-
stand general properties of such models. Another motivation is somewhat
more general. In [1, 6, 9, 7] it was shown that the validity of forms of PHP
and of some other counting principles (e.g. the modular counting principles,
cf.[1, 6]) in a structure is equivalent to the existence of an abstract Euler
characteristic for sets definable in the structure with particular properties
(depending on the particular counting principles). Hence it is interesting
to find out if WPHPs can be also characterized by the existence of some
natural invariants of definable sets.

We shall consider two variants of WPHP:

e WPHP2": Two disjoint copies of a non-empty definable set A cannot
be definably embedded into A.

o WPHPZ2: For no definable set A with more than one element can A2
definably embed into A.

It will not be difficult to see that VVPHPZ2 principle characterizes struc-
tures that admit a non-trivial dimension function (in the sense of Schanuel
[12]; we shall recall the definition in Section 3) on their definable sets. The
case of WPHP2" is more involved and requires an introduction of a new in-
variant of definable sets which we shall call approzimate Euler characteristic
(aEc).

The idea of aKc is that similarly as Ec formalizes counting, aKc will
formalize approximate counting: aKc counts the size of definable sets but
with a possible error, the error being a negligible percentage. This is an im-
portant issue in complexity theory (and in bounded arithmetic) as for some
complexity classes the exact counting is hard (e.g., given a polynomial-time
set the function - of = - that counts the number of elements in the set below



x is generally assumed not to be polynomial-time) while an approximate
counting (the function counts the number of elements with some bounded
error) is possibly much simpler. We shall show that a structure admits a
non-trivial approximate FKuler characteristic if it satisfies weak pigeonhole
principle WPHP%" and the principle CC of comparing cardinalities (this
principle and its two variants were considered in [9]):

e (C'C: For any two definable sets A, B either A definably embeds in B
or vice versa.

On the other hand, a structure admitting a non-trivial approximate Euler
characteristic must satisfy WPHP2".

One would like to avoid using the CC principle in the construction. That
would then give an exact characterization of structures with non-trivial aEc
as those satisfying WPHP2". CC could be avoided, in principle, if it would
hold that any structure satisfying WPHP%" can be expanded to a structure
still satisfying WPHP2" but also satisfying CC. We do not know if this is
true.

The paper is organized as follows. In Section 1 we give few preliminaries
on semirings. Section 2 recalls definitions of (ordered) Ec and facts about
them from [6, 9]. The dimension function and WPHPZ2 are considered in
Section 3. The definition of aEc and the connection to WPHP2" are in
Section 4. Section 5 offers several examples of structures and their aEc’.
More background information can be found in [6, 9, 7].

1 Preliminaries on semirings

A semiring, or a rig in an equivalent terminology, is a structure (R,0,1,+,-)
having properties like a ring, except that (R, 0, +) may be only a semigroup.
We shall consider only commutative semirings. Examples are N, NJz] or
generally ordered rings without the "negatives”!.

A semiring important for us is constructed from sets definable in a struc-
ture M as follows. Let Def(M) be the collection of subsets of all M*, k > 1,
that are definable in M with parameters. Two definable sets A, B are
equivalent, A ~ B, iff there is a definable bijection between them. The set
Def(M) := Def(M)/ ~, together with zero 0 := )/ ~, one 1 := {a}/ ~ (a
any element), and operations + - disjoint union, and - - Cartesian product

"Hence the name rig, e.g. in [12]. A full definition can be found there.



forms a semiring. We shall denote the quotient map from Def(M) to Def(M)
by [...].

A partially ordered ring R is R together with a subset P C R such that
0,1e P,P+PCP,P-PCP,andif 0 # z € P then —x ¢ P. P are the
non-negative elements of R and the partial ordering < y is given by the
condition y — = € P.

For a an element of a semiring and k € N, k-a denotes the scalar multiple
a+ ...+ a, k-times.

Definition 1.1 Let (S,0,®,<) be a linearly ordered commutative semi-
group and R a linearly ordered semiring.

The linearly ordered commutative semiring R[x°] consists of elements
that are finite R-linear combinations of expressions ", u € S. Formally,
R[z°] is the set of partial finite functions f : S — R with the addition
defined coordinate-wise and the multiplication defined by the rule: (f-g)(s) =
>utv—s [ (@) - g(v). The linear ordering is the lexicographic ordering given
by: f < g iff f(u) <g g(u), where u € S is the mazimal (in <g) in the
domains of both f and g such that f(u) # g(u).

Note that R[z°] is a ring if R is a ring. We shall use this construction
for R one of N (natural numbers), Q (rationals) or R (reals), and S being
the additive semigroup of the non-negative reals (R=°,0, +, <).

2 Euler characteristic

The abstract Euler characteristic on first-order structures has been defined
in [6]. Its variant, the weak Ec, is a special case of a general construction by
Schanuel [12]. He defined (in our terminology) the weak Euler characteristic
and the dimension function on any distributive category. However, I shall
follow [6, 9] and consider only the category of sets and maps definable in a
structure.

Definition 2.1 ([6, Def.2.1]) Let M be a first-order structure. Let R be
a commutative ring with unity. A function

X : Def(M) — R

is an Euler characteristic on M over R iff it satisfies the following con-
ditions: x({a}) = 1 for any a € M*, x is additive on disjoint unions and



multiplicative on Cartesian products, and x factors through the quotient map
[...]: Def(M) — Def(M).
The last condition is that

e x(A) = c- x(B), whenever ¢ € R, A,B € Def(M) and there is a
definable map f with domain A and range B such that each its fiber
fED(b), be B, has Euler characteristic x(f=" (b)) = c.

The function x/R is a weak Euler characteristic iff x/R satisfies all condi-
tions but the last one. Fuler characteristic is sometimes called strong Fuler
characteristic, in order to distinguish it from the weak one.

One can state the definition of weak Ec in a more algebraic language:
The weak Ec is the quotient map [...] : Def(M) — Def(M) composed with
a semiring-homomorphism of De/f\(—/M ) into a ring. We use the definition
explicitly referring to Def(M) as it allows for the formulation of the fifth,
fiber, condition. That condition is important for various applications (e.g.
[6]) and it has also the nice property that it implies, together with condition
2., all other conditions, cf. [6].

If M admits a weak Ec then there exists a universal one with the target
ring denoted Ky(M) - the Grothendieck ring of the structure, cf. [6, 9].

The following theorem characterizes when a structure admits a weak Eu-
ler characteristic. No such transparent characterization is known for strong
Ec, but there is also the universal strong Ec (see [9]).

Theorem 2.2 ([6, Thm.3.1]) M admits a nontrivial weak Euler charac-
teristic iff it satisfies the onto pigeonhole principle ontoPHP: There is no
definable set and a definable bijection between the set plus one other point
and the set.

Definition 2.3 ([9, Def.4.2]) A weak Euler characteristic x/R on M is
partially ordered if R is partially ordered and the range of x is a subset of

the non-negative elements of R. Equivalently, if A C B are definable sets
then x(A) < x(B).

Theorem 2.4 ([9, Thm.4.3]) M admits an ordered weak Euler charac-
teristic iff it satisfies the ordinary pigeonhole principle PHP: There is no

definable set and a definable injection of the set into a proper subset of it-
self.



3 Dimension

Dimension of definable sets (in a special case of the definition by Schanuel
[12]) is a semiring-homomorphism of De/f(VM ) into a semiring in which 14+1 =
1. For a part of the next definition we need to introduce a partial ordering
on a semiring S. Define the relation a < b by the condition a +b=10. If §
satisfies 1 + 1 = 1 then the relation is a partial ordering (1 4+ 1 = 1 implies
the reflexivity).

Definition 3.1 ([12],[9, Sec.9]) An abstract dimension function on M is
a function
d: Def(M) — S

where S is a semiring in which 1 + 1 = 1, such that d factors through
[]: Def(M) — Def(M) and d/~ is a semiring homomorphism.

We say that dimension d is non-trivial iff d(A?) > d(A) for all infinite
definable sets A.

Semirings S in which 1+ 1 = 1 can be transparently given in the ”log-
arithmic” notation as an upper semilattice (S, —o00,<,0,V,®) in which 0
becomes —oo, + becomes the semilattice union V with partial ordering <,
1 becomes 0 and - becomes ®.

It will be convenient to think of —oo as an extra element of the universe
of (S,—00,<,0,V,®) outside of S. Then (S5, —00,<,0,V,®) is uniquely
determined by the partially ordered semigroup (S, 0, ®, <) in which 0 is the
minimal element and a < b implies a ® ¢ < b c¢. On the other hand, having
a partially ordered semigroup (5,0, ®, <) we can adjoin a new element —oo,
stipulate that —oo @ a = —o00 and —o0 < @ for all ¢ € S, and define V from
the ordering. In this way there is a correspondence between semirings where
1 +1 =1 and partially ordered semigroups. One can restate the definition
of a dimension as a function d from Def(M) \ {[#]} into a partially ordered
semigroup (S, 0, ®, <) such that:

{a}]) =
[A]) < d([B]), if A definably embeds into B,
[AUB]) = maz(d([A]), d([B])),

d(
d(
d(
d([A x B]) = d([A]) ® d([B]).



Note that the condition of the non-triviality of d implies that for all k& >
1, d(M**1) > d(M*) (otherwise it would also hold that d(M?Z¥) < d(M*),
violating the non-triviality condition). In fact, similarly d(A¥*+') > d(A¥),
for any infinite definable A. Furthermore, the nontriviality also implies that
d(A) # 0 for any infinite definable A.

The next proposition is a characterization of structures admitting a non-
trivial dimension function.

Theorem 3.2 M admits a non- tmvzal dimension function iff it satisfies the
weak pigeonhole principle WPHP” There is no definable set A with at least
two elements and a definable embedding of A% into A.

Proof :

Assume that M admits a non-trivial dimension function. Hence d(42) >
d(A) for all infinite definable sets A. This inequality prevents a definable
embedding of A2 into A as such an embedding would imply d(A?) < d(A).
As VVPHPZ2 automatically holds for finite sets, M satisfies WPHPf.

For the opposite direction assume that M satisfies WPHPf. It is suf-
ficient to show that dim(A?) > dim(A) in the universal dimension function
dim : Def(M) — D(M), defined in [9]. The construction of the universal
dim is simple. Define an equivalence relation = on Def(M) by: A = B
iff for some k,¢ € N, A definably embeds into k£ copies of B and B defin-
ably embeds into ¢ disjoint copies of A. The semiring D(M) is Def(M)/ =,
and the universal dimension function d is the quotient map. To prove that
dim(A?) > dim(A) we need to show, for infinite definable A, that A? can-
not definably embed into k& copies of A, any £k € N. Assume f is such a
definable embedding. Define another embedding ¢ : A* — A2 by mapping
first (7,y,2,t) € A* to (f(=,y), f(2,t)) € (k- A)?, and thinking of (k- A)?
as k? copies of A? mapping this further by f into k® copies of A. Using
parameters for k% distinct elements of A, k3 - A embeds into A2.

q.e.d.

If the structure satisfies also the CC principle we can define a combina-
torially more transparent dimension function with values in (R=°,0, +, <).

Definition 3.3 Let M be a structure and let dim : Def(M) — D(M) be the
universal dimension function. Define § : Def(M) — RZ°U{—o0} by putting
d(0) = —oo and defining 6(A) for non-empty A as the infimum of all % such
that k, £ > 1 and dim(AY) < dim(MF) in D(M).



Note that as A is a subset of some power of M the number §(A) is
defined.

Theorem 3.4 Let M be a structure satisfying both WPHPZ2 and CC. Then
§ is a non-trivial dimension function and §(M*) =k, for all k > 1.

Proof :
As §(A) depends on dim(A) only, ¢ factors through [...], 6({a}) =
§(A) < 6(B) if A definably embeds into B, and §(AUB) = max(5(A),d(B)
The CC principle is used in verifying the last condition.

Claim: 6(A x B) = §(A) + §(B), for all definable A and B.

Assume first dim(AY) < dim(M*) and dim(B¥) < dim(M"). Then
dim(A®” x B%) < dim(M* x M®™). As B = & 4 ¥ ¢his shows that
always §(A x B) < §(A) + d(B).

We need to prove that the inequality cannot be strict. By CC either A
definably embeds in B or vice versa. Assume the former.

Consider first the case that 6(A) = 0. So for any £, dim(A*) < dim(M™)
such that % goes to 0 as £ grows. Now assume that dim(B%) < dim(MF¥).
So for all t > 1, dim((A x B)¥) < dim(M*+%t). But tk}?% goes to & as ¢
grows. Hence §(A x B) = §(B) and the equality is proved in this case.

Next consider the case §(A) > 0. Let a be the infimum of all 3 such

that BY embeds in A". By §(A4) > 0 this is well-defined. By WPHP” (and
the argument as at the end of the proof of Theorem 3.2), a > 1. By CC,
either BY embeds in A" or vice versa. So a~! is the infimum of all + such
that A” embeds in B".

We may conveniently but somewhat loosely say that "B embeds in
A” and ” A% embeds in B”. This precisely means that for ¥ arbitrarily close
to a (resp. a~!), BY embeds in A" (resp. AV in BY).

Now assume that (4 x B)’ embeds in M¥*. Then, using the terminology
above, BU+¢™)0 embeds in M*. So §(B) < Similarly A+
embeds in M* and §(A) < m.

But gs=ry + riray = ¢ Which shows that 6(A4) +§(B) < 6(4 x B).

Finally, §(M*) = k follows from the fact that dim(M*") > dim(M?),
for all ¢ > 1.

0,
)

__k
(14+a~1)"

q.e.d.



Lemma 3.5 Assume that M is a structure satisfying principles WPHP?"
and CC. Then D(M) \ {—oo} satisfies the cancellation law:

do®d=di ®&d—dy=dy

Proof :

Let Ay, A1 and B be definable sets with dimension dy, d; and d respec-
tively. Assume that dy @ d = dy @ d but dy # dy. By CC this means that
either dy < dy or d; < dp; assume the former. Then, again by CC, any finite
number of copies of Ay embeds in Aj.

By dy & d = d; & d it follows that A; X B embeds in k copies of Ay X B,
some k > 1. On the other hand, 2k copies of Ay embed in Ay, so also 2k
copies of Ay X B embed in A; x B, and hence also in k£ copies of Ay x B.
This violates the WPHP%" principle.

q.e.d.

We conclude the section with a notion of independence in partially or-
dered semigroups that will be useful in the next section. It stems from the
fact that a partially ordered semigroup S satisfying cancellation naturally
generalizes to a Q-vector space.

Definition 3.6 Let (S,0,®,<) be a partially ordered semigroup with the
cancellation law. A set D C S\ {0} is independent iff for any n > 1, any
di,...,dn € D, and any u;,v; € N for i <n it holds:

o If >, u;-di =3, -d; then u; = v; for all i <n.
The following is obvious.

Lemma 3.7 Let (S,0,®, <) be a partially ordered semigroup with the can-
cellation law. Then {d} is an independent set for any non-zero d € S. Hence
there is a non-empty mazimal independent subset of S.

4 Approximate Euler characteristic

In complexity theory the error in approximate counting of A C {0,1}" is
a percentage that gets smaller as n increases. In our ideal situation with
infinite ambient space the error will be infinitesimal.



Definition 4.1 Let R be a partially ordered ring. Define three relations on
R:

1. a<<biff forall ke N, k-a <b.

2. a<b iff for any rational g > 1 there are k,£ € N such that % < q and
k-a</?-b.

3. a=b iff a<b A b<a.

The general idea of axioms of aEc is to replace all original equalities
a = b (or inequalities a < b) in Definitions 2.1 and 2.3 by a=b (or by a<b).

Definition 4.2 A weak approzimate Euler characteristic on M (aEc) is a
function

¢ : Def(M) > R

where R is a partially ordered ring, satisfying the following inequalities for

all definable sets A, B:

£(A) = |A|, for finite A.
{(AUB)=£(A) +£(B).
§(A x B)=¢(A) - £(B).
¢(

A)<E(B), if A is definably embedded into B.

One could define strong aEc by adding, whenever f : A — B is a definable
map and ¢ € R, the condition

o £(A)=c-£(B), if Vb e B £(fN (b)) =c.
However, a pair of conditions of the form:

o £(A)<c-£(B), if Vb e B E(FUD (b)) <e.

o ¢ £(B)<E(A), if Vb € B e<E(f1(0).

for f : A — B is definable and injective and ¢ € R is useful for proving
inequalities of the following type. For C C A x B, if £(C) < %S(A x B) then
there is b € B such that the section Cj := {a € A | (a,b) € C} has aEc

10



13 (Cb)é%f (A). We shall not get into details about strong aEc as we do not
use it anywhere in the paper.

We shall see in the proof of the next theorem that the first condition is
largely cosmetic: Whenever ¢ satisfies conditions 2. - 4., it can be modified
on finite sets in order to satisfy the first condition too?.

Theorem 4.3 If a structure M admits a non-trivial weak approzimate Fu-
ler characteristic then it satisfies weak pigeonhole principle WPHP%": There
is no definable set A # () and a definable embedding of two disjoint copies
of A into A.

On the other hand, if M satisfies WPHP?" and principle CC: For any
two definable sets A and B, either A definably embeds in B or vice versa,
then it admits a non-trivial weak approzimate Euler characteristic.

Proof :

Consider the first part. Assume that ¢ is a weak aEc. We first observe
that £(A) > 0 for all non-empty A. As ) C A, £(B) = 0<&(A) and so
0 < £(A). Further, a singleton embeds into A, i.e. 1<¢(A) and hence
0 # E(A). So 0 < E(A).

To prove WPHP2" assume for the sake of contradiction that two copies
of anon-empty A embed into A. Then ¢ (AUA)<&(A). We have 2¢6(A)=¢(AUA)
and so 2¢(A)<&(A). This means that there are k,¢ € N with % > 1 arbi-
trarily close to 1, such that 2k¢(A) < ££(A). Taking such k, ¢ with % < 2
gives a contradiction with 0 < {(A4): 0 < {(A) implies 0 < (2k — £)¢(A) and
hence l£(A) < 2kE(A).

The proof of the second part of the theorem is divided into several claims.
First note that WPHP2" implies WPHPZ2 and so M does admit (by Section
3) nontrivial dimension function.

Recall the universal dimension function dim on Def(M) from the proof
of Theorem 3.2. As dim factors through the quotient map |[...] : Def(M) —

Def(M), we shall sometimes write dim(a) = d instead of dim(A) = d for
some A with [A] = a. Then dim is the quotient map given by the equivalence
relation

Ak l>1,a<k-bAb<{-a

where < is the partial ordering in Def(M) induced by the embedability
in Def(M). By CC the ordering is, in fact, linear. We shall denote by

?In fact, as pointed out by the referee, for reasons of complexity of £ (or when applying
the construction to incomplete theories) it could be best to simply remove condition 1.
altogether.

11



(S,0,®, <) the linearly ordered semigroup obtained from D(M) by deleting
—00.
Fix d € S;i.e. d is the dimension of a non-empty set. Let E; C Def(M)

be the set of all a € Def(M) of dimension d, together with 0. Clearly,
(E4,0,+4) is a sub-semigroup of the additive semigroup of Def(M).

Claim 1: (E4,0,+) homomorphically maps onto a sub-semigroup of the
additive semigroup of the non-negative reals (R=°,0,+), such that only 0
maps to 0.

To prove the claim fix an element e € F4. For any non-zero a € Ejy
define the set of rational numbers

Ce(a) ::{£|k-a§€-e, both k,1 > 1}

As the dimensions of a and e are the same, there is some £ such that a < /-¢
and so C¢(a) is non-empty. Define the real number c.(a) > 0 to be the
infimum of Ce(a).

First note that actually c.(a) > 0: We have e < m - a for some m > 1,
and so k-a < £-e implies k- a < (¢m) - a. If it were that c.(a) = 0 we
could find k,¢ > 1 such that f < ﬁ, i.e. 2lm < k and the inequality
E-a < (¢m) - a would show that WPHP2" fails in M for a set A for which
[A] = (fm) - a.

Further define ¢.(0) := 0. The map

Ce : (Edaoa +) — (RZO,O’ +)

is a homomorphism: If k-a < /¢-eand k' -a' < /¢ -e, then (kK') - (a +d') <
(K"t 4+ 0'Ek) - e. So Ce(a) 4+ Ce(a') C Cela+ ).
But similarly one shows that Ce(a)+C,(a') is downward cofinal in Ce(a+
a') (this part is analogous to the proof of the claim in the proof of Theorem
3.4). Assume k- (a +a’) < £-e. We need to demonstrate that u-a < wv-e,
u'-a' < o' -e for some u,v,u',v" > 1 such that £ + Z—’, is arbitrarily close
to %. To simplify the notation let us write a < ¢,/ (a) - @’ (meaning that we
can find m,n > 1 with > arbitrarily close to ¢,/ (a) such that m-a < n-a’)
and similarly @’ < ¢,(a’) - a. Then the assumption k- (a +d') < £-e
implies k(1 + ¢y (a)) - a’ < £- e (in the proper formulation with m, n this is
k(m +n)-a’ < ¢m - e obtained from k - (a + a’) < £- e by first multiplying
both sides by m and then replacing m-a by n-a') and k(1+c4(a’))-a < £-e.
So it is enough to show that
¢ N 14 !
k(1+co(a))  E(1+ca(a) &

12



WPHP?2" implies c,(a) = 1 and as cq(a’) - cor(a) > cq(a) we have c,(a’) -
¢ (@) > 1. That the inequality cannot be strict follows by CC: Either
m-a<n-a orn-a <m-a,ie. either I € Cy(a) or & € Cy(a’). This
proves the claim.

Note that the same argument works equally well in a more general situ-
ation (whose special case is Claim 1).

Claim 2: ¢4 ([B]) - ca)([B']) = ¢jaxan([B x B']), whenever both sides are
defined.

Claim 3: D(M) is linearly ordered. Further, if dim(A) < dim/(B), then k
copies of A embed in B, for any k > 1.

D(M) is clearly linearly ordered. Assume that k& copies of A do not
embed in B. Then, by CC, B embeds into k copies of A and so dim(B) <
dim(A) which contradicts the assumption that dim(A) < dim(B).

Note that the construction of Claim 1 also yields the following charac-
terization of the relation ¢, (b) = 1.

Claim 4: For a,b € E; define a = b iff there are definable sets A and B
with [A] = a and [B] = b and dim(AAB) < d (AAB is the symmetric
difference). Then a = b iff ¢,(b) = 1.

Denote by [A]* the =-class of [A4]. By Claims 1 and 4, [A]* maps additive
semigroup (F4,0,+) into (RZ°,0,4). So we want to define the aEc as
[A]* taking the value in the direct sum of copies of (RZ%,0,+), graded by
(5,0,®,<), i.e. in R[z°]. A homomorphism of (Ey, +) into (R>?, +) is a
positive multiple of ¢,(z), any a € E; by Claim 1, and hence we define the
aFc in the following way.

Let {eg}q4 be a fixed set of points, one from each E; for each dimension
d # —oo. Let function £ : d € S — ¢; € R>Y be arbitrary. Define map

e : Def(M) — R[z7]
for a non-empty definable A by
Ee(A) = eqee, ([A]) - 2D

We will show in Claims 5 and 6 that one can choose points {e4}4 and function
£ so that &g is the desired aEc.

Intuitively, one would like to have e;’s the “unit d-dimensional cubes” in
which case all ¢;’s could be equal to 1. However, in a general situation there

13



is no such object and so we pick e4’s arbitrarily and use €;’s for a rectification
of the values, so that they obey conditions 1. and 3. of Definition 4.2.

Claim 5: Assume e is the [...]-class of a finite set with n > 1 elements
and €y = n. Then for any finite A: {g(A) = |A|.

The value of {g(A) is n times the infimum of all % such that &k copies of
A embed into an #n-element set. The infimum is clearly %.

The next claim will ultimately follow from Claim 2 and could be proved
directly if we could use an induction on the dimension. However, we need to
proceed more generally in order to apply to any possible semigroup S where

an induction argument is not available.

Claim 6: For any e there is a set {€;}4z—oo With e; € E; and function £
with €y = € such that the resulting function &g satisfies the multiplicative
condition 3. of Definition 4.2.

By Lemmas 3.5 and 3.7 semigroup S satisfies the cancellation law and
there is a non-empty maximal independent (in the sense of Definition 3.6)
subset D C S\ {0}. Let Ay, d € S\ {0}, be some fixed sets such that
[Ad] =eq € Ey.

Define ¢4, for d # 0, as follows. If d € D, ¢q:= 1. If d ¢ D then, by the
maximality of D, there are n, d; and u;,v; for ¢ < mn, and v > 1 such that

Zui-di-l-U'd:Z’Ui-di

(by the cancellation law we may assume that d appears only on one side of
the equation; similarly we could assume that u;v; = 0 for all # < n). Then
define:

€ = C[HiAsi]([HiAsii x A

where II; is a Cartesian product. The intuition behind this definition is this:
Ay’s for d € D are postulated to have the ”unit size”. The "right size” of
Ag for d ¢ D is then computed using a relation between Cartesian products
involving the set and some unit size sets, thinking that the Cartesian u-th
power increases the size to exponent u.

By the equality Y, u;-d;+u-d =Y, v;-d; the sets HiAgi_ and HiAgii x AY
have the same dimension and so the term defining €, is well-defined. By
the usual manipulations with linear equalities (this we can do having the
cancellation law) there is, for any given d, the minimal v for which an
equality like ), u;-d; +u-d =}, v; - d; holds and all other equalities of this
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type are its integer multiple. This shows that the value of ¢4 is independent
of the choice of the particular equation and u. Here we use the property
ca([B]) - can([B']) = craxa([B x B']) from Claim 2 (and we shall use it
repeatedly without further mentioning).

To demonstrate the multiplicative property g(U) - (V) = &e(U x V)
assume that dim(U) = dy and dim (V) = d;. Then we want to show:

€doClay, ] ([UD€arcia, 1(V]) = €domar €1a,,04,1([U X V])
As

gy ([UDera, 1(IV]) = epag, xag 1(IUXV]) = era, x4y, 1([Adowd )4y, 60,1 ([UXV])

and
C[AdOXAdl]([AdOEBd1])_1 = Clag 0a,1([Ado X Ad;])

it is enough to show that:

€do€d1 = €do®dr C[Ado@dl]([Ado x Ag,])

The values of the €’ are computed from some linear dependence relations in
S involving integer scalar multiples of dy, di and dy @ dy respectively. By
taking some common multiple we may assume that the dimensions appear
in the liner dependencies with scalar « > 1. In particular,

ety = g (Br X ALY and e, = (G x A ]

where By, By, Cy, C are Cartesian products of A;’s for some d € D (i.e. of
the sets we postulated to have unit size, so we may think of By, By, Cy, Cy
as "unit cubes”). It holds:

cy) ([B1r < AY 1) ercn) ([C1 < AG )™ = cpyxcy) ([Bi X C1 x (Agy x Agy )] " =

C[Byx o) ([B1 x O X Agg@dl])l/uC[AjjO@dl]([(Ado x Ag, )"/

The left-hand side is €4,€q, , while the right-hand side is €4y@d; €[4, ¢4, 1([Ady X
Ag,]). This proves the claim.

We are ready now to prove the second part of the theorem. Take &
provided by Claim 6, with €y chosen so as to satisfy the hypothesis of Claim
5. Hence the map &g satisfies conditions 1. and 3. of Definition 4.2, by
Claims 5 and 6.
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Condition 4. is satisfied for any £. Assume A embeds into B. Then
either dim(A) < dim(B) or dim(A) = dim(B). In the former case, by
Claim 3, even dim(A) << dim(B). In the latter case c;p([A]) < 1, so
co([A]) < co([B) for € = gy, and 50 £5(A) < &5(B).

It remains to verify condition 2.: Let A, B be two disjoint definable sets
and assume first that dim(A) < dim(B). Then {£(A U B) = £¢(B) and
Ee(A) << &e(B), s0 &e(AU B)=te(A) 4 &(B) (as g™ << gtim(B)),

Next assume dim(A) = dim(B). Then even &g (AU B) = £c(A) + &¢(B)
by Claim 1.

q.e.d.

It would be interesting to avoid using principle CC in the theorem. This
could be done if, for example, every structure satisfying WPHP%" had an
expansion still satisfying WPHP2" but also satisfying CC. Is this true?

Also, when could the role of (RZ°,0,+, <) (both as coefficients or as
degrees) in R[z°] be taken by (Q=°,0,4,<)?

5 Examples

We conclude the paper by few examples of well-known structures to illustrate
some facts and notions discussed in the paper.

1. Example: reals R.

The real closed field R satisfies the ontoPHP (as bijections need to pre-
serve Ec and Ec of a set and of the set plus one point differ; R admits Ec
- see e.g. [4]) but clearly not PHP or WPHP2". Hence R admits neither
ordered Ec nor aEc. On the other hand R admits a dimension function (see
e.g. [4]) and satisfies VVPHPZ2 (by dimension reasons). R also satisfies CC,
cf. [9].

2. Example: complex numbers C.

Complex numbers satisfy PHP (by a theorem of Ax [2]) and hence the
other three (W)PHP principles too. The universal Ec is thus ordered and
so it is also aEc. The Grothendieck ring Ky(C) is huge; for example, it
contains the ring of complex polynomials in continuum many unknowns (cf.

[9]). Principle CC fails for C.

3. Example: structures with global ranks.
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Let d : Def(M) — S be a dimension function with (S, —00,0,V, <, ®)
linearly ordered. Define

degq : Def(M) — N U {oco}

as the maximum n € N s.t. there are n disjoint subsets of A each of the
same d-dimension as A, and degg(A) := oo, if no such n exists.

A good example of such d is Morley rank RM in almost strongly min-
3. values of degpy are in N, for example, for strongly
minimal structures. As a simple specific example we take the structure
M = (N, suc). As noted in [9, Sec.8], M satisfies WPHPs while obviously
not ontoPHP. Definable subsets A C M"™ are disjoint unions of sets A; of
the form

imal structures

U x...xU,

where each U; C N is either finite or co-finite. Define d(A) to be the
maximum number of co-finite in some A;. degy has values in N.
Define function ¢ : Def(M) — N[z°] by

£(A) = degq(A) - 29

Then £ is an aEc.
To see this note that for A finite, d(A) = 0 and degq(A) = |A|. So
¢(4) = |A]- 2" = |A].
For the additivity conditions let d(A) = v < v = d(B). If u < v,
degqy(AUB) = degy(B), so
§(AUB) = degq(AUB)z" = {(B) < {(A) +£(B) -
If u = v, degy(AUB) = degy(A) + degq(B), and
¢(AUB) = (dega(A) + dega(B))z" = {(A) + £(B) .
For the opposite inequality £(A) + ¢(B)<&(AUB) write
§(A) +&(B) = degq(A)z" + degq(B)z"

If u < v, degg(A)z" << 2V, so £(A) + £(B)<E(B) < €(AUB). If u = v,
(A) +&(B) = {(AUB).

3 As pointed out by the referee, more generally one can take Lascar rank in structures
of finite Lascar rank.
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I leave it to the reader to check the other two properties required from
aEc.

4. Example: pseudo-finite fields.

Let F' be an ultraproduct of finite fields F,’s. Chatzidakis, van den
Dries and Macintyre [3] assign to all definable A in F' a pair (u,d), with
14 a positive rational and d a natural number such that for some X in the
ultrafilter and all ¢ € X it holds:

JA(F,) — - g% = O(¢* )

This also yields an aEc
A— p-zt e Q]

(changing values for finite A to |A]).

5. Example: bounded arithmetic.

This is another example of a structure satisfying WPHP%” but not on-
toPHP. Let (M,0,1,®,®) be a countable non-standard model of true arith-
metic with ternary relations @ and ® for graphs of additions and multipli-
cation instead of the functions themselves. Let n € M be a non-standard
number and M,, the substructure with the universe [0, ...,n].

One can find a bijection f (not definable in M,) between [0,...,n] and
[0,...,n—1] (and so enforcing a failure of ontoPHP) such that the expanded
structure still satisfies WPHP2" (and also induction for all formulas, possibly
containing symbol f); this follows from [10, 8, 11], see also [9].

It is an interesting open problem in bounded arithmetic whether we can
similarly violate by f one of the weak pigeonhole principles, but in a way
so that induction for all formulas is maintained. This has close relations to
propositional proof complexity too.

Let us close by a general remark the referee made and which I con-
sider important. The constructions in the paper do not really use the
fact that we operate with a semiring derived from a first-order structure.
Semiring Def(M) is more here important than the class of definable sets
Def(M). Combinatorial properties of structures are reflected in first-order
properties of De/f\(/M ) (for example, WPHP2" implies that De/f\(/M ) satisfies
Va,y,z;x+x+y+2z # x+ 2z and CC implies the validity of Vz, y3z; (z+ 2z =
yVy—+ 2z =ux)) and that is the only way the principles are used in the con-
structions. Thus it could make a good sense to work purely abstractly with
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semirings. Furthermore, this abstract approach allows to split the ques-
tion about the importance of CC (raised at the end of Section 4) into two
separate questions. First, can one find a commutative semiring satisfying
WPHP?2" but not admitting nontrivial weak aEc? And secondly, can such

a semiring take the form of Def(M) for some first order structure M?
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