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Abstrat

We de�ne the notion of approximate Euler harateristi of de�n-

able sets of a �rst order struture. We show that a struture admits a

non-trivial approximate Euler harateristi if it satis�es weak pigeon-

hole priniple WPHP

2n

n

: two disjoint opies of a non-empty de�nable

set A annot be de�nably embedded into A, and priniple CC of om-

paring ardinalities: for any two de�nable sets A, B either A de�nably

embeds in B or vie versa. Also, a struture admitting a non-trivial

approximate Euler harateristi must satisfy WPHP

2n

n

.

Further we show that a struture admits a non-trivial dimension

funtion on de�nable sets i� it satis�es weak pigeonhole priniple WPHP

n

2

n

:

for no de�nable set A with more than one element an A

2

de�nably

embed into A.

An abstrat Euler harateristi (E) on a �rst order struture assigns

to de�nable sets values in a ommutative ring suh that basi properties of

ounting with �nite sets are ful�lled (we reall the formal de�nition from [6℄

in Setion 2). Not all strutures admit nontrivial E. For example, if there

is a de�nable bijetion between a de�nable set and the set plus one other

point (i.e., the so alled onto-pigeonhole priniple ontoPHP fails), then 0 = 1

in the ring and everything is trivial. In fat, the validity of the ontoPHP

haraterizes strutures admitting the weak E, f.[6℄ or Theorem 2.2. The
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ordinary PHP: a de�nable set annot be de�nably embedded into its proper

subset, haraterizes strutures where the weak E is partially ordered, f.[9℄.

Important variants of the pigeonhole priniple are the so alled weak

pigeonhole priniples; while PHP priniples say in some form or other that

a bigger set annot embed into a smaller one, WPHP priniples assert that

a set annot embed into a muh smaller set. The partiular de�nition of the

quali�ation muh determines various forms of WPHP. WPHP priniples

are prominent in proof omplexity and in bounded arithmeti, a bridge be-

tween omplexity theory and logi. One motivation for the urrent researh

is the olletion of open problems about the provability of WPHPs in weak

formal systems, f.[5℄. These problems amount to onstrutions of models

(of various weak arithmetis) in whih WPHPs fail, and one wants to under-

stand general properties of suh models. Another motivation is somewhat

more general. In [1, 6, 9, 7℄ it was shown that the validity of forms of PHP

and of some other ounting priniples (e.g. the modular ounting priniples,

f.[1, 6℄) in a struture is equivalent to the existene of an abstrat Euler

harateristi for sets de�nable in the struture with partiular properties

(depending on the partiular ounting priniples). Hene it is interesting

to �nd out if WPHPs an be also haraterized by the existene of some

natural invariants of de�nable sets.

We shall onsider two variants of WPHP:

� WPHP

2n

n

: Two disjoint opies of a non-empty de�nable set A annot

be de�nably embedded into A.

� WPHP

n

2

n

: For no de�nable set A with more than one element an A

2

de�nably embed into A.

It will not be diÆult to see that WPHP

n

2

n

priniple haraterizes stru-

tures that admit a non-trivial dimension funtion (in the sense of Shanuel

[12℄; we shall reall the de�nition in Setion 3) on their de�nable sets. The

ase of WPHP

2n

n

is more involved and requires an introdution of a new in-

variant of de�nable sets whih we shall all approximate Euler harateristi

(aE).

The idea of aE is that similarly as E formalizes ounting, aE will

formalize approximate ounting: aE ounts the size of de�nable sets but

with a possible error, the error being a negligible perentage. This is an im-

portant issue in omplexity theory (and in bounded arithmeti) as for some

omplexity lasses the exat ounting is hard (e.g., given a polynomial-time

set the funtion - of x - that ounts the number of elements in the set below
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x is generally assumed not to be polynomial-time) while an approximate

ounting (the funtion ounts the number of elements with some bounded

error) is possibly muh simpler. We shall show that a struture admits a

non-trivial approximate Euler harateristi if it satis�es weak pigeonhole

priniple WPHP

2n

n

and the priniple CC of omparing ardinalities (this

priniple and its two variants were onsidered in [9℄):

� CC: For any two de�nable sets A, B either A de�nably embeds in B

or vie versa.

On the other hand, a struture admitting a non-trivial approximate Euler

harateristi must satisfy WPHP

2n

n

.

One would like to avoid using the CC priniple in the onstrution. That

would then give an exat haraterization of strutures with non-trivial aE

as those satisfying WPHP

2n

n

. CC ould be avoided, in priniple, if it would

hold that any struture satisfying WPHP

2n

n

an be expanded to a struture

still satisfying WPHP

2n

n

but also satisfying CC. We do not know if this is

true.

The paper is organized as follows. In Setion 1 we give few preliminaries

on semirings. Setion 2 realls de�nitions of (ordered) E and fats about

them from [6, 9℄. The dimension funtion and WPHP

n

2

n

are onsidered in

Setion 3. The de�nition of aE and the onnetion to WPHP

2n

n

are in

Setion 4. Setion 5 o�ers several examples of strutures and their aE'.

More bakground information an be found in [6, 9, 7℄.

1 Preliminaries on semirings

A semiring, or a rig in an equivalent terminology, is a struture (R; 0; 1;+; �)

having properties like a ring, exept that (R; 0;+) may be only a semigroup.

We shall onsider only ommutative semirings. Examples are N, N[x℄ or

generally ordered rings without the "negatives"

1

.

A semiring important for us is onstruted from sets de�nable in a stru-

ture M as follows. Let Def(M) be the olletion of subsets of all M

k

, k � 1,

that are de�nable in M with parameters. Two de�nable sets A, B are

equivalent, A � B, i� there is a de�nable bijetion between them. The set

g

Def(M) := Def(M)= �, together with zero 0 := ;= �, one 1 := fag= � (a

any element), and operations + - disjoint union, and � - Cartesian produt

1

Hene the name rig, e.g. in [12℄. A full de�nition an be found there.
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forms a semiring. We shall denote the quotient map from Def(M) to

g

Def(M)

by [: : :℄.

A partially ordered ring R is R together with a subset P � R suh that

0; 1 2 P , P + P � P , P � P � P , and if 0 6= x 2 P then �x =2 P . P are the

non-negative elements of R and the partial ordering x � y is given by the

ondition y � x 2 P .

For a an element of a semiring and k 2 N, k�a denotes the salar multiple

a+ : : : + a, k-times.

De�nition 1.1 Let (S; 0;�;�) be a linearly ordered ommutative semi-

group and R a linearly ordered semiring.

The linearly ordered ommutative semiring R[x

S

℄ onsists of elements

that are �nite R-linear ombinations of expressions x

u

, u 2 S. Formally,

R[x

S

℄ is the set of partial �nite funtions f : S ! R with the addition

de�ned oordinate-wise and the multipliation de�ned by the rule: (f �g)(s) =

P

u+v=s

f(u) � g(v). The linear ordering is the lexiographi ordering given

by: f < g i� f(u) <

R

g(u), where u 2 S is the maximal (in <

S

) in the

domains of both f and g suh that f(u) 6= g(u).

Note that R[x

S

℄ is a ring if R is a ring. We shall use this onstrution

for R one of N (natural numbers), Q (rationals) or R (reals), and S being

the additive semigroup of the non-negative reals (R

�0

; 0;+;�).

2 Euler harateristi

The abstrat Euler harateristi on �rst-order strutures has been de�ned

in [6℄. Its variant, the weak E, is a speial ase of a general onstrution by

Shanuel [12℄. He de�ned (in our terminology) the weak Euler harateristi

and the dimension funtion on any distributive ategory. However, I shall

follow [6, 9℄ and onsider only the ategory of sets and maps de�nable in a

struture.

De�nition 2.1 ([6, Def.2.1℄) Let M be a �rst-order struture. Let R be

a ommutative ring with unity. A funtion

� : Def(M) �! R

is an Euler harateristi on M over R i� it satis�es the following on-

ditions: �(fag) = 1 for any a 2 M

k

, � is additive on disjoint unions and
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multipliative on Cartesian produts, and � fators through the quotient map

[: : :℄ : Def(M)!

g

Def(M).

The last ondition is that

� �(A) =  � �(B), whenever  2 R, A;B 2 Def(M) and there is a

de�nable map f with domain A and range B suh that eah its �ber

f

(�1)

(b), b 2 B, has Euler harateristi �(f

(�1)

(b)) = .

The funtion �=R is a weak Euler harateristi i� �=R satis�es all ondi-

tions but the last one. Euler harateristi is sometimes alled strong Euler

harateristi, in order to distinguish it from the weak one.

One an state the de�nition of weak E in a more algebrai language:

The weak E is the quotient map [: : :℄ : Def(M) !

g

Def(M) omposed with

a semiring-homomorphism of

g

Def(M) into a ring. We use the de�nition

expliitly referring to Def(M) as it allows for the formulation of the �fth,

�ber, ondition. That ondition is important for various appliations (e.g.

[6℄) and it has also the nie property that it implies, together with ondition

2., all other onditions, f. [6℄.

If M admits a weak E then there exists a universal one with the target

ring denoted K

0

(M) - the Grothendiek ring of the struture, f. [6, 9℄.

The following theorem haraterizes when a struture admits a weak Eu-

ler harateristi. No suh transparent haraterization is known for strong

E, but there is also the universal strong E (see [9℄).

Theorem 2.2 ([6, Thm.3.1℄) M admits a nontrivial weak Euler hara-

teristi i� it satis�es the onto pigeonhole priniple ontoPHP: There is no

de�nable set and a de�nable bijetion between the set plus one other point

and the set.

De�nition 2.3 ([9, Def.4.2℄) A weak Euler harateristi �=R on M is

partially ordered if R is partially ordered and the range of � is a subset of

the non-negative elements of R. Equivalently, if A � B are de�nable sets

then �(A) � �(B).

Theorem 2.4 ([9, Thm.4.3℄) M admits an ordered weak Euler hara-

teristi i� it satis�es the ordinary pigeonhole priniple PHP: There is no

de�nable set and a de�nable injetion of the set into a proper subset of it-

self.
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3 Dimension

Dimension of de�nable sets (in a speial ase of the de�nition by Shanuel

[12℄) is a semiring-homomorphism of

g

Def(M) into a semiring in whih 1+1 =

1. For a part of the next de�nition we need to introdue a partial ordering

on a semiring S. De�ne the relation a � b by the ondition a+ b = b. If S

satis�es 1 + 1 = 1 then the relation is a partial ordering (1 + 1 = 1 implies

the reexivity).

De�nition 3.1 ([12℄,[9, Se.9℄) An abstrat dimension funtion on M is

a funtion

d : Def(M)! S

where S is a semiring in whih 1 + 1 = 1, suh that d fators through

[ ℄ : Def(M)!

g

Def(M) and d=� is a semiring homomorphism.

We say that dimension d is non-trivial i� d(A

2

) > d(A) for all in�nite

de�nable sets A.

Semirings S in whih 1 + 1 = 1 an be transparently given in the "log-

arithmi" notation as an upper semilattie (S;�1;�; 0;_;�) in whih 0

beomes �1, + beomes the semilattie union _ with partial ordering �,

1 beomes 0 and � beomes �.

It will be onvenient to think of �1 as an extra element of the universe

of (S;�1;�; 0;_;�) outside of S. Then (S;�1;�; 0;_;�) is uniquely

determined by the partially ordered semigroup (S; 0;�;�) in whih 0 is the

minimal element and a � b implies a�  � b� . On the other hand, having

a partially ordered semigroup (S; 0;�;�) we an adjoin a new element �1,

stipulate that �1� a = �1 and �1 < a for all a 2 S, and de�ne _ from

the ordering. In this way there is a orrespondene between semirings where

1 + 1 = 1 and partially ordered semigroups. One an restate the de�nition

of a dimension as a funtion d from

g

Def(M) n f[;℄g into a partially ordered

semigroup (S; 0;�;�) suh that:

� d([fag℄) = 0,

� d([A℄) � d([B℄), if A de�nably embeds into B,

� d([A

_

[B℄) = max(d([A℄); d([B℄)),

� d([A�B℄) = d([A℄) � d([B℄).
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Note that the ondition of the non-triviality of d implies that for all k �

1, d(M

k+1

) > d(M

k

) (otherwise it would also hold that d(M

2k

) � d(M

k

),

violating the non-triviality ondition). In fat, similarly d(A

k+1

) > d(A

k

),

for any in�nite de�nable A. Furthermore, the nontriviality also implies that

d(A) 6= 0 for any in�nite de�nable A.

The next proposition is a haraterization of strutures admitting a non-

trivial dimension funtion.

Theorem 3.2 M admits a non-trivial dimension funtion i� it satis�es the

weak pigeonhole priniple WPHP

n

2

n

: There is no de�nable set A with at least

two elements and a de�nable embedding of A

2

into A.

Proof :

Assume that M admits a non-trivial dimension funtion. Hene d(A

2

) >

d(A) for all in�nite de�nable sets A. This inequality prevents a de�nable

embedding of A

2

into A as suh an embedding would imply d(A

2

) � d(A).

As WPHP

n

2

n

automatially holds for �nite sets, M satis�es WPHP

n

2

n

.

For the opposite diretion assume that M satis�es WPHP

n

2

n

. It is suf-

�ient to show that dim(A

2

) > dim(A) in the universal dimension funtion

dim : Def(M) ! D(M), de�ned in [9℄. The onstrution of the universal

dim is simple. De�ne an equivalene relation � on Def(M) by: A � B

i� for some k; ` 2 N, A de�nably embeds into k opies of B and B de�n-

ably embeds into ` disjoint opies of A. The semiring D(M) is Def(M)= �,

and the universal dimension funtion d is the quotient map. To prove that

dim(A

2

) > dim(A) we need to show, for in�nite de�nable A, that A

2

an-

not de�nably embed into k opies of A, any k 2 N. Assume f is suh a

de�nable embedding. De�ne another embedding g : A

4

! A

2

by mapping

�rst (x; y; z; t) 2 A

4

to (f(x; y); f(z; t)) 2 (k � A)

2

, and thinking of (k � A)

2

as k

2

opies of A

2

mapping this further by f into k

3

opies of A. Using

parameters for k

3

distint elements of A, k

3

�A embeds into A

2

.

q.e.d.

If the struture satis�es also the CC priniple we an de�ne a ombina-

torially more transparent dimension funtion with values in (R

�0

; 0;+;�).

De�nition 3.3 Let M be a struture and let dim : Def(M)! D(M) be the

universal dimension funtion. De�ne Æ : Def(M)! R

�0

[f�1g by putting

Æ(;) = �1 and de�ning Æ(A) for non-empty A as the in�mum of all

k

`

suh

that k; ` � 1 and dim(A

`

) � dim(M

k

) in D(M).
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Note that as A is a subset of some power of M the number Æ(A) is

de�ned.

Theorem 3.4 Let M be a struture satisfying both WPHP

n

2

n

and CC. Then

Æ is a non-trivial dimension funtion and Æ(M

k

) = k, for all k � 1.

Proof :

As Æ(A) depends on dim(A) only, Æ fators through [: : :℄, Æ(fag) = 0,

Æ(A) � Æ(B) if A de�nably embeds into B, and Æ(A

_

[B) = max(Æ(A); Æ(B)).

The CC priniple is used in verifying the last ondition.

Claim: Æ(A �B) = Æ(A) + Æ(B), for all de�nable A and B.

Assume �rst dim(A

`

) � dim(M

k

) and dim(B

v

) � dim(M

u

). Then

dim(A

`v

� B

`v

) � dim(M

kv

�M

`u

). As

kv+`u

`v

=

k

`

+

u

v

, this shows that

always Æ(A �B) � Æ(A) + Æ(B).

We need to prove that the inequality annot be strit. By CC either A

de�nably embeds in B or vie versa. Assume the former.

Consider �rst the ase that Æ(A) = 0. So for any `, dim(A

`

) � dim(M

u

`

)

suh that

u

`

`

goes to 0 as ` grows. Now assume that dim(B

`

) � dim(M

k

).

So for all t � 1, dim((A �B)

t`

) � dim(M

tk+u

`t

). But

tk+u

`t

`t

goes to

k

`

as t

grows. Hene Æ(A�B) = Æ(B) and the equality is proved in this ase.

Next onsider the ase Æ(A) > 0. Let � be the in�mum of all

u

v

suh

that B

v

embeds in A

u

. By Æ(A) > 0 this is well-de�ned. By WPHP

n

2

n

(and

the argument as at the end of the proof of Theorem 3.2), � � 1. By CC,

either B

v

embeds in A

u

or vie versa. So �

�1

is the in�mum of all

u

v

suh

that A

v

embeds in B

u

.

We may onveniently but somewhat loosely say that "B

�

�1

embeds in

A" and "A

�

embeds in B". This preisely means that for

u

v

arbitrarily lose

to � (resp. �

�1

), B

v

embeds in A

u

(resp. A

v

in B

u

).

Now assume that (A�B)

`

embeds in M

k

. Then, using the terminology

above, B

(1+�

�1

)`

embeds in M

k

. So Æ(B) �

k

`(1+�

�1

)

. Similarly A

(1+�)`

embeds in M

k

and Æ(A) �

k

`(1+�)

.

But

k

`(1+�

�1

)

+

k

`(1+�)

=

k

`

, whih shows that Æ(A) + Æ(B) � Æ(A �B).

Finally, Æ(M

k

) = k follows from the fat that dim(M

t+1

) > dim(M

t

),

for all t � 1.

q.e.d.
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Lemma 3.5 Assume that M is a struture satisfying priniples WPHP

2n

n

and CC. Then D(M) n f�1g satis�es the anellation law:

d

0

� d = d

1

� d! d

0

= d

1

Proof :

Let A

0

, A

1

and B be de�nable sets with dimension d

0

, d

1

and d respe-

tively. Assume that d

0

� d = d

1

� d but d

0

6= d

1

. By CC this means that

either d

0

< d

1

or d

1

< d

0

; assume the former. Then, again by CC, any �nite

number of opies of A

0

embeds in A

1

.

By d

0

� d = d

1

� d it follows that A

1

�B embeds in k opies of A

0

�B,

some k � 1. On the other hand, 2k opies of A

0

embed in A

1

, so also 2k

opies of A

0

� B embed in A

1

� B, and hene also in k opies of A

0

� B.

This violates the WPHP

2n

n

priniple.

q.e.d.

We onlude the setion with a notion of independene in partially or-

dered semigroups that will be useful in the next setion. It stems from the

fat that a partially ordered semigroup S satisfying anellation naturally

generalizes to a Q-vetor spae.

De�nition 3.6 Let (S; 0;�;�) be a partially ordered semigroup with the

anellation law. A set D � S n f0g is independent i� for any n � 1, any

d

1

; : : : ; d

n

2 D, and any u

i

; v

i

2N for i � n it holds:

� If

P

i

u

i

� d

i

=

P

i

v

i

� d

i

then u

i

= v

i

for all i � n.

The following is obvious.

Lemma 3.7 Let (S; 0;�;�) be a partially ordered semigroup with the an-

ellation law. Then fdg is an independent set for any non-zero d 2 S. Hene

there is a non-empty maximal independent subset of S.

4 Approximate Euler harateristi

In omplexity theory the error in approximate ounting of A � f0; 1g

n

is

a perentage that gets smaller as n inreases. In our ideal situation with

in�nite ambient spae the error will be in�nitesimal.
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De�nition 4.1 Let R be a partially ordered ring. De�ne three relations on

R:

1. a << b i� for all k 2 N, k � a < b.

2. a

_

�b i� for any rational q > 1 there are k; ` 2 N suh that

`

k

< q and

k � a < ` � b.

3. a _=b i� a

_

�b ^ b

_

�a.

The general idea of axioms of aE is to replae all original equalities

a = b (or inequalities a � b) in De�nitions 2.1 and 2.3 by a _=b (or by a

_

�b).

De�nition 4.2 A weak approximate Euler harateristi on M (aE) is a

funtion

� : Def(M)! R

where R is a partially ordered ring, satisfying the following inequalities for

all de�nable sets A, B:

1. �(A) = jAj, for �nite A.

2. �(A

_

[B) _=�(A) + �(B).

3. �(A�B) _=�(A) � �(B).

4. �(A)

_

��(B), if A is de�nably embedded into B.

One ould de�ne strong aE by adding, whenever f : A ! B is a de�nable

map and  2 R, the ondition

� �(A) _= � �(B), if 8b 2 B �(f

(�1)

(b)) _=.

However, a pair of onditions of the form:

� �(A)

_

� � �(B), if 8b 2 B �(f

(�1)

(b))

_

�.

�  � �(B)

_

��(A), if 8b 2 B 

_

��(f

(�1)

(b)).

for f : A 7! B is de�nable and injetive and  2 R is useful for proving

inequalities of the following type. For C � A�B, if �(C) �

1

2

�(A�B) then

there is b 2 B suh that the setion C

b

:= fa 2 A j (a; b) 2 Cg has aE
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�(C

b

)

_

�

1

2

�(A). We shall not get into details about strong aE as we do not

use it anywhere in the paper.

We shall see in the proof of the next theorem that the �rst ondition is

largely osmeti: Whenever � satis�es onditions 2: - 4:, it an be modi�ed

on �nite sets in order to satisfy the �rst ondition too

2

.

Theorem 4.3 If a struture M admits a non-trivial weak approximate Eu-

ler harateristi then it satis�es weak pigeonhole priniple WPHP

2n

n

: There

is no de�nable set A 6= ; and a de�nable embedding of two disjoint opies

of A into A.

On the other hand, if M satis�es WPHP

2n

n

and priniple CC: For any

two de�nable sets A and B, either A de�nably embeds in B or vie versa,

then it admits a non-trivial weak approximate Euler harateristi.

Proof :

Consider the �rst part. Assume that � is a weak aE. We �rst observe

that �(A) > 0 for all non-empty A. As ; � A, �(;) = 0

_

��(A) and so

0 � �(A). Further, a singleton embeds into A, i.e. 1

_

��(A) and hene

0 6= �(A). So 0 < �(A).

To prove WPHP

2n

n

, assume for the sake of ontradition that two opies

of a non-empty A embed intoA. Then �(A

_

[A)

_

��(A). We have 2�(A) _=�(A

_

[A)

and so 2�(A)

_

��(A). This means that there are k; ` 2 N with

`

k

> 1 arbi-

trarily lose to 1, suh that 2k�(A) � `�(A). Taking suh k; ` with

`

k

< 2

gives a ontradition with 0 < �(A): 0 < �(A) implies 0 < (2k� `)�(A) and

hene `�(A) < 2k�(A).

The proof of the seond part of the theorem is divided into several laims.

First note that WPHP

2n

n

implies WPHP

n

2

n

and soM does admit (by Setion

3) nontrivial dimension funtion.

Reall the universal dimension funtion dim on Def(M) from the proof

of Theorem 3.2. As dim fators through the quotient map [: : :℄ : Def(M)!

g

Def(M), we shall sometimes write dim(a) = d instead of dim(A) = d for

some A with [A℄ = a. Then dim is the quotient map given by the equivalene

relation

9k; ` � 1; a � k � b ^ b � ` � a

where � is the partial ordering in

g

Def(M) indued by the embedability

in Def(M). By CC the ordering is, in fat, linear. We shall denote by

2

In fat, as pointed out by the referee, for reasons of omplexity of � (or when applying

the onstrution to inomplete theories) it ould be best to simply remove ondition 1.

altogether.

11



(S; 0;�;�) the linearly ordered semigroup obtained from D(M) by deleting

�1.

Fix d 2 S; i.e. d is the dimension of a non-empty set. Let E

d

�

g

Def(M)

be the set of all a 2

g

Def(M) of dimension d, together with 0. Clearly,

(E

d

; 0;+) is a sub-semigroup of the additive semigroup of

g

Def(M).

Claim 1: (E

d

; 0;+) homomorphially maps onto a sub-semigroup of the

additive semigroup of the non-negative reals (R

�0

; 0;+), suh that only 0

maps to 0.

To prove the laim �x an element e 2 E

d

. For any non-zero a 2 E

d

de�ne the set of rational numbers

C

e

(a) := f

`

k

j k � a � ` � e; both k; l � 1g

As the dimensions of a and e are the same, there is some ` suh that a � ` �e

and so C

e

(a) is non-empty. De�ne the real number 

e

(a) � 0 to be the

in�mum of C

e

(a).

First note that atually 

e

(a) > 0: We have e � m � a for some m � 1,

and so k � a � ` � e implies k � a � (`m) � a. If it were that 

e

(a) = 0 we

ould �nd k; ` � 1 suh that

`

k

<

1

2m

, i.e. 2`m < k and the inequality

k � a � (`m) � a would show that WPHP

2n

n

fails in M for a set A for whih

[A℄ = (`m) � a.

Further de�ne 

e

(0) := 0. The map



e

: (E

d

; 0;+)! (R

�0

; 0;+)

is a homomorphism: If k � a � ` � e and k

0

� a

0

� `

0

� e, then (kk

0

) � (a+ a

0

) �

(k

0

`+ `

0

k) � e. So C

e

(a) +C

e

(a

0

) � C

e

(a+ a

0

).

But similarly one shows that C

e

(a)+C

e

(a

0

) is downward o�nal in C

e

(a+

a

0

) (this part is analogous to the proof of the laim in the proof of Theorem

3.4). Assume k � (a+ a

0

) � ` � e. We need to demonstrate that u � a � v � e,

u

0

� a

0

� v

0

� e for some u; v; u

0

; v

0

� 1 suh that

v

u

+

v

0

u

0

is arbitrarily lose

to

`

k

. To simplify the notation let us write a � 

a

0

(a) � a

0

(meaning that we

an �nd m;n � 1 with

n

m

arbitrarily lose to 

a

0

(a) suh that m � a � n � a

0

)

and similarly a

0

� 

a

(a

0

) � a. Then the assumption k � (a + a

0

) � ` � e

implies k(1 + 

a

0

(a)) � a

0

� ` � e (in the proper formulation with m, n this is

k(m + n) � a

0

� `m � e obtained from k � (a + a

0

) � ` � e by �rst multiplying

both sides by m and then replaing m �a by n �a

0

) and k(1+

a

(a

0

)) �a � ` �e.

So it is enough to show that

`

k(1 + 

a

0

(a))

+

`

k(1 + 

a

(a

0

))

=

`

k

12



WPHP

2n

n

implies 

a

(a) = 1 and as 

a

(a

0

) � 

a

0

(a) � 

a

(a) we have 

a

(a

0

) �



a

0

(a) � 1. That the inequality annot be strit follows by CC: Either

m � a � n � a

0

or n � a

0

� m � a, i.e. either

n

m

2 C

a

0

(a) or

m

n

2 C

a

(a

0

). This

proves the laim.

Note that the same argument works equally well in a more general situ-

ation (whose speial ase is Claim 1).

Claim 2: 

[A℄

([B℄) � 

[A

0

℄

([B

0

℄) = 

[A�A

0

℄

([B �B

0

℄), whenever both sides are

de�ned.

Claim 3: D(M) is linearly ordered. Further, if dim(A) < dim(B), then k

opies of A embed in B, for any k � 1.

D(M) is learly linearly ordered. Assume that k opies of A do not

embed in B. Then, by CC, B embeds into k opies of A and so dim(B) �

dim(A) whih ontradits the assumption that dim(A) < dim(B).

Note that the onstrution of Claim 1 also yields the following hara-

terization of the relation 

a

(b) = 1.

Claim 4: For a; b 2 E

d

de�ne a � b i� there are de�nable sets A and B

with [A℄ = a and [B℄ = b and dim(A4B) < d (A4B is the symmetri

di�erene). Then a � b i� 

a

(b) = 1.

Denote by [A℄

�

the �-lass of [A℄. By Claims 1 and 4, [A℄

�

maps additive

semigroup (E

d

; 0;+) into (R

�0

; 0;+). So we want to de�ne the aE as

[A℄

�

taking the value in the diret sum of opies of (R

�0

; 0;+), graded by

(S; 0;�;�), i.e. in R[x

S

℄. A homomorphism of (E

d

;+) into (R

>0

;+) is a

positive multiple of 

a

(x), any a 2 E

d

by Claim 1, and hene we de�ne the

aE in the following way.

Let fe

d

g

d

be a �xed set of points, one from eah E

d

for eah dimension

d 6= �1. Let funtion E : d 2 S ! �

d

2 R

>0

be arbitrary. De�ne map

�

E

: Def(M)! R[x

S

℄

for a non-empty de�nable A by

�

E

(A) := �

d



e

d

([A℄) � x

dim(A)

We will show in Claims 5 and 6 that one an hoose points fe

d

g

d

and funtion

E so that �

E

is the desired aE.

Intuitively, one would like to have e

d

's the \unit d-dimensional ubes" in

whih ase all �

d

's ould be equal to 1. However, in a general situation there

13



is no suh objet and so we pik e

d

's arbitrarily and use �

d

's for a reti�ation

of the values, so that they obey onditions 1. and 3. of De�nition 4.2.

Claim 5: Assume e

0

is the [: : :℄-lass of a �nite set with n � 1 elements

and �

0

= n. Then for any �nite A: �

E

(A) = jAj.

The value of �

E

(A) is n times the in�mum of all

`

k

suh that k opies of

A embed into an `n-element set. The in�mum is learly

jAj

n

.

The next laim will ultimately follow from Claim 2 and ould be proved

diretly if we ould use an indution on the dimension. However, we need to

proeed more generally in order to apply to any possible semigroup S where

an indution argument is not available.

Claim 6: For any � there is a set fe

d

g

d6=�1

with e

d

2 E

d

and funtion E

with �

0

= � suh that the resulting funtion �

E

satis�es the multipliative

ondition 3. of De�nition 4.2.

By Lemmas 3.5 and 3.7 semigroup S satis�es the anellation law and

there is a non-empty maximal independent (in the sense of De�nition 3.6)

subset D � S n f0g. Let A

d

, d 2 S n f0g, be some �xed sets suh that

[A

d

℄ = e

d

2 E

d

.

De�ne �

d

, for d 6= 0, as follows. If d 2 D, �

d

:= 1. If d =2 D then, by the

maximality of D, there are n, d

i

and u

i

; v

i

for i � n, and u � 1 suh that

X

i

u

i

� d

i

+ u � d =

X

i

v

i

� d

i

(by the anellation law we may assume that d appears only on one side of

the equation; similarly we ould assume that u

i

v

i

= 0 for all i � n). Then

de�ne:

�

d

:= 

[�

i

A

v

i

d

i

℄

([�

i

A

u

i

d

i

�A

u

d

℄)

1=u

where �

i

is a Cartesian produt. The intuition behind this de�nition is this:

A

d

's for d 2 D are postulated to have the "unit size". The "right size" of

A

d

for d =2 D is then omputed using a relation between Cartesian produts

involving the set and some unit size sets, thinking that the Cartesian u-th

power inreases the size to exponent u.

By the equality

P

i

u

i

�d

i

+u �d =

P

i

v

i

�d

i

the sets �

i

A

v

i

d

i

and �

i

A

u

i

d

i

�A

u

d

have the same dimension and so the term de�ning �

d

is well-de�ned. By

the usual manipulations with linear equalities (this we an do having the

anellation law) there is, for any given d, the minimal u for whih an

equality like

P

i

u

i

�d

i

+u �d =

P

i

v

i

�d

i

holds and all other equalities of this

14



type are its integer multiple. This shows that the value of �

d

is independent

of the hoie of the partiular equation and u. Here we use the property



[A℄

([B℄) � 

[A

0

℄

([B

0

℄) = 

[A�A

0

℄

([B � B

0

℄) from Claim 2 (and we shall use it

repeatedly without further mentioning).

To demonstrate the multipliative property �

E

(U) � �

E

(V ) = �

E

(U � V )

assume that dim(U) = d

0

and dim(V ) = d

1

. Then we want to show:

�

d

0



[A

d

0

℄

([U ℄)�

d

1



[A

d

1

℄

([V ℄) = �

d

0

�d

1



[A

d

0

�d

1

℄

([U � V ℄)

As



[A

d

0

℄

([U ℄)

[A

d

1

℄

([V ℄) = 

[A

d

0

�A

d

1

℄

([U�V ℄) = 

[A

d

0

�A

d

1

℄

([A

d

0

�d

1

℄)

[A

d

0

�d

1

℄

([U�V ℄)

and



[A

d

0

�A

d

1

℄

([A

d

0

�d

1

℄)

�1

= 

[A

d

0

�d

1

℄

([A

d

0

�A

d

1

℄)

it is enough to show that:

�

d

0

�

d

1

= �

d

0

�d

1



[A

d

0

�d

1

℄

([A

d

0

�A

d

1

℄)

The values of the �' are omputed from some linear dependene relations in

S involving integer salar multiples of d

0

, d

1

and d

0

� d

1

respetively. By

taking some ommon multiple we may assume that the dimensions appear

in the liner dependenies with salar u � 1. In partiular,

�

d

0

= 

[B

0

℄

([B

1

�A

u

d

0

℄)

1=u

and �

d

1

= 

[C

0

℄

([C

1

�A

u

d

1

℄)

1=u

where B

0

; B

1

; C

0

; C

1

are Cartesian produts of A

d

's for some d 2 D (i.e. of

the sets we postulated to have unit size, so we may think of B

0

; B

1

; C

0

; C

1

as "unit ubes"). It holds:



[B

0

℄

([B

1

�A

u

d

0

℄)

1=u



[C

0

℄

([C

1

�A

u

d

1

℄)

1=u

= 

[B

0

�C

0

℄

([B

1

�C

1

�(A

d

0

�A

d

1

)

u

℄)

1=u

=



[B

0

�C

0

℄

([B

1

� C

1

�A

u

d

0

�d

1

℄)

1=u



[A

u

d

0

�d

1

℄

([(A

d

0

�A

d

1

)

u

℄)

1=u

The left-hand side is �

d

0

�

d

1

, while the right-hand side is �

d

0

�d

1



[A

d

0

�d

1

℄

([A

d

0

�

A

d

1

℄). This proves the laim.

We are ready now to prove the seond part of the theorem. Take E

provided by Claim 6, with �

0

hosen so as to satisfy the hypothesis of Claim

5. Hene the map �

E

satis�es onditions 1. and 3. of De�nition 4.2, by

Claims 5 and 6.
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Condition 4. is satis�ed for any E . Assume A embeds into B. Then

either dim(A) < dim(B) or dim(A) = dim(B). In the former ase, by

Claim 3, even dim(A) << dim(B). In the latter ase 

[B℄

([A℄) � 1, so



e

([A℄) � 

e

([B℄) for e = e

dim(A)

, and so �

E

(A) � �

E

(B).

It remains to verify ondition 2.: Let A, B be two disjoint de�nable sets

and assume �rst that dim(A) < dim(B). Then �

E

(A [ B) = �

E

(B) and

�

E

(A) << �

E

(B), so �

E

(A [B) _=�

E

(A) + �

E

(B) (as x

dim(A)

<< x

dim(B)

).

Next assume dim(A) = dim(B). Then even �

E

(A [B) = �

E

(A) + �

E

(B)

by Claim 1.

q.e.d.

It would be interesting to avoid using priniple CC in the theorem. This

ould be done if, for example, every struture satisfying WPHP

2n

n

had an

expansion still satisfying WPHP

2n

n

but also satisfying CC. Is this true?

Also, when ould the role of (R

�0

; 0;+;�) (both as oeÆients or as

degrees) in R[x

S

℄ be taken by (Q

�0

; 0;+;�)?

5 Examples

We onlude the paper by few examples of well-known strutures to illustrate

some fats and notions disussed in the paper.

1. Example: reals R.

The real losed �eld R satis�es the ontoPHP (as bijetions need to pre-

serve E and E of a set and of the set plus one point di�er; R admits E

- see e.g. [4℄) but learly not PHP or WPHP

2n

n

. Hene R admits neither

ordered E nor aE. On the other hand R admits a dimension funtion (see

e.g. [4℄) and satis�es WPHP

n

2

n

(by dimension reasons). R also satis�es CC,

f. [9℄.

2. Example: omplex numbers C.

Complex numbers satisfy PHP (by a theorem of Ax [2℄) and hene the

other three (W)PHP priniples too. The universal E is thus ordered and

so it is also aE. The Grothendiek ring K

0

(C) is huge; for example, it

ontains the ring of omplex polynomials in ontinuum many unknowns (f.

[9℄). Priniple CC fails for C.

3. Example: strutures with global ranks.
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Let d : Def(M) ! S be a dimension funtion with (S;�1; 0;_;�;�)

linearly ordered. De�ne

deg

d

: Def(M)! N [ f1g

as the maximum n 2 N s.t. there are n disjoint subsets of A eah of the

same d-dimension as A, and deg

d

(A) :=1, if no suh n exists.

A good example of suh d is Morley rank RM in almost strongly min-

imal strutures

3

; values of deg

RM

are in N, for example, for strongly

minimal strutures. As a simple spei� example we take the struture

M := (N; su). As noted in [9, Se.8℄, M satis�es WPHPs while obviously

not ontoPHP. De�nable subsets A � M

n

are disjoint unions of sets A

i

of

the form

U

1

� : : :� U

n

where eah U

i

� N is either �nite or o-�nite. De�ne d(A) to be the

maximum number of o-�nite in some A

i

. deg

d

has values in N.

De�ne funtion � : Def(M)! N[x

S

℄ by

�(A) := deg

d

(A) � x

d(A)

Then � is an aE.

To see this note that for A �nite, d(A) = 0 and deg

d

(A) = jAj. So

�(A) = jAj � x

0

= jAj.

For the additivity onditions let d(A) = u � v = d(B). If u < v,

deg

d

(A

_

[B) = deg

d

(B), so

�(A

_

[B) = deg

d

(A

_

[B)x

v

= �(B) � �(A) + �(B) :

If u = v, deg

d

(A

_

[B) = deg

d

(A) + deg

d

(B), and

�(A

_

[B) = (deg

d

(A) + deg

d

(B))x

v

= �(A) + �(B) :

For the opposite inequality �(A) + �(B)

_

��(A

_

[B) write

�(A) + �(B) = deg

d

(A)x

u

+ deg

d

(B)x

v

If u < v, deg

d

(A)x

u

<< x

v

, so �(A) + �(B)

_

��(B) � �(A

_

[B). If u = v,

�(A) + �(B) = �(A

_

[B).

3

As pointed out by the referee, more generally one an take Lasar rank in strutures

of �nite Lasar rank.
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I leave it to the reader to hek the other two properties required from

aE.

4. Example: pseudo-�nite �elds.

Let F be an ultraprodut of �nite �elds F

q

's. Chatzidakis, van den

Dries and Maintyre [3℄ assign to all de�nable A in F a pair (�; d), with

� a positive rational and d a natural number suh that for some X in the

ultra�lter and all q 2 X it holds:

jA(F

q

)� � � q

d

j = O(q

d�

1

2

)

This also yields an aE

A �! � � x

d

2 Q[x℄

(hanging values for �nite A to jAj).

5. Example: bounded arithmeti.

This is another example of a struture satisfying WPHP

2n

n

but not on-

toPHP. Let (M; 0; 1;�;�) be a ountable non-standard model of true arith-

meti with ternary relations � and � for graphs of additions and multipli-

ation instead of the funtions themselves. Let n 2 M be a non-standard

number and M

n

the substruture with the universe [0; : : : ; n℄.

One an �nd a bijetion f (not de�nable in M

n

) between [0; : : : ; n℄ and

[0; : : : ; n�1℄ (and so enforing a failure of ontoPHP) suh that the expanded

struture still satis�es WPHP

2n

n

(and also indution for all formulas, possibly

ontaining symbol f); this follows from [10, 8, 11℄, see also [9℄.

It is an interesting open problem in bounded arithmeti whether we an

similarly violate by f one of the weak pigeonhole priniples, but in a way

so that indution for all formulas is maintained. This has lose relations to

propositional proof omplexity too.

Let us lose by a general remark the referee made and whih I on-

sider important. The onstrutions in the paper do not really use the

fat that we operate with a semiring derived from a �rst-order struture.

Semiring

g

Def(M) is more here important than the lass of de�nable sets

Def(M). Combinatorial properties of strutures are reeted in �rst-order

properties of

g

Def(M) (for example, WPHP

2n

n

implies that

g

Def(M) satis�es

8x; y; z;x+x+y+z 6= x+z and CC implies the validity of 8x; y9z; (x+z =

y _ y + z = x)) and that is the only way the priniples are used in the on-

strutions. Thus it ould make a good sense to work purely abstratly with

18



semirings. Furthermore, this abstrat approah allows to split the ques-

tion about the importane of CC (raised at the end of Setion 4) into two

separate questions. First, an one �nd a ommutative semiring satisfying

WPHP

2n

n

but not admitting nontrivial weak aE? And seondly, an suh

a semiring take the form of

g

Def(M) for some �rst order struture M?

Aknowledgement: I am indebted to T. Sanlon (Berkeley) for valuable

disussions about this topi at the time of writing [9℄. I thank P. Pudl�ak

(Prague) and L. van den Dries (Urbana) for omments on the draft of the

paper. I also thank the anonymous referee for many penetrating omments

and suggestions.

Referenes

[1℄ M. Ajtai, On the existene of modulo p ardinality funtions, in: Fea-

sible Mathematis II, eds. P. Clote and J. Remmel, Birkhauser. (1994),

pp.1-14.

[2℄ J. Ax, The elementary theory of �nite �elds, Annals of Mathematis,

88(2), (1968), pp.239-271.

[3℄ Z. Chatzidakis, L. van den Dries, and A. Maintyre, De�nable

sets over �nite �elds, J. f�ur die reine und angewandte Math., 427,

(1992), pp.107-135.

[4℄ L. van den Dries, Tame topology and o-minimal strutures, London

Math. So. Leture Note Series, Vol. 248, (1998), Cambridge University

Press.

[5℄ J. Kraj

�

�

�

ek, Bounded arithmeti, propositional logi, and omplexity

theory, Enylopedia of Mathematis and Its Appliations, Vol. 60,

Cambridge University Press, (1995).

[6℄ J. Kraj

�

�

�

ek, Uniform families of polynomial equations over a �nite

�eld and strutures admitting an Euler harateristi of de�nable sets,

Pro. London Mathematial Soiety, (3)81, (2000), pp.257-284.

[7℄ J. Kraj

�

�

�

ek, Combinatoris of �rst order strutures and propositional

proof systems, Arhive for Mathematial Logi, to app. (preprint 2001).

19



[8℄ J. Kraj

�

�

�

ek, P. Pudl

�

ak, and A. Woods, Exponential lower bound

to the size of bounded depth Frege proofs of the pigeonhole priniple,

Random Strutures and Algorithms, 7(1), (1995), pp.15-39.

[9℄ J. Kraj

�

�

�

ek and T. Sanlon, Combinatoris with de�nable sets: Eu-

ler harateristis and Grothendiek rings, Bulletin of Symboli Logi,

6(3), (2001), pp.311-330.

[10℄ J. B. Paris, A. J. Wilkie, and A. R. Woods, Provability of the pi-

geonhole priniple and the existene of in�nitely many primes, Journal

of Symboli Logi, 53, (1988), pp.1235{1244.

[11℄ T. Pitassi, P. Beame, and R. Impagliazzo, Exponential lower

bounds for the pigeonhole priniple, Computational omplexity, 3,

(1993), pp.97-308.

[12℄ S. Shanuel, Negative sets have Euler harateristi and dimen-

sion, in: Category Theory Como'90, eds. A.Carboni, M.Pedihio,

G.Rosolini. LN in Mathematis, 1488, Springer. (1991), pp.379-385.

Mailing address:

Mathematial Institute

Aademy of Sienes

�

Zitn�a 25

Prague 1, CZ - 115 67

The Czeh Republi

krajiek�math.as.z

20


