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Outline

® Risk-Averse optimization
O Mean-risk objectives with CVaR are often used
O To solve complex models, we need to use approximations
B Monte-Carlo methods

® Standard estimators are not convenient for mean-CVaR operators

O They lead to high variance, due to the properties of CVaR
O We propose a sampling scheme based on importance sampling
B Analytically evaluated under the assumption of normal distribution
B For general setup, algorithm is given to find a suitable sampling scheme

0 We validate our results with a numerical example, which uses
Stochastic Dual Dynamic Programming algorithm




Basic model

® CVaR formula:
1
CVaR, [Z] = mi ~“E[Z -
aR, [Z] muln(u—i—a [ u]+>

® Consider following mean-risk functional:

Q. (2] = (1= N E[Z] + ACVaR, [Z]

0 Z represents random losses
O convex sum: A € [0, 1]
O suppose that Z follows a pdf f
® Such functionals are present in many types of models,
static cases, multistage cases

O Wide range of applications of our sampling scheme




Standard Monte Carlo

® Standard Monte Carlo approach is not convenient for estimation of
CVaR

Example

Consider the following estimator of CVaR, [Z], where Z',Z2,...,ZM are
independent and identically distributed (i.i.d.) from the distribution of Z:

1 M
m|n _MZ

If &« = 0.05 only about 5% of the samples contribute nonzero values to this
estimator of CVaR.




Importance sampling

Aims to solve the issues mentioned in previous example

® Suppose we want to compute E [Q(x, Z)] with respect to the pdf f
of the random variable Z

Therefore: Ef [Q(x,Z)] = [77 Q(x, z)f(z)dz
Choose another pdf g of some random variable and compute:

/ Q(x,z)f( / sz

® Therefore

( )dz =E, [Q(x, Z);(—?}

—

Er [O(x. 2)] = Eq [Q(x, 28]




Importance sampling

® In the context of Monte Carlo, Ef [Q(x, Z)] is replaced with:
0 Sample Z1, 72, ..., ZM from distribution with pdf f

0 Compute
M

1 j
MZQ(X’Z)

j=1
B The importance sampling scheme is as follows:
0 Sample Z1, Z?, ..., ZM from distribution with pdf g

z)
[ Z o g

= Function g should be chosen such that the variance of the

sum above is minimal

0 Compute




Further variance reduction

,;(g‘) could be considered as a weight:

® The term w/ =

= |

M
Z xZJ

B |n expectation, we have E [Wj] =1, but the term itself is random
and has nonzero variance

® Replace the M =E [Z 1 WJ1| with the actual value:

1W ZQXZJ

J




Further variance reduction

® We no longer have the expectation equality:

1 M o M
Ee | < D Q% Z)w/| # Z x, Z1)
D e W j=1 j=1

j=1

= But we can show consistency:

Eg Z o(x, ZNYw | = Ef[Q(x,2)], w.p. 1,
J 1 W

as M — oo.

® The benefit is usually significant variance reduction
over the standard importance sampling scheme




Mean-CVaR estimation

® What is a suitable importance sampling scheme for mean-CVaR?

0. [Z] = (1 = M) E [Z] + ACVaR, [Z]

[m]

The functional clearly depends on all outcomes of Z

We have observed that CVaR is hard to estimate with standard Monte
Carlo approach

We will divide the support of the distribution into two atoms:

B “CVaR" atom

B “non-CVaR"” atom

[m]

]

O We can select the same weight for both atoms, but is it a reasonable
choice?




Mean-CVaR estimation

Since CVaR,, [Z] = E [Z|Z > VaR, [Z]], we can easily define the
“CVaR" atom

Using the pdf f, we compute the value at risk uy = VaR, [Z]

0 the threshold can be also estimated using sampling

® The proposed importance sampling pdf is, with 5 € (0, 1):
ﬁf(z), if z> uy
@

f(z), if z< uz

= We are more likely to draw sample observations above VaR,, [Z]

Suitable choice of 3 should be tailored to the
values of o and A




Variance reduction

= We define:

QS:(l—)\)Z+>\(uz+é[Z—Uz]+)
Qi:Ef((1—/\)Z+)\(uz+é[2—uz]+)>
= |t clearly holds Q = E, [Qi] =Ef[Q°]

® Qur aim is to minimize variance, e.g. finding suitable parameter 3,
so that varg [Q'] < varf [Q7]

® With another random variable, we will write Q%, Q)"<, etc.




Basic properties

® The variance of our importance sampling estimator is invariant to
addition of a constant and scales well with transformations

Proposition

Let X, Y be random variables, Y = X 4+ u, p € R, fx and fy the
corresponding pdfs. Suppose that their importance sampling versions
gx and gy are defined using the same value of parameter 3. Then

varg, [QH = vargy [Q)I<]

Proposition

Let X, Y be random variables, Y = ocX, o0 > 0, fx and fy the
corresponding pdfs. Suppose that their importance sampling versions
gx and gy are defined using the same value of parameter 5. Then
varg, [QIY] =0° vargy [Q)’<]



Normal distribution

= We will now suppose that the losses follow normal distribution,
with ¢(x) as its pdf and ®(x) its distribution function

Proposition

Let Z ~ N(u,02) be a random variable. In order to minimize the
variance varg [Q’Z] the optimal value of the importance sampling
parameter 8 can be obtained by solving the quadratic equation:

9 ;
% (Varg [QZ]) =0




Normal distribution

) 11—«
25 (...) =13 (1-=N2(1—a—uz¢(uz))

- % (1= 22 (o + uze(uz))
2 5
— a_ﬁz (a —uzp(uz) + uZa)

20 ((1— a)z . 04_2
Az ((1 ~h)e ﬁz)
2
+ 2%Uz (6(uz) — auz)
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Variance as a function of beta

o o o o o o
=3 ~ © n < 5]

aoueleA

Example - normal distribution with A = 0.5
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istribution

Optimal beta for given lamda
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Other distributions

® For other distributions, the same analysis can be performed and
the derivative computed

® If this is not possible due to the complexity of the evaluations, we
can estimate the suitable 8 by sampling

0 We choose a mesh of possible values, e.g. 5= {0.01,0.02,...,0.99}
O For each of them, we sample prescribed number of scenarios, yd)

7 We compute the mean and variance of the values @ given by Z/

0 The lowest variance is selected as a suitable choice of /3

® |n general, the solutions depend on the distribution parameters




Example - lognormal distribution

Variance as a function of beta

@ e e | 0gnormal(0,1)

e | 0OgNOrmal(0,0.0625)

Variance

== « ¢lognormal(1,0.0625)




Risk-averse multistage model

® Inspired by Ruszczynski and Shapiro

® Given risk coefficients A\; and random loss variable Z we define:

Pegy 121 = (1= X)E |Z|€_y| + X CVaRa, |ZI€}y|

®m Nested model can be written:

min clTxl + P2, min c2sz + -
Ai1x1=b1,x1>0 0| Boxq +Asxa=b2,x2>0
o PT e min c?xr
ST Brxr 1 +Arx7=b7x7>0

m Convex optimization problem

®m We assume feasibility, relatively complete recourse
and finite optimal value




Model properties

= Allows to develop dynamic programming equations, using:
) 1
CVaR, [Z]:mum U+EE [Z — u],

® Denote Q¢(x¢—1,&;), t =2,..., T as the optimal value of:

LT
min ¢; X; + Aer1us + Qet1(Xe, u)
t Ut

s.t. tht—l + Atxt = bt
Xt > 0

® Recourse function is given by (Qr41(-) = 0):

Qt—l—l(xt; Ut) =K [(1 - )\t+1) Qt-s—l(Xt’ £t+1)+

At [Qer1(xe, €pp1) — ue]

_l’_




Asset allocation model

® At stage t we observe the price ratio between the new price and
the old price p;

® X, contains the optimal allocation (in USD, say)
® The total portfolio value is tracked as a multiple of the initial value

® Dynamic programming equations are very simple:

min — lTxt + Aep1ue + Qry1(xe, ut)

Xt,Ut

s.t. p;rxt_l —1"x, =0
X¢ Z 0




SDDP algorithm properties

® First designed to solve hydro-scheduling problems
® Relies on the stage-independence assumption

B Each iteration runs with linear complexity

® Provides approximate solution using Benders' cuts

O Cuts provide polyhedral approximation of the recourse function
O LP duality - subgradient computed from the dual variables
0 Lower bound

® Policy evaluation procedure
O Upper bound
® Upper bound requires estimation

0 Precise calculation fails to scale with T

O Algorithm stops if lower bound is close enough to confidence
interval for the upper bound

B rarely done in a statistically rigorous manner




SDDP scheme

stage 2

stage 1

©
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Backward pass




SDDP algorithm outline

® Because of the stage independence, cuts collected at any node
from the stage t are valid for all nodes from that stage

® Algorithm consists of forward and backward iterations

® Forward iteration
0 Samples 51,...,£J sample paths

O Policy is evaluated using all the cuts collected so far
O Value of the policy gives the upper bound

®m Backward iteration

O Subset of the scenarios from the forward iteration is chosen
0 For every chosen node the Benders' cut is calculated

® Using all of its immediate descendants (not just scenarios from the
forward pass)

0 Optimal value of the root problem gives the lower bound

® The bounds are compared and the process is repeated




Inter-stage independence

® |n order to use SDDP some form of independence is required
O Efficient algorithms usually rely on an inter-stage independence
assumption
0 Otherwise, memory issues arise even for modest number of stages
® This assumption can be weakened
0 One extension is to incorporate an additive dependence model
B See Infanger & Morton [1996]
O Another approach to bring dependence into the model is the use of a
Markov chain in the model
B See Philpott & Matos [2012]
0 Yet another approach couples a “small” scenario tree with general
dependence structure with a second tree that SDDP can handle
B See Rebennack et al. [2012]




Upper bound overview

® Risk-neutral problems

O The value of the current optimal policy can be estimated easily
O Expectation at each node can be estimated by single chosen
descendant
® Risk-averse problems

O To estimate the CVaR value we need more descendants in practice
O Leads to intractable estimators with exponential computational
complexity
m Current solution (to our knowledge)

O Run the risk-neutral version of the same problem and determine the
number of iterations needed to stop the algorithm, then run the same
number of iterations on the risk-averse problem

B Works with different policy than the outer approximation
B Probably the best alternative so far




Our SDDP implementation

® Using own software developed in C++

m CPLEX and COIN-OR used as solvers for the LPs

m Stock assets allocation problem used as the example

m SDDP applied to a sampled tree from the continuous problem

B The algorithm can be implemented for parallel processing
O We have not done so

m Testing data from US stock indices

® |Log-normal distribution of returns is assumed

m Risk aversion coefficients set to A\; = %

= Tail probability for CVaR set to 5% for all stages




stage 4

Exponential estimator scheme



Exponential estimator

® Described by Shapiro

® For stagest =2,..., T, we form:
. 1 M . .
Be(€h1) = 7 2 [(1 =20 ((eD)Txf + Bea(€h)) +
j=1
Al + Ae [(Cj)TXj + Beg1(&)) — ul 1} ]
=1 [\C) X t t=1],

= br4a(€7)=0
® The final cost is estimated by:

Ue - (Cl)Txl + 62




Exponential estimator results

® Results for the exponential estimator:
0 ~ 1,000 LPs solved to obtain the estimator (~ 20,000 for T = 10)
0 As number of stages grows so does bias (and variance)
0 z denotes the lower bound

T | desc./node | M, z Ue (s.d.)

2 50,000 | 1,000 | -0.9518 -0.9518 (0.0019)

3 1,000 32 | -1.8674 -1.8013 (0.0302)

4 100 11 | -2.7811 -2.6027 (0.0883)

5 50 6 |-3.6794 -2.9031 (0.5207)
10 50 3 |-7.6394 | 1.5 x 107 (1.3 x 10°)




Upper bound enhancements

® We would like an estimator with linear complexity
® |deally it should be unbiased, or in practice, have small bias
= We will incorporate two ideas:

O Linear estimator from the risk-neutral case
O Importance sampling, with an additional assumption needed

Assumption

Let hy(x:—1, &;) approximate the recourse value of our decisions x;_1
after the random parameters &, have been observed, and let
he(x¢—1, €&;) be cheap to evaluate.

® For example in our portfolio model:
T
he(xe-1, &) = =& xe-1 = —P;rxt—l




Importance sampling example

decision x = [0.25, 0.75]

CVaR node
standard node

P .. price scenario
v .. portfolio value

p=I[2,4] p=1[6,2] p=1[4,6] p=1[4,4]
v=3.5 v=3.0 v=5.5 vV=4.0




Importance sampling

= We start with standard pmf, all probabilities equal for D; scenarios:

1
fi‘(st) = E]I[st € {5%7 R tDt}]
t
® We change the measure to put more weight to the CVaR nodes:

B P A= VaRo, [hi(xo, )

— Bt
]__

gt(&ilxe—1) =

ft, if hy < VaRq, [he(xe-1, &;)]

O We select forward nodes according to this measure
o By [Z] = By {z £

fe
( ) Ht 2gt(€(|£xt 1)




Linear estimator scheme

CVaR node
standard node



Linear estimators

® The nodes can be selected randomly from the standard i.i.d.
measure or from the importance sampling measure

® Forstagest =2,..., T is given by:
Be(€5°]) = (1= Ao) () Tk +Beaa(€h)) +
e 28| (el) T Bea(€) - i)
t
= 6r1(€7) =0
® Along a single path for scenario j the cost is estimated by:

G(EJ) = Cil—xl + 0o




Linear estimators

® For scenarios selected via the original pmf we have the naive
estimator

LM
N o
Un =5 2_8(€)
j=1
= With weights again defined via
-
- fe(€+)
w(g) = _ S
=11 e
m For scenarios selected via the IS pmf we have the IS estimator

U= —F——) w@)b
Z}ilw(e); (€)8(¢)




Linear estimator results

® Results for both linear estimators—with and without importance
sampling (5 = 0.5)
O ~ 1,000 LPs solved to obtain the estimator, ~ 10,000 for T = 10
O Still fails for bigger setups - for 10 stages the bias grows large

z U™ (sd.) U (s.d.)
~0.9518 | -0.9515 (0.0020) ~0.9517 (0.0012)
“1.8674 | -1.8300 (0.0145) ~1.8285 (0.0108)
27811 | -2.4041 (0.1472) ~2.3931 (0.1128)
36794 | -3.4608 (0.1031) ~3.4963 (0.1008)

—
Sloslw| o~

-7.6394 | 9.3 x 10* (1.4 x 10*) | 9.0 x 10* (8.7 x 10%)




Upper bound enhancements

® The reason for the bias of the estimator comes from poor

estimates of CVaR

O Once the cost estimate for stage t exceeds u;_1 the difference is
multiplied by a;*

O When estimating stage t — 1 costs in the nested model we sum stage
t — 1 costs and stage t estimate which means that we usually end up
with costs greater than u;_» so another multiplication occurs

O This brings both bias and large variance

Assumption
For every stage t = 2,..., T and decision x;_1 the approximation
function h; satisfies:

Qt > VaRat [Qt] if and on/y if ht > VaRat [ht] .




Improved estimator

® Provided that the equivalence assumption holds we can reduce the
bias of the estimator

O The positive part operator in the equation is used only in the case of
CVaR node

® For stagest =2,..., T we have
B8(6l1) = (1= A (1) Tk + 6?+1(5f;f)) A+
e > VaRa, A2 [(ch) Tt + 88, (68) - 0]

" 6|}+1(£JT) =0




Improved estimator results

® Results compared to exponential estimator

T z U® (s.d.) UM (s.d.)

2 | -0.9518 | -0.9518 (0.0019) | -0.9517 (0.0011)
3 | -1.8674 | -1.8013 (0.0302) | -1.8656 (0.0060)
4 | 2.7811 | -2.6027 (0.0883) | -2.7764 (0.0126)
5 | -3.6794 | -2.9031 (0.5207) | -3.6731 (0.0303)
10 | -7.6394 NA ~7.5465 (0.2562)
15 | -11.5188 NA “11.0148 (0.6658)

O For problems with up to 5 stages ~ 1,000 LPs solved
O For 10 stages 10,000 LPs, for 15 stages 50,000 LPs

O We test challenging instances in terms of risk coefficients A;




Improved estimator results

T z U™ (s.d.) U (s.d.) U (s.d.) U® (s.d.)
2 [ -0.9518 -0.9515 (0.0020) -0.9517 (0.0012) -0.9517 (0.0011) -0.9518 (0.0019)
3 | -1.8674 | -1.8300 (0.0145) -1.8285 (0.0108) -1.8656 (0.0060) -1.8013 (0.0302)
4 | 27811 -2.4041 (0.1472) -2.3931 (0.1128) -2.7764 (0.0126) -2.6027 (0.0883)
5 [ -3.6794 | -3.4608 (0.1031) -3.4963 (0.1008) -3.6731 (0.0303) -2.9031 (0.5207)
10 | -7.6394 | 9.3 x 10% (1.4 x 10%) [ 9.0 x 10* (8.7 x 10%) | -7.5465 (0.2562) | 1.5 x 107 (1.3 x 10°)
15 | -11.5188 NA NA -11.0148 (0.6658) NA
® For T =2,...,5 variance reduction of U" relative to Ue:

3 to 25 to 50 to 300.
®m Computation time for U" for T =5, 10, 15:
8.7 sec. to 31.6 sec. to 67.4 sec.
= Computation time for UM for T =5, 10, 15:
6.8 sec. to 30.0 sec. to 66.5 sec.




Computational setup for variance reduction

1

® Risk aversion coefficients set to A\; = 5

= Tail probability for CVaR set to 5% for all stages

® We formed 100 i.i.d. replicates of the estimators with approx.
10,000 LPs solved for each of them

m All 100 replicates used the same single run of SDDP

® Large-scale problems, T = 5; 10 and 15

||

50 descendant scenarios per node




..
Suitable S

Our random inputs are supposed to have log-normal distribution
The portfolio value is a sum of log-normal distributions

O We don't have exact analytical form of the resulting distribution

O It's sometimes approximated with log-normal distribution

But, what does the convex combination of expectation and CVaR

do with the distribution?

Nested structure of the model brings additional complex
transformations

Different values of 3 should be selected for every stage, as the
parameters of the distributions also vary

For small ratios of standard deviation over the mean, log-normal
distribution can be approximated by normal distribution, see Hng,H s
[1952] ==
We have used 5 = 0.3 which came out from our
normal-distribution analysis for A = 0.5




Results

® Standard Monte Carlo setup Os (Bt = ay = 0.05)

® Improved estimator Qi with B¢ = 0.3
= [ ower bound z

T | total scenarios z 0s (s.d.) Q' (s.d.)

5 6,250, 000 -3.5212 | -3.5166 (0.0168) | -3.5158 (0.0042)
10 ~10M -7.3885 | -7.2833 (0.2120) | -7.2741 (0.0315)
15 ~ 107 -10.4060 | -10.1482 (0.8184) | -10.1246 (0,1266)

® Variance reduction by a factor between 4 and 7

® Negligible effect on computation times




Conclusion

= We propose a new approach to estimate functionals that
incorporate risk via CVaR
O Allows to tweak existing procedures which rely on sampling in
estimation of mean-risk objectives
O Significantly smaller variance than a standard Monte Carlo estimator
O Negligible effect on computation times in optimization problems

= Future research

O Applications such as hydroelectric scheduling under inflow uncertainty
0 Other risk measures, different importance sampling pdfs
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Thank you for your attention!
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