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Introduction

Definition

Let (2, F) be a sample space on which uncertain losses Z(w) are
defined. For some space Z of functions Z we understand risk measure
as a function p(Z) which maps Z into extended real line

R =R U {oo, —c0}.

We usually have Z = £, with p € [1,00).
® We assume that p is proper, i.e. p(Z) > —oo VZ € Z and the
domain dom(p) ={Z € Z: p(Z) < 0} # 0

7,7 €2 Z2=7 if Z(w) > Z (w) for a.e. w e Q.

The smaller Z is better, representing for instance costs.
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Risk measures - examples

Let Hz(z) = P[Z < z] and denote the left side quantile
H;(a) = inf {t : Hz(t) > a}.
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variance var(Z) = E[Z — EZ]?

semideviations o} () = (E[Z — EZ]?)"/”

Value at Risk VaR,(Z) = H; (1 — a)

Condition Value at Risk CVaRy(Z) = infeer {t + o 'E[Z — 1], }
weighted mean deviation from a quantile

ga(Z) = E [max {(1 — a)(H; (o) — Z),a(Z — Hz_l(a)}]

etc.




Coherent Risk Measures

Definition
Risk measure p is said to be coherent if it satisfies:
1. Convexity:¥Z,Z € Z and ¥t € [0, 1]
o(tZ+ (1= 1)Z') < tp(2) + (1= t)p(Z)).

2. Monotonicity: if Z,Z' € Z and Z = Z' then p(Z) > p(Z).
3. Translation equivariance:YVa € R, Z € Z: p(Z+a) =p(Z) + a
4. Positive homogeneity: V't >0, Z € Z: p(tZ) = tp(2)

®m CVaR is an example of coherent risk measure.
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Conjugate duality

= With each space Z = L,(, F,P) is associated its dual
Z* = L4(Q, F,P) where g € [1,00) such that 1/p+1/qg = 1.

® Scalar product for Z € Z and { € Z* is given by
€.2)= [ c)Zw)Pw)

= Conjugate function p*(() is defined as:
p*(¢) = sup {(¢, Z) — p(2)}
Zez

O always convex and Isc
® Biconjugate function p**(Z), which is conjugate of p*(Z) :

(2= s (G2 - o0
ez 5
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Conjugate duality

Theorem (Fenchel-Moreau)

Let Z be a Banach space and p : Z — R be a proper extended real
valued convex function. Then

P =lscp.

m |f p is convex, proper and lower semicontinuous then p* is proper
and p** = p.

® We can use following equivalent form for convex risk measure:
p(Z) = sup{(¢, Z) — p"(C)}
ceu

where U = dom(p*).
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Basic duality theorem

Theorem

Let p: Z — R be convex, proper and Isc. Then for U = dom(p*)
representation

p(Z) = sup{(¢, Z) — p*(¢)}
ceu
holds. Moreover
® p is monotone iffV¢ € U : ((w) >0 a.s.,
® p is translation equivariant iffV{ € U : [ (dP =1,

® p s positive homogeneous iff p is the support function of the set
U, ie.

p(Z) = sup((, Z).
ceu
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Basic duality theorem - proof

= Representation
p(Z) = sup {(¢, Z) — p* ()}
ceu

follows from Fenchel-Moreau theorem.
® Suppose p is monotone.
O If ¢ € Z* is not nonnegative, then
JA € F:P[A] > 0,((w) <0 Vw € A.
O Define Z = I, then (¢, Z) < 0. .
0 For any Z € dom(p) define Z, = Z — tZ.
0 Then p*(¢) = supier, {(¢; Ze) — p(Ze)} =
supeer, {(C.2) — (¢, 2) — p(Ze) } = o0
® Suppose every ( € U is nonnegative.

DVCGL[andZ>—Zwehave<§Z) ((Z)
O That means if Z = Z' then p(Z) > p(Z')
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Basic duality theorem - proof

® Suppose p is translation equivariant
0 VZ € dom(p): p*(¢) = sup,er {(¢, Z +a) — p(Z + a)} =
sup,eg {2 Jo (AP — 2+ (C, Z) — p(2)}
O If [ ¢dP # 1 then p*(¢) = oo
= Conversely [ ¢dP =1
0 p(Z +a) =supecy {(¢. Z +a) — p"(Q)} =
supcey {(¢, Z2) +a—p*(Q)} = p(Z) +a
® Suppose p is positive homogeneous
0 p*(¢) = ¢ > 0 then

p*(¢) > SUP¢er, {{¢, tZ) — p(t2)} = SUPter, {t{¢,Z) — tp(Z2)} = o0
0 p*(¢) is indicator function of some convex set
0 we conclude p*(¢) = 0 for ¢ € U (basic representation)

m Conversely
0 p(tZ) = supcey (¢, tZ) = supeey (¢, Z) = tp(2)
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Basic duality theorem - corollary

Let p be a coherent risk measure. Then

p(Z) = sup(¢, Z),
ceu

where U is a set of probability density functions.
Consequently we can write

p(Z) = supE¢ [Z].
ceu
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Basic duality theorem - examples

m Conditional Value at Risk (£ = £1, 2* = L)

CVaR,(Z) = sup(¢, Z),
ceu

U={CELo(QFP): ((w) €[0,07 a5, E[(] =1}
® Mean-Variance Risk Measure (2% = Z = L3)
p(Z) = E[Z] + kvar [Z]

o(2) = sup{<<, 2)- varlq): Ce Z.E[) = 1}
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Extensions to multiperiod case

m Conditional risk mappings

O details in Shapiro, A., Dentcheva, D., Ruszczynski A. (2009)
O good interpretation on the scenario tree

® Multiperiod coherent risk measures

0 details in Shapiro, A., Dentcheva, D., Ruszczynski A. (2009)
O general framework for multiperiod risk-averse optimization

® Multiperiod polyhedral risk measures
0 special class with nice properties and good tractability

0 details in Eichhorn, A. and Romisch W. (2005), Guigues, V. and
Romisch W. (2010)
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Conditional risk mappings

Definition

Let Q be the sample space equipped with sigma algebras Fi, Fii1
and a probability measure P on (2, F¢+1). Denote spaces

Zy = Lp(Q, Ft,P) and 2411 = Lp(, Fe41,P). Mapping

P Zey1 — Z¢ Is conditional risk mapping if it satisfies

1. Convexity:¥Z,Z € Zi,1 and V't € [0,1]
p(tZ + (1 - 1)Z') = tp(Z) + (1= t)p(Z)).

2. Monotonicity: if Z,Z' € Z¢y1 and Z = Z' then p(Z) = p(Z').

3. Translation equivariance: VY € Z;, Z € Zyy1:
HZ+Y)=p(2)+ Y

4. Positive homogeneity: V't > 0, Z € Z¢11: p(tZ) = tp(Z)

&\
S

WATH £
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Conditional risk mappings - examples

= Conditional expectation E [|F¢]
0 Z € Lp(Q, Fep1,P), Fr-measurability of E[Z|F;] is clear

/Q|E[Z|}‘t] [PdP < /QE[|Z|P|]-‘t]dP =E[ZI’] <
® Conditional CVaR
[CVaRa(Z|F)] (w) = |inf {Y(w) + a'E[(Z = Y)4|Fe (w)}
® Conditional absolute semideviation:

paiF.(Z) = E[Z|F] + E[(Z - E[Z|F]) | 7]
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Conditional risk mappings - usage

m Let (2, F,P) be a probability space and F; C F, C --- C Fr
sequence of sigma algebras with 71 = {0, Q}, Fr = F. Let
Zt = ,Cp(Q,.Ft, P) and pt+1|]_‘t . Zt+1 — Zt, t = 1, ey T-1.

® Consider following multistage program

min f; + inf  fH(x,w)+---
X1€IX1 1(0a) P27 (Xzeé\lfz(xlyw) 202, )

+ P17, ( inf fro1(xr-1,w)

XT1€XT_1(XT—2,W)

inf f-
T ATIF (XTGXTI?XT—LW) T(XT’w)>))
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Conditional risk mappings - usage

= Denote Z; = inf,.cx,(x,_1 ) fer(Xe; )
= By translation equivariance we have:
PT-11Fr_, (ZT-1+ P17 (Z7)) = pr—1jFr 00717y (71 + Z7)

® Applying the same way we get coherent risk measure

P = P27 O OPT|Fr_,
® Stochastic program using the composite measure

min p(fi0a) + flxe,w) + -+ Frixr,w))

X1,X2;.-+,X

s.t.xg € X1, Xt € Xe(Xe—1,w), t=2,..., T I
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Multiperiod coherent risk measures

Denote Z = Z; X --- X Z7 and its dual Z* = Z] x --- x Z7.
Definition
We say that p : Z — R is a multiperiod coherent risk measure if it
satisfies
1. Convexity:VZ,Z' € Z and ¥t € [0,1]
p(tZ +(1-)Z') < tp(Z) + (1 - t)p(Z).
2. Monotonicity: if 2,7 € Z and Z = 7' (componentwise) then
p(Z) > p(Z)).
3. Translation equivariance:
VZ =(Zi,....27)€ 2, Ye € 2, a€R:
p(Zl, ..Zt, Zt+1 + Yt, oey ZT) = p(Zl, oey Zt + Yt, Zt+17 ..ZT)
p(Zl +a,.., ZT) = p(Zl, . ZT) +a
4. Positive homogeneity: Vt >0, Z € Z: p(tZ) = tp(Z)
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Multiperiod coherent risk measures

Theorem
Let p: Z — R be a multiperiod coherent risk measure. Then there

exists a coherent risk measure p : Zt — R such that
(21, Z7) =p(Zi+ -+ Z7).

Moreover there exists nonempty, bounded set Ut C Z7 of probability
density functions such that dual representation

p(Z) = sup((, Z)
ceu

holds with corresponding set U of the form

U= {(Cl? ..,CT) . CT € Ur, Cl’ = E[CT’ft]}
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Multiperiod coherent risk measures - examples

® |inear combination of CVaR:

-
o(Zi,....727) = Z A:CVaR,(Z:)
t=1
with weights Zthl Ae=1
® Maximal risk of all stages using CVaR:

o(Z1,...,Z7) = CVaR, (t:Tin TZt)
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Polyhedral risk measures

Definition

Risk measure p : L,(Q, F,P) — R is called polyhedral if there exist
ki, ko €N, c1,w; € RF o, wy € RR, a3 nonempty polyhedral set
M; C Rk and polyhedral cone M, C R*> such that:

,O(Z) = inf {(Cl, Y1> +E [<C2, Y2>] :

Yl € M17
Y, € EP(Q,]:, P), Y, € M, a.s.,

(w1, Y1) + (wo, Y2) = Z a.s.}

for every Z € L,(Q, F,P).

20z 26



Polyhedral risk measures - examples

m Conditional Value at Risk
1
OhRJZ):mf{h;%aEbé”y

Y1 S R, Yg (S ﬁl(Q,Jr, P)
Y2 € R+ X R+ a.s.,

@”-@”:Z—na&}

= Expected loss E[Z — 7] for some fixed 7.

® Dispersion measures

do(Z) = E[(Z = Ga) - + (1 — a)(Z = qa)+]
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Multiperiod polyhedral risk measures

Definition

Multiperiod risk measure p on x[_;£,(Q, F,P) is called multiperiod
polyhedral if there exist k; € N, ¢; ¢ R, t =1,..., T,

Wer € RR-7 t =2 ... T, 7=0,...,t—1, a polyhedral set

My C R¥ and polyhedral cones My C R¥t t =2..... T such that:

)
p(Z) = inf {E [Zm, Ye)

t=1
Yi € My as., Y € Lp(Q, F,P), t=1,...
t—1

Z<Wt7-, Yt_7—> = Zt a.s., t= ]., ey T
=0
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Multiperiod polyhedral risk measures - example

® Consider following risk averse problem:

2 T
infp (fl(xl, &), Z F(xr &r)y e Z f(xr, &))
=1

=1
xt € Xt (Xe—1,&),t=1,..., T
® Let p be defined as:
-
p(Z1, ... Z7) = ME[Z7] + ) MCVaRq(Z:)
t=2
with 30 A =1
® Using the fact that CVaR is coherent we get:

;
p(-) = Zi + ME[Zr — Z1] + ) AeCVaRa(Z: - Z1)
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Multiperiod polyhedral risk measures - example

= And after some evaluation we get dynamic programming equations:
T
lewigf_WTf(Xl,&) + ; Aewr + Qa(x1, &1y, L1, W, -+, W)
X1 € Xl(X07§1)7Wt eRt=2,...,T
where Zy =0and fort =2,..., T:
Qe(xt-1, g[t—l]ajt—la Wi, ..., WT) =
. = At =
S mef GerArZe + —(we — Ze)4
+ Qt-l—l(xta g[t]77t7 Wigl, .-, WT)
Zy = Zp 1+ fi(xe, &), xe € Xe(xeo1, &e)
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Conclusion

Thank you for your attention!

Vaclav Kozmik
vkozmik@gmail.com
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