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In this paper, stability of the optimal solution of stochastic programs with recourse with respect
to parameters of the given distribution of random coefficients is studied. Provided that the set
of admissible solutions is defined by equality constraints only, asymptotical normality of the
optimal solution follows by standard methods. If nonnegativity constraints are taken into account
the problem is solved under assumption of strict complementarity known from the theory of
nonlinear programming (Theorem 1). The general results are applied to the simple recourse
problem with random right-hand sides under various assumptions on the underlying distribution
(Theorems 2-4).
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1. Introduction

When solving stochastic programs, complete knowledge of the distribution of
random coefficients is usually supposed. In real-life situations, however, this assump-
tion is hardly acceptable and the common procedures should be at least supple-
mented by proper stability studies.

Consider the following stochastic program with recourse:

maximize FErfc'x —@(x;A,b)l ontheset ¥ (1
where & is a set of admissible solutions. An example of (1) is when a linear program

maximize ¢ x

subjectto Ax=bh x=0,

has some of components of the m-vector b, n-vector ¢ or (m, n)-matrix A random.

Assume

(i) For fixed A, b, ¢(x; A, b) is a nonnegative convex function of x.

(if) For arbitrary x € &, ¢{x; A, &) is a convex function of A, b.

(iii} & =R" is a nonempty closed convex set.
Provided that the joint distribution F of random coefficients is known, (1) is in
principle reducible to a nonlinear deterministic program. Such programs have been
studied by many authors from many different viewpoints (see e.g. [11, 14]). Their
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explicit form as well as their optimal solution depend on the given distribution F.
In this paper uncertainty with respect to the distribution F will be taken into account.

A first idea could be to study stability of the optimal solution of program (1)
with respect to the underlying distribution directly. To a certain extent, it can be
done using empirical distributions [15] or the concept of e-contamination (see
(6,7, 8)). In this paper, stability of the optimal solution of program (1) with respect
to the parameters of the distribution F will be studied. Two alternatives will be
considered:

I. The distribution F belongs to a given parametric family of distributions.

IL. The distribution F belongs to a specified set of distributions defined by
prescribed values of certain moments.

In Case I, stability of the optimal solution with respect to the parameters and
related statistical problems were studied for the simple recourse problem with
normally distributed right-hand sides &, 1<si=m. (See e.g. [6,9,16].) On the
following numerical example ([4, 13]) dependence of the optimal solution on the
parameter p of the symmetrical beta distribution is illustrated:

Example. The numerical data concern a two-stage stochastic production program
with simple recourse. The four random right-hand sides are supposed to have
marginal distributions B(p, p) (with the same value of parameter p) on given
intervals. The nonzero components of the optimal solution are given below.

Table 1

P x X2 Eo] Xg Xy X0 L1z X3 X4

t 61.24 —_ — 164,11 — 165.26 — 141,91 —

L 7093 0.64 — 160.34 2.50 183.62 5.03 172.25 0.47
L 7286 0.60 — 163.33 9.38 184,17 12.93 178.90 1.05
L 78.12 1.78 — 73.36 114,54 76.71 136.48 195.35 9.31

1 76.25 5.09 4.47 14.10 195.15 17.35 229.63 176.31 52.55
1 6195 16.81 19.02 22.56 214.48 22.90 264.20 34.54 251.30
4 3205 33.37 40.40 22.24 23035 22.66 290.17 48.91 243.04
3 37.56 57.53 15.09 18.48 245.67 18.48 309.34 34.50 274.86

Let us summarize the problem we face in Case 1. Our aim is to solve the program
maximize f(x; %) ontheset ¥ (2)
where
flx;m)=Er {c"x ~@lx; A, b)) (3)
and 7 is the true parameter vector of the distribution F. If 5 is not known precisely,
it is substituted by an estimate, say y, and the substitute program
maximize f(x;y) ontheset® 4)

is solved instead of (2).
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In Case II, one admits that the knowledge of the distribution F is not complete
but limited to the fact that the distribution F belongs to a given set # of distributions.
One approach is via minimax [17]; any optimal solution of

maiciérgtflize f(x)=anEiél; Er{c™x —oix; A4, b} (3)

will be called the minimax solution of stochastic program (1).

For solving problem (5), general results concerned with the moment problem
can be used provided that the set & is defined by prescribed values, ), of certain
moments of distributions F ¢ %

LetZ <R'andg=(gi,...,g):Z >R h:Z >R be a Borel measurable mapping
and function, respectively. Denote g(Z) the image of the set Z in mapping g,
Y =conv g(Z) and assume that int Y #0. For  eint Y denote by %, the set of
distributions of a random vector z on (Z, &) such that gi, ..., g« # are integrable
with respect to all F € #, and

Erg{z)=m VFeZ, (6)
The problem is
U(n)=sup Erh(z} or L(n)= inf Eph(z). (7)
Fe#, Fe#,

In many important cases, the suprema or infima in (7) are assumed by a discrete
distribution F*e %, and, correspondingly, for % = %,, the explicit form of the
objective function in (5) can be found (see [4, 5, 17]). As a result, one gets relatively
easily computable interval estimates for the optimal value of program (1):

max min Ex{c 'x —¢(x; A, b)}émag;( Erle™y —p(x; A, b))

xe¥ Fe¥,

<max max Er{c'x —¢(x; A, b)} VFeZ,

xe& Fed,
The explicit form of the objective function

flxim)=min Ep{c'x —o(x; A, b))

and the optimal solution of (5) depend on the parameter vector v. When the
prescribed values n of the moments are not known precisely enough, which is often
the case, the problem of stability of the minimax solution comes to the fore. Similarly
as in Case I, one substitutes 7 by an estimate y and solves the substitute program

max f(x; y) = min Er{c’x —¢(x; A, b)) (8)

instead of max, .z f(x; n).

Leaving aside the deterministic stability concepts such as the global and local
stability (for a result concerning Case II see [7, Theorem 6]) we shall aim to prove
asymptotical normality of the optimal solution £(y) of the substitute programs (4)
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and (8). Provided that the set & of admissible solutions is defined by equality
constraints only, asymptotical normality of the optimal solution follows by standard
methods of mathematical statistics (see similar results for the case of maximum
likelihood estimates [1]). Inequality constraints, however, bring along additional
problems. In this paper, nonnegativity constraints are taken into account.

2. General theorem

Let Y <R™ be an open set, ¢ Y and f:R" x Y > R'. Let the set of admissible
solutions

={xeR" :Px=p,x =0} (1)
where P-(r, n) and pcR" are a given matrix and vector, H{P)=r. For any ye Y,
let £{y) denote the optimal solution of the program

maximize f(x;y)} ontheset®. 2)

For the optimal solution £ () of the program

maximize f(x;n) on thesetZ, (3)
denote

J={j: >0}, cardF=s, £ =E@)hjel)y Pi=(Pidicrsr

je

C,=(32f(£(n)m))me; sz(azf(f(n);n)) . @

ax,' ax; ax,- 3)’,’
1eiom
Theorem 1. Assume:

(i} Forany vy Y, f(-; y) is a concave function on R such that the second order
derivatives

a*f a*f

ax; dx,  ax; oy

exist and are continuous in a neighborhood of the point [%{xn), n] and the matrix C;
is nonsingular.

Gi) v~ is an asymptotically normally distributed estimate of the vector of irue
parameters, n €Y

VNG~ - ) ~N(©, X)

with a known nonsingular matrix %.
(iii) The set of admissible solutions (1) is a nonempty convex polyhedron with
nondegenerated vertices.
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(iv) A strict complementarity condition holds true for the components of the optimal
solution £ (n) and of the corresponding vector {n) of multipliers:

. Bf(£(
Xin}>0 & le)—‘?‘)‘ Z pt(n)=0 V¥, (5
I
Then asympiotically
INGG M) = Fm), 1= <)~ N(O, V) (6)

with the variance matrix

(B

ay oy
the submatrix (0£;(n)/dy)=(3X;(n)/9y:) ;- of the matrix (8£(n)/dy) is given by
1=sism
3 ‘
(B =t -ciereci e pics s, )
and
dx;)(ijO forjel, l=i=m. (8)

The rank of the distribution (6) is determined by r(V1).

Proof. (a) Accordingto (i}, (ili) for arbitrary fixed y € Y there is an optimal solution
£(y) of program (2) which together with the corresponding r-vector #(y) of
multipliers fulfils the local Kuhn-Tucker conditions

V. fE(y); »)+ PR (y) <0, 9)
Pily), —p=0, (10)
i(y)=0, (11)
E@ VSR (yh )+ PR ()] =0. (12)

Using (iv), these conditions can be for y =1 rewritten in an equivalent form

PEOED) 5 pyieimr=0, jer, a3
; K

TEMED) 15 posteim) <0, jes, 14
ox; &

ijkjff(n): —pe =0, 1=ks=r, (15)

je

'f}'(n)>0: JEJ and 'fj(n)=05 ]EJ (16}
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Denote by f; :R*X Y > R' the function for which
frlxiy)=fixX;p),

where £, =x; for je/, and ;=0 for jeJ. Let iy R* xR X Y >R, [ R°XR x ¥ >
R' be defined by
8ff§x; yh,o&

+ i pkﬂrky jE],

hilxp myy)=
0x; k=1

Felxs, mTyy)= E PriXi — P 1sSk<r

jet
In view of (13)-(16), the system of equations

hxpmiy)=0, jed, (17)

le(xr,miy)=0, 1sks=r, (18)
has a solution, namely, £;(n)>0, #(n), n. Functions #, je/, I, 1<k <r, are
continuously differentiable with respect to x;, j € J and =, 1 <k <r. The matrix

C N PT 2 A .
( G J) where Cy, = (§———a Sl y); y,)) ,
P; 0 . ax; dxy iles

of their derivatives with respect to x;, j €J and #r is nonsingular. According to the
implicit functions theorem, there is a neighborhood O,(n) such that for arbitrary
y € 0i(n), the system (17}, (18) has a unique solution f;(y), #(y), ¥y and the
components of £r(y), #(y) are continuously differentiable functions of y. Their
derivatives are given by

‘(‘ff;.
|

ay :(C,A. P,') ’(—B,M) (19)
a7 P00 0
| iy L

with

jef -
l=i=m

Ffrigry)y ))

85, =
- 3x; 9y,

Assumption {iv} together with the continuity of both £,(y) and #(y) implies that
there is an open neighborhood O,(n)< O1(n) such that, for arbitrary v € O2(n),
the inequalities

£i(y)>0, jel, (20)

afy (X7 (v); ¥)

+ E pkﬂ?k(,")<0.‘ ]QJ. ':2“
ax; k=1

hold true.



78 . Dupacovd [ Stabifity in stochastic programming

For y € O1(n), the local Kuhn-Tucker conditions (9)-(12) are evidently satisfied
by the vector £(y) consisting of components £;(y), j € J, and zeros for j¢.J and by
the vector #(y). The index set J of nonzero components of the optimal solution
£(y) remains thus fixed for all y € O,(xn). The matrix of the first order derivatives
(3%/8y) contains the submatrix (3£,/dy) defined by (19) and zero elements for
jeJ, lsism,

(b) According to (i) and [12, p. 388],

, ax;(n; at; (9N’ ,
Jﬁ(i;(y”)—.f;(m..;ef)w(o,( "i(”’)z(”i(”)) ) (22)
oy Jy
where the explicit form of (85,(n)/dy) follows from (19) by formula
(CJ P?)" _ ([1—CJIP}(P,C;‘P?)“‘P,]CJ‘ C;'PI(PCT Py ))
PO PC P PCT —(PCT'PIY!

The assertion of Theorem 1 follows from these arguments and from the form of
(9% (n)/9y) obtained in the part (a) of the proof.

Remark 1. All elements of {95/dy) are continuous on a neighborhood of 7, so
that the asymptotical distribution (6) can be substituted by

N(o, (ME,;N)) 5 (afg;N))T)

{see [12, p. 388)).

Remark 2. Let’s denote by £(y) the optimal solution of the problem
maximize f(x;y) on the set {xeR": Px=p}. (23)

Condition (5) means that for y =7 the optimal solution of (23) does not belong
to the boundary of the nonnegative orthant R:.

To simplify the matter we shall discuss condition (5) under assumptions that, in
addition to (i)—(iv), yN is a strongly consistent estimate of % and f(-;y) is strictly
concave on R" for all y belonging to a neighborhood O(n).

If #(n) is not a boundary point of R} then with probability 1 for N large enough
Z(y™) is not a boundary point of R} and vice versa {due to continuity of X(y) on
O(7n) and to strong consistency of yN ). The fact that the strict complementarity
condition holds true for f(yN ) thus indicates that the condition {5) is fulfilled.

Let us study the error of approximation in (6). Introducing higher-order moment
assumptions, the Berry-Esséen theorem can be made use of:

In addition to assumptions (i)-(iv) of Theorem 1, let y*, 1 <» <N, be a sequence
of i.1.d. m-dimensional random vectors such that

Ey1=n, vary1=z, E[)r}\3<oo,1~£iSm. (24)
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The arithmetical mean

N
Xy

1
':N J—
} Nv!l

fulfils evidently assumption (ii} of Theorem 1.
Let the function f have bounded and continuous derivatives

of of o’f
ox; dx; 8xp ’ dx; dx; Oyg ’ ox; Iy, 3y« ’

l<jlh=<nl<iksm

in some neighborhood U of [£(n), n]. Then we have (see e.g. [2])

PIVNEGNY £ (n) <u;,jel)

_j. (bv,»(Z) dx
MY

where ¢y, is the probability density function of (22),

sup
ueR®

<RN7YV?

MY )= {z eER™: Jﬁ[fj(n +:/_z&__) —.f,-{n)] Su,-,jef}

79

(25}

and d depends only on the moments of y' or orders three and less and on the first

order derivatives (3£/4y) on U.

3. Special cases

The general result of Section 2 will be applied now to the simple recourse problem
with random right-hand sides only, under special assumptions on the underlying

family of distributions.

Theorem 2. Assunte

O foivy=cx—Eq| § a.06-5)"]
=1

with

Xi=Y ayx, l<i=sm,
1

A=(ay), Issism 1<j<sn, ofthe full column rank,

(1)
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(1) &; 1=1{=<m, are random variables with given continuous marginal distributions
that depend on location parameters v, 1<<i=<m, respectively. The corresponding
densities are denoted by g:(-; n:), 1 <i<m, and the mean values Eb;, 1 <1 =m, are
supposed to exist.

e N B . . .
{iti) y~ is an asymprotically normally distributed estimate of the true parameter
vector m, i.e.,

INiyY —m 1<i=sm)~N(0, X).

(iv) The set & of admissible solutions satisfies assumptions (ii1), (iv) of Theorem 1.
(v) For the optimal solution %(n)€ arg max,czf(x;m) corresponding fo the true
parameter vector n, g; is continuous in a neighborhood of the point

[ Y a;%(n); n}
i=1
and
ge( Y aziin); 77) >0, 1lsi=m.
j=1
Then asymptotically
INE (M) = £,(m), T <n)~N(©, Vo)
where, for the variance matrix
oA A T
V.= (fu (n)) > (ax(n)) ’
Y ay
we substitute
C=-A"OA, B=A"Q
with {2)
Q= diag(‘}z‘&'( 2 ay¥;(n); 7?.‘) y1=i Sm)
=1

=

in (2.4),(2.7).

Proof. The proof follows from Theorem 1 by direct computation of matrices
e - 2400,
C:( flx })) and B=(6 f(x,,v)).
ax; 8xy ax; dy;

For computation of B, the assumption (ii) is taken into account: The marginal
distribution function G;(X;; v;) can be written as G;(X; —y:) where G, again, is a
distribution function.
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An analogical result for b; ~N(u;, i), 1 =i <m, with estimated location para-
meters u; is given in [6] under more limiting assumptions than those considered here.
In case of unknown scale parameters we have

Theorem 3, Let the assumptions (1), (iii), (iv), (v) of Theorem 2 be fulfilled. Let b;,
1<<i<m, be random variables with known continuous marginal distributions that
depend on scale parameters n; > 0, respectively, and let the mean values Eb, 1 <i{<m,
exist. Then asymprotically

VNG (y™) = £5(n), 1</ <n}~ N (0, V3)
where, for the variance matrix Vs,

4

1 .
c=—ATQA,B=A"Q diag[— Y aykin), 1=<i Sm]
i =1

with Q given by (2) is substituted in (2.4), (2.7).

Proof. The proof again follows by direct computation of matrices C, B. The
marginal distribution function G:(X;; v;) depending on a scale parameter y; can be
written as G:(X/y;), whete G; is a distribution function.

As the last application, the case of minimax solution will be studied. The set of
distributions under consideration will be specified through prescribed mean values
and variances:

F ao? =F: Epb; = ny, vargh; =gi>0,1<ism)

The objective function {1.5) has the form (see {5, 4, 1G])

f(x;n,cr2)= min EF{ch~ Y q,»(X;—b.v)J'}

FeFo ot i=1

" \ mo . " 24172
q"( Loagk — 7?!) ) \._ 24, l:”_’.‘ - (7]| - \._. aifxi) ] i
vpoa ) =1 -1

Provided that the true mean values 7, 1=/=wm, have been estimated and that
their (vector) estimate y* is asymptaotically normally distributed, the asymptotical
normality of the optimal solution £(y") of the substitute program

T (243
=cx— Y
t=1

ta—

max f(x: y™)
xe#&
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with

m 148
\ T 1
flesy)=c'x— S iqz'( Y agx; _}'i)
P

i=1 =1

" ! 4 " 24172
- L iq;[cr.- +(,V|'_ 3 a,—,-x,—) ]
i=1 . i=1

again follows directly from Theorem 1.
To summarize, we have

Theorem 4. Assume

B flxiy)=mip EF{CTX - ¥ qlX —bff}
eF, =1

with

A=(ay), lsism/lsj<n, ofthe full column rank,

q:>0, 1<si=m,
F,={F: Epb; =y, vargb; =al >0, 1<i<sm).

(i) y" is an asymptotically normally distributed estimate of the true parameter
vector 1, i.e.,

INGN = 1<i=m)~N{0, X).

(i) The set & satisfies assumptions (iii}, (v) of Theorem 1.
Then asymptotically

"Iﬁ(f;'(}'N)_fj(T?), ]_Sjgn)‘u‘f\f(o, ‘/4) (3)
where, for the variance matrix V4, we substitute
c=-A"KA, B=A"K

with

Py

" 24-13/2
K:diag{%q,-a?[a-?+(m— y aikfk(n)) ] ,1-<-i"<»"1}
k-1
in (2.4), (2.7).
Remark 3. Instead of Q given by (2) or K given by {4), matrices

QN =diag{q,gz( Z aiif,-(y‘v); }IZV) R 1$z$m}
i=1
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or

24-3/72

KN =diag[%q10',-2 [o-,?'+(yf-v— ¥ a,—kfk(yw)) } s ISiSm}
k=1

can be used in Theorems 2, 3 or in Theorem 4, respectively. The reasoning is
similar to that used in Remark 1.

Remark 4. In this case, assumptions (2.25) are fulfilled. Assuming the existence
of the third absolute moments of 5, 1=i=<m, we have the rate of convergence
O(N "% in (3) for the case that the true parameter vector n has been estimated
by the arithmetical mean 7" (see (2.26)).
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