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Abstract
When using the minimax approach one tries to hedge against the worst possible
distribution belonging to a specified class P . A suitable stability analysis of results
with respect to the choice of this class is an important issue. It has to be tailored
to the type of the minimax problem, to the considered class of probability distri-
butions and to the anticipated input perturbations. We shall focus on the effect of
changes in input information for classes of probability distributions with support
belonging to a given set and defined by (possibly perturbed) generalized moments
values.
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1 Introduction

50 years ago, stochastic programming was introduced to deal with uncertain values
of coefficients which were observed in applications of linear programming. These
uncertainties were modeled as random and the assumption of complete knowledge
of the probability distribution P of random parameters became a standard. In
practice however, complete knowledge of the probability distribution is rare. Using
a hypothetical, ad hoc probability distribution P may lead to bad, costly decisions.
Besides of a subsequent output analysis it pays to include the existing, possibly
limited information into the model. The incomplete knowledge of P is modeled
by assuming that P belongs to a specified class P of probability distributions, the
ambiguity set, and the minimax approach with respect to distributions belonging
to the class P is applied.

The minimax approach has been developed for special types of stochastic programs
and special choices of the ambiguity set P . To illustrate the basic ideas let us
consider stochastic programs of the form

minimize F (x, P ) := EP f(x, ω) for x ∈ X (1)

where X ⊆ IRn and P is the probability distribution of the random variable ω.
The minimax approach is applied in cases when the probability distribution P of
ω is only known to belong to a specified class P of probability distributions while
X is assumed to be a fixed set, independent of P. To use the minimax approach
means to hedge against the worst possible distribution belonging to the class P by



solving the minimax problem

min
x∈X

max
P∈P

F (x, P ). (2)

The optimal value of (2) called the (upper) minimax bound together with the
lower bound minx∈X minP∈P F (x, P ) have been exploited in approximation sche-
mes used in algorithmic procedures for solving (1). See [13, 16, 24] for an in-
troduction and for a survey of various results. Optimal solutions of (2), called
minimax solutions, serve as a basis for decision making. They reflect the risk aver-
sion inherent in specific applied problems; in the energy sector, for example, social
and financial consequences of blackouts are hardly tolerated and it is important
to know at least the character of decisions designed to hedge against the worst
possible circumstances.

To construct the class P one often chooses compromises between the wish to exploit
the existing, available information and the need to keep the minimax problem nu-
merically tractable. One may rely on sample information to get sample moments
or the empirical distribution, may use experience to get expert scenarios and some
information about their probabilities, or to select a finite number of relevant pro-
bability distributions. Using both the sample information and experience one can
make a qualified guess about the support of the probability distribution, one can
incorporate a qualitative information, like symmetry or unimodality. Compact
and convex classes P play a key role and mathematical reasoning (& experience)
may lead to a minimax problem of a manageable form, e.g. introducing bounds
on probability distributions [30].
Let us mention some popular classes P as given in [13] and complete the list by
introducing selected recent quotations.

• P consists of probability distributions carried by Ω ⊆ Rm which fulfil certain
generalized moment conditions, e.g.,

P = {P : EP gk(ω) = yk, k = 1, . . . , K} (3)

for given functions g1, . . . , gK and prescribed values yk ∀k. Mostly the first
and second order moments appear in (3); for a brief exposition see Section 2.

• P defined as above with some or all equalities replaced by inequalities. An
interesting idea [6] is to identify P by bounds on expectations (µ) and bounds
on the covariance matrix, such as

EP [(ω − µ)(ω − µ)>] � γΣ0 for all P ∈ P , (4)

and to apply approaches of semi-definite programming.

• P is defined as above with an additional information, such as unimodality or
symmetry of P taken into account [9, 11, 23, 29];

• P consists of probability distributions carried by Ω ⊆ IRm with prescribed
marginals [20];



• P consists of probability distributions P carried by a fixed finite set Ω, i.e.,
to specify elements P ∈ P means to fix the probabilities of the considered
atoms (scenarios) taking into account a prior knowledge about their partial
ordering [4] or their pertinence to an uncertainty set [32], etc.;

• P is a neighborhood of a (hypothetical, nominal or empirical) probability
distribution P0. This means that

P := {P : d(P, P0) ≤ ε} (5)

where ε > 0 and d is a suitable distance of probability measures. Naturally,
its choice influences substantially the results. See [5] for the Kullback-Leibler
distance, [22, 34] for the Kantorovich distance.

• P consists of a finite number of probability distributions P1, . . . , Pk and the
problem is

min
x∈X

max
i=1,...,k

F (x, Pi); (6)

see e.g. [31].

The listed classes are not strictly separated. For example, some of moment pro-
blems, see Example 1, lead to extremal distributions carried by a finite fixed set of
scenarios which does not depend on the objective function and can be thus linked
with the class of distributions carried by finitely many prescribed scenarios. Also
the ε-neighborhood classes (5) in [5, 22] assume discrete probability distributions
concentrated at finitely many a priori fixed scenarios, or at finitely many plausible
scenarios to be constructed [34]. Moreover, depending on the choice of distance d
in (5), d(P, P0) ≤ ε can be treated as a generalized moment constraint. Moment
conditions (3) are used in [20] to model the incomplete knowledge of marginal
distributions and they are also one of ingrediences for solving minimax problems
under unimodality assumption or, in general, for dealing with transformed moment
problems, see 2.2.3.

Anyway, minimax solutions and minimax bounds depend on specification of the
class P . Hence, we face an additional level of uncertainty which influences the
results. Their robustness with respect to changes of P is welcome and an output
analysis is important. It has to be tailored to the type of P , to the structure of
the solved minimax problem and to the considered input perturbations, see e.g.
[25, 31]. Refinement of minimax bounds by using an additional information has
been studied from the very beginning, e.g. [2, 9, 10]. Stability and sensitivity
analysis of the minimax solutions with respect to perturbations of P is a more
demanding task.
We shall indicate the relevant output analysis techniques mainly for the class P
of probability distributions identified by (generalized) moment conditions (3) and
a given “carrier” set Ω. In this case, one may exploit results of parametric optimi-
zation and some of asymptotic statistics; see e.g. [7, 12, 17] for attempts in this
direction. A different approach to output analysis is needed for nonparametric



types of P such as (5) with empirical distribution function P0 or for analysis of the
sample counterpart of (6): Using asymptotic statistics, [22] construct nonparamet-
ric confidence sets and [31] prove consistency of results under mild assumptions.

2 P defined by moment conditions

Theoretically the so called moment problems, e.g. [1], provide bounds for the ex-
pectation EP f(x, ω) under rather general assumptions about the function f(x, •)
and about the the considered set P of probability distributions on Ω defined by
generalized moment conditions, such as (3). For a convex compact (in the weak
topology) set P the expectation (a linear functional in P ) attains its maximal and
minimal value at an extremal point of P . The corresponding extremal distributi-
ons have finite supports, however, extremal distributions independent of the form
of f (and thus independent of the decisions x) appear only exceptionally.
In the case of an incomplete knowledge of the probability distribution P in (1) the
primal interest is in estimating the difference between the maximal and minimal
expectation and in evaluation of bounds L = minx∈X infP∈P EP f(x, ω) and U =
minx∈X supP∈P EP f(x, ω) for the optimal value of (1) that can be exploited in
approximations. The thorough worst case analysis means computing minimax
solutions as well.
There is a host of papers devoted to application of moment bounds in the context
of stochastic programing, e.g. [3, 16], to their refinement [2] and to inclusion
of qualitative information such as unimodality and/or symmetry of P by solving
transformed moment problems, cf. [9, 10, 11, 23, 29].
Throughout the paper all functions and all sets are assumed Borel measurable.

2.1 Basic assumptions and selected results

Let g1, . . . , gK be given functions on Ω and f a given function on X × Ω where
X ⊆ IRn, Ω ⊆ IRm. Let Y := conv {g(Ω)} and assume that intY 6= ∅.
For y ∈ intY denote Py the class of probability distributions P of random vector
ω carried by Ω such that gk, k = 1, . . . , K, and f(x, •) for all x ∈ X are integrable
and the moment conditions (3)

EP gk(ω) = yk, k = 1, . . . , K

are fulfilled. The class Py is convex and the problem is to find

U(x, y) = sup
P∈Py

EP f(x, ω), or L(x, y) = inf
P∈Py

EP f(x, ω), (7)

the bounds for the optimal value of (1)

U(y) = inf
x∈X

sup
P∈Py

EP f(x, ω) and L(y) = inf
x∈X

inf
P∈Py

EP f(x, ω) (8)

and to compute the minimax solutions, elements of X (y) := arg minx∈X U(x, y).



Under the above basic assumptions,

U(x, y) = inf
d∈D

{d0 +
K∑

k=1

djyj}

where

D := {d ∈ IRK+1 : d0 +
K∑

k=1

dkgk(z) ≥ f(x, z)∀z ∈ Ω}.

In many important cases, e.g. for Ω compact, g1, . . . , gK continuous with intY 6= ∅
and for f(x, •) upper semicontinuous, the class Py is for y ∈ Y nonempty, compact
(in weak topology) and the supremum and the infimum in (7) is achieved; see e.g.
[18]. In this case, there exists probability distribution P ∗ ∈ Py and a vector
d∗ ∈ D such that

U(x, y) = EP ∗f(x, ω) = d∗0 +
K∑

k=1

d∗kyk (9)

and for the given y ∈ intY , the bound is equal to the optimal value of the corre-
sponding semiinfinite program

U(x, y) = inf
d
{d0 +

K∑
k=1

dkyk : d0 +
K∑

k=1

dkgk(z) ≥ f(x, z)∀z ∈ Ω}. (10)

Evidently, as a function of the parameter y, U(x, y) is concave.

It is important from the point of view of computation that P ∗ in (9) is in fact a
discrete distribution. For these and other related results see e.g. [1, 16, 19, 24].
Similar statements hold true also for the case of inequality constraints in (3), see
[3, 24].

Under additional assumptions, e.g. for Ω a bounded convex polyhedron and

h(x, z) := f(x, z)−
K∑

k=1

dkgk(z)

a piecewise convex or quasi-convex function on Ω for an arbitrary x ∈ X , (10) can
be reduced to a finite-dimensional linear program; cf. [8]. If h(x, z) is convex in

z and Ω = conv
{
z(1), . . . ,z(H)

}
, we get the set of feasible solutions of (10) in the

form

D = {d ∈ IRK+1 : d0 +
K∑

k=1

dkgk(z
(h)) ≥ f(x, z(h)), h = 1, . . . , H}. (11)

2.1.1 Special convex case

Assumption 1 Assume that f(x, •) is convex for all x ∈ X , gk(z) = zk, k =

1, . . . , K, Ω is bounded convex polyhedron conv
{
z(1), . . . ,z(H)

}
and y ∈ intY =

int Ω.



This is the favorite class Py defined by prescribed values of the first moments.
The upper bound U(x, y) reduces to the Edmundson–Madansky bound [21] and
U(x, y) is the optimal value of the linear program dual to (10):

U(x, y) = max
p
{

H∑
h=1

phf(x, z(h)) :
H∑

h=1

phz
(h) = y,

H∑
h=1

ph = 1, ph ≥ 0∀h}; (12)

L(x, y) = f(x, y) according to Jensen’s inequality. For an extension to piecewise
linear functions gk and an unbounded convex closed set Ω see [3].

In a similar way, it is possible to formulate the moment problem for probability dis-
tributions carried by a known finite set of scenarios, i.e. for Ω = {ω1, . . . , ωI}. The
probability distributions are then fully identified by probabilities pi, i = 1, . . . , I,
of these scenarios and by moment conditions. The problem to solve is

U(x, y) = max
p
{

I∑
i=1

pif(x, ωi) :
I∑

i=1

pigk(ω
i) = yk ∀k,

I∑
i=1

pi = 1, pi ≥ 0∀i}. (13)

This situation may occur for problems with an ad hoc given finite support of ω or
may result from identification of discrete extremal distributions as in (11) or (12),
may be obtained by sampling or relying on past data and on experts’ suggestions.
Additional polyhedral constraints on probabilities pi, cf. [4, 32], can be included.

Further simplifications are possible when f(x, ω) is convex separable with respect
to individual components of ω, or Ω is a rectangle and the components of ω are
independent, or when Ω is a simplex. Then we may even get explicit formulas
for U(x, y), cf. [9, 10], or obtain extremal probability distributions which do not
depend on the choice of the convex random objective function f(•, ω).

Example 1 Assume that f(x, z) =
∑m

j=1 fj(x, zj) where for a fixed x, fj ∀j are
convex functions of zj, Py is defined by the following conditions on marginal dis-
tributions of ωj : They are carried by given nondegenerate compact intervals [aj, bj]
with Ω their Cartesian product, EP ωj = yj, with given values yj ∈ (aj, bj)∀j.
Then

U(x, y) = max
P∈Py

EP f(x, ω) =
m∑

j=1

λjfj(x, aj) +
m∑

j=1

(1− λj)fj(x, bj) (14)

with λj = (bj − yj)/(bj − aj).

Moreover, for arbitrary values yj ∈ (aj, bj), j = 1, . . . ,m, the minimax solu-
tion is an efficient solution of a multicriterial problem with objective functions
f(x, z), z ∈ Z∗ where Z∗ is the set of vertices of Ω, cf. [11]. Specifying the
expectation y we get one of these efficient solutions.

Example 2 Consider Example 1 with m = 1, and f(x, z) = (x− z)+, which is a
part of the objective function of the newsboy problem, or simple recourse or CVaR.
Let us relax conditions identifying the class P = Pµ,V as follows: assume that the



support of P is not known precisely, but that there is a known upper bound V for
the range of variation of ω and a prescribed expectation EP ω = µ,∀P ∈ Pµ,V .
Then we evidently have ω ∈ [µ− V, µ + V ]∀P ∈ Pµ,V with probability 1 and

U(x, µ, V ) := max
P∈Pµ,V

EP (x− ω)+ = 0 for x < µ− V

= x− µ for x > µ + V

= 1
4V

(V + x− µ)2 for µ− V ≤ x ≤ µ + V. (15)

To get (15) we apply (14) for b = V + a and use the value of a for which
maxa{(x−a)+ V +a−µ

V
: a ∈ [µ−V, µ]} is attained. This worst case a∗ = 1

2
(x+µ−V )

and the maximal value is (15). The corresponding extremal probability distribution
P ∗ ∈ Pµ,V is carried by a∗ and a∗ + V with probabilities p∗ = V−µ+x

2V
and 1− p∗.

Without compactness of Ω, existence of the optimal solution in the inner optimi-
zation problem (10) depends much on the properties of the functions f(x, •) and
gk ∀k. An example is Ω = IRm, f(x, •) positive conical (i.e. f(x, z) > 0∀z 6= 0 and
epif(x, •) a convex polyhedral cone in IRm+1 pointed at the origin) with moment
constraints on expectations and the second order moments; see [16, 24]. A special
instance (cf. [9, 10]) is obtained by a direct solution of (10):

Example 3 Assume again that f(x, z) = (x − z)+ and define P := Pµ,σ2 by
moment conditions EP ω = µ, varP ω = σ2 for all P ∈ Pµ,σ2 .
Then

max
P∈Pµ,σ2

EP (x− ω)+ =
1

2

(
x− µ +

√
σ2 + (x− µ)2

)
:= U(x, µ, σ2). (16)

For a generalization of Example 3 to piecewise linear convex functions f(x, •)
and/or gk see [16].

Convexity properties of f(x, •) play an essential role. In the framework of two-
stage stochastic linear programs, convexity of f(x, •) means a restriction to a fixed
recourse matrix W , fixed coefficients q in the second-stage objective function and
to right-hand sides h and technological matrix T linear in ω. There are also parallel
results for saddle functions f(x, •) that allow inclusion of random coefficients q,
e.g. [14].

2.2 Stability with respect to input information

The prescribed values of moments used in definition of Py can be considered the
input information which influences the resulting minimax bounds and minimax
solutions. However, this input information is not always completely known, it can
be based on a sample or past information, on expert’s opinion, etc. We shall deal
with stability of minimax bounds and minimax decisions under rather simplifying
assumptions postponing possible generalizations.



Assumption 2 Assume that

• X ⊂ IRn is a nonempty convex compact set,

• Ω ⊂ IRm is a nonempty compact set,

• g1, . . . , gK are given continuous functions on Ω,

• f : X ×Ω → IR1 is a continuous function on Ω for an arbitrary fixed x ∈ X
and for every ω ∈ Ω it is a closed convex function of x,

• the interior of the moment space Y := conv {g(Ω)} is nonempty.

In this section, we shall present selected applications of parametric programming
to stability and sensitivity of moment bounds (7), (8) and of minimax decisions
with respect to the prescribed values of moments and/or to the choice of set Ω.

2.2.1 Prescribed moments values

Being concave with respect to y ∈ Y the optimal value function U(x, •) of the
semiinfinite program (10) has directional derivatives on intY in all directions. For
the special problems (12) and (13), stability analysis with respect to y reduces to
the standard stability analysis for linear programs with respect to right-hand sides
and the optimal value function U(x, •) is concave, piecewise linear on intY .

Concerning the optimal value U(y) = maxx∈X U(x, y) and the minimax solutions,
one can exploit results on stability for nonlinear parametric programs as in [11];
e.g.:

Theorem 1 Under Assumption 2, U(y) := minx∈X U(x, y) is concave on Y and
the mapping y → X (y) is upper semicontinuous on Y.

This implies again that U(y) has directional derivatives on intY in all directions.
Gradients of U(y) exist almost everywhere on intY , nevertheless, results on diffe-
rentiability of U(y) require additional smoothness assumptions, e.g. second order
differentiability of U(x, y), and are valid under suitable regularity and second order
sufficient conditions. Under such conditions, there is a unique minimax solution,
say x(y), and ∇U(y) = ∇yU(x(y), y). However, the assumption of the second
order differentiability of U(x, y) is not always realistic. (For an example when
it is fulfilled see [7] and Example 3.) Therefore, in postoptimality analysis of the
moment bounds one can rely mainly on the results on directional differentiability,
cf. [12].

2.2.2 Choice of the set Ω

The direct analysis of explicit formulas such as (14) shows that due to a change of
Ω the upper bound function U(x, y) may change significantly; see also Theorem
3.1.1 of [1]. The relaxation of the assumption of a known carrier Ω as done in
Example 2 leads to a rather different moment bound as well.



In the special case of probability distributions carried by a given finite set of
scenarios but probabilities of their occurrence not known precisely, cf. (13), or of
the class Py determined by prescribed expectations y, a convex polyhedral set Ω
and for f(x, •) convex, cf. (12) in section 2.1.1, the situation is relatively simple.
For each fixed x ∈ X the worst case probabilities can be obtained as solutions of
a linear program with a compact set of feasible solutions. Changes of scenarios
or of the extremal points of Ω influence the objective function and the matrix of
coefficients of the linear program. Nevertheless, these linear programs are stable
(small changes of the data cause only small changes of the optimal solutions, cf.
[26]) provided that the sets of optimal solutions of the corresponding dual programs

inf
d∈D

d0 +
K∑

k=1

dkyk (17)

with D given by

D = {d ∈ IRK+1 : d0 +
K∑

k=1

dkgk(ω
i) ≥ f(x, ωi), i = 1, . . . , I}

or

D = {d ∈ IRK+1 : d0 +
K∑

k=1

dkz
(h)
k ≥ f(x, z(h)), h = 1, . . . , H} (18)

are nonempty and bounded — a condition equivalent to y ∈ intY ; cf. [19]. The
optimal value function U is then a continuous function of all coefficients on a
neighborhood of the initial data x, y, z(h), 1 ≤ h ≤ H, or g(ωi),∀i. Unique and
nondegenerate optimal solution of the primal LP (13) or (12) is a special well
known example. The size of the neighborhood is limited e.g. by the condition
that the perturbed vector y remains an interior point of the convex hull of the
perturbed moment space.

Another possibility is to analyze the dual linear programs (17)–(18) allowing some
uncertainty in selection of ωi or z(h). Following [15] consider problem (12) with
extremal points zh which belong to an ellipsoid around z(h), say

zh = z(h) + Ehδ
h, ‖δh‖2 ≤ %, (19)

and ask for the best solution of program (17)–(18) which is feasible for all choices
of z obtained by the special structure of perturbations (19). In the simplest case
of Eh = I the h-th constraint of (18) is fulfilled if

max
‖δh‖2≤%

{d0 + d>z(h) + d>δh − f(x, z(h) + δh)} ≥ 0. (20)

Lipschitz property of f(x, •) on the neighborhood (19) implies that there is a
constant l such that

|f(x, zh)− f(x, z(h))| ≤ l‖δh‖2 ≤ l%.



By an addaptation of results in section 5.2 of [15] to satisfy constraint (20), it is
sufficient that

d0 + d>z(h) − f(x, z(h))− %
√
‖d‖2

2 + l2 ≥ 0. (21)

Once more, when the optimal solution of the unperturbed linear program (17),
(18) is unique and nondegenerated, then there exists %max > 0 such that for
all problems with perturbed constraints (21) with 0 < % < %max the optimal
solutions are unique and nondegenerated, too. A similar analysis applies to (13)
under suitable assumptions about the mapping g.

Even for classes P which do not explicitly assume a fixed known carrier Ω, such
as (4) or (5), various assumptions about Ω are exploited in output analysis, e.g.
the set Ω is supposed to be compact convex. As a special case, existence of a ball
of radius R that contains the support of the unknown probability distribution is
frequently assumed where the magnitude of R may follow from “an educated and
conservative guess”; cf. [6, 22].

Convergence properties can be given for finite supports which are consecutively
improved to approximate the unknown support; cf. [25] and the next example.

Example 4 Assume that Py is the class of probability distributions on Ω ⊂ IRm,
which fulfil the moment conditions (3) and Assumption 2 is satisfied.
Let {Ων}ν≥1 be a sequence of finite sets in IRm such that Ων ⊆ Ων+1 ⊆ Ω. Choose
ν0 such that y ∈ int conv{g(Ων0)}. For ν ≥ ν0 consider classes Pν

y of probabi-
lity distributions carried by Ων for which moment conditions (3) are fulfilled. By
application of Proposition 2.1 of [25] we get the following statement:

If for every P ∈ Py there is a subsequence of {P ν}ν≥ν0 , P ν ∈ Pν
y which converges

weakly to P, then for ν →∞

min
x∈X

max
P∈Pν

y
EP f(x, ω) → min

x∈X
max
P∈Py

EP f(x, ω).

Moreover, also upper semicontinuity of sets of minimax solutions with respect to
the considered convergence of classes Pν

y to Py holds true.

2.2.3 Additional input information

If the class of probability distributions is defined not only by the set Ω and the
moment conditions (3) but also by other conditions such as unimodality then
it is often possible to remove these conditions by a suitable transformation of
probability distributions and functions and to reduce the problem to the basic
moment problem. With reference to [23, 29] for more general situations, we shall
delineate here only the approach for unimodal probability distributions on IR1 as
done in [9, 10, 11].
Let h be a real function on IR1 that is integrable over any finite interval (u, M)
and (M, u′), −∞ < u < M < u′ < +∞. Let h∗ be the transform of h defined as
follows:

h∗(z) =
1

z −M

∫ z

M
h(u)du for z 6= M and h∗(z) = h(z) for z = M. (22)



Then

max
P∈PM

y

EP f(x, ω) = max
P
{EP f ∗(x, ω) : EP g∗j (ω) = yj, j = 1, . . . , J}. (23)

Moreover, the transform h∗ of a convex function h is convex. The next simple
example indicates possible applications.

Example 5 As in Example 1 with m = 1 let f(x, z) be a convex function of z.
Let PM

y be the class of unimodal probability distributions with the given mode M,
carried by a compact interval [a, b] and such that for all P ∈ PM

y , EP ω = y. For
g(u) = u the transform (22) gives g∗(z) = 1

2
(z + M) and equation (23) then reads

maxP∈PM
y

EP f(x, ω) =

max
P
{EP f ∗(x, ω) : EP g∗(ω) = y, P (ω ∈ [a, b]) = 1} := Ũ(x, y, M). (24)

Define µ = 2y−M ; then (24) is nothing else as the usual moment problem with the
class Pµ = {P : EP ω = µ, P (ω ∈ [a, b]) = 1}; moreover, if the expectation y and
the mode M coincide, then µ = y. The transformed objective f ∗(x, z) is convex in
z. This means that the maximal expectation EP f ∗(x, ω) over the class Pµ is

U(x, µ) = λf ∗(x, a) + (1− λ)f ∗(x, b) = Ũ(x, y, M)

with λ = b−2y+M
b−a

= b−µ
b−a

. Substituting for f ∗(x, z) according to (22) we get

Ũ(x, y, M) =
b− 2y + M

(b− a)(M − a)

∫ M

a
f(x, u)du +

2y −M − a

(b− a)(b−M)

∫ b

M
f(x, u)du;

it is easy to recognize two densities of uniform distributions on [a, M ] and [M, b]
weighted by λ and (1− λ), respectively.
If the mode is not known, additional maximization with respect to M ∈ [a, b] is
possible. As a result, the worst case probability distribution is uniform on [a, b]
if y = 1

2
(a + b) or is a mixture of the uniform distribution over [a, b] and the

degenerated one concentrated at a or at b if y > 1
2
(a+b) or y < 1

2
(a+b), respectively.

The bound Ũ(x, y, M) matches the general form of extremal distributions of PM
y ,

which are mixtures of uniform distributions over intervals (u, M) and (M, u′) and
the degenerated distribution concentrated at M.

3 Stability with respect to estimated moments

values

Assume now that a sample information was used to estimate the moments values or
other parameters which identify the class Py. Assume that these parameters were
consistently estimated using a sequence of i.i.d. observations of ω. Let yν be based



on the first ν observations. Using continuity of function U(x, •) and theorems
about transformed random variables, cf. [28], we get for consistent estimates yν

of the true parameter y the pointwise convergence

uν(x) := U(x, yν) → U(x, y) a.s. (25)

valid at an arbitrary element x ∈ X .
As in general the pointwise convergence does neither imply consistency of the mi-
nimax bounds, i.e. of optimal values U(yν) := minx∈X U(x, yν), nor consistency
of minimax solutions, we shall discuss epi-convergence of the approximating ob-
jectives uν(x) := U(x, yν); for epi-convergence consult e.g. Chapter 7 of [27].

Definition 1 A sequence of functions {uν : IRn → ĪR, ν = 1, . . .} is said to epi-
converge to u : IRn → ĪR if for all x ∈ IRn the two following properties hold true:

lim inf
ν→∞

uν(xν) ≥ u(x) for all {xν} → x (26)

and for some {xν} converging to x

lim sup
ν→∞

uν(xν) ≤ u(x). (27)

Whereas the pointwise convergence implies condition (27), additional assumptions
are needed to get validity of condition (26). Fortunately, pointwise convergence
of closed, convex functions u, uν with int dom(u) 6= ∅ implies epi-convergence; see
e.g. Corollary 4 of [33]. In such case, we also have lim sup{arg min uν} ⊂ arg min u.

Let us apply epi-convergence to U(x, yν) under Assumption 2: For all fixed x ∈
X , U(x, •) is concave and finite on Y which implies its continuity on intY , hence,
the almost sure pointwise convergence of uν(x) → U(x, y) follows. Boundedness,
continuity and convexity of f(x, ω) with respect to x was assumed, expectations
EP f(x, ω) are bounded convex functions on the compact set X for all P ∈ Py and
u(x) := U(x, y), uν(x) := U(x, yν) are closed convex functions on X . Hence, the
sought consistency result holds true:

Theorem 2 Under Assumption 2 (that implies continuity of U(x, y) with respect
to y, convexity with respect to x) and under consistency of estimates yν, the ap-
proximate objectives uν(x) epi-converge almost surely to U(x, y) as ν → ∞. It
implies that with probability 1 all cluster points of sequence of minimizers xν of
uν(x) on X are minimizers of U(x, y) on X and minx∈X uν(x) → minx∈X U(x, y).

An example is the class Py defined by moment conditions (3) and by a fixed
compact set Ω with f(•, y) convex on a compact convex set X , or the special
convex problem with perturbed both y and Ω treated in Section 2.2.2.

Example 6 Assume that parameters a, b, µ identifying the class of one-dimensional
probability distributions on the interval [a, b] with mean value µ are known to belong
to the interior of a compact set and their values can be obtained by an estimation



procedure based on a sample path of i.i.d. observations of ω from the true pro-
bability distribution P. Their consistent estimates based on a sample size ν are
the minimal/maximal sample values and the arithmetic mean, i.e. ων:1, ων:ν and
µν = 1

ν

∑ν
i=1 ωi. In this case, we know the explicit form of all approximate objective

functions
uν(x) := λνf(x, ων:1) + (1− λν)f(x, ων:ν)

with λν = (ων:ν − µν)/(ων:ν − ων:1); see Example 1 for J = 1. This is a continuous
function of parameters provided that ων:1 < ων:ν . For convex f(•, ω), uν(x) are
convex in x. For compact set X , existence of the true minimax solution x follows
from continuity of f(•, a) and f(•, b). Hence, the consistency statement of Theorem
2 holds true. An extension to the corresponding “data-driven” version of Example
1 is obvious.

A similar consistency result holds true also for the “data-driven” version of Exam-
ple 3. Using the second order differentiability of function U(x, µ, σ2) we can get
also the rate of convergence.

Example 7 – continuation of Example 3. Assume that σ is known and µ is
replaced by arithmetic mean µν = 1

ν

∑
i ω

i of i.i.d. realizations of ω, which is
an asymptotically normal estimate.
Using differentiability of the function U(x, µ, σ2) in (16) with respect to µ, x and
theorems about distributions of transformed sequences of random variables, here of
U(x, µν , σ2), we get their asymptotically normal distribution. The rate of conver-
gence O(ν−1/2) follows from the Berry-Esséen inequality; see [7].
Additional assumptions are needed to get asymptotic normality of the estimated
minimax bounds and minimax decisions.

4 Extensions

Up to now we have assumed that the set of feasible solutions does not depend
on the probability distribution P . Let us remove this assumption and consider
stochastic program

minimize F (x, P ) := EP f(x, ω) on the set X ∩ X (P ) (28)

where X does not depend on P and X (P ) = {x ∈ X : Gi(x, P ) ≤ 0, i = 1, . . . , k};
stochastic programs with probabilistic constraints or portfolio optimization with
risk constraints are problems of this type. Theoretically, it is enough to deal just
with one constraint G(x, P ) ≤ 0.

Under incomplete knowledge of the probability distribution P, [22, 34] suggest to
solve the “robustified” version of (28):

min
x∈X

max{F (x, P ) : P ∈ P} (29)



subject to G(x, P ) ≤ 0∀P ∈ P or equivalently, subject to

max
P∈P

G(x, P ) ≤ 0. (30)

Assume that G(x, P ) is convex in x and linear in P. Then for convex, compact
classes P and for a fixed x, the maxima in (29), (30) are attained at extremal
points of P ; hence for the class Py identified by moment conditions (3) and under
assumptions of section 2.1, it is possible to work with discrete distributions P ∈ P .
This property carries over also to G(x, P ) in (30) and/or F (x, P ) in (29) convex
in P.
Whereas expected utility functions or CVaR(x, P ) are linear in P, other popular
portfolio characteristics are even not convex in P : the variance is concave in P ,
mean absolute deviation is neither convex nor concave in P. This means that
extensions to risk functionals nonlinear in P carry through only under special
circumstances delineated in the next example.

Example 8 Denote by ω the random vector of unit returns of assets included to
portfolio and let f(x, ω) = −ω>x quantify the random loss of the investment x.
The probability distribution P of ω is known to belong to a class P of distributions
for which, inter alia, the expectation EP ω = µ is fixed (independent of P ). Then
for a fixed x varP f(x, ω) = EP (ω>x)2−(µ>x)2 is a linear functional in P and the
mean absolute deviation MADP f(x, ω) = EP |ω>x− µ>x| is linear in P as well.

5 Conclusions

The presented approach to stability analysis of minimax stochastic programs with
respect to the input information was elaborated for the class P defined by genera-
lized moment conditions (3) and a given carrier set Ω. It is suitable also for other
“parametric” classes P whereas stability for “nonparametric” classes, e.g. (5),
would require different techniques. We did not aim at the most general statements
and results on stability and sensitivity of minimax bounds and minimax decisi-
ons with respect to the model input. Specifically, various convexity assumptions
were exploited, such as convexity and compactness of the class Py, convexity of
the random objective function f(x, ω) with respect to the decision variable x on a
compact convex set of feasible decisions, convexity of functionals F (x, P ), G(x, P )
with respect to the probability distribution P .
Convexity of the random objective with respect to x can be replaced by a saddle
property and under suitable conditions, also unbounded sets X can be treated. An
open question is under what general assumptions the presented approach can be
applied to minimax problems with functionals nonconvex in P.
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Math. Soc./North Holland, Budapest, 1976, pp. 303-316.
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