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In this paper we aim at output analysis with respect to changes of the proba-
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1 Modeling issues

Classical stochastic programming (SP) models aim at hedging against con-
sequences of possible realizations of random parameters — scenarios — so
that the expected final outcome or position is the best possible.
Modeling part of realistic applications consists of a clear declaration of ran-
dom factors to be taken into account, of distinguishing between hard and soft
constraints and of a choice of a sensible optimality criterion. The starting
point may be formulation of a deterministic problem which would be solved
if no randomness is considered, e.g.

min {f(x) : x ∈ X , gk(x) ≤ 0, k = 1, . . . ,m} .

Taking into account the presence of a random factor ω and the fact that a
decision x has to be chosen before ω occurs, a reformulation of the minimi-
zation problem is needed. Two prevailing approaches have been used to this
purpose:
• static expected penalty models,
• probabilistic programs.
For penalty type models, X is defined by hard constraints plus some other
conditions that guarantee plausible properties of the model, whereas soft
constraints, such as gk(x, ω) ≤ 0, are reflected by penalties included into
the random objective function. For probabilistic programs, probabilistic
reliability-type constraints are introduced.

1.1 Stochastic programming models with penalties

The basic SP model with penalties is of the form

min
x∈X

EPf(x, ω). (1)

It is identified by

• a known probability distribution P of random parameter ω whose sup-
port Ω is a closed subset of IRs; EP denotes the corresponding ex-
pectation. In the sequel, the same character ω will be used both for
the random vector and its realization.

• a given, nonempty, closed set X ⊂ IRn of decisions x,
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• a preselected random objective f from X ×Ω to the extended reals —
a loss or a cost caused by the decision x when scenario ω occurs. As a
function of ω, f is measurable for each fixed x ∈ X and such that its
expectation EPf(x, ω) is well defined. The structure of f may be quite
complicated e.g. for multistage problems. For convex X , a frequent
assumption is that f is lower semicontinuous and convex with respect
to x, i.e. f is convex normal integrand.

An example of (1) is the two-stage stochastic linear program with fixed re-
course where X is convex polyhedral and the random objective function
f(x, ω) = c>x + q(x, ω) involves the second-stage (recourse) function q defi-
ned as

q(x, ω) = min
y
{q>y : Wy = b(ω)− T (ω)x, y ∈ IRr

+}. (2)

Vector q ∈ IRr and recourse matrix W (m, r) are fixed, b(ω), T (ω) are of
consistent dimensions with components affine linear in ω.

Our knowledge of probability distribution P is often merely a hypothesis.
Hence, we want to know, how sensitive to its violation our solution of (1) is.
To this purpose we shall consider F (x, P ) := EPf(x, ω) as a function from
X ×P to extended reals, where P is a set of probability distributions on Ω.
This implies that in (1) X is independent of P.

1.2 Probabilistic constraints

Instead of (1) one may consider stochastic programs

min
x∈X (P )

F (x, P ) := EPf(x, ω) (3)

in which the set of feasible solutions X (P ) ⊂ IRn depends on the probability
distribution P.
Formally, the independence of the set of feasible solutions of P can be achie-
ved by means of the extended real indicator functions. Problem (3) can be
e.g. written as

min
x∈X

[
F (x, P ) + indX (P )(x)

]
(4)

with X (P ) ⊂ X ⊆ IRn, X a fixed closed set independent of P, and the indi-
cator function indX (P )(x) := 0 for x ∈ X (P ) and +∞ otherwise. However,
the resulting extended real objective function in (4) is then very likely to lose
the convenient properties of the original objective function F (x, P ) in (3).
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A special type of (3) is probabilistic programming obtained when X (P ) =
X ∩ Xε(P ) with Xε(P ) defined e.g. by the joint probabilistic constraint

Xε(P ) := {x ∈ IRn : P (g(x, ω) ≤ 0) ≥ 1− ε)} (5)

with g : IRn × Ω → IRm and ε ∈ (0, 1) fixed, chosen by the decision maker.
It is a reliability type constraint which can be written as

H(x, P ) := P ( max
k=1,...,m

gk(x, ω) ≤ 0) ≥ 1− ε. (6)

We make use of the following convention: If V (ω) is a predicate on ω, we
write P (V (ω)) instead of P ({ω ∈ Ω : V (ω)}).

Individual, separate probability constraints are a special type of probabilistic
constraints which treat constraints gk(x, ω) ≤ 0 separately: Given probability
thresholds ε1, . . . , εm the feasible solutions are x ∈ X that fulfil m individual
(separate) probabilistic constraints

P (gk(x, ω) ≤ 0) ≥ 1− εk, k = 1, . . . ,m. (7)

This is a relatively easy structure of problem, namely, if ωk are separated
being the right-hand sides of constraints, i.e. gk(x, ω) = ωk − gk(x)∀k.
Denote u1−εk

(Pk) quantile of marginal probability distribution Pk of ωk. Then
(7) can be reformulated as

gk(x) ≥ u1−εk
(Pk), k = 1, . . . ,m.

For concave gk(x)∀k the set of feasible decisions is convex and for linear ob-
jective function and linear gk(x)∀k the resulting problem is a linear program.

Such results are no more valid for joint probability constraints. Even for ran-
dom right-hand sides only, special requirements on the probability distribu-
tion P are needed; cf. log-concave or quasiconcave probability distributions
[28]. These seminal results on convexity properties of the set Xε(P ) and of
the related function H(x, P ) are due to Prékopa; see e.g. [27, 28]. They have
been reported and further extended in various monographs and collections
devoted to stochastic programming, e.g. [2, 22].
Semicontinuity properties of the corresponding indicator functions, see e.g.
[21], can be obtained under various sets of assumptions about the function
g and/or its components gk and about the probability distribution P. These
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play an important role in qualitative and quantitative stability analysis with
respect to changes of the probability measure; see [30].

Klein Haneveld [26] suggested to replace probability constraints (5) and (7)
by Integrated Chance Constraints, ICC

EP (max
k

[gk(x, ω)]+) ≤ β and EP ([gk(x, ω)]+) ≤ βk ∀k, (8)

respectively, with fixed nonnegative values β, βk. Mathematical properties of
ICC are much nicer and from the modeling point of view, it is convenient
that integrated chance constraints quantify the size of unfeasibilities.

The two prevailing types of static stochastic programs — with penalties and
with probabilistic constraints — are not competitive but rather complemen-
tary. Contrary to penalty models, probabilistic programs capture the relia-
bility requirements or risk restrictions even in cases which do not allow for
reasonably accurate evaluation of penalties, e.g. [15]. A suggestion of [28]
is to apply probabilistic constraints (5), (6) or (7) and at the same time, to
extend the objective function for an expected penalty term which is active
whenever the original constraints gk(x, ω) ≤ 0 are not fulfilled:

Prékopa [28] “...we are convinced that the best way of operating a
stochastic system is to operate it with a prescribed (high) reliabi-
lity and at the same time use penalties to punish discrepancies.”

In addition, ideas of multiobjective programming can be used if the choice of
the penalty function is not clear and multiple penalty functions are therefore
considered; cf. [29].
Another suggestion of [28] was to assign a probabilistic constraint on the
second-stage variables y in the two-stage stochastic program as a way how to
restrict a possible unfeasibility of the second-stage constraints in incomplete
recourse problems. Integrated chance constraints (8) of [26] aim at a similar
goal.

Such extensions may be useful when modeling real problems. An example
of a “mixed” model and its properties was recently presented in [3]; see
Example 3.

In this paper we focus on potential applications of the contamination tech-
nique to quantitative stability results for the optimal value of probabilistic
programs with respect to changes in probability distribution P. The brief
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presentation of the contamination technique in Section 2 reveals that its ex-
ploitation to construction of global contamination bounds for probabilistic
programs is limited. Therefore their reformulations to expected penalty-type
problems are suggested in Section 3. As illustrated in Section 4, such refor-
mulations open a possibility to construct approximate global contamination
bounds for the probabilistic programs in question.

2 Contamination technique

In real applications, full knowledge of the probability distribution P can
hardly be expected. Assume instead that the SP of interest, e.g. (9) was
solved for a suitably chosen probability distribution P which is considered a
sensible choice regarding the problem to be solved and the available input
data. The first issue of interest is then the sensitivity of the obtained optimal
solutions with respect to perturbances of the probability distribution. It may
be quantified by bounds on the “error” in the perturbed optimal value. The
background of relevant techniques is based on advanced results of parametric
programming, e.g. [30].
We shall exploit parametric stability and sensitivity results, ideas of multi-
objective optimization and the contamination technique to derive bounds for
the perturbed optimal value function focusing on probabilistic programs and
related problems. See [16] for discussion of the first results in this direction
developed for stress testing of the risk measure VaR.

Contamination technique was initiated in mathematical statistics as one of
the tools for analysis of robustness of estimators with respect to deviations
from the assumed probability distribution and/or its parameters. It goes
back to von Mises and the concepts are briefly described e.g. in [32]. In
stochastic programming, it was developed in a series of papers, see e.g. [7, 10]
for results applicable to two-stage stochastic linear programs with recourse.
Describing perturbation by means of contamination occurs also in sensitivity
analysis of worst-case probabilistic objectives with respect to deviations from
the assumed type of probability distributions, cf. [25].
For derivation of contamination bounds one mostly assumes that the sto-
chastic program is reformulated as

min
x∈X

F (x, P ) := EPf(x, ω) =
∫
Ω
f(x, ω)P (dω) (9)

6



where P is a fixed fully specified probability distribution of the random pa-
rameter ω ∈ Ω ⊂ IRs, X ⊂ IRn is nonempty, closed, independent of P and
f : IRn × IRs → IR such that the expectation EP is well defined.
Denote ϕ(P ) the optimal value and X ∗(P ) the set of optimal solutions of (9).
Possible changes or perturbations of probability distribution P are modeled
using contaminated distributions Pλ,

Pλ := (1− λ)P + λQ, λ ∈ [0, 1] (10)

with Q another fixed probability distribution. Limiting thus the analysis to
a selected direction Q − P only, the results are directly applicable but they
are less general than quantitative stability results with respect to arbitrary
(but small) changes in P summarized e.g. in [30].
Via contamination, robustness analysis with respect to changes in probability
distribution P gets reduced to a much simpler analysis with respect to a
scalar parameter λ : The objective function in (9) is linear in P, hence the
perturbed objective

F (x, λ) :=
∫
Ω
f(x, ω)Pλ(dω) = (1− λ)F (x, P ) + λF (x,Q)

is linear in λ. Suppose for simplicity that stochastic program (9) has an
optimal solution for all considered distributions Pλ, 0 ≤ λ ≤ 1 of the form
(10). Then the optimal value function

ϕPQ(λ) := min
x∈X

F (x, Pλ)

is concave on [0, 1] which implies its continuity and existence of directional
derivatives on (0, 1). Continuity at the point λ = 0 is a property related with
stability results for the stochastic program in question. In general, one needs
a nonempty, bounded set of optimal solutions X ∗(P ) of the initial stochas-
tic program (9). This assumption together with stationarity of derivatives
dF (x,λ)

dλ
= F (x,Q) − F (x, P ) is used to derive the form of the directional

derivative

ϕ′PQ(0+) = min
x∈X ∗(P )

dF (x, λ)

dλ

∣∣∣∣
λ=0+

= min
x∈X ∗(P )

F (x,Q)− ϕ(P ) (11)

which enters the upper bound for the optimal value function ϕPQ(λ) =
ϕ(Pλ) :

ϕ(P ) + λϕ′PQ(0+) ≥ ϕPQ(λ) ≥ (1− λ)ϕ(P ) + λϕ(Q), λ ∈ [0, 1]; (12)
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for details see [7, 10] and references therein. Formula (11) follows e.g. by
application of Theorem I. in Chapter III. of [5] provided that X is compact
and the both objectives F (x, P ), F (x,Q) are continuous in x.
If x∗(P ) is the unique optimal solution of (9), ϕ′PQ(0+) = F (x∗(P ), Q)−ϕ(0),
i.e. the local change of the optimal value function caused by a small change
of P in direction Q − P is the same as that of the objective function at
x∗(P ). If there are multiple optimal solutions, each of them leads to an up-
per bound ϕ′PQ(0+) ≤ F (x(P ), Q)−ϕ(P ), x(P ) ∈ X ∗(P ). Relaxed contami-
nation bounds can be then written as

(1− λ)ϕ(P ) + λF (x(P ), Q) ≥ ϕPQ(λ) ≥ (1− λ)ϕ(P ) + λϕ(Q) (13)

valid for an arbitrary optimal solution x(P ) ∈ X ∗(P ) and for all λ ∈ [0, 1].
The contaminated probability distribution Pλ may be also understood as a
result of contaminating Q by P. Provided that the set of optimal solutions
x(Q) of the problem minx∈X F (x,Q) is nonempty and bounded, an alterna-
tive upper bound may be constructed in a similar way. Together with the
original upper bound from (13) one may use a tighter upper bound

min{(1− λ)ϕ(P ) + λF (x(P ), Q), λϕ(Q) + (1− λ)F (x(Q), P )} (14)

for ϕ(Pλ).

For problems with F (x, P ) concave in P and X independent of P concavity of
the optimal value function ϕ(λ) is preserved. Under additional assumptions
one may then apply general results by [5, 19] and others to get the existence
and the form of the directional derivative

ϕ′PQ(0+) = min
x∈X ∗(P )

d

dλ
F (x, Pλ)

∣∣∣
λ=0+

(15)

which enters contamination bounds (12); see [10, 12, 13].

Contamination bounds (12), (13) help to quantify the change in the optimal
value due to the considered perturbations of (9). They exploit the optimal
value ϕ(Q) of the problem solved under the alternative probability distri-
bution Q and the expected performance F (x(P ), Q) of the optimal solution
x(P ) obtained for the original probability distribution P in situation that
Q applies. Notice that both of these values appear under heading of stress
testing methods.
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Contamination bounds have been derived also for mixed integer SLP with
recourse [6], multistage SLP and SP with risk objectives [11, 13]. For their
applications see e.g. [12, 14, 16]. There exist results on local stability of opti-
mal solutions of contaminated stochastic programs and also differentiability
results for the case that the set X depends on P, see [7, 8, 33].

In the present paper we shall discuss the role of contamination bounds in
output analysis for stochastic programs with probabilistic constraints and
related SP problem formulations. As the set of feasible solutions depends on
P, a direct application of the contamination technique will be successful only
exceptionally.

EXAMPLE 1
As the first example consider the stochastic linear program with individual
probabilistic constraints and random right-hand sides ωk

min
x∈X

{c>x : P (ωk − Tkx ≤ 0) ≥ 1− εk, k = 1, . . . ,m}.

(We assume for simplicity that X = IRn.) It reduces to a linear program
whose right-hand sides are the corresponding quantiles u1−εk

(Pk) of the mar-
ginal probability distributions Pk :

ϕ(P ) := min{c>x : Tkx ≥ u1−εk
(Pk), k = 1, . . . ,m}. (16)

Assume that the optimal value ϕ(P ) of (16) is finite. Using duality theory
for linear programming, the optimal value can be expressed as

ϕ(P ) = max
z
{
∑
k

zku1−εk
(Pk) : T>z = c, z ∈ IRm

+} (17)

where T is the (m,n) matrix composed of rows Tk, k = 1, . . . ,m. This is a
problem whose set of feasible solutions is fixed and only the objective function
depends, in a nonlinear way, on probability distribution P ; hence, it seems to
be in the form suitable for construction of contamination bounds for optimal
value ϕPQ(λ) := ϕ(Pλ). Denote z∗(P ) an optimal solution of (17).
For one-dimensional probability distribution P and under assumptions about
existence and continuity of its positive density p on a neighborhood of the
quantile uα(P ) we get derivatives of quantiles uα(Pλ) of contaminated pro-
bability distribution Pλ at λ = 0+, cf. [32]: Let Γ denote the distribution
function of the contaminating probability distribution Q. Then

d

dλ
uα((1− λ)P + λQ)

∣∣∣
λ=0+

=
α− Γ(uα(P ))

p(uα(P ))
. (18)
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Hence, if the objective function
∑

k zku1−εk
((1−λ)Pk +λQk) of (17) is convex

in λ, we get (maximization type) contamination bounds with

ϕ′PQ(0+) =
∑
k

z∗k(P )
1− εk − Γk(u1−εk

(Pk))

pk(u1−εk
(Pk))

where Γk denote marginal distribution functions of probability distribution
Q.
The main obstacle is that convexity with respect to λ of quantiles uα(Pλ)
cannot be guaranteed. It means that

∑
k zku1−εk

((1 − λ)Pk + λQk), the ob-
jective function of the contaminated dual (maximization) linear program,
need not be convex in λ either. Its convexity is obtained, for example, if for
all k, εk are small enough and Pk, Qk are normal probability distributions
which differ only in their variances. A conjecture is that convexity of con-
taminated quantiles may be valid for unimodal Pk, Qk and sufficiently small
εk ∀k. Indeed, using classical stability results for linearly perturbed nonlinear
programs, cf. Corollary 3.4.5 of [18], one can derive sufficient conditions for
convexity assuming in addition continuously differentiable densities.
To overcome the difficulties, let us follow the suggestion of [8]. Assume that
the optimal solution x∗(P ) of (16) is unique and nondegenerated, the mar-
ginal densities pk are for all k continuous and positive at the points Tkx

∗(P )
and the marginal distribution functions of the contaminating probability dis-
tribution Q have continuous derivatives on the neighborhoods of the points
Tkx

∗(P ). Using (18), approximate the right-hand sides of (16) linearly

uk(λ) := u1−εk
((1− λ)Pk + λQk) ≈ u1−εk

(Pk) + λ
duk(λ)

dλ

∣∣∣∣
λ=0+

.

Approximate the optimal solution x∗(Pλ) of the contaminated program

min
x∈X

{c>x : Tkx ≥ u1−εk
((1− λ)Pk + λQk), k = 1, . . . ,m} (19)

by an optimal solution x̂(Pλ) of parametric linear program

min
x∈X

{
c>x : Tkx ≥ u1−εk

(Pk) + λ
1− εk − Γk(u1−εk

(Pk))

pk(u1−εk
(Pk))

, k = 1, . . . ,m

}
(20)

whose properties are well known; namely, the optimal value function ϕ̂(λ) of
(20) is convex piecewise linear in λ. This allows to construct the convexity

10



based contamination bounds. Moreover, if the noncontaminated problem
(with λ = 0) has a unique nondegenerated optimal solution, there is a λ0 > 0
such that ϕ̂(λ) is linear on [0, λ0] and the optimal basis B of the linear
program dual to (20) stays fixed. Namely, x̂(P ) = (B>)−1 [u1−εi

(Pi)]i∈I for I
denoting the set of active constraints of (16). In virtue of our assumptions,
there is λ0 > 0 such that for 0 ≤ λ ≤ λ0, the set of active constraints remains
fixed, B is optimal basis of (20) and the optimal solution is

x̂(Pλ) = x∗(P ) + λ(B>)−1

[
1− εk − Γk(u1−εk

(Pk))

pk(u1−εk
(Pk))

]
k∈I

= x∗(P ) + λdx∗(P ;Q− P ).

For 0 ≤ λ ≤ λ0 the optimal value equals

ϕ̂(λ) = ϕ(P ) + λc>(B>)−1

[
1− εk − Γk(u1−εk

(Pk))

pk(u1−εk
(Pk))

]
k∈I

where the second term determines the slope of the lower contamination
bound. The upper contamination bound follows by convexity:

ϕ̂(λ) ≤ (1− λ)ϕ(P ) + λϕ(Q).

This approximation was applied in [8] to real data for a water resources plan-
ning problem and similar ideas were used also for contamination of empirical
VaR; cf. [16].

In the sequel, we shall explore a construction of approximate global conta-
mination bounds based on ideas of multiobjective programming and on a
relationship between optimal solutions of stochastic programs with probabi-
listic constraints and optimal solutions of stochastic programs with suitably
chosen recourse or penalty type objectives and fixed constraints.
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3 Probabilistic programs and their recourse

reformulations

Linear problems with convex polyhedral set X , with nonrandom matrix T
composed of rows Tk, k = 1, . . . ,m, and with individual probabilistic con-
straints on random right-hand sides ωk

min
x∈X

{c>x : P (ωk − Tkx ≤ 0) ≥ 1− εk, k = 1, . . . ,m}

can be qualified as an easy case. They reduce to linear programs whose
right-hand sides are the corresponding quantiles u1−εk

(Pk) of the marginal
probability distributions Pk, cf. (16). Moreover, under additional assumpti-
ons, contamination bounds can be constructed, see Example 1.
However, except for (16), even individual linear probabilistic programs (7)
with gk(x, ω) := bk(ω) − Tk(ω)x and right-hand sides bk(ω) and rows Tk(ω)
affine linear in ω, need not be easy to solve and approximations by easier pro-
blems are of interest. Of course, for joint probabilistic constraints tractable
approximations are of even greater importance.
The idea proposed in [24] is to construct another problem with a fixed set X
of feasible solutions related to the probabilistic program

min{EPf(x, ω) : x ∈ X ∩ Xε(P )}, (21)

with Xε(P ) defined by (5): One assigns penalties N [gk(x, ω)]+ with positive
penalty coefficients and solves

min
x∈X

[
EPf(x, ω) +N

m∑
k=1

EP [gk(x, ω)]+
]

(22)

instead of (21).

ILLUSTRATIVE NUMERICAL EXAMPLE
Consider the example of probabilistic program with one linear joint proba-
bilistic constraint taken from [28]:

min 3x1 + 2x2

subject to (23)

x1 + 4x2 ≥ 4, 5x1 + x2 ≥ 5, x1 ≥ 0, x2 ≥ 0,

P (x1 + x2 − 3 ≥ ω1, 2x1 + x2 − 4 ≥ ω2) ≥ 1− ε.
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The random components (ω1, ω2) have bivariate normal distribution with
E[ω1] = E[ω2] = 0, E[ω2

1] = E[ω2
2] = 1, and E[ω1ω2] = 0.2. The correspon-

ding simple recourse model may be formulated as follows.

min 3x1 + 2x2 +N · E
[
(ω1 − x1 − x2 + 3)+ + (ω2 − 2x1 − x2 + 4)+

]
subject to (24)

x1 + 4x2 ≥ 4, 5x1 + x2 ≥ 5, x1 ≥ 0, x2 ≥ 0.

We used SLP-IOR, see [23], and the solver PROCON for solving the pro-
blem (23) with joint probabilistic constraint for decreasing levels ε; the solver
SRAPPROX was used for simple recourse models (24) with increasing N .

Table 1: Optimal values and solutions for simple recourse model.

N First-stage Recourse Optimal solution
objective value objective value x̂N

1 x̂N
2

1 4.1053 2.9596 0.8421 0.7895
10 9.5596 0.9285 1.0000 3.2798

100 11.6185 0.5887 1.0000 4.3092
1000 12.9373 0.2680 1.0000 4.9686

10000 13.4786 0.0494 1.0000 5.2393
100000 13.5703 0.0052 1.0000 5.2851

1000000 13.5800 0.0004 1.0000 5.2900

Table 2: Optimal values and solutions for probabilistic program.

ε Objective Optimal solution
value x̂ε

1 x̂ε
2

0, 2 9.4438 1.0000 3.2219
0, 1 10.2349 1.0000 3.6174
0, 05 10.8899 1.0000 3.9450
0, 01 12.1382 1.0000 4.5691
0, 001 13.5754 1.0000 5.2877
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When comparing results from tables 1 and 2, we observe that optimal solu-
tions and optimal values of (23) and (24) behave similarly with increasing
N and decreasing ε, respectively. A question is if there is a quantitative
relation between the outputs of the two models in dependence on the choice
of parameters N and ε.

The two problems (21) and (22) are not equivalent. However, by intuition
one may expect that for a given ε > 0 there exists N large enough such that
the obtained optimal solution, say xN(P ), of (22) satisfies the probabilistic
constraint (5). Then the corresponding value of EPf(xN(P ), ω) may serve as
an upper bound for the optimal value of (21). This conjecture is supported
by the analysis of optimality conditions for the simple recourse problem with
random right-hand sides; they provide a link between the simple-recourse
penalty coefficients and the values of the probability thresholds for the corre-
sponding problem with individual probabilistic constraints and random right-
hand sides, cf. Section 3.2 of [2].
A more complicated form of penalty may be designed as the optimal value of
the recourse function q(x, ω) of the second-stage linear program miny{q>y :
Wy ≥ b(ω)− T (ω)x, y ≥ 0} with some q ∈ IRm

+ and a fixed recourse matrix
W ; problem (22) corresponds to qk = N ∀k and the simple recourse matrix
W = I. For a numerical evidence see also [15] where a piecewise linear
nonseparable penalty function N [maxj(xj−ωj)]

+ was applied and the results
compared with those obtained for joint probabilistic constraint of the type
P{xj ≤ ωj, j = 1, . . . , n} ≥ 1− ε.
Also convexity preserving penalty functions, say ϑ : IRm → IR+ which are
continuous, nondecreasing in their components and are equal to 0 on IRm

−
and positive otherwise seem to be a suitable choice. This idea stems from
the connection between (21) and (22) that can be recognized within the
framework of convex multiobjective stochastic programming. We shall firstly
illustrate it for one of the already considered probabilistic programs. Indeed,
the optimal solutions of (21) with Xε(P ) given by (5) can be viewed as
efficient solutions of the bi-criterial problem

“min”x∈X [F (x, P ),−H(x, P )]

obtained by the ε-constrained approach. Hence, for convex X , F (·, P ) =
EPf(·, ω) convex and H(·, P ) := P (ω : g(·, ω) ≤ 0) concave there exists
N ≥ 0 such that these efficient solutions can be found as optimal solutions
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of the parametric program

min
x∈X

[F (x, P )−N ·H(x, P )].

A similar relationship can be established for a whole family of stochastic
programs of the form

min
x∈X

{EPf(x, ω) : EPgk(x, ω) ≤ εk, k = 1, . . . ,m} (25)

with distribution dependent set of feasible solutions Xε(P ). Evidently, pro-
blems with probabilistic constraints and those with integrated chance con-
straints are special instances of (25). Again, for fixed thresholds εk, k =
1, . . . ,m, the optimal solutions of (25) may be viewed as efficient solutions
of the multiobjective problem

“min”x∈X{EPf(x, ω), EPgk(x, ω), k = 1, . . . ,m} (26)

obtained by the ε-constrained approach.
If X is nonempty, convex, compact and the functions EPf(x, ω), EPgk(x, ω),
k = 1, . . . ,m, are convex in x on IRn then there exists a nonnegative parame-
ter vector t ∈ IRm, such that the efficient points can be obtained by solving
a scalar convex optimization problem

min
x∈X

[EPf(x, ω) +
m∑

k=1

tkEPgk(x, ω)]. (27)

This scalarization is a special form of scalarization by a penalty function
ϑ : IRm → IR which must be continuous and nondecreasing in its arguments
to provide efficient solutions of (26):

min
x∈X

[EPf(x, ω) +Nϑ(EPg1(x, ω), . . . , EPgm(x, ω))] ; (28)

N > 0 is a parameter. (For relevant results on multiobjective optimization
see e.g. [20].)

A rigorous proof of the relationship between optimal values and solutions
of (21) and those of (22) for the penalty function N

∑m
k=1[gk(x, ω)]+ is due

to Ermoliev, et. al. [17]. It is valid under modest assumptions on the
nonlinear functions gk, on continuity of the probability distribution P and
on the structure of problem (21).
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The approach by [17] can be further extended to a whole class of penalty
functions ϑ. For functions ϑ : IRm → IR+ which are continuous nondecreasing
in their components, equal to 0 on IRm

− and positive otherwise, it holds that

P (gk(x, ω) ≤ 0, 1 ≤ k ≤ m) ≥ 1− ε ⇐⇒ P (ϑ(g(x, ω)) > 0) ≤ ε.

The considered penalty function problem can be formulated as follows

ϕN(P ) = min
x∈X

[
EPf(x, ξ) +N · EPϑ(g(x, ω))

]
(29)

with N a positive parameter. We denote xN(P ) an optimal solution of (29)
and xε(P ) an optimal solution of (21) with a level ε ∈ (0, 1).

Theorem 1 For a fixed probability distribution P consider the two problems
(21) and (29) and assume: X 6= ∅ compact, F (x, P ) = EPf(x, ω) a continu-
ous function of x,
ϑ : IRm → IR+ a continuous function, nondecreasing in its components, which
is equal to 0 on IRm

− and positive otherwise,

(i) gk(·, ω)∀k are almost surely continuous;

(ii) there exists a nonnegative random variable C(ω) with EPC
1+κ(ω) <∞

for some κ > 0, such that |ϑ(g(x, ω))| ≤ C(ω);

(iii) EPϑ(g(x
′
, ω)) = 0, for some x

′ ∈ X ;

(iv) P (gk(x, ω) = 0) = 0,∀k, for all x ∈ X .

Denote γ = κ/2(1 + κ), and for arbitrary N > 0 and ε ∈ (0, 1) put

ε(N) = P (ϑ(g(xN(P ), ω)) > 0),

α(N) = N · EPϑ(g(xN(P ), ω)),

β(ε) = ε−γEPϑ(g(xε(P ), ω)).

THEN for any prescribed ε ∈ (0, 1) there always exists N large enough so
that minimization (29) generates optimal solutions xN(P ) which also satisfy
the probabilistic constraints (5) with the given ε.
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Moreover, bounds on the optimal value ψε(P ) of (21) based on the optimal
value ϕN(P ) of (29) and vice versa can be constructed:

ϕ1/εγ(N)(P )− β(ε(N)) ≤ ψε(N)(P ) ≤ ϕN(P )− α(N),
ψε(N)(P ) + α(N) ≤ ϕN(P ) ≤ ψ1/N1/γ (P ) + β(1/N1/γ),

(30)

with
lim

N→+∞
α(N) = lim

N→+∞
ε(N) = lim

ε→0+

β(ε) = 0.

Proof:
To simplify the notation for purposes of the proof, we shall drop the argument
P used to indicate the dependence of optimal solutions on the probability
distribution.
We denote

δN = EPϑ(g(xN , ω))

and assume that for some sequence xN of optimal solutions of the pro-
blem (29) δN → 0+. Our assumptions and general properties of the penalty
function method, see [1, Theorem 9.2.2], ensure existence of such sequence
of optimal solutions and also convergence of α(N) = NδN → 0 for N →∞.
By Chebyshev inequality

P
(
ϑ(g(xN , ω)) > 0

)
=

= P
(
0 < ϑ(g(xN , ω)) ≤

√
δN
)

+ P
(
ϑ(g(xN , ω)) >

√
δN
)

≤ Gϑ(xN ,
√
δN)−Gϑ(xN , 0) +

1√
δN
EPϑ(g(xN , ω))

≤ Gϑ(xN ,
√
δN)−Gϑ(xN , 0) +

√
δN → 0 as N →∞.

Here for a fixed x, Gϑ(x, ·) denotes the distribution function of ϑ(g(x, ω))
defined by

Gϑ(x, y) = P
(
ϑ(g(x, ω)) ≤ y

)
.

Assumption (iii) implies that for every ε > 0 there exists some xε ∈ X such
that

P (gk(xε, ω) ≤ 0, 1 ≤ k ≤ m) ≥ 1− ε.
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Then for any ε > 0 the following relations hold

EPϑ(g(xε, ω)) =

≤
∫
Ω
C(ω)I(ϑ(g(xε,ω))>0)P (dω)

≤
(∫

Ω
C1+κ(ω)P (dω)

)1/(1+κ)

·
(∫

Ω
I(ϑ(g(xε,ω))>0)P (dω)

)κ/(1+κ)

≤ c · P
(
ϑ(g(xε, ω)) > 0

)κ/(1+κ)

≤ c · εκ/(1+κ),

where c :=
( ∫

ΩC
1+κ(ω)P (dω)

)1/(1+κ)
, which is finite due to the assumption

(ii). Accordingly, for ε→ 0+

0 ≤ EPϑ(g(xε, ω)) ≤ c · εκ/(1+κ) → 0.

If we set

ε(N) = P
(
ϑ(g(xN , ω)) > 0

)
,

then the optimal solution xN of the expected value problem is feasible for the
probabilistic program with ε = ε(N), because the following relations hold

P (gk(xN , ω) ≤ 0, 1 ≤ k ≤ n) ≥ 1− ε(N)

⇐⇒ P
(
ϑ(g(xN , ω)) > 0

)
≤ ε(N).

Hence, we get

ϕN(P ) = F (xN , P ) +N · EPϑ(g(xN , ω))

≥ F (xε(N), P ) +N · EPϑ(g(xN , ω))

= ψε(N)(P ) + α(N).

Finally,

ψε(P ) =
(
ψε(P ) + ε−γEPϑ(g(xε, ω))

)
− ε−γEPϑ(g(xε, ω))

≥ ϕε−γ (P )− ε−γEPϑ(g(xε, ω))

= ϕε−γ (P )− β(ε).

This completes the proof.
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It means that under assumptions of the Theorem, the two problems (21),
(29) are asymptotically equivalent which is a useful theoretical result. No-
tice, however, that when we want to evaluate one of the bounds in (30),
we must be prepared to face some problems. We solve the penalty function
problem (29) taking a sufficiently large N > 0 to get its optimal solution
xN(P ) and optimal value ϕN(P ). Then we are able to compute α(N), ε(N),
hence the upper bound for the optimal value ψε(N)(P ) of the probabilistic
program (5) with probability level ε(N). But we are not able to compute
β(ε(N)) without having the solution xε(N)(P ) which we do not want to find
or even may not able to find. We can only solve the penalty function pro-
blem with N = 1/εγ(N) getting its optimal solution x1/εγ(N)(P ) and optimal
value ϕ1/εγ(N)(P ) which is only a part of the lower bound for the optimal
value ψε(N)(P ).

The bounds (30) and the terms α(N), ε(N) and β(ε) depend on the choice of
the penalty function ϑ. Two special penalty functions are readily available:
ϑ1(u) =

∑m
k=1[uk]

+ applied in [17] and ϑ2(u) = max1≤k≤m[uk]
+. However,

only ϑ1 preserves convexity, whereas ϑ2 may work better for joint probabi-
listic constraints.

The obtained problems with penalties and with a fixed set of feasible soluti-
ons are much simpler to solve and analyze then the probabilistic programs;
namely, contamination technique can be used for output analysis of (29) pro-
vided that the expectation-type objective function is convex or continuous in
x. A question for future research is how to choose the parameter N so that
the probability level ε is ensured.

4 Approximate contamination bounds

As discussed in Section 2, to construct global bounds for the optimal value
of stochastic programs under contamination of the probability distribution,
i.e. with respect to the contamination parameter λ, we need that the op-
timal value function ϕ(λ) is concave to get the lower bound in (12). To
prove the existence and the form of the directional derivative in the upper
bound of (12) one needs further results on stability of the initial program and
differentiability of the contaminated objective function.
With the set of feasible solutions dependent on P, concavity of the optimal
value function ϕPQ(λ) cannot be guaranteed. Such problems may be ap-
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proximated by penalty-type problems which possess a fixed set of feasible
first-stage solutions. This in turn opens the possibility to construct approxi-
mate contamination bounds.

EXAMPLE 2.
For the general probabilistic program (21), let us accept the problem

min
x∈X

[
EPf(x, ω) +

m∑
k=1

tkEP [gk(x, ω)]+
]

(31)

with convex compact X 6= ∅, convex functions f(·, ω), gk(·, ω), k = 1, . . . ,m
and a fixed nonnegative parameter vector t ∈ IRm as an acceptable substitute
for the probabilistic program (21)

min{EPf(x, ω) : x ∈ X ∩ Xε(P )}

with Xε(P ) defined by (5). Denote the random objective in (31) as

θ(x, ω; t) = f(x, ω) +
m∑

k=1

tk[gk(x, ω)]+.

Using this notation, we rewrite (31) as

min
x∈X

Θ(x, P ; t) := EP θ(x, ω; t).

The set of feasible solutions X does not depend on P and for fixed vectors
t, the contamination bounds for the optimal value ϕt(Pλ) of (31) for con-
taminated probability distribution (10) follow the usual pattern (13). They
may serve as an indicator of robustness of the optimal value of (21) and may
support decisions about the choice of weights tk.

EXAMPLE 3.
In the model of [3], the second-stage variables y are supposed to satisfy with
a prescribed probability 1− δ certain constraints driven by another random
factor, η, whose probability distribution is independent of P. The problem is

min
x∈X

F (x, P, S) := EPf(x, ω, S) = c>x+
∫
Ω
R(x, ω, S)P (dω) (32)

where

R(x, ω, S) = min
y
{q>y : Wy = h(ω)− T (ω)x, y ∈ IRr

+, S(Ay ≤ η) ≥ 1− δ},
(33)
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S denotes the probability distribution of s-dimensional random vector η and
A(s, r) is a deterministic matrix composed of rows Aj, j = 1, . . . , s. With
respect to P , (32) is an expectation type of stochastic program, with a fi-
xed set X of feasible first-stage decisions and with an incomplete recourse;
hence, there is a good chance to construct contamination bounds on the op-
timal value ϕ(Pλ, S) of (32) for a fixed probability distribution S and for the
contaminated probability distribution Pλ.

Assume that T is nonrandom with a full row rank, S is fixed and such that the
set YS :=

{
y ∈ IRr

+ : S(Ay ≤ η) ≥ 1− δ
}

is convex and bounded. Let the

set X ∗(P, S) of optimal solutions of (32) be nonempty and bounded. Under
further assumptions which guarantee finiteness and convexity of the second
stage value function R(·, ω, S) for a fixed probability distribution S (hence
finiteness and convexity of the random objective value function f(·, ω, S)),
assumptions on existence of its expectation with respect to P and Q and
assumptions on joint continuity of F (·, ·, S) in the decision vector x and the
probability measure P , cf. [3], the directional derivative of the optimal value
function ϕ(·, S) at P in the direction Q − P exists and is of the form (11),
i.e.

min
x∈X ∗(P,S)

F (x,Q, S)− ϕ(P, S). (34)

Similar contamination bounds on the optimal value function can be deri-
ved even without assumptions which guarantee that the random objective
function is convex in x. To this purpose, general contamination results of [9]
and stability results of [3] may be exploited; cf. [4]. It is important, however,
that some continuity properties hold true. This simplifies in case that the
probability distribution P is absolutely continuous.

If S is a discrete probability distribution then for a fixed x and ω the penalty
R(x, ω, S) can be evaluated by the approach of [29]. To solve the mixed
program (32) and to construct contamination bounds based on (34) it would
be necessary to modify the algorithm to the case of parametrized right-hand
sides h(ω)− Tx of the second-stage problem (33).

To model perturbations with respect to S and to construct the corresponding
contamination bounds is more demanding. A possibility is to replace the
probabilistic constraint in (33) by an expected (with respect to S) penalty
term added to q>y, as done e.g. in (22):
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R(x, ω, S) ≈

min
y
{q>y+N

s∑
j=1

ES[Ajy− ηj]
+ : Wy = h(ω)−T (ω)x, y ≥ 0} := R̃(x, ω, S).

The approximate problem

min
x∈X

F̃ (x, P, S) := EP f̃(x, ω, S) = c>x+
∫
Ω
R̃(x, ω, S)P (dω)

is linear in P and concave in S, X is independent of P, S which allows to
construct contamination bounds for contaminated probability distribution S,
too. In this case, however, existence of the directional derivative (15) must
be examined in detail.

5 Conclusions

Contamination technique is known to be a suitable tool to robustness analy-
sis of penalty-type stochastic programs with respect to changes of probability
distributions. It provides global bounds for the optimal value of stochastic
program with respect to perturbations of the probability distribution mo-
deled via contamination. As the set of feasible decisions of probabilistic
programs depends on the probability distribution, the possibility of obtai-
ning similar global results for probabilistic programs is limited to problems
of a very special form and/or under special distributional assumptions; see
Examples 1 and 3 for an illustration and discussion.
Reformulation of probabilistic programs by incorporating a suitably chosen
penalty function into the objective helps to arrive at problems with a fixed
set of feasible solutions which in turn opens the possibility of construction of
the convexity-based contamination bounds. The recommended form of the
penalty function follows the basic ideas of multiobjective programming and
its suitable properties follow by generalization of results of [17].
For expectation-type objectives, conditions for differentiability with respect
to the contamination parameter of the contaminated objective function re-
duce mostly to continuity or convexity of the two noncontaminated objecti-
ves. For general types of objectives, to derive the existence and the form
of these directional derivatives the local qualitative stability results play an
important role.
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