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Abstract. Solutions of portfolio optimization problems are often in¯uenced by
errors or misspeci®cations due to approximation, estimation and incomplete
information. Selected methods for analysis of results obtained by solving
stochastic programs are presented and their scope illustrated on generic
examples ± the Markowitz model, a multiperiod bond portfolio management
problem and a general strategic investment problem. The approaches are
based on asymptotic and robust statistics, on the moment problem and on
results of parametric optimization.
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1 Some early contributions

The main feature of the investment and ®nancial problems is the necessity to
make decisions under uncertainty and over more than one time period. The
uncertainties concern the future level of interest rates, yields of stock,
exchange rates, prepayments, external cash¯ows, in¯ation, future demand,
liabilities, etc. There exist various stochastic models describing or explaining
these parameters and they represent an important part of various procedures
used to generate the input for decision models.

To build a decision model, one has to decide ®rst about the purpose or
goal; this includes identi®cation of the uncertainties or risks one wants to
hedge, of the hard and soft constraints, of the time horizon and its discretiza-
tion, etc. The next step is the formulation of the model and generation of the
data input. An algorithmic solution concludes the ®rst part of the procedure.
The subsequent interpretation and evaluation of the results may lead to model
changes and, consequently, to a new solution or it may require a ``what-if ''
analysis to get information about robustness of the results.



Example 1 ± The Markowitz model. In conclusions of his famous paper [49] on
portfolio selection, Markowitz stated that ``what is needed is essentially a
`probabilistic' reformulation of security analysis''. He developed a model for
portfolio optimization in an uncertain environment under various simpli®ca-
tions. It is a static, single period model which assumes a frictionless market. It
applies to small rational investors whose investments cannot in¯uence the
market prices and who prefer higher yields to lower ones and smaller risks to
larger ones. Let us recall the basic formulation: The composition of portfolio
of I assets is given by weights of the considered assets, xi, i � 1; . . . ; I ,P

i xi � 1. The unit investment in the i-th asset provides the random return ri

over the considered ®xed period. The assumed probability distribution of the
vector r of returns of all assets is characterized by a known vector of expected
returns Er � r and by a covariance matrix V � �cov�ri; rj�; i; j � 1; . . . ; I �
whose main diagonal consists of variances of individual returns.

This allows to quantify the ``yield from the investment'' as the expectation
r�x� �Pi xiri � r>x of its total return and the ``risk of the investment'' as the
variance of its total return, s2�x� �Pi; j cov�ri; rj�xixj � x>Vx. According to
the assumptions, the investors aim at maximal possible yields and, at the same
time, at minimal possible risks ± hence, a typical decision problem with two
criteria, ``max'' fr�x�;ÿs2�x�g. The mean-variance e½ciency introduced by
Markowitz is fully in line with general concepts of multicriteria optimization.
Hence, mean-variance e½cient portfolios can be obtained by solving various
optimization problems, e.g.,

max
x AX
flr>xÿ 1=2x>Vxg �1�

where the value of parameter lV 0 re¯ects investor's risk aversion. In classi-
cal theory, the set X is de®ned by

P
i xi � 1 without nonnegativity constraints,

which means that short sales are permitted.
It was the introduction of risk into the investment decisions which was the

exceptional feature of this model and a real breakthrough. The Markowitz
model became a standard tool for portfolio optimization. It has been applied
not only to portfolios of shares, but also to bonds [57], to international loans
[68], etc., even to asset and liability management with portfolio returns
replaced by the surplus, cf. [51]. However, there are many questions to be
answered: Modeling the random returns to get their expectations, variances
and covariances and analysis of sensitivity of the investment strategy on these
estimated input values, the choice of the value of l, etc. From the point of
view of optimization, an inclusion of linear regulatory constraints does
not cause any serious problems. This, however does not apply to minimal
transaction unit constraints which introduce 0±1 variables; e.g., [71]. In the
interpretation and application of the results one has to be aware of the model
assumptions (not necessarily ful®lled in real-life), namely, that it is a one-
period model based on the buy-and-hold strategy applied between the initial
investment and the horizon of the problem so that decisions based on its
repeated use over more that one period can be far from a good, suboptimal
dynamic decision, cf. [9].

At the same time, Roy [67] proposed to use the Safety-First criterion

max
x AX

P�r>xV rp� �2�
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with a given level rp of the required return of the portfolio and other criteria
were developed along the same way: The chance-constrained criterion by
Telser [73] is

max
x AX
fr�x� jP�r>xV rp�V 1ÿ ag �3�

with a prescribed level of the total return rp and with a given probability a A
�0; 1�. The quantile criterion introduced by Kataoka [38]

maximize rp subject to x A X and P�r>xV rp�V 1ÿ a �4�

for a prescribed probability a A �0; 1� can be evidently related with quanti®-
cation of the risk of the investment by its value at risk, VaR, usually computed
for a � 0:01 or 0:05. The generally accepted decision criterion of maximal
expected utility of the total return, maxx AX Eu�Pi rixi�, o¨ers further possi-

bilities and together with (2), (3), (4), it can be clearly classi®ed as a static,
single period stochastic program.

Numerous early studies dealt with the properties of the portfolio opti-
mization problems based on various criteria mentioned above; we refer to the
collection [79] of original papers with commentaries, to [42], to the recent
survey [13] and to textbooks [30, 35]. For results on the equivalence of prob-
lems (2) and (4) under general assumptions on the probability distribution of
returns see [37].

Objections against the symmetry of variance of returns as a measure of risk
has lead to various asymmetric risk de®nitions, such as the quadratic
semivariance Ef��Pi rixi ÿ

P
i rixi���2g; the disadvantage is the decrease in

numerical tractability of the resulting optimization problems to be solved.
Sharpe [72] suggested to de®ne ``risk'' as the mean absolute deviation

m�x� :� E
X

i

rixi ÿ
X

i

rixi

�����
�����: �5�

This idea was developed and applied, e.g., in [7, 44]. The values of (5) are
constant multiples of the standard deviations s�x� provided that the prob-
ability distribution of the random returns r is normal N�r;V�. The advantage
of this approach is that the sample form of the optimization problem can be
transformed to a linear program for which the coe½cients result directly
from sample observations and the required asymmetry of risk can be easily
incorporated.

The numerical tractability of the piece-wise linear criteria extends to the
piece-wise linear-quadratic risk measures [40] and the idea of decisions e½cient
with respect to multiple criteria appears also in various tracking models, e.g.
[14, 75].

The crucial question is an extension of these static models to dynamic
ones. For portfolio optimization problems, it is su½cient to deal with discrete
time models as, contrary to the continuous trading problems, the investment
decisions are done in speci®c time instants. The ®rst step is an adequate
treatment of transaction costs and tax [52, 60].
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We shall focus on modeling via multiperiod and multistage stochastic pro-
gramming. Contrary to the stochastic control models with discrete time, cf.
[35], the main interest lies in the initial, ®rst-stage decisions. The history of
applications of multiperiod or multistage stochastic programs in portfolio
allocation and management dates back to Bradley and Crane [5]. The
important contributions in the eighties, e.g., [6, 7, 15, 45, 46, 56, 71], reviewed
also in [18], together with the progress in numerical methods, software and
computer technologies (e.g., [12, 53] and references therein) have opened
possibilities of large scale real life applications reported, e.g., in [9, 10, 12, 54]
and in the collection [78]. The strength of stochastic programming is in open
possibilities to support the asset and liability management and the risk man-
agement decisions under various circumstances which re¯ect the goals and the
restrictions of the users. Its concepts imply that the emphasis lies on strategic
decisions.

However, some of the stumbling blocks mentioned in the context of the
Markowitz model persist and they even grow into new dimensions: An
adequate re¯ection of the common assumptions concerning the market and
the investors; the recognition of goals and restrictions and the related prob-
lems of the choice of the objective function, of the time discretization and
modeling of constraints; the input data generation; the interpretation of the
obtained results and an analysis of their sensitivity to assumptions, data, etc.
We shall deal with the last mentioned group of problems, o¨ering selected
methods suitable for analysis of relevance and robustness of the obtained
results.

2 Multistage stochastic programs

In the general T-stage stochastic program we think of a stochastic data process

o � fo1; . . . ;oTÿ1g or o � fo1; . . . ;oTg �6�

whose realizations are (multidimensional) data trajectories in �W;F;P� and of
a vector decision process x � fx1; . . . ; xTg, a measurable function of o. The
whole sequence of decisions and observations is, e.g.,

x1;o1; x2�x1;o1�;o2; . . . ; xT �x1; x2; . . . ; xTÿ1;o1; . . . ;oTÿ1� �7�

in addition to oT that may also contribute to the overall observed costs. The
decision process is nonanticipative in the sense that decisions taken at any
stage of the process do not depend on future realizations of the random
parameters or on future decisions, whereas it is the past information and the
given probabilistic speci®cation �W;F;P� of the process o which are exploited.
The dependence of the decisions solely on the history and on the probabilistic
speci®cation can be expressed as follows: Denote by Ftÿ1 JF the s-®eld
generated by the observations o tÿ1;� :� fo1; . . . ;otÿ1g of the part of the
stochastic data process that precedes stage t. The dependence of the t-th stage
decision xt only on these past observations means that xt is Ftÿ1-adapted or,
in other words, that xt is measurable with respect to Ftÿ1. In each of the
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stages, the decision is limited by constraints that may depend on the previous
decisions and observations.

Two formulations of multistage stochastic programming problems can be
used. For general results concerning their equivalence see, e.g., [66], for an
introductory survey see [20].

Let Xt be given nonempty sets in Rnt ; t � 1; . . . ;T , and denote

Xt�o� � fx t� � �x1; . . . ; xt� A X1 � � � � �Xt :

fti�x t�;o tÿ1;��U 0; i � 1; . . . ;mtg �8�

the set of the t-th stage constraints, t � 2; . . . ;T , and by f0�x;o� the overall
cost connected with the decision process (7).

The T-stage stochastic program is to ®nd

x1 A X1 and xt Ftÿ1 -measurable; x t� A Xt�o�; a:s:; t � 2; . . . ;T ;

that maximize Ef f0�x1; x2�o�; . . . ; xT �o�;o�g: �9�

The special choice of the function f0 in (9) as an indicator function of a
certain interval leads to the probability objective function of the form

Pfg0�x1; x2�o�; . . . ; xT�o�;o� A Ig

where I is a given interval of desirable values of g0; compare with (2). Simi-
larly, the replacement of the constraints x t� A Xt�o�, a.s., t � 2; . . . ;T , by the
requirement that x t� A Xt�o�; t � 2; . . . ;T , holds true with a prescribed prob-
ability provides stochastic programs with probabilistic or chance constraints;
compare with (4).

The second formulation of the T-stage stochastic program is based on a
recursive evaluation of the overall objective function which allows us to write
the multistage stochastic program as a sequence of nested two-stage programs.
To this purpose, we denote by P�ot�; t � 1; . . . ;T , the marginal distributions
and by P�otjo tÿ1;�� or P�otjotÿ1� for t � 2; . . . ;T , the conditional prob-
ability distributions of ot conditioned by the whole history o tÿ1;� or by otÿ1,
respectively. The T-stage stochastic program can be written as

max Ef f0�x;o�g :� f10�x1� � EP�o1�fj10�x1;o1�g �10�

subject to

x1 A X1 and f1i�x1�U 0; i � 1; . . . ;m1;

where for t � 2; . . . ;T ;jtÿ1;0�x1; . . . ; xtÿ1;o1; . . . ;otÿ1� is the optimal value
of the stochastic program

max ft0�xt� � EP�otjo tÿ1; ��fjt0�x1; . . . ;xt;o1; . . . ;otÿ1;ot�g �11�

with respect to xt A Xt that ful®l

fti�x1; . . . ; xtÿ1; xt;o1; . . . ;otÿ1�U 0; i � 1; . . . ;mt:

Output analysis for portfolio optimization 249



Here, jT ;0 1 0 or is an explictly given function of x1; . . . ;xT ;o1; . . . ;oT .
Again, all constraints involving random parameters hold almost surely. The
main decision variable is x1 that corresponds to the ®rst stage.

For scenario-based multistage stochastic programs one assumes that the
probability distribution P of o is discrete one, concentrated in a ®nite number
of points, say, o1; . . . ;oS. Accordingly, the supports St�o tÿ1;�� of the condi-
tional probability distributions of P�otjo tÿ1;�� are ®nite sets. The set of all
considered scenarios is

fo1; . . . ;oSg � fojot A St�o tÿ1;��Et > 1g: �12�
The associated conditional probabilities P�otjo tÿ1;�� on St�o tÿ1;�� for t > 1
and the marginal probabilities P�o1� on S1 are called the arc probabilities.
Their products

P�o tÿ1;�� � P�o1�
Ytÿ1

t�2

P�otjotÿ1;�� �13�

are the path probabilities and the probability ps of scenario os � fos
1; . . . ;os

Tg
A ST is

ps � P�os� � P�os
1�
YT
t�2

P�os
t jo s

1; . . . ;o s
tÿ1�:

The decisions at the beginning of the t-th period (at the stage t � 1; . . . ;T )
depend on the sequence of observed realizations of the random variables in
the preceding periods, e.g., on the section �os

1; . . . ;o s
tÿ1� in case of the s-th

scenario. The ®rst-stage decision variables are scenario independent and the
last stage decisions at the beginning of the T-th period depend on the sections
oTÿ1;�. These nonanticipativity conditions can be included into the problem
formulation in various ways.

A speci®c problem related with multistage stochastic programs is the re-
quired special structure of the input in a form consistent with (9). We can view
it as an oriented graph which starts from a root (the only node at level 0) and
branches into nodes at level 1, each corresponding to one of the possible
realizations of o1, and the branching continues up to nodes at level T assigned

to the whole possible data paths oT ;�. A common special arrangement is the
scenario tree which is based on the additional assumption that there is a one-
to-one correspondence between the sections o t;� and the nodes of the tree at
stage t for t � 1; . . . ;T . This means that for any node at level t, each of the
new observations ot must have only one immediate predecessor o tÿ1;�, i.e., a
node at level tÿ 1, and a (®nite) number of descendants ot�1 that result in
nodes at level t� 1; t < T .

An example is the scenario-based form of the T-stage stochastic linear
program with recourse written in the arborescent form (compare with (9)):

maximize c>1 x1�
XK2

k2�2

pk2
c>k2

xk2
�
XK3

k3�K2�1

pk3
c>k3

xk3
�� � ��

XKT

kT�KTÿ1�1

pkT
c>kT

xkT

�14�
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subject to constraints

A1x1 � b1;

Bk2
x1 � Ak2

xk2
� bk2

;

k2 � 2; . . . ;K2;

Bk3
xa�k3� � Ak3

xk3
� bk3

;

k3 � K2 � 1; . . . ;K3;

. .
. . .

. ..
.

BkT
xa�kT � � AkT

xkT
� bkT

;

kT � KTÿ1 � 1; . . . ;KT ;

l t U xkt
U ut; kt � Ktÿ1 � 1; . . . ;Kt; t � 1; . . . ;T ; �15�

with K1 � 1. We denote here by a�kt� the immediate ancestor of kt, so that
a�k2� � 1; k2 � 2; . . . ;K2, and pkt

> 0 is the path probability assigned to the

node kt; compare with (13). Notice that the nonanticipativity constraints are
spelled out implicitly.

Two special cases of the scenario tree are worth mentioning as they o¨er a
relatively easy generalization of the existing theoretical and computational
results valid for two-stage stochastic programs.

. For all stages t � 2; . . . ;T , the conditional probabilities P�otjo tÿ1;�� are
independent of o tÿ1;� and are equal to the marginal probabilities P�ot� ±
the interstage independence.. For all stages t � 2; . . . ;T , the supports St�o tÿ1;�� of conditional prob-
ability distributions of ot conditioned by realizations o tÿ1;� � fo1; . . . ;
otÿ1g of sections o tÿ1;� are singletons. This means that the scenario tree is
nothing else but a ``fan'' of individual scenarios os � fos

1; . . . ;o s
Tg which

occur with probabilities ps � P�os
1�Es and, independently of the number of

periods, the problem reduces to a two-stage multiperiod stochastic program.

Except for the two special cases mentioned above, to build a representative
scenario tree seems to be presently the crucial problem for applications; we
shall discuss it very brie¯y with the reference to [26] and [62].

In ®nance, there exist advanced continuous and discrete time stochastic
models and historical time series that serve to calibrate these models. The
examples are di¨usion type models and multivatiate autoregression models
used in [2, 12, 17, 31, 36, 54] or the Black-Derman-Toy model [4] for gen-
erating a binomial lattice for interest rates. These models employ a speci®ed
type of probability distributions, mainly the transformed (multi)normal ones.
They have to be calibrated from the existing market data which involves
suitable estimation and test procedures. Using the calibrated model, or its
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time discretization, one can simulate or select a large number of sample paths
of o. Successful examples are the global scenario system developed by Towers
Perrin [54] or the model FAM [16] for simulation of economic and capital
market scenarios.

Nonparametric methods for scenario generation can be applied for very
large families of probability distributions which cannot be indexed by a ®nite
dimensional parameter in a natural way; another term used in this connection
is distribution-free methods. The simplest idea is to use as scenarios the past
observations obtained under comparable circumstances and assign them equal
probabilities; see for instance [34, 56].

In case of truly multistage stochastic programs, these independently gen-
erated data trajectories are then used to build the scenario tree; the important
initial decision is the number of stages (and the time discretization in general)
and, depending on the algorithm, also the branching scheme. Possible updates
of the structure of the scenario tree can be incorporated into the solution
procedure, e.g. [12], or tested within the postoptimality analysis; see Section 4.

3 Scenario based stochastic programs in portfolio optimization

We shall assume now that the uncertainty is described by a discrete probabil-
ity distribution of random parameters carried by a ®nite number of scenarios
with prescribed probabilities and that this discrete probability distribution is a
reliable substitute of the true underlying probability distribution. To simplify
the notation, we shall denote the coe½cients and decision variables related
with scenario os simply by a superscript s.

A fundamental investment decision is the selection of asset categories and
the wealth allocation over time. The level of aggregation depends on invest-
or's circumstances. The planning horizon at which the outcome is evaluated is
the endpoint T0 of an interval �0;T0� which is further discretized, covered by
nonoverlapping time intervals indexed by t � 1; . . . ; t. An initial portfolio
is constructed at time 0, i.e., at the beginning of the ®rst period, and is
subsequently rebalanced at the beginning of subsequent periods, i.e., for
t � 2; . . . ; t, to cover the target ratio or to contribute to maximization of
the ®nal performance at T0. In our general setting of the T-stage stochastic
programs, see (6)±(7), t � T . In some cases, additional time instants can be
included at which some of economic variables are calculated; after T0, no
further active decisions are allowed.

It is important to realize that the stages do not necessarily correspond to
time periods. The main interest lies in the ®rst-stage decisions which consist of
all decisions that have to be selected before the information is revealed, just on
the basis of the already known probability distribution P, i.e., on the basis of
the already designed scenario tree. The second-stage decisions are allowed to
adapt to an additional information available at the end of the ®rst-stage
period, etc. For the sake of simplicity and accepting degenerated supports
S�o tÿ1;�� of the conditional probability distributions P�otjo tÿ1;��, we will
not distinguish strictly between indices of stages and time periods in what
follows.

The primary decision variable hs
i �t� represents the holding in asset category

i at the beginning of time period t under scenario s after the rebalancing deci-
sions took place; the initial holding is hi�0�. It can be included into the model
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as the amount of money invested in i at the beginning of time period t, can be
expressed in dollars of the initial purchase price, in face values, in number of
securities or in lots, etc. Accordingly, the value of the holdings at the end of
the period t may be a¨ected by the market returns; the wealth accumulated at
the end of the t-th period before the next rebalancing takes place is then

ws
i �t� :� �1� rs

i �t��hs
i �t�Ei; t; s:

Purchases and sales of assets are represented by variables bs
i �t�; ss

i �t� with
transaction costs de®ned via time-independent coe½cients ai and assuming
mostly the symmetry in the transaction costs; it means that purchasing one
unit of i at the beginning of period t requires 1� ai units of cash and selling
one unit of i results in 1ÿ ai units of cash. The ¯ow balance constraint for each
asset category (except for cash, the asset indexed by i � 0), scenario and time
period is

hs
i �t� � �1� rs

i �tÿ 1��hs
i �tÿ 1� � bs

i �t� ÿ ss
i �t�: �16�

It restricts the cash¯ows at each period to be consistent.
The ¯ow balance equation for cash for each time period and all scenarios is

for instance

hs
0�t� � hs

0�tÿ1��1� rs
0�tÿ1�� � cs�t� �

X
i

ss
i �t��1ÿai� ÿ

X
i

bs
i �t��1�ai�

�
X

i

f s
i �t�hs

i �t� ÿ ysÿ�tÿ 1��1� ds�tÿ 1�� ÿ Ls�t� � ysÿ�t� �17�

with f s
i �t� the cash¯ow generated by holding one unit of the asset i during the

period t (coupons, dividends, etc.) under scenario s and Ls�t� the paydown of
the commited liabilities in period t and under scenario s. We denote ysÿ�t�
borrowing in period t under scenario s at the borrowing rate ds�t� and cs�t� �
cs��t� ÿ csÿ�t� decision variables concerning the structure of external cash-
¯ows in period t under scenario s. (For simplicity we assume here that all
borrowing is done on a single period basis; a generalization is possible.)

For holdings, purchases and sales expressed in numbers or in face values,
the cash balance equation contains purchasing and selling prices, xs

i �t� >
z s

i �t�:

hs
0�t� � hs

0�tÿ 1��1� rs
0�tÿ 1�� � cs�t� �

X
i

z s
i �t�ss

i �t� ÿ
X

i

xs
i �t�bs

i �t�

�
X

i

f s
i �t�hs

i �t� ÿ ysÿ�tÿ 1��1� ds�tÿ 1�� ÿ Ls�t� � ysÿ�t� �18�

and the ¯ow balance constraints for assets assume a simpler form

hs
i �t� � hs

i �tÿ 1� � bs
i �t� ÿ ss

i �t� �19�

as no wealth accumulation is considered.
The decision variables hs

i �t�; bs
i �t�; ss

i �t�; ysÿ�t� are nonnegative and it is
easy to include further constraints which force a diversi®cation, limit invest-

Output analysis for portfolio optimization 253



ments in risky or illiquid asset classes, limit borrowings, loan principal pay-
ments and turnovers, re¯ect legal and institutional constraints, etc. It is also
possible to force a speci®c decision policy, e.g., the ®xed-mix policy which can
be expressed as

hs
i �t� � li

XI

j�0

hs
j �t�Ei

where li is a ®xed ratio of asset i in the portfolio, cf. [53, 58].
Whereas the random liabilities Ls�t� belong to the model input, various

decisions concerning other liabilities can be included in the external cash¯ows
and, similarly as in [45], one can separate decisions on accepting various types
of deposits, on emission further debt instruments, decisions on speci®c goal
payments, on long term debt retirement [15], etc. Naturally, the cash balance
equation has to take into account the cost of the debt service.

The objective function is mostly related to the wealth at the end of the
planning horizon T0; this for each scenario consists of the amount of the total
wealth

PI
i�0 ws

i �T0� reduced for the present value of liabilities and loans out-
standing at the horizon. Risk can be re¯ected by the choice of a suitable utility
function or incorporated into constraints. To include short term goals, cum-
mulated penalties for shortfalls under scenario s (e.g., the amounts ysÿ�t� > 0)
are subtracted from the ®nal wealth computed for the same scenario [9]. A
perspective alternative is to examine utility functions of several outcomes at
speci®c time instants covered by the model. Also criteria nonlinear in the
probability distributions can be applied; indeed, the Markowitz model (1) can
be considered as an example, see also [61].

To initiate the model, one uses scenarios rs
i �t�; ds�t�; f s

i �t�;Ls�t� of the
returns, interest rates and liabilities for all t and starts with the known, sce-
nario independent initial holdings hs

i �0�1 hi�0� of cash and all considered
assets and with ysÿ�0�1 0Es. If no ties in scenarios are considered they can be
visualized as a fan of individual scenarios which start from the common
known values ri�0�; d�0�; fi�0�;L�0� valid for t � 0. All decisions hs

i �t�, bs
i �t�,

ss
i �t�, ysÿ�t�, cs�t�Ei; s and tV 1 can be computed at once. In this case, only

one additional requirement must be met: the initial decision hs
i �1�, bs

i �1�, ss
i �1�,

ysÿ�1�, cs�1� must be scenario independent. This is a simple form of the non-
anticipativity constraints and the resulting problem is a multiperiod two-stage
stochastic program. An example is [24, 33, 45, 59].

For multistage stochastic programs, the input is mostly in the form of
a scenario tree and the nonanticipativity constraints on decisions enter
implicitly by using a decision tree which follows the structure of the already
given scenario tree, e.g., (14)±(15), or in an explicit way by forcing the deci-
sions based on the same history (i.e., on an identical part o t;� of several
scenarios) to be equal, as it was in the case of the two-stage stochastic
program. With the explicit inclusion of the nonanticipativity constraints, the
scenario-based multiperiod and multistage stochastic programs with linear
constraints can be written in a form of a large-scale deterministic program

max
XXN

X
s

psu
s�x s� jAsx s � b s; s � 1; . . . ;S

( )
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where X is a set described by simple constraints, e.g., by nonnegativity
conditions, N is de®ned by the nonanticipativity constraints and us is the
performance measure in case of scenario s.

A large class of solvers (CPLEX, MSLiP-OSL, OSL-SP, etc.) are currently
available for the solution of multistage problems with linear constraints and
nonlinear objectives. Nonlinear or integer constraints can be included but for
the cost of an increased numerical complexity. On the other hand, if the
resulting problem can be transformed into a large linear program, there are at
disposal special decision support systems which are able to manage e½ciently
large scale scenario based stochastic linear programs for portfolio opti-
mization including those with piece-wise linear concave utility functions.

4 How to draw inference about the true problem?

Already the early works on applications of stochastic programming in ®nance
were aware of the fact that the obtained solution or policy can be in¯uenced
both by the choice and approximation of the presumably known probability
distribution P. Up to now, the main tool has been sensitivity analysis via
repeated runs of the optimization problem with a changed input; see for
instance [7, 11, 33, 45, 59, 77]. We shall focus here on other approaches suit-
able for drawing conclusions about the optimal solutions and the optimal
value of the true stochastic program when using results obtained by solving an
approximate scenario-based program. Such possibilities depend essentially on
the structure of the solved problem as well as on the origin of scenarios.

The main sources of errors come from simulation, sampling, estimation
and also from incomplete or unprecise input information, the main tools are
selected methods of probability theory, asymptotic and robust statistics, sim-
ulation methods and parametric optimization. To simplify the exposition, we
shall concentrate on stochastic programs written in the form

max
x AX

F�x;P� �20�

where the objective function is mostly an expectation of a rather complicated
function f0�x;o� and X is a nonempty closed set which does not depend on P.

To get (20), it is enough to separate the ®rst-stage decisions x1 and o1 in
the nested form (10)±(11) and to consider the ®rst-stage probem (10). Notice,
however, that the function j10�x1;o1� in (10) depends also on the conditional
probability distribution P�ojo1�. For scenario-based stochastic linear pro-
grams, e.g., (14)±(15), the functions j10�x1;o1� can be computed as optimal
values of �T ÿ 1�-stage stochastic linear programs written in the arborescent
form, each corresponding to one considered realization of o1. Dependence on
the conditional discrete distributions becomes obvious. The large deterministic
linear program (14)±(15), and also those for evaluation of j10�x1;o1�, can be
rearranged so that it assumes the form of a large two-stage stochastic linear
program with random recourse; the ®xed recourse is obtained only when the
random, scenario dependent, coe½cients are on the right-hand sides and in the
objective function. This observation suggests a way how to extend the results
known for two-stage programs to the multistage case, but, at the same time, it
points out at the problems to be expected in postoptimality, stability and
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worst-case analysis for multistage stochastic programs. On the other hand, for
a discrete probability distribution P, the ®rst-stage problem

max
x1 AX1

c>1 x1 � EP�o1�fj10�x1;o1�g �21�

is a convex program with a concave piece-wise linear objective function. This
property is also valid whenever all objective functions ft0 in (11) are concave
piece-wise linear.

Example 2 ± A multiperiod bond portfolio management problem. Consider S
scenarios of interest rates r s A RT ; s � 1; . . . ;S which occur with probabilities
ps > 0Es;

P
s ps � 1. These scenarios enter coe½cients of a multiperiod two-

stage problem for bond portfolio management, see [24, 33], with scenario
independent liabilities. The problem can be rewritten into the form (20) as

max
x AX

XS

s�1

psW�x; r s�; �22�

the ®rst-stage decision vector x consists of components of the scenario
independent ®rst-stage decision variables hi�1�; bi�1�; si�1�Ei in the notation
introduced in Section 3, W�x; r s� denotes the maximal market value of the
portfolio which can be attained at time T0 for a given scenario r s and an
already ®xed ®rst-stage decision x and the set X is described by deterministic
linear constraints on holdings and cash¯ow (compare with (18)±(19))

hi�1� � hi�0� � bi�0� ÿ si�0�; i � 1; . . . ; I ; �23�

h0�1� � h0�0��1� r0�0�� �
XI

i�1

zi�1�si�1�

ÿ
XI

i�1

xi�1�bi�1� �
XI

i�1

fi�1�hi�1� ÿ L�1� � yÿ�1� �24�

and by nonnegativity of all variables. The set Xof feasible ®rst-stage decisions
is nonempty, convex and compact provided that the initial wealth is positive
and borrowing in the ®rst stage is restricted.

Thanks to unlimited possibilities of borrowing in the subsequent periods
(see (18)), the second-stage linear programs which determine W�x; r s� are
feasible for each x; r s and the ®rst-stage decision variables enter only the right-
hand sides of the system of their (linear) constraints. With prices xs

i �t� > zs
i �t�

and with ds�t� > 0Ei; t; s, the dual programs are also feasible, hence, for each
r s, W��; r s� is a ®nite, piece-wise linear concave function on X and these
properties extend evidently also to the objective function in (22).

In general, we assume that the set X is nonempty, convex and closed and
the objective function in (20) is concave in x and convex in P; the last
assumption covers also the mean-variance model or models of robust opti-
mization [55]. The probability distribution function plays a role of an abstract
parameter which is estimated or approximated by another probability
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distribution P̂ obtained by parametric or nonparametric methods and by
sampling, discretization and simulation techniques. The optimization problem
is solved with P̂ and the question is how the obtained optimal value j�P̂� and
the set of optimal solutions C�P̂� relate to the optimal value j�P� and to the
set of optimal solutions C�P� for the true problem. Depending on the nature
of the approximation, the problem can be for instance treated within asymp-
totic statistics or in the frame of quantitative stability for parametric pro-
grams. In general, it is much easier to get an estimate of precision of the
optimal value than that of the optimal solutions.

For the expected value objective F �x;P� :� EP�o� f0�x;o�, a natural idea is
to use the empirical probability distribution Pn based on n i.i.d. sample values
of o and to study the asymptotic properties of the optimal value j�Pn� and of
the set of optimal solutions C�Pn� of the sample problem

max
x AX

F�x;Pn� � max
x AX

1

n

Xn

j�1

f0�x;o j�:

The notion of the weak convergence [69] is a legitimate starting point. It im-
plies convergence of the expectations F �x;Pn� � �

W
f0�x;o�Pn�do� for a ®xed

x if f0�x; �� is a bounded continuous function of o or if the set of probability
distributions is restricted to a subset with respect to which the function f0�x; ��
is uniformly integrable.

Classical consistency results. Under assumption that Pn ! P weakly and that
f0�x;o� is a continuous bounded function of o for every x A X, the point-wise
convergence of the expected value objectives F�x;Pn� ! F �x;P� Ex A X fol-
lows directly from the de®nition of weak convergence. If X is compact and the
convergence is uniform on X we get immediately convergence of the optimal
values

j�Pn� ! j�P�:
If, moreover, X is convex and f0��;o� is strictly convex on X it is easy to get
in addition the convergence of the (unique) optimal solutions x�Pn� of
maxx AX F �x;Pn� to the unique optimal solution x�P� of the initial problem
(20).

Bias of the empirical optimal value. It is possible to prove that for empirical
probability distributions, j�Pn� has a one-directional bias in the sense that

Ej�Pn�V j�P�:
Indeed, for i.i.d. values o i and for any ®xed x A X, the function values
f0�x;o j� are i.i.d. and

Ej�Pn� � E max
x

1

n

Xn

j�1

f0�x;o j�

V max
x

1

n
E
Xn

i�1

f0�x;o j� � max
x

E f0�x;o� � j�P�:
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An empirical point estimate of Ej�Pn� follows from the Law of Large Num-
bers and an asymptotic con®dence interval for this upper bound on the true
optimal value j�P� can be obtained from the Central Limit Theorem. This
idea was elaborated in [48] and applied in [3] to a bond portfolio management
problem akin to that of Example 2.

To get consistency results under less stringent assumptions concerning the
true and approximating probability measures, functions f0 and for multiple
optimal solutions requires a di¨erent methodology; see Theorem 3.9 of [29]
which will be applied below.

General consistency results for a discrete true distribution P. Let o1; . . . ;oN be
the atoms of P and pj; j � 1; . . . ;N, their probabilities, let X be a nonempty
convex polyhedron and f0�x;o� a piece-wise linear concave function of x.

This means that F�x;P� :�PN
j�1 pj f0�x;o j� is also a piece-wise linear con-

cave function, hence, there exists a ®nite number of nonoverlapping nonempty

convex polyhedra Xk; k � 1; . . . ;K , such that X�6K

k�1X
k and F�x;P� is

linear on each of Xk. Then the set of optimal solutions C�P� evidently inter-
sects the set X�P� of all extremal points of Xk; k � 1; . . . ;K . The true distri-
bution P is estimated by empirical distributions Pn based on ®nite samples of
sizes n from P, hence, carried by subsets of fo1; . . . ;oNg. The empirical ob-
jective functions F �x;Pn� are also concave, piece-wise linear and the sets of
the related extremal points X�Pn�HX�P�. This means that the assumptions
of Theorem 3.9 in [29] are ful®lled with the compact set D � X�P�. Conse-
quently, with probability one, any cluster point of any sequence of points
x�Pn� A C�Pn�XD is an optimal solution of the true problem.

Assume in addition that there is a unique optimal solution x�P� of the true
problem (20). In this case there is a measurable selection x��Pn� from
C�Pn�XD such that with probability 1, limn!y x��Pn� � x�P�. Due to the
special form of the objective functions and of the sets C�Pn�XD, this is
equivalent to

x��Pn�1 x�P� a:s: for n large enough: �25�

Example 2 ± continuation. Assume that the scenarios of interest rates in the
bond portfolio management problem have been generated according to
the Black-Derman-Toy [4] model. This provides a large number, say N, of
equiprobable scenarios. As the number of scenarios can be very large, e.g.,

2360 if bonds with maturity 360 months are considered, one solves a problem
based on a relatively small sample of scenarios. For i.i.d. sample of interest
rate vectors form the full binomial lattice and for incresing sample sizes, the
above consistency result applies: There is an integer n0 such that for increasing
sample sizes n > n0 a (sub)sequence of the respective ®rst-stage optimal
solutions x�Pn� becomes stationary, x�Pn�1 x�P� a.s. with x�P� A C�P�, an
optimal solution of the full problem. This is an encouraging result; however,
an important question is the rate of the convergence or the related problem of
the required minimal sample size n0.

Asymptotic normality of the optimal value j�Pn� can be proved under rela-
tively weak assumptions, e.g., for a compact set X0j, unique true optimal
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solution x�P� and continuous f0��;o�Eo with ®nite expectation Ef f0�x�P�;
o�g2, see Theorem 3.3 of [70]. This allows to construct approximate con®-
dence intervals for the true optimal value. On the other hand, a similar result
for optimal solutions x�Pn� cannot be expected even when all solution sets
C�P�;C�Pn�En are singletons. Moreover, for typical stochastic programs, the
higher order di¨erentiability assumptions concerning f0�x�P�;o� or F�x;P�
needed for the second order analysis of the optimal value function are not
ful®lled. To an extent, smoothness can be substituted by convexity properties.
An example is the asymptotic distribution result in [41] applied to the static
portfolio optimization problem based on a piece-wise linear-quadratic convex
tracking function.

Theoretically, the above asymptotic results apply also to the multistage
stochastic programs. However, the assumption of an in®nitely increasing
sample size means that at every node of the scenario tree, the number of
branches grows to in®nity and the sample based problems become very
quickly intractable.

Asymptotic results for a parametric family. A simpli®cation is possible when-
ever the general stability properties with respect to the probability distribution
can be reduced to a ®nite dimensional parameter case. An example are prob-
ability distributions of a given parametric form and the desired results concern
di¨erences between the optimal values j�y0� and j�yn� and between the
solution sets obtained for the true parameter value y0 and for its estimate yn,
respectively. For su½ciently smooth optimal value function j and for unique
optimal solutions, the statistical properties of j�yn� and of x�yn� follow from
the statistical properties of the estimates yn by application of results concern-
ing transformed random sequences [69].

Example 1 ± continuation. Simulation experiments [11] indicate that the results
of the Markowitz model are rather sensitive on the assumed values of
expected returns. Let us assume that the covariance matrix V in (1) is a known
positive de®nite matrix, the set X a nonempty convex polyhedron with non-
degenerated vertices, l > 0 a chosen parameter value and that the true
expected return r0 was estimated by an asymptotically normal estimate rn

based on a sample size n:
���
n
p �rn ÿ r0�@N�0;S�. Under these assumptions

about (1), for each r, there is a unique optimal solution x�r� and the optimal

value function j�r� :� maxx AX�lr>xÿ 1
2 x>Vx� is a piece-wise linear-quadratic

di¨erentiable convex function with the gradient lx�r�. Hence, asymptotic
normality of the sample optimal value function follows:���

n
p �j�rn� ÿ j�r0��@N�0;`j�r�>Sj�r��: �26�

The asymptotic result in (26) holds true also with the variance replaced by its
sample counterpart, i.e., by l2x�rn�>Snx�rn� and asymptotic con®dence inter-
vals for the optimal value can be constructed.

The optimal solutions x�r� of (1) are directionally di¨erentiable, piece-wise
linear on certain nonoverlapping convex stability sets which means that the
asymptotic normality can hold true only if the true expected return r0 lies in
the interior of one of these stability sets. Continuity of x�r� is su½cient for
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consistency of the optimal solutions based on a consistent estimate of the true
expected return; we refer to [22] for details.

For various reasons, empirical estimates of the probability distribution P
or of the true parameter y0 are not always available and, moreover, they need
not provide the best approximation technique: They focus solely on the
probability distribution, which is not the only ingredient of the stochastic
portfolio optimization models, they do not take into account any expert
knowledge or foresight and for technical reasons, they cannot be based on
very large samples. Moreover, the goal is to get a sensible approximation of
the optimal solution and of the optimal value, not an approximation of the
probability distribution. Stability results with respect to probabilities of the
selected scenarios can be found in [65]. We shall look into stability analysis of
(20) with respect to the abstract parameter P.

Quantitative stability results. The success and applicability of the quantitative
stability results depend essentially on an appropriate choice of the probability
metric d used to measure the perturbations in the probability distribution P.
The probability metrics should be closely tailored to the structure of the con-
sidered stochastic program and/or to the particular type of approximation of
probability distribution P. The desired results are, e.g., a Lipschitz (or HoÈlder)
property of the optimal value

d�P;P 0� < h ) jj�P� ÿ j�P 0�j < Kh

and possibly also a Lipschitz (or HoÈlder) property of the Hausdor¨ distance
of the corresponding solution sets with respect to perturbations of P measured
by d; naturally, the Lipschitz (or HoÈlder) constants depend on the chosen
metric d. Again, special assumptions are needed for to get such results for
optimal solutions whereas for the sets of e-optimal solutions

Ce�P� � eÿ arg min
x AX

F�x;P� � fx A XjF�x;P�U j�P� � eg

quantitative stability results hold true under more general circumstances [1].
An important class of probability metrics in our context, is based on the

Kantorovich-Rubinstein functional with a continuous distance function c :
Rs � Rs ! R1

�, see Chapter 5 in [63]:

dc�P;Q� � inf

�
R s�Rs

c�u;w�h�du; dw�
� �

�27�

over all ®nite Borel measures h on W�W such that h�B�W� ÿ h�W� B� �
P�B� ÿQ�B�EB A F. An example is the Fortet-Mourier metric obtained for

c�u;w� � kuÿ wkmaxf1; kwkpÿ1; kukpÿ1g: �28�

The distance function c has to be chosen so that the integrands f0�x; ��
exhibit a generalized Lipschitz property with respect to o:

j f0�x;o� ÿ f0�x; ~o�jU c�o; ~o�Eo; ~o A W: �29�
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Then the general results of parametric programming imply that small changes
in the probability distribution measured by dc result in small changes of the
optimal values and of the sets of e-optimal solutions, cf. [27] for theoretical
results and their application to the bond portfolio management problem.
These quantitative stability results can help in designing a discrete approxi-
mation P 0 of P which is representative enough and such that the obtained
solution enjoys plausible robustness properties. For scenario-based programs
they can be used to quantify the desirable robustness properties also in rather
complicated instances of stochastic programs with random recourse. More-
over, for two discrete probability distributions, say P �P pi do i ;Q �P

j qj d ~o j , dc�P;Q� is the optimal value of a ®nite-dimensional transportation
problem.

An application ± Deleting scenarios. Assume again that the discrete probability
distribution P is carried by a ®nite number of scenarios o1; . . . ;oN , which
occur with positive probabilities p1; . . . ; pN ;

P
i pi � 1; the number N can be

very large. Such distribution can be the true underlying discrete distribution,
an example is the distribution of interest rates obtained according to the
Black-Derman-Toy model [4], or an already accepted good discrete approxi-
mation of a true distribution that can be obtained by sampling, discretization
techniques, etc.

A possible reduction of the number of atoms of the discrete probability
distribution P can be based on the distance dc of probability distributions
de®ned in (27) with a distance function c for which (29) is satis®ed and the
triangle inequality holds true. We focus on deleting scenarios so that the
distance of the reduced probability distribution from the initial one is small.

The resulting optimal deletion rule [28] reads: Delete the scenario ok for
which

pk min
i0k

c�o i;ok� � min
l�1;...;N

pl min
i0l

c�o i;o l�:

The optimal reduced discrete probability distribution is Q �PN
i�1; i0k qi do i

with

qi � pi; i0 ik; qik � pik
� pk for c�o ik ;ok� � min

i0k
c�o i;ok�:

The result is rather canonical because it says that deletion should be done
where the scenarios are close together in the sense of the distance c or where
probabilities are small. The results and the rule can be extended to deletion of
a ®xed set of scenarios and to prescribed redistribution rules. Such redistribu-
tion rule follows for instance from the requirement that the remaining sce-
narios are equiprobable again.

Example 2 ± continuation. For the bond portfolio management problem,
f0�x;o� �W�x; r� ± the optimal wealth for the initial decision x and for a
given trajectory of interest rates r. It is possible to prove, cf. [23], that the
corresponding second-stage linear program is regular in the sense of [64].
This means, inter alia, that W�x; r� is jointly continuous in x; r. As the Black-
Derman-Toy lattice provides a compact support of distribution P, an appro-
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priate choice of c is (28) with p � 1. To delete one of selected scenarios
r s; s � 1; . . . ;S, according to the introduced deletion rule means to ®nd the
minimal element kr i0 ÿ r j0k2 of the matrix kr i ÿ r jk2; 1U i; j US, to delete
scenario r i0 and to allocate its probability to r j0 or vice versa. Hence, the
scenarios will no more be equiprobable. An alternative redistribution rule is to
redistribute the probability pk�� 1

S
� uniformly among the S ÿ 1 remaining

scenarios. It changes the above deletion rule to deletion of scenario rk for
which the average distance from other scenarios is minimal:X

s

kr s ÿ rkk � min
l

X
s

kr s ÿ r lk:

Again, it is expedient to model the perturbations of the probability distri-
bution P using a ®nite dimensional parameter. This can be done by the con-
tamination method.

The contamination method does not require any speci®c properties of the
probability distribution P. In the framework of scenario-based stochastic
programs, it can be used to study the in¯uence of the assigned values of
probabilities ps and of the whole probability structure, including additional
stages and additional scenarios or branches of the scenario tree on the optimal
value; see [19, 21].

Contamination means to model the perturbed probability distribution as

Pl � �1ÿ l�P� lQ; 0U lU 1; �30�

the probability distribution P contaminated by the probability distribution Q.
The contamination neighborhood Oe�P� :� fP̂jP̂ � �1ÿ e�P� eQ; E prob-
ability distributions Qg is not a neighborhood in the topological sense, but for
e small enough, the contaminated distributions fall into a neighborhood of P.
For ®xed probability distributions P;Q, the objective function F�x;Pl� in (20)
computed for the contaminated distribution Pl is linear or convex in the
parameter l and under modest assumptions, its optimal value

j�l� :� max
x AX

F�x;Pl�

is a ®nite convex function on �0; 1� with a derivative j 0�0�� at l � 0�.
Bounds on the optimal value j�l� for an arbitrary l A �0; 1� follow by

properties of convex functions:

�1ÿ l�j�0� � lj�1�V j�l�V j�0� � lj 0�0�� El A �0; 1�: �31�

For F�x;P� linear in P, the lower bound for the derivative j 0�0�� equals
F �x�P�;Q� ÿ j�0� where x�P� is an arbitrary optimal solution of the initial
problem (20) obtained for the probability distribution P; if the optimal solu-
tion is unique, this lower bound is attained. Hence, evaluation of bounds in
(31) requires the solution of another stochastic program of the type (20) for the
new distribution Q to get j�1� and evaluation of the expectation F�x�P�;Q� at
an already known optimal solution x�P� of the initial problem (20) but for the
contaminating distribution Q.
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For stability studies with respect to small changes in the underlying prob-
ability distribution, small values of the contamination parameter l are typical.
The choice of l may re¯ect the degree of con®dence in expert opinions repre-
sented as the contaminating distribution Q, and so on. Using a contaminating
distribution Q carried by additional scenarios or branches of the scenario tree,
one can study the in¯uence of including these additional ``out-of-sample''
scenarios; cf. [25] for application in portfolio optimization. By a suitable
choice of Q, criteria on a right number of stages (cf. [43]) can be tested, the
response on an increasing importance of a scenario can be quanti®ed, etc.

Example 3. Consider the problem of investment decisions in the international
debt and equity markets. Assume that historical data allows us to construct
many scenarios of returns of investments in the considered assets categories.
We denote these (in principle equiprobable) scenarios by o s; s � 1; . . . ;S, and
let P be the corresponding discrete probability distribution. Assume that for
each of these scenarios, an outcome of a feasible investment strategy, say,
x A X can be evaluated as f0�x;os�. Maximization of the expected outcome

F �x;P� � 1

S

XS

s�1

f0�x;os� with respect to x A X

provides the optimal value j�P� and an optimal investment strategy x�P�.
The historical data de®nitely do not cover all possible extremal situations

on the market. Assume that experts suggest an additional scenario o�. This is
the only atom of the degenerated probability distribution Q, for which the
best investment strategy is x�Q� ± an optimal solution of maxx AX f0�x;o��.
The contamination method explained above is based on the probability
distribution Pl, carried by the scenarios os; s � 1; . . . ;S, and on the experts

scenario o� with probabilities
1ÿ l

S
for s � 1; . . . ;S, and p� � l. The prob-

ability l assigns a weight to the view of the expert and the bounds (31) are
valid for all 0U lU 1. They clearly indicate how much the weight l, in-
terpreted as the degree of con®dence to the investor's view, a¨ects the out-
come of the portfolio allocation.

The impact of a modi®cation of every single scenario according to the
investor's views on the performance of each asset class can be studied in a
similar way. We use the initial probability distribution P contaminated by Q,
which is now carried by equiprobable scenarios ô s � os � ds; s � 1; . . . ;S.
The contamination parameter l relates again to the degree of con®dence to
the expert's view.

More speci®cally, assume now that the investment problem has been for-
mulated and solved as a two-stage multiperiod stochastic program with the
second-stage constraints of the type (16)±(17) or (18)±(19) for t � 2; . . . ;T0.
The members of the investment committee expect that a special event at time
t� will result in new developments which might require some changes of the
investment policy. For simplicity assume that t� is one of time points of the
discretization t � 2; . . . ;T0. Under these circumstances the initial decision
problem should be formulated as a three-stage stochastic program with
branching at time t�. A possibility is to use ®rst the contamination technique
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to analyze the in¯uence of the new developments on the maximal expected
outcome for various values of l corresponding to the degree of con®dence in
the new developments. The contaminating probability distribution Q is car-
ried again by S equiprobable scenarios, say, ~os; s � 1; . . . ;S, whose compo-
nents ~o s

t � os
t ; t < t�, whereas the remaining components re¯ect the foreseen

new developments and are designed by the experts. Bounds (31) on the opti-
mal value for the contaminated probability distribution Pl quantify the
impact of the additional stage. This approach can be modi®ed to cover more
than one date of the foreseen changes.

The worst case analysis and the minimax decision rule are mostly used in cases
of an incomplete information about the probability distribution P which is
known to belong into a family P of probability distributions identi®ed, e.g.,
by known values of some moments, by a given support, by qualitative prop-
erties, such as unimodality, or by unprecise values of probabilities of expert
scenarios. We refer to [8, 50] for early examples of applications of the mini-
max decision rule in portfolio optimization.

When applied to (20) with F �x;P� :� EP�o� f0�x;o�, the minimax decision
rule means to select the decision x� which maximizes the smallest possible
expectation:

x� A arg max
x AX

min
P�o� AP

EP�o� f0�x;o�
� �

: �32�

The objective function of the inner minimization problem in (32) is linear in P,
which means that for convex, compact set P, the optimal worst-case proba-
bility distribution P� A P is one of extremal points of P. In the framework of
the moment problem, see [39], these extremal points are well described for P
de®ned by a given support and by known values of certain generalized mo-
ments: For admissible moment values, the extremal distributions are discrete
ones, concentrated in a modest number of points; hence, (32) is a scenario-
based program. The problem is to get one of these discrete distributions, the
worst-case distribution P� in its dependence on the ®rst-stage decision x. To
this purpose, convexity, concavity or saddle properties of the integrand
f0�x; �� are essential; recall the Jensen inequality valid for all probability dis-
tributions P with a prescribed expected value EP�o�o � o EP A P and for
convex f0�x; ��, so that the worst case distribution, independently on x, is de-
generated, concentrated in o. On the other hand, for concave f0�x; �� and
compact convex polyhedral support W, the worst case distributions are con-
centrated in the extremal points of W. This is an old result of Edmundson and
Madansky [47] which provides the worst-case distribution independent of x
under special assumptions, e.g., when W is a simplex or a Cartesian product of
simplices.

This gives some possibilities in modeling and software development also
for applications of multiperiod and multistage stochastic programs in port-
folio optimization, cf. [31]. However, the required convexity or saddle prop-
erty of f0�x; �� restricts the models to ®xed recourse stochastic programs with
random right-hand sides and/or coe½cients in the objective functions that are
supposed to depend on the random parameters in a linear way. Moreover for
multistage stochastic programs, convexity of f0�x; �� in (32) depends upon
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special assumptions about the probability distribution of the stochastic data
process (6).

Example 4 ± Incomplete knowledge of liabilities. Let us modify the bond
portfolio management problem treated in Example 2: Assume that the interest
rate scenarios and their probabilities have been already ®xed so that except for
liabilities, the scenario dependent coe½cients in the second-stage constraints
(18) are known. Let us turn our attention to liabilities. Their full knowledge is
not realistic for instance in management of newly established pension funds,
portfolios of insurance companies, etc. We shall assume now that liabilities
are random, L�h� with h independent of random interest rates. The objective
function, now the expected utility of the ®nal wealth, assumes the form

EP�h�
X

s

psU�W�x; r s; L�h���
( )

�33�

where U�W�x; r s; L�h��� denotes the maximal contribution of portfolio man-
agement for a feasible ®rst-stage decision x, a given scenario r s of interest
rates and a realization L�h� of liabilities. However, the probability distribution
of L�h� is not known completely. Using the available information, we want
to get bounds on the maximal value of (33) subject to (23)±(24) and non-
negativity constraints.

As the ®rst step, it is easy to realize that for a concave, nondecreasing
utility function U, the individual terms U�W�x; r s; L�h��� in the objective
function (33) are concave in the right-hand sides L�h� taken as a parameter in
evaluating the maximal attainable ®nal wealth under scenario r s for a ®xed
feasible ®rst-stage decision x. It means that Jensen's inequality provides an
upper bound for the objective function (33):

EP�h�
X

s

psU�W�x; r s; L�h���
( )

U
X

s

psU�W�x; r s; EP�h�L�h���:

The corresponding upper bound for the optimal value of (33) subject to con-
straints on the ®rst-stage variables equals

max
x

X
s

psU�W�x; r s; EP�h�L�h���:

Hence, replacing the random liabilities by their expectations in the bond port-
folio management problem leads to overestimating the maximal expected gain.

The lower bound can be based on the Edmundson-Madansky inequality if,
in addition, the components Lt�h� :� L�t; h� of L�h� are known to belong to
®nite intervals, say �L 0t ;L 00t � for each t. The general bound, however,
is computationally expensive unless the objective function is separable in
individual liabilities, which is not our case. A trivial lower bound can be
obtained by replacing all liabilities by their upper bounds L 00t ; this bound will
be rather loose. Another possibility is to assume a special structure of
liabilities (their independence, a Markov property, etc.) in which case the
lower bound can be simpli®ed provided that the objective function remains
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concave with respect to the random variables used to model the liabilities.
Assume for instance that

L�h� � Ga�h�

with a given matrix G of the size T0 � J and aj�h�; j � 1; . . . ; J, mutually
independent random variables with known expectations EP�h�aj and known
supports �a 0j ; a 00j � E j. Accordingly, the individual objective functions

U�W�x; r s; L�h��� � U�W�x; r s; Ga�h��� :� ~U s�x; a�h���

are concave in a�h�.
For small J, the following string of inequalities valid for each of scenarios

r s and for all feasible ®rst-stage solutions can be useful:

EP�h� ~U s�x; a�h��V l1EP�h� ~U s�x; a 01; a2�h�; . . . ; aJ�h��

� �1ÿ l1�EP�h� ~U s�x; a 001 ; a2�h�; . . . ; aJ�h��

V
X

JHf1;...;Jg

Y
j AJ

lj

Y
j BJ

�1ÿ lj� ~U s�x; aJ� �34�

where the components of aJ equal a 0j for j A J and a 00j for j B J and

lj �
a 00j ÿ EP�h�aj

a 00j ÿ a 0j
; j � 1; . . . ; J:

Inequalities (34) imply that the lower bound for the maximal value of the
objective function (33) can be obtained by solving the corresponding stochas-
tic program based on 2JS scenarios.

For instance for pension funds it is natural to assume that G is a lower
triangular matrix: The liabilities L1 to be paid at the beginning of the ®rst
period are known with certainty and their portion, say, gL1 corresponds
to unrepeated payments (e.g., ®nal settlements or premiums) whereas the re-
maining main part of L1 will be paid also in the subsequent period (continuing
pensions). The liabilities L2�h� to be paid at the beginning of the period 2 can
be modeled as

L2�h� � �1ÿ g�L1 � a2�h�;

etc. Moreover, it is possible to assume that aj�h� are mutually independent so
that (34) is a valid and tight lower bound that applies whenever the intervals
�a 0j ; a 00j � E j and the expectations EP�h�a�h� are known.

If such maximin and maximax bounds

max
x AX

inf
P AP

F �x;P�U j�P�U max
x AX

sup
P AP

F�x;P�EP A P �35�

on the optimal value of the true program are available, they provide an im-
portant information on robustness of the optimal value within the considered
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family of probability distributions. Special algorithms [32] designed for this
purpose, have not yet been applied in the context of portfolio management. A
related, though less ambitious problem is to get bounds on the performance of
an optimal solution x�P� obtained for a probability distribution P A P using
the corresponding worst-case and best-case probability distributions from P.

5 Conclusions

We have presented several techniques suitable for analysis of results obtained
by solution of stochastic programs designed to support decisions of portfolio
managers. Such stochastic programs are just an approximation of reality and
the goal is to get sensible and robust decisions for the underlying real-life
problem. Depending on its nature, on the sources of errors due to approxi-
mation and simpli®cation, the introduced methods indicate how to bridge the
gap between the results obtained for the approximate problem and those valid
for the true one, using the available information; the ®rst numerical experience
is reported in [3, 24, 25].
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