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gram stems from a real-life problem and the ex-
amples of random parameters are (random) de-
mands, (random) inflows, (random) yields, etc.
Decision models of stochastic programming have
been designed to treat the cases when a decision
has to be chosen before a realization of random
parameters can be observed.

There is a rich choice of decision models of
stochastic programming (see e.g. [9,23]). One can
consider different objective functions and model
the same problem using chance constraints or
penalizing the constraints viclation or a combina-
tion of the two. Very often there is no convincing
reason to prefer one approach over another. The
model choice is often influenced by the decision
maker’s individual attitude and knowledge, by the
data structure and by the software available. To
use the penalty approach means to assign costs to
discrepancies, which may be a very difficult prob-
lem in practice. That is why decision makers often
prefer to assign probability thresholds and to use
chance constraints. However, chance constraints
do not distinguish the magnitudes of the dis-
crepancies and the joint chance constraints seem
to be the most complicated choice from the point
of view both of theory and of software. We feel
that, especially in costly projects, the decisions
should not be made relying on an ad hoc chosen
or favorite models and we suggest to use multi-
modeling.

The progress in the field of numerical solution
techniques for stochastic programming problems,
see [7], has already resulted in special packages
such as the ADO/SDS collection of Stochastic
Programming Codes available at the International
Institute for Applied Systems Analysis (ITASA),
Laxenburg, Austria (see [3], [7, Part III]), and
made it possible to solve successfully nontrivial
stochastic programs. We shall use [7] as the source
of reference whenever possible.

We have chosen a real-life application of sto-
chastic programming to water resources and
management; see Section 2 for the description of
the problem and Section 6 for the results. The
state-of-the-art of mathematical models including
stochastic programming that were developed for
reservoir management is contained in the review
[24]. Among others, the use of individual chance
constraints has a long tradition in this problem
area; see e.g. [17]. The joint chance constraints
were treated in a series of papers by Prékopa et

al., see e.g. the collection [15]. The use of the
stochastic programming penalty or recourse mod-
els is not that frequent, see e.g. [2]. In Czechoslo-
vakia, where the analyzed system is located, appli-
cations of stochastic programming models with
chance constraints were described in [3] and [10]
in conjunction with the linear decision rule or with
the direct control.

In this paper we take into account intercorrela-
tions between the successive values of water re-
quirements for irrigation purposes; this cannot be
achieved via individual chance constraints. It is
the theory of log-concave measures developed by
Prékopa [14] which gives the theoretical back-
ground for handling the joint chance constraints.
Their use, however, brings along limitations as to
the dimension of the corresponding vector of ran-
dom parameters and to the type of its distribution.
Therefore we have also formulated an alternative
model of penalty type (see Section 3). Both types
of models are compared on the considered aggre-
gated problem whose size is sufficient for the early
screening stage of the decision process and, at the
same time, gives a realistic possibility to multi-
modeling and to subsequent comparison of differ-
ent numerical procedures (see Sections 4 and 5).
Among other solution techniques, the stochastic
guasigradient method is introduced and its basic
features are explained and illustrated.

2. Description of the water resources management
problem

The problem considered here is a part of a
multiobjective large-scale system that arises pri-
marily from decision making on the governmental
level. In this paper, we suppose that the subsys-
tems having their own independent objective have
been coordinated by means of resource allocation
s0 as to maximize the performance of the total
system. Out of many possible goals, the water
supply for industry and irrigation, flood control
and recreation purposes are considered in this
study. The most important decision variable is the
storage capacity of reservoirs. In the correspond-
ing mathematical model we use a single objective
function that is assumed to be an additive sum of
individual objective commensurable functions. The
issues that are analyzed in this paper can be
related to the multipurpose water resources sys-
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Figure 1. Schematic representation of the water resources
system of the Bodrog river

tems with the objective to design preliminarily the
system with minimum costs (screening). These
costs are determined either by the capacity of the
designed reservoirs (the chance-constrained model)
or by the overall costs that include also the losses
due to failure of some reservoir functions (the
penalty models).

As an example of this analysis, the water re-
source system of the Bodrog River in Eastern
Czechoslovakia was chosen.

The water resources system consists of three
reservoirs, V, D, K, two of which are in operation
(D, V) and the third one is to be built or not (K),
see Figure 1. The main purposes of the water
resources system are the irrigation water supply,
industrial uses — mainly water withdrawal for the
thermal power station, flood control (better flood
alleviation), environmental conservation and rec-
reation. An accelerated development of the rec-
reation and growing irrigation requirements poses
the main questions for the decision makers:

— Can the existing water resources system still
meet all the requirements? And if so, with which
reliability?

— Is the construction of reservoir K necessary
and when will it be necessary?

The analysis of this problem was divided into
two steps. The first one comprises the screeming
modeling and is discussed in this paper. Optimiza-
tion models, however, cannot reflect all the details
of the water resources system operation. Therefore
the results of the stochastic optimization model
are supposed to be verified using the stochastic
simulation model with the input generated by the
methods of stochastic hydrology [11]. For the sto-
chastic programming screening model, which is
the subject of the present paper, an aggregated
model was used and the monthly flows and the
irrigation water requirements were aggregated into
four periods:

(1) November till April of the following year,

(2) May and June,

(3) July and August,

(4) September and October.

The first period starts at the beginning of the
hydrological year and comprises the winter and
the spring periods filling the reservoirs. The sec-
ond and fourth periods include irrigation and
industrial demands, the third period includes in
addition the recreation demands. The require-
ments for the minimum pool due to environmental
control and enhancement and flood control per-
tain to all the periods.

Following [19] we use as criterion the net pre-
sent value of the project. To simplify the economic
considerations we assume that the optimal water
allocation has been performed in advance so that
restrictions caused by limited supply of water can
be taken into account by minimization of the
project costs and losses due to reduced level in
water supply or water service. As the decisive
factor in determination of the project value is the
reservoir capacity the objective function is briefly
described as the cost of reservoir of the considered
capacity.

3. The mathematical models

Three types of models are presénted: (i) mini-
mizing reservoir capacity subject to joint and indi-
vidual chance constraints and simple deterministic
bounds, (ii) minimizing the overall expected costs
subject to simple deterministic bounds and (iii)
minimizing the expected cost that equals the cost
of reservoir increased with the expected penalty
for unsaturated needs of irrigation water subject
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to individual chance constraints and simple de-
terministic bounds.

3.1. The chance-constrained model

Using chance constraints, the result identifies
the capacity x, of reservoir V that should meet the
needs with a prescribed reliability. The task is
formulated as the cost of reservoir V minimiza-
tion. As the cost is an increasing function of
reservoir capacity x,, we can evidently minimize
the capacity x, instead of minimizing the cost.

The first type of constraints is used for sustain-
ing the total release x; in excess to the water
supply need 8, + d, in periods 2, 3 and 4 (vegeta-
tion periods). The needs consist of the fixed de-
mand d, (minimum flow and industrial water
needs) and random demand f; (irrigation water
requirements). As to the first period, the fixed
demand 4, (caused mainly by the needs of the
thermal power station) should be met with such a
high probability that the deterministic constraint
x, = d, was used. Taking into account the inter-
correlations of random demands 8, i = 2, 3, 4, the
constraint for the vegetation period was for-
mulated as the joint chance constraint

P(x,>B+d, i=2,3,4)>a, (1)

where a is the required joint probability level.

The second type of constraints involves the
minimum storage and freeboard constraints in
their classical form of individual chance con-
straints:

P[Sf;mj}}’ajs 1.=1,....,4, {2)
Pls,+u<x} 2w, i=1,...4, (3)
where s, is the reservoir storage, m, is the pre-
scribed minimum storage, v, is the prescribed
minimum freeboard volume, and «, 7V, are the
chosen probability levels in the i-th period.

The resulting optimization problem has the
form

minimize X,

subject to
Plx;2B+d,i=2,3,4}>a,
Pls,z=m}za, i=1l,....4,

P{s,+v,<x5} 27, i=1,..,4, (4)

and subject to additional constraints
dy <x < thy,
lo < Xo < Uy,

O<x. <u, i=2 3,4 (5)

£

which stem mostly from natural hydrological and
morphological situation.

We shall use the direct (zero-order) decision
rule so that the decision variables will be x, — the
reservoir capacity — and the planned releases x,,
i=1,2, 3, 4. (Notice that the use of the chance
constraints does not exclude the possibility that
these planned releases cannot be implemented,
e.g., due to an actual shortage of water, and the
problem of actual releases from an already exist-
ing reservoir is subsequently solved via a less
aggregated reservoir operation model.) Neglecting
losses due to evaporation, the reservoir storages s,
can be expressed via the water inflows and re-
leases in the relevant periods. Let r; denote the
water inflow in the j-th period and let {; denote
the cumulated water inflow,

i
&= AU & R
j=1

Denote further by s, the initial reservoir storage
at the beginning of the hydrological year. As a
rule, we can set s, = my, 1.€., the reservoir storage
is supposed to be at its minimum after the vegeta-
tion period. (This assumption is realistic for rela-
tively small reservoirs without carry-over.) Re-
peated use of the continuity equation gives

s;=my+§— Y x, i=1,....4. (6)
i=1

Substituting into (2) and (3) and using the corre-
sponding 100% quantiles z,( p) of the distribution
of the random variables {,, k=1, 2, 3, 4, we can
rewrite the individual chance constraints (2) and
(3) in the form

k
Y x<,(0l—a)+me—m,, k=1,...,4,
i=1

k
Y. 2wl ) F et E=Laoad (8)
i=0
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Unfortunately, neither this simple device nor the
well-known linear decision rule (cf. [17]) apply to
the joint chance constraint (1).

For solving the resulting optimization problem,

minimize X, (9a)
subject to

P{x,2B8+d,i=2,3,4} za (9b)
and subject to linear constraints (3), (7), (8),

special techniques have been developed, see
Chapter 5 of [7] and Section 4.

3.2. The penalty models

Alternatively, stochastic programming decision
models can be built solely on the evaluation and
minimization of the overall expected costs, which
contain not only the cost of the reservoir of the
capacity x, but also the losses connected with the
fact that the needs were not fulfilled and /or the
requirements on the minimum reservoir storage
and on the flood control storage were not met.
This type of models is called mostly stochastic
program with penalties and it includes also the
stochastic programs with recourse as a special case.

Suppose first that the constraints on water
supply, minimum water storage and flood control
storage do not contain random variables, i.e., we
have (besides of the upper and lower bounds (5))

sy, P=20908 (10a)
Y x, <t +my—m,, k=1,...,4, (10b)
i=1

Ex?.;—-:{',‘k+m4+u,‘., k=1,...,4. (10c¢)

In case of random B, i=2,3,4, and {,, k=
1,...,4, the chosen deusmn X Mgy need
not fulfill constraints (10) for the actual (ob-
served) values of 8, {,. If this is the case, costs
evaluating losses on crops (not being irrigated on
a sufficiently high level), on the decrease of rec-
reation (due to the lower reservoir pool) and the
economic losses due to flood, etc. can be attached
to the discrepancies.

Let ¢(x,) denote the cost of the reservoir of the
capacity x,, let the penalty functions be of the

type

$(¥)=0 if y<0
= 0 and nondecreasing if p > 0. (11)

Denote by ¢!, ¢7, ¢; the penalty functions corre-
sponding to the considered three types of con-
straints in (10), i1=2, 3,4, k=1,...,4. We try to
find a decision for which the total expected cost
will be minimal subject to inequality constraints

(5):

minimize

c(xﬂ}+F{Z¢(B +d, — x,)

o

k
Sy iy 2-":‘)} (12)

subject to the constraints (5).

The expectation in (12) is taken with respect to
random wvariables B, and {,. The choice of the
penalty functions should be based on a deep eco-
nomic and environmental analysis of the underly-
ing problem. On the other hand, for a screening
study, it seems satisfactory to restrict the choice to
piece-wise linear or piece-wise quadratlic penalty
functions (sce e.g. [18)]).

In the simplest case (simple recourse model) all
penalty functions ¢ are of the form

¢(y)=¢gy", where ¢=0 and y*=max(0, y),

where the coefficients ¢ have to be given by the
decision maker. As a result, we have to
minimize

4

xﬂ)+£{z DB +dd,—%)"

4 k L
2
+ Z 95(:)( Exf+mk_m4_§k)
k=1 i=1
4

4 K
T E Q£3)(§k+m4+vk_ Zx‘-) } (13)
k=1 i=0

subject to the constraints (5).

The solution method can be based on ap-
proximation of the marginal distributions of 8,, {;
by discrete ones and, in case of ¢(x,) linear or
convex piece-wise linear, the resulting program
can be solved by simplex method with upper-
bounded variables (see Chapter 14 of [7]).
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The use of the stochastic program (12) with
separable penalties does not require the knowl-
edge of the joint distribution of the random needs
for irrigation water. It means that due to the
assumed separability of the penalty functions (i.e.,
due to the fact that shortage in irngation water is
penalized in each of the three vegetation periods
separately and the total penalty is taken as the
sum over the three periods), no intercorrelations
are considered. Alternatively, we can attach a
penalty cost to the situation, when the total needs
for water irrigation in the vegetation period as a
whole were not met. In that case, we can take e.g.

b(») = o(max y,),
with ¢ of the form (11), and minimize

c(xp) + E{‘i’( _ ﬂ;a—x (B +d,— xa‘)+)

Z (Zx m4+mk)
k=1 §=1
4 k
¢ % a5t mern- X)) (14)
k=1 e )

subject to the constraints (5), which fits in better
with our aim to reflect the interdependencies of
the needs in the individual vegetation periods.

3.3. The mixed model

Finally, it is possible to combine the chance
constraints and the penalization: one can define the
set of admissible decisions e.g. by means of indi-
vidual chance constraints (2), (3) and inequalities
(5) and, at the same time penalize the occurrence
of the discrepancies between water supply needs
and releases by corresponding penalty terms in the
objective function. Instead of the joint chance
constraint (1) on the water supply needs, one
penalty term of the form

(B +d,—x,i=2,3,4)
= c{ max (B,+d,—x,) }
i=2,3,4
=c max{{}, max (B, +d,— xf)}
I= * L]
is used. The resulting problem

minimize x0+cE{ max (,8,-+d,-—x,-)+}
j=2.3

(15)

subject to the constraints (5), (7), (8), can be
solved by the stochastic quasigradient method ([6]
and Chapter 6 of [7]) which is also applicable to
the problems (12)—(14) or by techniques designed
for the solution of the complete recourse problem
via discrete approximation of the joint distribu-
tion of B,, B;. B,; see Section 4. For the optimal
solution of (15), the values of the joint probability

plx)=P{x,28,+4d,,i=2,3,4} (16)

can be computed ex post.

Observe that in (15), the cost e(x,) of the
reservoir of capacity x, is supposed to be linear in
the interval /, < x, < u,. The penalty coefficient ¢
should have a meaningful economic interpreta-
tion. Two situations can be considered in this
respect. Firstly, it may be possible to evaluate the
unit losses due to the water shortage relative to the
cost per unit capacity of the reservoir and in this
case penalty ¢ represents these losses. In the sec-
ond situation, the decision maker may be mostly
interested in maintaining the desired level of relia-
bility in (1). Then we can consider the expectation
model (15) as a tool for getting a solution of the
original model (9) if such a solution exists and,
consequently, to proceed with solving (15) for
increasing values of ¢ until the joint chance con-
straint (1) is fulfilled. Of course, the problems (9)
and (15) are not equivalent, but it can be proved
under reasonable assumptions that the joint prob-
ability

p(x)=P(x;>

evaluated at the unconstrained minimizers of

B+d,i=2,34)

xo—!-cE{ max (B, +d,—x, }}
i=2,3,4
tends to 1 as ¢— co. In the presence of the
constraints (5), (7), (8) we have to experiment with
values of ¢ to obtain the penalty level ¢* which
guarantees (1). This penalty can be interpreted as
the relative price for maintaining the desired level of
reliability.

In their final form, both the penalty models
(12)-(14) and the mixed model (15) can be in-
cluded into the class of expectation models: their
objective function has the form

F(x)=E,f(x, )

where f(x, w)is a function that depends on deci-
sion variables x and on random parameters w and
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the set X of admissible decisions is defined via
deterministic constraints. Moreover, the set X
considered in our models is convex polyhedral, say

X={x: Ax=b}

and the considered function f(-, w) is convex
piece-wise linear for each fixed value of w.

4. Solution techniques used to solve the problem

In this section we shall describe briefly the
solution techniques used for numerical experi-
ments with models (9) and (15) described in the
previous section. We shall preferably choose
among those techniques that are supported by the
programs from the SDS/ADO collection of Sto-
chastic Programming Codes available at ITASA.

4.1. Model with joint chance constraint

For solving problem (9) with the joint chance
constraint, nonlinear programming techniques can
be used. The choice among them depends on the
properties of the set of feasible solutions. For
log-concave probability measures, which is the
case of multidimensional normal, gamma, uni-
form, and Dirichlet distributions of 8, the set
described by

p(x)=P{x,2B+d,,i=2,3,4}>a

is convex and among others, the method of feasi-
ble directions, supporting hyperplane method and
penalty methods supplemented by an efficient
routine for computing the values of the function
p(x) and its derivatives can be applied. (For a
survey see Chapter 5 of [7].)

For multinormal distribution, the supporting
hyperplane method was implemented by Szantai
as PCSP code (see Chapter 10 of [7]). The pro-
gram solves problems of stochastic programming
with joint probability constraints under assump-
tion of multinormal distribution of random right-
hand sides (8,, i =2, 3, 4, in our case). It is based
on Veinott’s supporting hyperplane algorithm (see
[22]). The individual upper bounds on variables
are handled separately and the parameters of the
multinormal distribution are used to get a starting
feasible interior solution. For constructing the

necessary linear and stochastic data files, one can
turn to Chapter 9 of [7].

Alternatively, it is possible to apply the nonlin-
ear version of the MINOS system [13]. For this
purpose one has to use a separate subroutine
named CALCON which calculates the value of the
probabilistic constraint and its gradient. This sub-
routine for multinormal distributions is contained
in the PCSP code. It was coded on the base of an
improved simulation technique [20].

For the special multivariate gamma distribution
with prescribed expectations, variances and the
correlation matrix designed in [16], the corre-
sponding subroutine CALCON can be found in
[20,21].

4.2. Approximization of the expectation model by a
large-scale linear program

For solving expectation models such as (15),
one possibility is to approximate the initial con-
tinuous distribution of the random vector by a
sequence of discrete distributions. Various ways of
doing this are described in [1].

In our model (15), the penalty ¢ can be given
implicitly via the so-called second stage program:
for fixed values of x,, B,, d,, i =2, 3, 4, the penalty
term 6( B,+d, — x,, i =12, 3, 4) equals to the opti-
mal value of the objective function in the follow-
ing linear program

minimize ¢y

subject to

x,+y=B,+d, i=23,4,
y=0,

so that problem (15) can be considered as the
complete recourse problem and solved accord-
ingly.

For a discrete distribution of the random vector
B that is concentrated in N points B/, j=
1,..., N, with probabilities pj:}ﬂ, T N,
XY, p; =1, the problem (14) can be written in the

-

following way:

N
minimize x,+¢ ) p;y,
i=1
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subject to the constraints

x,—+J{r?J fr.—l—’_d;'a E=2v3’41 j=1=""’N

)

and subject to constraints (5), (7), (8), which is a
large linear program of a special structure. If the
random vector B has a continuous distribution, it
is necessary to approximate this distribution by a
discrete one and build the linear program (17) for
the approximate discrete distribution. Two discre-
tization schemes were used; we shall call them the
intelligent approximation and the random ap-
proximation.

For the intelligent approximation, the discrete
distribution concentrated in N points with equal
probabilities p,=1/N, j=1,..., N, is con-
structed in such a way that the original values of
moments are saved. If the initial distribution was
multinormal, then the discrete distribution is sym-
metric around its expectation and has the same
expectation and the same variance matrix as the
initial one. For details see [4].

In the less sophisticated random approximation,
the discrete distribution is concentrated in N
points with equal probabilities 1/N and these
points are generated as independent observations
of the random vactor 8 (according to its initial
distribution).

The resulting linear program (17) can be of a
very large dimension if an accurate approximation
is needed and /or if the random vector is of larger
dimensionality than that considered here. In simi-
lar situations, adaptive approximation schemes
(see Chapter 2 of [7]) can improve the perfor-
mance of approximation techniques substantially.

4.3. The stochastic guasigradient method

We shall describe more in detail the stochastic
quasigradient (SQG) method for solving the ex-
pectation models as this method, in spite of its
simplicity and effectiveness, has not yet been
spread among the operations research community.
The theoretical background can be found in [6] or
in Chapter 6 of [7], the basic reference for its
implementation is Chapter 16 of [7]. For exten-
sions consult Chapters 17-20 of [7] and references
there.

The basic scheme resembles the gradient pro-

jection method: The optimal solution of the ex-
pectation model,

minimize F(x):=Ef(x, B)

ontheset X={x: Ax>=b}, (18)

is approached iteratively starting from an initial
point x° by applying the following iterative proce-
dure:

X =my (%"= p,E7) (19)

where p, is the stepsize, £ the step direction
(stochastic quasigradient), 7, the projection oper-
ator on the set X:

”WX(X)'_'XH =min |z — x|, WX(X)EX-

zeX
The projection in the SQG is performed using
QPSOL quadratic programming package [8].

The step direction £° should be, roughly speak-
ing, in average close to the gradient of the objec-
tive function F(x)= E,f(x, B) at point x°, al-
though individual £° may be far from actual val-
ues of the gradient. This explains the term quasi-
gradient. The desired property of the quasigradi-
ent is expressed with the help of conditional ex-
pectations:

E(8 2% nes X)) =N, F(5*) e, (20)

where a, is some vanishing term. Each particular
strategy of choosing a sequence of stepsizes p, and
step directions &' leads to a particular algorithm
and many such stategies are implemented in the
program SQG, some of them are fairly sophisti-
cated. It is also possible to change strategies inter-
actively during the optimization process.

Here we shall describe briefly some of the
solution strategies, namely those implemented in
the numerical experiment.

The following methods of choosing the step
direction, i.e. the quasigradient £°, can be imple-
mented:

— gradients or subgradients of the random
function f(x, B) with respect to x, say

& =r(x", B*)eaf(x", §), (21)

— hinite differences

o 3o H + e B) — (f(x )

5 Sir

5

(22)
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where ¢, are unit vectors,
— random search techniques

M x4+ 8 < sy JCJ, 5,0
$5=Z ( <7 »86) f( B }T],-, (23)

i=1 i

where 7, are unit random vectors uniformly dis-
tributed on the sphere,
— aggregation (moving average)

g = (1=, )8 +ay, (24)

where ¢* is chosen according to any of the meth-
ods (21)—(23).

It 1s also possible to form a step direction as an
average of several directions chosen according to
(21)—(24), normalize direction, etc.

As to the stepsize p,, the necessary condition
for convergence with probability 1 is

T (25)

o0
p,—0, ) p,=c0,
g=1{) =0

(See [12].) In principle, 1t is possible to select the
stepsize sequence in advance but this leads to poor
performances. Therefore two strategies, interactive
and automatic, were adopted for implementation.

In the interactive option, the value of the step-
size 1s changed by the user who obtains informa-
tion about process behavior from the computer
monitor. The user keeps stepsize constant if pro-
cess exhibits ‘regular’ behavior and decreases it if
behavior becomes ‘irregular’ or ‘oscillatory’; In
order to use this possibility effectively the user has
to get certain measure of familiarity with the
problem, In experiments with interactive mode the
step direction £° was computed according to (23).
It means, more in detail, that the following sub-
routines were used:

— Generate / random vectors 7%, ..., 7%, whose
components nj.‘ are uniformly and independently
distributed on an interval [—§,, 8,].

— Generate [/ independent random vectors

B*',..., B*, with the given multivariate distribu-
tion.
— Compute £°:
£ ; 3 o
g f(x5+1?5:1 '35'1 _f 2 ‘8¢ -
¥=L Iln“)'ll ( b, o)
i=1

In order to get the exact solution, it is necessary
to take 8, — 0; however, in many situations a
sufficiently good approximation can be obtained
even with a fixed 4.

The inconvenience of the interactive option is
that it requires too much experience from the user.
Therefore the automatic option was developed in
which the computer simulates the behavior of an
experienced user.

The stepsize p, is computed automatically
according to the following rule:

— On each iteration, one observation f(x*, B8°)
is made and these observations are used to com-
pute an estimate Fh(s) of the current value of the
objective function and of the current path length
L(s):

)= S Fl, s,

f=1

L(s)= X [[x™*=x'||. (27)

i=1

— The initial stepsize p, is chosen sufficiently
large and each M iterations the condition for
reducing stepsize is checked using the ratio

_ F(s—K)—F(s)

Plx)= L(s)—L(s—K) o

as the algorithm performance measure. If @(x) is
decreasing, it means either the algorithm path
becomes large due to oscillations, or the function
difference becomes small due to arrival in the
vicinity of optimum, or both. This justifies the
stepsize decrease.

As a result

=D if d(s) <k,
p.!‘ +1 ps ( ) = - (29)
Osy1 =P, otherwise.

In connection with the automatic option, the
quasigradient was chosen according to (29): For
the objective function F(x)= E;f(x, B) in our
problem (15) we have

(. B) = %o+ c max{0, max (8 +d, )},

and its subgradient f (x, 8) is easy to compute:

Li(x, BY=A{1,0, —ety, —cty, —¢t3},
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where
E=1 i-rﬂj-l-l—i_d_fl-l_xj-l-l
=max{0, max s — b
{0, max (B+d,—x}},
1 = otherwise.
Accordingly, &' =f.(x* B*) in the SQG scheme
(19).

Notice that for the described implementation
of the SQG method, only a generator of random
vectors 8 with the given multivariate distribution
is needed and that the form of the procedure does
not depend on the assumed type of this distribu-
tion. Moreover, neither the values F(x) of the
objective function nor of its gradient are com-
puted, which results in an essential decrease of the
computational effort. The performance measures
such as (28) are constructed using the estimate F
(see (27)) of the current value of the objective
function F. The procedure is not monotonous and
the estimates F show clearly an oscillatory behav-
ior with a tendency of decreasing in the average
(see the numerical results contained in Tables 5-7
of the next section). The performance of the SQG
method depends on the rules for choosing the
stepsizes and there is strong evidence that the
interactive mode cannot be fully avoided. The
iterations terminate when the stepsize becomes
smaller than some value specified by the user. This
stopping rule is quite reliable if coupled with
repeated runs. For more details on this subject, see
Chapter 17 of [7].

5. Comparison of numerical results

To this purpose, we solved problems (9) and
(15) of Section 3 for specific input values of the

model parameters and for the assumed distribu-
tion of random variables using the numerical tech-
niques introduced in Section 4. The resulting par-
ticular problem with chance constraints of type (9)
reads:

minimize X, (30a)
subject to
Plx,2B+d,i=2,34} >a, (30b)
and subject to linear inequalities
X +%5 < 156 .4,
Xy Ry < 201.9,
xi+xsFatE, 2053
AL > 512.9, (30c)
%5t Xy =5935.9,
Xt x;+X+% = 654.2,
Xgt Xy txpt Xy 0y 27202,
100.0 < x,<500.0,
38.1<x <£102.3,
0<x,<252.0, (30d)
0<x,<2520,
0<x; <2520,

where d,=12.7, i=2, 3,4. The random vector
B=(8,, B;, B;) is distributed normally with ex-
pectations:

E(B)=1(20.2, 27.37, 10.65),
standard deviations:

a(B) = (8.61, 10.65, 6.00)

Table 1

Results of the calculations by the PCSP code

Xy X, Xy Xq 4 F(s) Prob. CPU No. of
level time cutting planes

494.88 38.23 106.39 51.95 28.73 605.04 0.75

494.88 49.98 38.30 81.97 35.05 500.89 0.973 25.52 3

494 88 42.93 55.82 63.61 62.94 501.20 0.983 36.38 5

494 88 41.49 59.40 63.16 61.25 501.53 0.984 32.37 4

495.38 43.28 58.23 86.26 37.53 497.38 0.989

494.88 41.31 69.23 74.60 40.17 495.67 0.997 41.87 3

494.88 39.78 66.92 76.14 42.46 49517 0.998 3445 3

In column & of this table are the estimated values of the objective function (27) computed using the same 10000 observations of
multivariate normal vectors as in the relevant column of Table 4. Column 7 gives CPU time of the VAX 11 ,/780.
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Table 2
Results of the calculations by using the nonlinear MiNOs, multivariate normal distribution
Xy x Xq xq X4 Prob. lev. CPU time No. of
major
iterations
494 80 51.22 63.07 T7.35 33.69 0.973 46.46 11
494 89 50.00 63.07 77.40 34.92 0.983 56.22 14
494 89 4991 63.07 771.35 35.01 0.984 58.06 14
494 89 46.17 63.07 77.40 38.75 0.997 84.48 23
494,89 43.41 63.04 77.35 41.50 0.999 112.58 3l
and correlation matrix; multivariate gamma probability distribution to the
empirical data, and then to generate the corre-
L Boa) Mle spof:lding rand;)m vectors neeged for calculation
0360 1.0 0.571 | =R(B). (3])

0125 0571 1.0

Table 1 contains the optimal solution obtained by
the PCSP code for different values of a, whereas
Table 2 contains the corresponding results ob-
tained by the nonlinear version of the MINOS sys-
tem. These computational results show that the
direct application of the MINOS system for the
solution of the optimization problem (9) is less
successful than the use of the PCSP code. We
obtained that without giving a good initial setting
on the values of variables the MINOS system failed
to find a feasible solution. The presented compu-
tational results correspond to initial settings x, =
63.035, x, =77.345, x, = 30.0 for which the joint
probability is equal to 0.866.

For comparison, parallel results were obtained
for the special multivariate gamma distribution
[16] with the given mean values Ef,, standard
deviations o(f;), i=2, 3, 4, and the correlation
matrix R(f), see (31). The numerical results are
given in Table 3. The CPU time in this table
reflects the fact, that in the case of multivariate
gamma distribution it was necessary first to fit the

Table 3

the values of the distribution function and of its
gradient.

The particular problem of the type (15) which
was used for comparisons is formulated below:
minimize
F(x)=Egf(x, B)

=x,+ ¢E {max 0, max 4+ d. —x, }
0 B { i=2,3,4{ﬁ‘ i l}}
(32)

subject to constraints (30c.d),

with the same values d,=12.7, i=2, 3, 4, with
the same multivariate normal distribution of the
random vector B given by the expectations, stan-
dard deviations and correlation matrix (31), and
with the penalty coefficient ¢ equal to 100. The
convenient feature of this problem is that we can
easily obtain a very good lower bound for the
solution by minimizing x, subject to the con-
straints stated above. This gives F(x*)> 494.9
where x* is the optimal solution of (32), (30c,d).

The results are summarized in Table 4. The left
column of this table contains an abbreviation of

Results of calculations by using the nonlinear MiNoOs system and the multivariate gamma distribution

X4 X x5 By X4 Frob. lev, CPU time No. of major
iterations

494 89 46.78 63.07 77.38 38.07 0.973 845.57 12

494.89 44.00 63.07 77.38 40.85 0.983 923.55 14

494.89 43.48 63.07 77.38 41.37 0.984 1020.17 15

494.89 38.10 60.60 84.33 42.27 0.997 1886.77 30

494.89 38.10 59.89 78.59 48.72 0.999 2502.17 40
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Table 4
The summary of experiments with the model of expectation type

Experiment Xg X Xy X3 Xy Funetion Prob. CPU

value value time

MINOS 125_ Al 494 88 38.1 88.02 61.22 39.96 505.20 0.9728 55.46
MINGOS 125—-A2 494.88 38.1 118.35 43.34 2549 833.04 0.4878 27.18
MINOS 343 Al 494.88 38.1 84,92 63.06 3923 501.40 0.9832 488.92
MINOS 343 _ A2 494 88 38.11 114.92 42.42 29.84 820.39 0.5578 T1.72
MINOS 1331_ Al 494 83 64.4 54.75 65.34 40.80 499 85 0.9844 264.76
MINOS 1331_ A2 494 88 381 92.09 61.81 33.30 513.26 0.9391 385.96

SQG int 100 494 88 39.24 71.48 74.03 40.53 495.60 0.9978
500G int 24 494 88 38.43 67.80 78.52 40.53 495 43 0.9981
5QG aut 1000 494 .88 38.10 63.39 77.38 46.42 49515 0.9994 51.52
SQG aut 1000 494 88 40.65 57.32 74.81 52.49 495.73 0.9972 49.38

the particular numerical experiment, each row de- [13]. The numbers in the first column in these
scribing the results of one experiment. The first six rows indicate the number of approximating points,
rows correspond to experiments with the large- Al means the intelligent approximation scheme
scale linear program (17) solved by MINOS 4.0, see and A2 means the random one. The column
Table 5
Results of the calculations with the interactive mode of 3QG

Step Stepsize Xy X1 X3 X4 > F(s)
number
The value of step G in random search was set to 10.0

2 10.0 497.96 54.92 56.57 5712 56.67 522.66

4 10.0 49545 54.01 56.13 57.75 56.82 517.10

6 10.0 500.00 45.75 110.69 28.86 34.86 1702.02

B 10.0 494.88 96.35 60.08 2.581 66.06 4222 28
10 10.0 500.00 89.51 63.60 1.03 71.14 4405.28

11 20 500.00 102.31 51.58 3.52 62.74 4156.32

12 2.0 497.28 95.58 0.0 106.28 21.02 3796.11
14 2.0 500.00 91.40 37.49 18.36 42.92 754.44
16 2.0 500.00 38.10 54.77 108.99 19.94 948.33

18 2.0 494,88 39.74 64.96 84.68 35.90 498.72
20 2.0 494 88 38.10 67.45 78.98 40.75 492.37
22 2.0 494 .88 38.62 67.74 78.42 40.50 495.42
24 2.0 494 88 33.43 67.80 78.52 40.53 495.42
26 0.20 497.90 39.04 66.94 75.44 4349 498.29
28 0.20 497.76 39.00 66.93 75.44 43.47 498.13
30 0.20 497.60 39.04 66.95 7547 43.49 497.49

At this point the step in random search was changed to 5.0

3 0.2 497.56 39.06 66.98 7547 43.47 497.87
35 0.2 497.03 39.24 67.18 75.47 43.39 497.35
40 0.2 496.69 39.24 67.20 75.42 43.42 497.04
50 02 496.04 39.25 67.20 75.35 43.42 496.35
60 0.2 495.40 39.22 67.25 75.32 43.35 495.80
70 0.2 495.52 39.08 71.34 73.79 40.44 496.19
g0 0.2 495.05 39.18 7146 74.00 40.51 495.66
%0 0.2 494.88 39.18 71.50 74.03 40.59 495.59

100 0.2 494.88 39.24 71.48 74.03 40.53 495.60
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Table 6
Results of the computations with the automatic option of SQG
Step Stepsize Xy Xy X X3 Xy £(s)
number
20 5.00 494 88 56.32 56.32 56.32 56.32 524.38
40 5.00 494,88 40.65 57.32 61.28 66.03 504.56
60 2.50 494 88 40.65 57.32 61.28 66.03 504.56
B0 1.25 494.88 40.65 57.32 61.28 66.03 504.56
100 0.62 498.43 38.88 55.55 94.30 36.55 502.24
140 0.31 494.88 40.31 57.67 86.94 40.36 495.70
200 0.31 494 88 40.31 59.67 86.94 40.36 792.70
220 0.31 497 96 39.11 55.78 72.86 57.53 499.34
260 0.31 494 .88 40.65 5732 86.91 40.36 495.48
400 0.3 494.88 40.65 57.32 86.94 40.36 495.78
460 0.15 496.71 39.74 56.41 87.86 41.28 497.64
480 0.15 495.15 40.52 37.19 87.08 40.50 496.00
560 0.15 494.88 38.10 63.39 77.38 46.42 495.15
1000 0.15 494 88 38.10 63.39 71.38 46.42 49515

‘Function value’ contains the estimate (27) of the
objective function (32) at the approximation to the
optimal solution (x,, x;, x5, x;, x,), which was
made using a sample of 10000 points generated by
a subroutine for multivariate normal distribution
from the IMSL library; the same set of samples
was used for all estimates of the function value.
The column ‘Prob. value’ contains the values of
probability constraint (25), this allows comparison
of the expectation model with the probability con-
strained model.

The last four rows of Table 4 correspond to
experiments with stochastic quasigradient tech-
niques, described in detail in Section 4.3. The first

two of these rows correspond to the interactive
stepsize run, presented in detail in Table 5, after
100 and 24 iterations. Each iteration in this run
requires 40 observations of random function
f(x, B) from (32). The last two rows include re-
sults of two runs with the automatic stepsize selec-
tion described in Tables 6 and 7 after 1000 itera-
tions; each iteration required one observation of
the subgradient f (x, B). The last column pre-
sents solution times in seconds of CPU of VAX-
11,/780. For the interactive option of SQG these
times are not included because they do not mea-
sure the time of user’s response. As a measure of
method effectiveness these times should be taken

Table 7
Results of the computations with the automatic option of SQG (continued)
Step Stepsize Xg x; X5 X5 Xy F(s)
number
20 5.00 494 88 56.32 56.32 36.32 56.32 524.38
40 2.50 494.88 43.99 48.99 61.28 66.03 513.80
60 2,50 496.00 40.10 56.77 61.28 67.14 505.75
80 1.25 497.00 39.60 56.27 61.28 68.14 506.89
100 1.25 494 88 40.65 57.32 61.28 66.03 504.56
200 1.25 494 88 40.65 5752 61.28 66.03 504.56
220 1.25 499.50 38.35 55.02 108.49 23.43 736.52
240 0.62 494.88 40.65 57.39 74.81 52.49 495.73
420 0.62 494 88 40.65 57.32 74.81 52.49 495.73
440 0.62 49687 39.66 56.33 75.80 53.49 497.94
460 031 494 .88 40.65 57.32 74.81 52.49 495.73
940 0.15 494 88 40.65 5732, 74.81 52.49 495.73
1000 0.15 494.88 40.65 57.32 74.81 52.49 495.73
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with some reservation, for instance for MINOS they
do not represent effort spent on preparation of the
huge MPS file.

For the two presented runs with the automatic
stepsize selection, two different sequences of the
vector 8 were generated, the same starting points
(1000, 100, 100, 100, 100) were taken and the
parameters of the performance measure (28) and
of the corresponding stepsize reduction (29) were
fixed to D=0.5, K=20, and k=0.1. The first
run displayed smoother behavior of the process,
the second one shows jumps. When the current
point approaches optimum, the event {¢,=1} be-
comes less and less likely. Therefore the method
spends much of the iterations standing at the same
point (e.g. iterations 260-400 in Table 3). The last
column again was obiained afterwards using the
same 10000 observations of B as in the previous
tests. It shows that the algorithm reaches gquite
good the vicinity of the solution after 220 itera-
tions. The jumps are due o too large stepsizes.

The overall comparison shows that SQG per-
formed better on this problem then the general
linear programming tool. Approximation tech-
niques started to provide comparable results only
when the number of approximating points ex-
ceeded 1000, i.e., when the number of rows in the
deterministic equivalent linear programming prob-
lem (17) exceeded 4000. The more sophisticated,
intelligent approximation scheme provided much
better results than the random one, which was
based on a random selection of approximation
points.

We complete the discussion by presenting val-
ues of the empirical expectation and correlation
matrix computed using the same 10000 random
numbers which were used for the objective func-
tion values estimates (compare with (31)). It gives
an idea how accurate the estimates are.

Empirical expectations:

E(B)=(20.29, 27.39, 10.68),
empirical correlation matrix:

i 1.0 0.354 0.108
R(B)=|0354 1.0 0573 |.
0.108 0.573 1.0

Experiments suggest that both the expectation
model and the model with probability constraint
give comparable results in terms of reliability level

and prices for maintaining the desired level of
reliability. The methods contained in the
ADO/SDS library of stochastic programming
codes performed better on this particular problem
than the direct use of standard LP or NLP
packages. To solve the case study, model (15) was
selected as it opens straightforward possibilities of
extension to alternative types of the probability
distribution of B. For obtaining the numerical
results we have chosen the SQG method on
account of its easy implementation and of its good
performance in light of the above comparisons.

6. The case study

In the case study of the water resources system
in the Bodrog River basin, the model (15) was
used with added constraints (see discussion):

do<x, i=2,34 (33)

The input values of the 3-dimensional multinor-
mal distribution of B, were those given by (31).
The parameters of the marginal normal distribu-
tions of cumulated monthly inflows {;, the corre-
sponding values of quantiles for a; = 0.9 and vy, =
04, k=1,2,3,4, and the values d,, i =1, 2, 3, 4,
(in Mm®) are given in Table 8.

The minimum and maximum reservoir capacity
x, was fixed as [, =100 Mm’ and u,= 334 Mnr.
(In the numerical study in the previous section, a
less realistic value u,= 500 Mm’ together with
v, =075 i=1,2,3 4, was used.) The upper
bounds for variables were set as w, =252, i=
1,2, 3,4, in Mm®, which is the volume of a long-
term flood. These constraints were not found to be
effective and therefore they were not analyzed.

Due to recreation purposes, the acceptable
minimum storage in the third period is m; =194
Mnr'. However, the comparison of the third in-
equality of (7), the third inequality of (8) together
with x, < 334 gives an upper bound of 189,4 for

Table 8
The input data for cumulated inflows

7,(1—09)  z(04) d,

Period  E({;) af{f,)

1 30347 12228 1468 2725 38.1
2 37594 13343 2050 342.1 12.7
3 43261  140.27 2529 35971 12.7
4 486.26  158.64  283.0 446.1 12.7
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the sum mj;+v;, so that the parameter value
my =194 would lead to contradictory constraints.
That is why the minimum storage value m, has
been put up to a maximum of 137 Mm® (see
alternative C) and the storage values m,, k=
1, 2, 3, 4, have been kept fixed equal to 57 Mm?
over all periods in alternatives A and B. The
reliability of maintaining the summer reservoir
pool has been evaluated ex post.

6.1. Choice of reliability values

The very important parameters of the model
are the required probabilities a, v, and «,. The
value « is the required joint probability of the
water supply. Tests with the model have shown
that it is necessary to add the deterministic con-
straint (33) in order to secure the required values
of constant industrial water demands. Using the
deterministic constraint (33), a relatively low value
of a, e.g. « =0.85, may be acceptable.

The values a, refer to the relatively strong
environmental and technical requirements for
maintaining the minimum reservoir pool. There-
fore a; = 0.9, i =1, 2, 3, 4, was chosen.

The choice of the values y, was rather difficult.
They refer to the important constraints imposed
on the reservoir V operation that arise from flood

control requirements that stipulate that a certain
space — flood control storage — be held empty.
This requirement cannot be easily expressed in the
model due to its aggregated character. The prob-
ability that the freeboard storage is empty means
also that there is no spill during this period.
Therefore the flood control problems are often
treated in a separate model and the required prob-
abilities y are adapted to the resulting values of
this separate model. Accordingly, the value v, =
04, i=1, 2, 3, 4, was chosen in this section.

6.2. Results

The results of the selected alternatives for the
design and operation of the reservoir V (using
different input parameters m, and v, ) are con-
tained in Table 9. The probabilities v, and a,
were fixed in advance. The value « of the joint
probability p(x) was computed at the resulting
point ex post and compared with the chosen prob-
ability level 0.85. The probability of maintaining
the sufficient recreation pool of at least s, =194
Mm® was computed according to a simple scheme:
the identity (6) was applied to evaluate the neces-
sary cumulated inflow, say

Zy=s3—mgtx;+x;+x;

for the desired recreation storage s, = 194, for the

Table 9

Case study summary

Alternative: A B C D E

Model /Code: (17N /5TO (17)/8TO {(17)/5TO (17)/STO (11)/PCSP

Parameters: m,=5TVk m; =131 Yk m =57, k=124 m,;=137 m, =5TVvk m; =51Vk
v, =70Vk v, =10 Yk v, =70, k=1,2,4, p;=10 v, =T0Vk v, =T0Vk
uy =334 uy =334 uy =334 Uy =500 g = 500

Optimal solution

X 291.6 304.1 334.0 494.9 494.9

Xy 107.9 109.4 67.55 40.7 39.8

X3 £69.6 69.6 67.55 57.3 66.9

x5 69.8 65.1 37.8 74.8 76.1

Xy 35.7 38.9 110.10 52.5 42.5

Reliabilities

a (releases) 0.979 0.987 0.99 0.99

&, (recreation) 0.633 0.814 0.81 0.7%

¥ (freeboard) 0.4 0.4 0.75 0.75

Goals (met)

min storage YES (0.9) YES (0.9) YES (0.9) YES (0.9) YES (0.9)

recreation pool NO YES (0.8) YES (0.8) YES (0.8) YES (0.79)

freeboard volume YES NO YES YES YES

water supply YES YES NO YES YES
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optimal releases x; and for m, = 57. The parame-
ters of the given marginal distribution of {; were
used to get the corresponding probability

&3=P{§3—}'z3}-

For a more detailed discussion, see [4].

None of the alternatives A, B, C satisfies the
contradictory requirements for reservoir V oper-
ation. (The seemingly good result of alternative B
is not acceptable due to the conjunction of a very
low freeboard volume v, and of a low value of the
probability y.) Whereas the optimal solutions of
alternatives A, B are comparable, their dissimilar-
ity with the optimal solution of the rather ex-
tremal alternative C is remarkable. The last two
columns of Table 9 (alternatives D and E) corre-
spond to the nonrealistic upper bound of the
reservoir capacity that was used in the numerical
experiments of Section 5.

6.3. Conclusions

The possibility of treating intercorrelations (in
our case, intercorrelations of random needs) within
the framework of stochastic programming models
of water management was explored via two con-
ceptually different models that have proved a good
agreement of the technological results. For the
analysis of the different design alternatives, the
more easily implementable expectation type model
was used and the method of multimodeling proved
to be of use in planning the water resources sys-
tem development. The analysis of the design alter-
natives shows the contradictory character of the
main goals of the water resources system — water
supply for industry and irrigation, flood control,
environmental conservation and recreation. As the
optimum alternatives do not meet all these goals,
the water resources system has to be enlarged by
the reservoir K. As a screening aggregate model
was used and the multidimensional distribution
and marginal distributions were approximated by
the multinormal and normal distributions respec-
tively, the optimum design and operation variables
derived later by this model are rough approxima-
tions only. However, the more precise values that
were derived by a stochastic simulation model [11]
do not differ to such degree that the main result
(i.e. the necessity to plan a new reservoir) need to
be altered.

As mentioned in Section 6.1, the model reliabil-
ity parameters have to be carefully chosen, other-
wise the model could be too conservative requiring
high values of reservoir capacity. In real-life plan-
ning, less aggregated models with monthly time
periods will be used and the value of resulting
released volumes will better approximate the rule
curves of reservoirs.
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