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ASYMPTOTIC BEHAVIOR OF STATISTICAL ESTIMATORS
AND OF OPTIMAL SOLUTIONS OF STOCHASTIC
OPTIMIZATION PROBLEMS

By JiTkA DuPACOVA AND ROGER WETS!

Charles University and IIASA, and University of California, Davis
and ITASA

We study the asymptotic behavior of the statistical estimators that
maximize a not necessarily differentiable criterion function, possibly subject
to side constraints (equalities and inequalities). The consistency results gener-
alize those of Wald and Huber. Conditions are also given under which one is
still able to obtain asymptotic normality. The analysis brings to the fore the
relationship between the problem of finding statistical estimators and that of
finding the optimal solutions of stochastic optimization problems with partial
information. The last section is devoted to the properties of the saddle points
of the associated Lagrangians.

1. Introduction. Deriving estimates for various statistical parameters has
been one of the main concerns of statistics since its inception, and a number of
elegant formulas have been developed to obtain such estimates in a number of
particular instances. Typically such cases correspond to a situation when the
random pheonomenon is univariate in nature, and there are no “active” restric-
tions on the estimate of the unknown statistical parameter. However, that is not
the case in general, many estimation problems are multivariate in nature and
there are restrictions on the choice of the parameters. These could be simple
nonnegativity constraints, but also much more complex restrictions involving
certain mathematical relations between the parameters that need to be esti-
mated. Classical techniques, which can still be used to handle least-squares
estimation with linear equality constraints on the parameters for example, break
down if there are inequality constraints or a nondifferentiable criterion function.
In such cases one cannot expect that a simple formula will yield the relationship
between the samples and the best estimates. Usually, the latter must be found
by solving an optimization problem. Naturally the solution of such a problem
depends on the collected samples and one is confronted with the questions of the
consistency and of the asymptotic behavior of such estimators. This is the
subject of this article.

To overcome the technical problems caused by the intrinsic lack of smooth-
ness, we rely on the guidelines and the tools provided by theory of nonsmooth
analysis. The problem of proving consistency of the estimators and the study of
their asymptotic behavior is closely related to that of obtaining confidence
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intervals for the solution of stochastic optimization problems when there is only
partial information about the probability distribution of the random coefficients
of the problem. In fact, it was the need to deal with this class of problems that
originally motivated this study. We shall see in Section 2 that stochastic
optimization problems as well as the problem of finding statistical estimators are
two instances of the following general class of problems:

find x € R" that minimizes E{ f(x, £)},

where f: R® X & - R U {+ 00} is an extended real-valued function and £ is a
random variable with values in =; for more details see Section 3. It is implicit in
this formulation that the expectation is calculated with respect to the true
probability distribution P of the random variable £, whereas in fact all that is
known is a certain approximate P”. Our objective is to study the behavior of the
optimal solution (estimate) x”, obtained by solving the optimization problem
using P’ instead of P to calculate the expectation, when the {P*, » =1,...} isa
sequence of probability measures converging to P. In Section 3 we give condi-
tions under which consistency can be proved. Constraints on the choice of the
optimal x are incorporated in the formulation of the problem by allowing the
function f to take on the value + o0. The results are obtained without explicit
reference to the form of these constraints.

There is, of course, a substantial statistical literature dealing with the ques-
tions broached here, beginning with the seminal article of Wald (1949) and the
work of Huber (1967) on maximum likelihood estimators. Of more direct paren-
tage, at least as far as formulation and use of mathematical techniques, is the
work on stochastic programming problems with partial information. Wets (1979)
~ reports preliminary results, and further developments were presented at the 1980

meeting on stochastic optimization at IIASA (Laxenburg, Austria) and recorded
in Solis and Wets (1981); see also Dupadova (1983a, b; 1984b) for a special case
and Dupacdova and Wets (1986).

Section 4 is devoted to asymptotic analysis. Since we are confronted with a
very general class of problems, one should not expect to obtain, in general, the
standard limiting results. Our purpose here has been to relax the conditions
under which one can prove asymptotic normality for the optimal estimators (or
solutions). To do so, we rely on subdifferential calculus, which allows us to derive
asymptotic normality for a class of criterion functions that lack the usual
differentiability properties. We also give the conditions under which the presence
of constraints will not prevent asymptotic normality. We extend the earlier
results of Huber (1967) in a number of directions: (i) we allow for constraints, (ii)
‘the probability measures converging to P are not necessarily the empirical
measures and (iii) there are no differentiability assumptions on the likelihood
(criterion) function. Finally, in Section 5, we sketch out another approach to
these questions, by relying on the Lagrangian associated to constrained optimi-
zation problems. Consistency is now derived for the optimal estimators as well as

- for the associated Lagrangian multipliers. The technique is very similar to that
used in Section 3, except that now we rely on the epi/hypo-convergence of the
Lagrangian functions. Again it is shown that under certain conditions, that in
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some sense are weaker than those of Section 4 (there are fewer constraints), one
can obtain asymptotic normality, for the vector function of estimators and
associated Lagrangian multipliers.

2. Examples. The results apply equally well to estimation or stochastic
optimization problems with or without constraints, with differentiable or non-
differentiable criterion function. However, the examples that we detail here are
those that fall outside the classical mold, viz. unconstrained smooth problems.

Restrictions on the statistical estimates or the optimal decisions of stochastic
optimization problems follow from technical and modeling considerations as well
as natural statistical assumptions. The least-squares estimation problem with
linear equality constraints, a basic statistical method [see, e.g., Rao (1965)] can
be solved by a usual tools of differential calculus. The inequality constraints
however introduce a lack of smoothness that does not allow us to fall back on the
old stand-bys. In Judge and Takayama (1966) and Liew (1976) the theory of
quadratic programming is used to exhibit and discuss the statistical properties of
least-squares estimates subject to inequality constraints for the case of large and
small samples.

In connection with the maximum likelihood estimation, the case of parameter
restrictions in the form of smooth nonlinear equations was studied by Aitchison
and Silvey (1958) including results on asymptotic normality of the estimates.
The Lagrangian approach was further developed by Silvey (1959), extended to
the case of a multisample situation by Sen (1979) including analysis of the
situation when the true parameter value does not fulfill the constraints (the
nonnull case).

Typically one must take into account in the estimation of variances and
variance components nonnegativity restrictions. Unconstrained maximum likeli-
hood estimation in factor analysis and in more complicated structural analysis
models [see, e.g., Lee (1980)] may lead to negative estimates of the variances.
Replacing these unappropriate estimates by zeros gives estimates which are no
longer optimal with respect to the chosen fitting function. Similarly, there is a
problem of getting negative estimates of variance components; see Example 2.3.
In statistical practice, these nonpositive variance estimates are usually fixed at
zero and the data is eventually reanalyzed. In general, such an approach may
lead to plausible results in case of estimating one restricted parameter only and
it is mostly unappropriate in multidimensional situations; see, e.g., the evidence
given by Lee (1980).

The possibility of using mathematical programming techniques to get con-
strained estimates was explored by Arthanari and Dodge (1981). As mentioned in
the Introduction we use mathematical programming theory not only to get
inequality constrained estimates but to get asymptotic results for a large class of
decision and estimation problems which contains, inter alia, restricted M-esti-
mates and stochastic programming with incomplete information. In comparison
with the results of ad hoc approaches valid mostly for one-dimensional restricted
estimation our method can be used for high-dimensional cases and without
unnatural smoothness assumptions, in spite of the fact that the violation of
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differentiability assumptions cannot be easily bypassed by the use of directional
derivatives (in contrast to the one-dimensional case). A recent paper by Shapiro
(1988) has brought to our attention a number of additional examples and many
more references.

ExampPLE 2.1 (Inequality constrained least-squares estimation of regression
coefficients). Assume that the dependent variable y can be explained or pre-
dicted on the basis of information provided by independent variables x,, ..., x,,.
In the simplest case of linear model, the observations y; on y are supposed to be
generated according to

p
:yj= quﬁl-l—ej, J=1,...,V, ;
i=1 .

where B,,..., 8, are unknown parameters to be estimated, ¢, j=1,...,7,
denote the observed values of residual and X = (x;;) is a (p, ») matrix whose
rows consist of the observed values of the independent variables.

In the practical implementation of this model, there may be, in addition, some
a priori constraints imposed on the parameters such as nonnegativity constraints
on the elasticities [see Liew (1976)] a’ required presigned positive difference
between input and output tonnage due to the meeting loss [ Arthanari and Dodge
(1981)]. Assume that these constraints are of the form

AB < c,

where A(m, p), c¢(m,1) are given matrices. The use of the least-squares method
leads to the optimization problem:

v p 2
minimize Y (yj -y x,-j,B,-)
j=1 i=1

(2.1)

P
subjectto Y. ayB;<c,, k=1,...,m,

i=1

which can be solved by quadratic programming techniques.
In our general framework, problem (2.1) corresponds to the case of the
objective function

‘ i ,
(2.2) f(x,6) = (‘50 -2 gixi) ifxe 8= {x|Ax < c},
i=1

= +o0 otherwise,

with the P” the empirical distributions.
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Alternatively, minimizing the sum of absolute errors corresponds to the
optimization problem

v

minimize )

j=1

p
Yi— zxiﬁBi

i=i

2.3)
p
Subjectto Z akiBi S.ck, 1<k< m,

i=1
which can be solved by means of the simplex method for linear programming
[see, e.g., Arthanari and Dodge (1981)]. The formulation of (2.3) is again based on
the empirical distribution function P?, the objective function is
ifxesS,

f(x,6) =

P
o — Z §ix;
i=1

= 4+ 00 otherwise.
Note that this function f is not differentiable on S.
Finally, when robustizing the least-squares approach, instead of minimizing a
sum of squares, a sum of less rapidly increasing functions of residuals is
minimized [see, e.g., Huber (1973)]:

v p
minimize ZP(J’," zxijﬁi)

j=1 i=1

(2.4)

(2.5)

P
subjectto Y. ayB;<c,, 1<k<m.

i=1
The function p is assumed to be convex, nonmonotone and to possess bounded
derivatives of sufficiently high order, e.g.,

p(u) = du?  forful <c,
= clu| — ic* for u| > c.

This also fits the general framework; the objective function is

P
p(£0 - Z £ixi) ifxesS,

(2.6) & f(xrg)

i=1
= +00 otherwise,

and the empirical distribution function P’ is again used to obtain (2.5).

ExaMPLE 2.2 (Heywood cases in factor analysis). The model for confirmative
factor analysis [Joreskog (1969)] is
' x=Af+e,

where x(n, 1) is a column vector containing the observed variables, f is a column
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vector containing the k£ common factors, e(n,1) is a column vector containing
the individual parts of the observables components and A(n, k) is the matrix of
factor loadings. It is assumed that f and e are normally distributed with mean
0, var f = ® and vare = ¥, which is diagonal. Consequently, x is normally
distributed with mean 0 and with the variance matrix

(2.7) S = ADAT + V.

The parameter vector consists of the free elements of A, ¥ and ® and it should
be estimated using the sample variance matrix S of observables x. This is done
by minimizing a suitable fitting function, such as

(2.8) fi(Z,8) = log|Z| + tr(S=~1) — log|S| — n
(the maximum likelihood method), or .
(2.9) f2,8) = 3tr((S - 2)V)?,

where V' is a matrix of weights (the weighted least-squares method). Evidently,
both (2.8) and (2.9) with (2.7) substituted for =, are objective functions of
nontrivial unconstrained optimization problems, which can be solved by different
methods such as the method of Davidon, Fletcher and Powell [see Fletcher and
Powell (1963)] or by the Gauss—Newtoh algorithm. In practice, however, about
one third of the data yield one or more nonpositive estimates of the diagonal
elements ¥;; of the matrix ¥, which are individual variances. These solutions are
called Heywood cases and to deal with them, (2.8) or (2.9) should be minimized
under conditions ¥;; > 0, i = 1,..., n. Thus, the appropriate formulation defines
f as
f(Z,8)=f(Z,8) if¥;>0,i=1,...,n,

+ o0 otherwise,

and similarly for f,.
ExaMPLE 2.3 (Negative estimates of variance components). Consider a gen-
eral linear model with random effects

P
(2.10) y=Zy+ Y XB +e,

i=1
where y(»,1) is the vector of observations on the variable y, Z(», r), X,(», 1)),
i =1,..., p, are matrices of observed values of the independent variables and B,
i=1,..., p, are mutually uncorrelated random vectors with EB;, =0, varB; =
oI, i=1,...,p, and Ee=0, vare = oZl,, and v,,...,7,, o5,..., 07 are un-

known parameters to be estimated.

One of the simplest examples is the following variance analysis model for
random effect one-way classification: Consider £ populations, where the jth
measurement (observation) in the ith population is given by

(2.11) Yj=pta;+e;

In (2.11), p is the fixed effect, a;, i = 1,..., k, is the random effect of the ith
population and e;; is the residual. Random variables a,,..., a; and e ,,..., e,

J=1,...,n,i=1,..., k.
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are independent with distributions N(0,¢2) and N(0, 02), respectively. The
parameters p, o2, 02 are to be estimated. The traditional estimates of the
variance components ¢2, 62 in model (2.11) are obtained by a simple procedure:
One equates the mean squares

1
S, = ¥~ ¥.)
W=D - 1) Lo
and
1 1 k
S, = X n(5-73.),
k-1 k-1
where y, = (l/n)Zj 1yU, i= ,k, and y.= (1/nk)zt_; X1, with their
expectations o2 and ¢2n + o2 that give the estimates |
1
2.12 T T
1 1
2 _ T q _ o2
(2.13) sz n(k— IS" se).

Whereas s? is evidently nonnegative, this need not be the case of s2, so that the
problem of negative estimate of the variance component s2 comes to the fore.

The resulting estimates (2.12), (2.13) of the variance components in (2.11)
follow also as a special result of the MIVQUE and MINQUE estimation [see Rao
(1971)] developed for the general model (2.10): Unbiased estimates of a linear
parameteric function ©7_,07q; are sought in the form yAy, where
(2.14) AZ =0, A(»,v)issymmetric matrix
and which are optimal in some sense. The MIVQUE estimates correspond to a
matrix A that minimizes the variance of y"Ay subject to the conditions (2.14)
and the MINQUE estimates correspond to a matrix A that minimizes
tr(A(I + TP, X;X;T))? subject to conditions (2.14). In none of the mentioned
approaches, however, the natural nonnegativity constraints on the estimates of
the variances o2, i = 1,..., p, are introduced explicitly.

Again, there are two possible explanations of negative estimates of variance
components: The model may be incorrect or a statistical noise obscured the
underlying situation. Among others, Herbach (1959) and Thompson (1962) studied
variance analysis models with random effects by means of different variants of
the maximum likelihood method under nonnegativity constraints. Correspond-
ingly, in terms of the general model, we have, for instance, for the analysis of
variance model (2.11)

f(“a2’ o, 1 f) = (277')_"/2(022 + no‘f)"l/?(oez)—(n—l)/z

Xexp{ o7 [El(g -u)' - o + no? (E‘t’t )2]}

ife2>0,062>0,

= — oo otherwise,
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where £ is the n-vector of random outcomes of the measurements in a fixed

population.
Similarly, nonnegative MINQUE and MIVQUE estimates are of interest.

EXAMPLE 2.4 (M-estimates). Let ® be a given locally compact parameter
set, (£, &7, P) a probability space and f: ® X = > R a given function. For a

sample {£{,,...,&,) from the considered distribution, any estimate 7T* =
T*(,,..., &) € O defined by condition
(2.15) T” € argmin }, (T, §;)

Jj=1

is called an M-estimate. In the pioneering paper by Huber (1967) [see also Huber
(1981)], nonstandard sufficient conditions were given under which {T'*} converges
a.s. (or in probability) to a constant §, € ® and asymptotic normality of
Vv (T” — 6,) was proved under assumption that © is an open set.

The problem (2.15) is evidently a special case of our general framework; the P*
again correspond to the empirical distribution functions and we have uncon-
strained criterion function. We shall aim to remove both of these assumptions to
get results valid for a whole class of probability measures P” estimating P, which
contains the empirical probability measure connected with the original definition
(2.15) of M-estimates, and for constrained estimates.

ExAMPLE 2.5 (Stochastic optimization with incomplete information). Con-
sider the following decision model of stochastic optimization.

Given a probability space (=, ., P), a random element £ on =, a measurable
function f: R®" X & > R and aset S C R",

(2.16) minimize E{f(x,£)) = f_ f(x,£)P(d¢) ontheset S C R™.

A wide variety of stochastic optimization problems, e.g., stochastic programs
with recourse or probability constrained models [see, e.g., Dempster (1980),
Ermoliev, Gaivoronski and Nedeva (1985), Kall (1976), Prékopa (1973) and Wets
(1983)] fit into this abstract framework.

In many practical situations, however, the probability measure P need not be
known completely. One possibility of dealing with such a situation is to estimate
the optimal solution x* of (2.16) by an optimal solution of the problem

minimize f_ f(x, £)P"(dt) ontheset S C R",

where P’ is a suitable estimate of P based on the observed dates. In this context,
there are different possibilities to estimate or approximate P and the use of
empirical distribution is only one of them. The case of P belonging to a given
parameteric family of probability measures but with an unknown parameter
vector was studied, e.g., in Dupadova (1984a).

"For problem (2.16), large dimensionality of the decision vector x is typical.
This circumstance together with nondifferentiability (or even with noncontinu-
ity) of f and with the presence of constraints raises qualitatively new problems.
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3. Consistency: Convergence of optimal solutions. From a conceptual
viewpoint or for theoretical purposes, it is convenient as well as expedient to
study problems of statistical estimation as well as stochastic optimization
problems with partial information, in the following general framework. Let
(5, &, P) be a probability space, with =—the support of P—a closed subset of
a Polish space X, and &7 the Borel o-field relative to =; we may think of = as
the set of possible values of the random element ¢ defined on the probability
space of events (Q, &', P'). If P is known, the problem is to

(3.1) find x* € R" that minimizes Ef(x),
where

(3:2) Ef(x) = [ f(x, §)P(d£) = B{ f(x, £))
and

f: R*}XE > RU {0} =(—00,00]
is a random lower semicontinuous function; we set (Ef )(x) := oo, whenever

£ — f(x, &) is not bounded above by a summable (extended real-valued) function.
We refer to

dom Ef = {x|Ef(x) < o0}

as the effective domain of Ef. Points that do not belong to dom Ef cannot
minimize Ef and thus are effectively excluded from the optimization problem
(3.1). Hence, the model makes specific provisions for the presence of constraints
that may limit the choice of x. Note that by definition of the integral, we always
have

dom Ef c {x|f(x,£) < o0 a.s.}.

An extended real-valued function A: R” - R = [ — o0, 0] is said to be proper if
h > — oo and not identically + oo; it is lower semicontinuous (ls.c.) at x if for
any sequence (x”)f_l, converging to x,

liminf A(x*) > A(x),

k— o0
where the quantities involved could be oo or —oo. The extended real-valued
function f defined on R" X E is a random lower semicontinuous function if

(3.3i) " forall ¢ e =, f(-,¢)isls.c.
(3.3ii) [ is " ® smeasurable,

where #" is the Borel o-field on R"™. This concept, under the name of “normal
integrand,” was introduced by Rockafellar (1976), as a generalization of
Caratheodory integrands, to handle problems in the calculus of variations and
optimal control theory. When dealing with problems of that type, as well as
stochastic optimization problems such as (3.1), the traditional tools of functional
analysis are no longer quite appropriate. The classical geometrical approach that
associates functions with their graph must be abandoned in favor of a new
geometrical viewpoint that associates functions with their “epigraphs” (or
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hypographs), for more about the motivation and the underlying principles of the
epigraphical approach consult Rockafellar and Wets (1984). The epigraph of a
function A: R"™ — R is the set

epi h = {(x,a) € R* X R|h(x) < a}.

—

Rockafellar (1976) shows that f: R” X = — R is a random ls.c. function if and
only if

(3.4i))  the multifunction ¢ — epi f(-, ¢) is nonempty, closed-valued,
(3.4ii)  the multifunction ¢ — epi f(-, £) is measurable;

recall that a multifunction ¢ — T'(¢): = > R"*! is measurable if for all closed
sets F c R**1,

T-YF)={¢€ET({) NF+ Q}‘e o,

For further details about measurable multifunctions, see Rockafellar (1976),
Castaing and Valadier (1976) and the bibliography of Wagner (1977) supple-
mented by Ioffe (1978). We shall use repeatedly the following result due to
Yankov, von Neuman and Kuratowski and Ryll-Nardzewski.

ProprosITION 3.1 (Theorem of measurable selections). IfI: = 3 R" is a
closed-valued measurable multifunction, then there exists at least one measur-
able selector, i.e., a measurable function x: domI' - R" such that for all
¢ € domT, x(¢) € I'(¢), where domT = {({ € E|[(§) #* 8} =T Y(R") e .

For a proof see Rockafellar (1976), for example. As immediate consequences of
the definition (3.3) of random Ls.c. functions, the equivalence with the conditions
(3.4) and the preceding proposition, we have

PROPOSITION 3.2. Letf: R* X E — R be a random l.s.c. function. Then for
any -measurable function x: = — R", the function
£ f(x(§), ¢) is #measurable.
Moreover, the infimal function
¢ inf f(-,¢) = inf f(x,§)

x€R”

is s measurable, and the set of optimal solution
¢ — argmin f(-, £) = {x|f(x, §) = inf f(-, §)}

is a closed-valued measurable multifunction from = into R", and this implies
that there exists a measurable function

) ¢~ x*(£): dom(argmin f(-, £)) 3 R
such that x*(£) minimizes f(-, £) whenever argmin f(-, §) # @.

For a succinct proof, see Section 3 of Rockafellar and Wets (1984).
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If instead of P, we only have limited information available about P—
e.g., some knowledge about the shape of the distribution and a finite sample of
values of £ or of a function of {—then to estimate x* we usually have to rely on
the solution of an optimization problem that “approximates” (3.1), viz.

(35) find x” € R” that minimizes E’f(x),
where
(36) E'f(x) = E{f(x,8)} = [ (=, £)P"(d¥).

The measure P’ is not necessarily the empirical measure, but more generally the
“best” (in terms of a given criterion) approximate to P on the basis of
the information available. As more information is collected, we could refine the
approximation to P and hopefully find a better estimate of x*. To model this
process, we rely on the following set-up: Let (Z, #, n) be a sample space with
(#7)5., an increasing sequence of o-field contained in %. A sample {—
eg., = (£, 8... } obtained by independent sampling of the values of {—leads
us to a sequence {P*(-,{), » = 1,...} of probability measures defined on (=, «¢).
Since only the information collected up to stage » can be used in the choice of
P?, we must also require that for all A € &7,

¢ P'(A,¢)is #'-measurable.

Since P’ depends on ¢, so does the approximate problem (3.5), in particular its
solution x”. A sequence of estimators

{(x*Z->R"v=1,...}

is (strongly) consistent if p-almost surely they converge to x*. This, of course,
implies weak consistency (convergence in probability).

The following results extend the classical consistency theorem of Wald (1949)
and the extensions by Huber (1967) to the more general setting laid out
previously. Consistency is obtained by relying on assumptions that are weaker
than those of Huber (1967) even in the unconstained case. To do so, we rely on
the theory of epi-convergence in conjunction with the theory of random sets
(measurable multifunctions) and random Ls.c. functions.

A sequence of functions {g”: R* - R, » =1,...} is said to epi-converge to
& R™ - R if for all x in R” we have

(3.7) liminfg*(x”) > g(x) forall {x*}.", converging to x,

v—00

and

(3.8) for some {x"},., converging tox, limsupg’(x’) < g(x).

v—00
Note that any one of these conditions imply that g is lower semicontinuous. We
then say that g is the epi-limit of the g and write g = epi-lim, _, _g”. We refer
to this type of convergence as epi-convergence, since it is equivalent to the
set-convergence of the epigraphs. For more about epi-convergence and its proper-
ties, consult Attouch (1984). Our interest in epi-convergence stems from the fact
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that from a variational viewpoint it is the weakest type of convergence that
possesses the following properties:

ProrosITION 3.3 [Attouch and Wets (1981) and Salinetti and Wets (1986)].
Suppose {g; 8" R*"—> R, v=1,...} is a collection of functions such that
g = epi-lim,_, g”. Then

(3.9) limsup (inf g”) < inf g
V>0
and, if
x* € argmin g" for some subsequence {v,, k= 1,...)

and x = lim, _, x*, it follows that
X € argmin g

and

lim (inf g”*) = inf g;

k— oo
so, in particular, if there exists a bounded set D C R"™ such that for some
subsequence {v,, k=1,...}, ,
argming”* N D+ &,
then the minimum of g is attained at some point in the closure of D.

Moreover, if argmin g # &, then lim,_, (inf g”) = inf g if and only if x €

arg min g implies the existence of sequences {¢, >0, v=1,...} and
{x* € R", v=1,...}, with

lime, =0 and limx"=x

V=00 V=00
such that forall v=1,...,
x’ € ¢, — argmin g” = {x|g"(x) < ¢, + inf g"}.
The next theorem that proves the p-a.s. epi-convergence of expectation func-
tionals is built upon approximation results for stochastic optimization problems,
first derived in the case f(-, £) convex [Wets (1984), Theorem 3.3], and later for

the locally Lipschitz case [Birge and Wets (1986), Theorem 2.8]. We work with
the following assumptions.

ASSUMPTION 3.4 (“Continuities” of f). The function
f: R"X E > (—o0,0],

with

dom f = {(x, §)If(x,¢) <0} =SXE, Sc R"closed and nonempty,
is such that for all x € S,
” ¢ - f(x, £) is continuous on X,
and for all £ € E,

x - f(x,¢)isls.c.on R",
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and locally lower Lipschitz on S, in the following sense: To any x in S, there
corresponds a neighborhood V of x and a bounded continuous function
B: E > Rsuchthat forallx’ € VN Sand § € &,

(3.10) f(x, &) — f(x', ) < B(§)llx — x|l

AssuMPTION 3.5 (Convergence in distribution). Given the sample space
(Z, #, p) and an increasing sequence of o-fields (% )2, contained in %, let

P axz-[0,1], »=1,...,
be such that for all { € Z,
P(-,¢) is a probability measure on (E, &),
and for all A € &,
¢~ P’(A,¢)is #’-measurable.
For p-almost all { in Z, the sequence
{P"(-,$), »=1,...} converges in distribution to P,

and with P =: P(-,¢{), for all x € S, the sequence {P"(, {)}2, is f(x, -)-tight

(asymptotic negligibility), i.e., to every x € S and & > 0 there corresponds a
compact set K, C = such that for » =0,1,...,

(3.11) L I 1P (dE,§) < e
ENK,

and

(3.12) [ inf f(x, €)P*(d8, ) > — 0.

'I‘he’assumption that
£ dom f(-, £) = {alf(x,§) <0} =8

is constant, which is satisfied by all the examples in Section 2, may appear more
restrictive than it actually is. Indeed, it is easy to see that

dom Ef = () dom f(, £),

teE

if £ is the sﬁpport of the measure P and for all x € N, zdom f(-, §), the
function f(x,-) is bounded above by a summable function. Then, with S =
N¢c=dom £(-, £) and

fH(x, &) = {f(x,g) ifxeSs,

+ o0 otherwise,
we may as well work with f* instead of f, since
Ef(x) = Ef*(x) = E{f*(x, §)},
and now ¢ — dom f*(-, ¢) = S is constant.
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Assumption 3.4 implies that f is a random lower semicontinuous function
(normal integrand). Indeed, for all £ € E, f(-, £) is proper and lower semicon-
tinuous (3.3i) and (x, &) — f(x, £) is #™ ® o~measurable (3.3ii) since for all
a € R,

lev,f = {(x, &)|f(x, £) < a} is closed.

To see this, suppose {(x*, £%)}%_, C lev,f is a sequence converging to (x, £).
Then from Assumption 3.4 we have that for k sufficiently large and all ¢,

f(x,8) < f(x*, &) + B(&)lx — x*|.
In particular,
f(x, £%) < f(x*, &%) + Bllx — x*|| < a + Bllx — x*|,

where B = max, z8(§) is finite, since B(-) is bounded. Now £ — f(x, §) is
continuous on =. Thus taking limits as £ — oo, we obtain

f(x,8) <a+ ,Bklim lx — x*|| = a,

i.e., (x, ¢) € lev, f. Since f is a random ls.c. function it follows from Proposition
3.2 that

£ xirelgf(x,f) = y(£)

is measurable. Thus condition (3.12) does not sneak in another measurability
condition; it requires simply that the measurable function y be quasi-integrable.

Huber (1967), as well as others [see, e.g., Ibragimov and Has'minski (1981)],
assume that S is open. Since constraints usually do not involve strict inequali-
ties, this is an unnatural restriction, except when there are no constraints, i.e.,
S = R™ in which case S is also closed. In any case, whatever be the optimality
results one may be able to prove with S open, they remain valid when S is
replaced by its closure, assuming minimal continuity properties for the expecta-
tion functionals, but the converse does not hold.

To simplify the notation, we shall, whenever it is convenient, drop the explicit
reference of the dependence on { of the probability measures P” and the
resulting expectation functionals E”f. Nonetheless, the reader should always be
aware that all p-as. statements refer to the underlying probability space
(Z, #, ). We begin by showing that Ef, as well as the E*f, are well-defined
functions.

LEMMA 3.6. Under Assumptions 3.4 and 3.5, there exists Z, € %, W(Z,) = 1
such that for all { € Z,, Ef and {E’f, v = 1,...} are proper lower semicontinu-
ous functions such that

S = dom Ef = dom E*f(-,¢)

on which the expectation functionals are finite.

PrROOF. Let us first fix ¢, and assume that for this { all the conditions of
Assumption 3.5 are satisfied. If x & S, then f(x, £) = oo for all £ in = and hence
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Ef = E’f = o0, i.e.,
S D dom Ef, S D dom E’f.

With P° = P, for x € S and any & > 0, there is a compact set K, (Assumption
3.5) such that

fEf(x,g)pv(dg) < (ga;év(x, £)|>Pv(Ke)

+ [ 1f(x, E)P(dE) < o,
E\K,

as follows from (3.11) and the fact that f(x,-) is continuous and finite on
K, c =. Thus E’f(x) < co.

The fact that Ef > —o0 and E’f > —oo follows directly from condition
(3.12). It is also this condition that we use to show that the expectation
functionals are lower semicontinuous since it allows us to appeal to Fatou’s
lemma to obtain: Given {x”}, a sequence converging to x,

v=1

liminf Ef(x”) > fylin:of(x”,ﬁ)P(dﬁ)

V=00

> j f(x, £)P(dt) = Ef(x),

where the last inequality follows from the lower semicontinuity of f(-, {) at x.
Of course, the same string of inequalities holds for all {P?, » = 1,... }.
Since the preceding holds for every v, p-a.s. on Z, the set

Z,= {{ € Z|E’f(-, ) is finite, 1.s.c.on S, for » = 0,1,...}
is of measure 1. O

THEOREM 3.7. Suppose {E’f, v = 1,...} is a sequence of expectation func-
tionals defined by

E’f(x) = f f(x, £)P'(dg) = E*{f(x, £))

and Ef(x) = E{ f(x, §)} such that f and the collection {P; P*, v = 1,...} satisfy
Assumptions 3.4 and 3.5. Then p-a.s.
Ef = epi-lim E*f = ptwse-lim E’f,
v—> 00 vV—>00

where ptwse-lim, , _ E’f denotes the pointwise limit.

PrOOF. The argument essentially follows that of Birge and Wets (1986),
Theorem 2.8, with minor modifications to take care of the slightly weaker
assumptions and the fact that the expectation functionals depend on {. We begin
by showing that p-a.s. Ef is the pointwise limit of the E’f. We fix { € Z, and
assume that the conditions of Assumption 3.5 are satisfied for this particular ¢.
Suppose x € S and set

Rh(§) = f(x, £).
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From condition (3.11), it follows that for all & > 0, there is a compact set K,
such that for all »,

L\K‘h(g)”)”(d&) <e.

Let v, == max, .  |h(£)|. We know that v, is finite since K, is compact and A is
continuous on = (Assumption 3.4). Let A° be a truncation of A, defined by

r(§) i [R(E) < v,
he(g) = ye lf h(g) > Ye’
-y, ifh(¢) <.

The function A¢ is bounded and continuous, and for all £ in =,

|h*(€)I < | (£)]-

Now, from the convergence in distribution of the P”,
(3.13) lim {a,‘; = . h’(g)P"(dg)] = [A(£)P(dE) = e
Moreover, for all », ’
[ m(g)P(dz) <e.
E\K,

Now, let

a, = E'f(x) = [ B(g)P'(dE) + [ h(§)P*(db).

K, E\K,

We have that for all »,

la, — a] =| f _ (B(&) = B()P(dE)

< 2g,

and also
|Ef(x) — af] < 2e.
These two last estimates, when used in conjunction with (3.13), yield: For all
e>0,
|Ef(x) — a,] < 6e.
Thus for all x in S,
Ef(x) = lim E’f(x) = lim a,,
»— 00 v o0
and since, by Lemma 3.6,
' S = dom Ef = domE’f,
it means that Ef = ptwse-lim,_,  E’f, and that condition (3.8) of epi-conver-

gence is satisfied, since we can choose {x” = x)3, for the sequence converging
to x.
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There remains to verify condition (3.7) of epi-convergence. If x ¢ S, then for
every sequence {x”}3°, converging to x, since S is closed we have that x” & S for

v=1

v sufficiently large and hence E*f(x”) = oo, which implies that
liminf E*f(x") = o0 > Ef(x) = .

v — 00

If x € S and {x”}2, is a sequence converging to x, unless x” is in S infinitely
often, liminf, ,  E’f(x”) = oo, and then condition (3.7) is trivially satisfied. So
let us assume that {x”}°.; C S. For » sufficiently large, from (3.10) it follows that
there is a bounded continuous function 8 such that

f(x,8) — B(E)llx — 2"l < f(x”, §).
Integrating both sides with respect to P” and taking liminf, , , we obtain
lim E’f(x) — lim B%||x — x*| < liminf E*f(x"),
v— 00 v—>00 v— 00

where B” = [B(£)P'(d§) converge to a finite limit since the P’ converge in
distribution to P, and by pointwise convergence of the E’f this yields

Ef(x) < liminf E*f(x"). O

v — 00
To apply in this context, Propositions 3.2 and 3.3, we must show that the
expectation functionals {E*f,» = 1,...} are random ls.c. functions.

THEOREM 3.8. Under Assumptions 3.4 and 3.5, the expectation functionals
E'f:R"XZ—->R forv=1,...,

are p-a.s. random lower semicontinuous functions, such that { — epi E*f(-,$)
is F’-measurable.

ProoF. Lemma 3.6 shows that there exists a set Z, C Z of y-measure 1 such
that for all { € Z;, the multifunction

¢ - epi E’f(+,¢): Z, 3 R™*! is nonempty, closed-valued.
This is condition (3.4i). Thus there remains only to establish (3.4ii), i.e.,
¢ epi E’f(-,{) is #’-measurable
for » = 1,... . Theorem 3.7 proves that with respect to the topology of conver-
gence in distribution, the map
P¥ — epi E’f is continuous. ,
Moreover, since { = P*(A,¢{) is % ’-measurable for all A € &7, it means that

given any finite collection of closed sets {F, C Z}¢_, and scalars {8;}{_; < [0,1],
the set

. {($ez|P'(F,¢)<B,i=1,...,q} €ZF,
which means that the function
$ - P(+,8): Z > P:= {probability measures on (=, &)}
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is % ’-measurable. To see this, observe that the “convergence in distribution”
topology can be obtained from the base of open sets
{Q e AQ(F,) < Bi,i=1,..., k}
[see Billingsley (1968)], that also generate the Borel field on £. Thus
§—epi Ef(-,¢)
is the composition of a continuous function, and a % *-measurable function, and
hence is % ”-measurable. O ‘

In the proof of Theorem 3.8, we have used the continuity of the map
P’ — epiE’f; in fact, Theorem 3.7 only proves epi-convergence, without intro-
ducing explicitly the epi-topology for the space of lower semicontinuous func-
tions. The fact that epi-convergence induces a topology on the space of ls.c.
functions is well established [see, for example, Dolecki, Salinetti and Wets (1983)
and Attouch (1984)], and thus with this proviso, Theorem 3.7 proves the
epi-continuity of the map P’ — epi E*f.

THEOREM 3.9 (Consistency). Under Assumptions 3.4 and 3.5 we have that
p-a.s. '

(3.14) limsup (inf E’f ) < inf Ef.

V=00

Moreover, there exists Z, € F with p(Z \ Z;) = 0, such that

(i) for all { € Z,,, any cluster point £ of any sequence {x*, v = 1,...} with
x” € argmin E’f*(-, ) belongs to argmin Ef (i.e., is an opltimal estimate);
@) forv=1,...,

¢ - argmin E*f(-,$): Zy 3 R"
is a closed-valued F*-measurable multifunction.
In particular, if there is a compact set D C R"™ such that for v = 1,...,
k (argmin E*f ) N D is nonempty p-a.s.,
and
{x*} = argmin Ef N D,

then there exist (x”: Z, > R"}°_, % ’-measurable selections of {argmin E’f }>
such that

x* = lim x”($) for p-almost all §,

and also
inf Ef = lim (inf E’f) p-a.s.

ProoF. The inequality (3.14) immediately follows from (3.9) and the epi-con-
vergence p-a.s. of the expectation functionals E’f to Ef (Theorem 3.7) as does
the assertion (i) about cluster points of optimal solutions (Proposition 3.2). The
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fact that (argmin E’f) is a closed-valued % *-measurable multifunction follows
from Theorem 3.8 and Proposition 3.2.

Now suppose Z, C Z be such that u(Z;) =1, for all (€ Z, Ef=
epi-lim,_ , E’f,and forall » = 1,..., (argmin E’f ) N D is nonempty. For all »,
the multifunction

¢ = (argmin Ef(, §) N D): Z, 3 R”

is nonempty compact-valued and % ’-measurable; it is the intersection of two
closed-valued measurable multifunctions [see Rockafellar (1976)]. Now, for any
{ € Z,, let {7}, be any sequence in R”" such that for all »,

v=1
#(¢) € argmin E’f(+,¢) n D.

Then any cluster point of the sequence is in D, since it is compact, and in
argmin Ef as follows from Proposition 3.2. Actually, ‘x* = lim,_, x”. To see
this, note that, if x* is not the limit point of the sequence, there exists a
subsequence {v,}%_, such that for some § >0 and all 2= 1,...,
#* € argmin E*f N D and |x* — £%|| > §,

but this is contradicted by the fact that this subsequence included in D contains
a further subsequence that is convergent.

Now, for v =1,..., let x*: Z - R™ be an %’-measurable selection of the
Z ’-measurable multifunction ¢ — (argmin E’f(-,¢) N D), cf. Proposition 3.1.
By the preceding argument for all { € Z,, where u(Z,) = 1,

x* = lim x"(¢)
and from Proposition 3.3, it then also follows that
lim (inf E*f(-,{)) = inf Ef = Ef(x*)

forall { € Z,. O

It should be noted that contrary to earlier work [see Wald (1949) and Huber
(1967)], we do not assume the uniqueness of the optimal solutions, at least in the
case of the stochastic programming model introduced in Section 2. This would
not be a natural assumption. Also, let us observe that we have not given here the
most general possible version of the consistency theorem that could be obtained
by relying on the tools introduced here. There are conditions that are necessary
and sufficient’for the convergence of infima [see Salinetti and Wets (1986) and
Robinson (1987)] that could be used here in conjunction with convergence results
for measurable selections [Salinetti and Wets (1981)] to yield a slightly sharper
theorem, but the conditions would be much harder to verify and would be of
very limited interest in this context. Also, since epi-convergence is of local
character, we could reward our statements to obtain “local” consistency by
restricting our attention to a neighborhood of some x* in arg min Ef.

We conclude by an existence result. A function A: R® — R is inf-compact if
forall a € R,

lev,h = {x € R"|h(x) < a} is compact.
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If A is proper (h > — o0, dom A # 0) and inf-compact, then (inf £) is finite and
attained for some x € R". For example, if 2 = g + ¥g, where g is continuous
and ¥y is the indicator function of the nonempty compact set S(¥g(x) = 0 if
x € S, and oo otherwise), then £ is inf-compact. Another sufficient condition is
to have g coercive. Inf-compactness is the most general condition that is
verifiable under which existence can be established. The next proposition gener-
alizes the results of Wets (1973) and Hiriart-Urruty (1976). Essentially, we
assume that f(-, ¢) is inf-compact with positive probability.

PROPOSITION 3.10. Under Assumptions 3.4 and 3.5, the condition: There
exists A € of with P(A) > 0 [resp. P(A) > 0] such that for all a € R, the set

lev,f N (R" X A) is bounded.
Then Ef is inf-compact [resp. E’f is p-a.s. inf-compact).

ProorF. It clearly suffices to prove the proposition for P; the same argument
applies for all P”, p-as. Let

-Y(g) = inf{o’xienIfZ"f(x, s)}

The function is measurable (Proposition 3.2) and P-summable; see (3.12). The
function f’, defined by

f'(x,8) = f(x, &) - v($)
is then nonnegative. Moreover, f’ > f and thus
lev,f" N (R" X A) clev,f N (R" X A).
Set a, == a/P(A) and let A, be the projection on R" of lev, f' N (R" X A).
Then if x & A, and § € A,
f(x,8) >

and since f’ is nonnegative, with y = E{y(£)},
Ef(x) = Bf'(x) + 72 [ ['(x, )P(d§) +7

>aqP(A)+y=a+7.

Hence lev, , ;Ef C A,, a bounded set. To complete the proof, it suffices to observe
that from Lemma 3.6 we know that lev, Ef is closed since Ef is lower semicon-
tinuous, and this with the preceding implies that lev, ;Ef is compact for all

a€R.O

4. Asymptotics, convergence rates. In Section 3 we exhibited suffi-
cient conditions for the convergence with probability 1 of the estimators
{x*: Z—> R", v =1,...} to x*, the optimal solution of the limit problem. Here
‘we go one step further and analyze the rate of convergence in probabilistic terms.
The argumentation is related to that of Huber (1967), adapted to fit the more
general class of problems under consideration; this was already the pattern
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followed by Solis and Wets (1981) in the unconstrained case and by Dupadova
(1983a, 1983b, 1984b) for stochastic programs with recourse under special as-
sumptions. As already indicated in Section 1, we extend the results of Huber
(1967) in a number of directions: (i) we allow for constraints, (ii) the probability
measures converging to P are not necessarily the empirical measures and (iii)
there are no differentiability assumptions on the likelihood (criterion) function
[in terms of Huber’s set-up, this would correspond to the case when his function
V¥ is not uniquely determined; see Section.3 of Huber (1967)].

One way to look at the results of this section is to view them as providing
limiting conditions under which one may be able to obtain asymptotic normality.
(Note that when there are constraints, one should usually not expect the
asymptotic distribution to be Gaussian.) This, in turn, allows us to obtain certain
probabilistic estimates for the convergence “rates.” To approximate the distribu-
tion of x”, to obtain confidence intervals for example, we need an assertion that a
suitably normalized sequence converges in distribution to a nondegenerate
random vector. The normalizing coefficients need not be unique but they suggest
a rate of convergence. Following Lehmann (1983), we shall say that the sequence
x” — x* goes to 0 with the rate of convergencel/k, if k, - o0 as v = oo and if
there is a continuous distribution function H such that

P{k,||x” —x*| < a} » H(a) as» - oo.

We begin by a quick review of the main definitions and results that provides
us with a good notion for the subgradients of not necessarily differentiable
functions. Any assumption of differentiability of f(-, £), would be inappropriate
and would for one reason or another eliminate from the domain of applicability
all the examples mentioned in Section 2. To handle the lack of differentiability,
we rely on the theory of subdifferentiability developed to handle nonsmooth
functions [see Clarke (1983), Rockafellar (1983) and Aubin and Ekeland (1984)].

The contingent derivative of a lower semicontinuous function h: R" —
(— o0, +o0] at x, a point at which 4 is finite, with respect to the direction y is

h'(x; y) = epi-liminf h(x + &) ~ hlx) ,
t10 4
using the convention oo — 00 = c0. It is not difficult to see that A’ is always well
defined with values in the extended reals. If x & dom A, then A'(x;:) = oo,
otherwise

h(x + ty') — h(x)

h'(x; y) = liminf p

Y-y
£10
The (upper) epi derivative of h at x, where h is finite, in direction y, is the
epi-limit superior of the collection {A'(x’; -), x" € R"} at x, i.e,,
h™(x; ) = epi-limsup’(x’; -),
x'—x
h'(x; y) = inf limsuph'(x’; '),
{x’—>x)

{¥y' -}



1538 J. DUPACOVA AND R. WETS

where by writing {x’ —» x} and {y’" — y} we mean that the infimum must be
taken with respect to all nets—or equivalently here sequences—converging to x
and y [see Aubin and Ekeland (1984), Chapter 7, Section 3].

It is remarkable that if 4 is proper and x € dom A, the function y — A" (x; -)
is sublinear and ls.c. [Rockafellar (1980), Theorems 1 and 2]. Moreover, if A is
Lipschitzian around x, then A" (x; -) is everywhere finite (and hence continuous);
in particular, if A is continuously differentiable at x, then A'(x; y) is the
directional derivative of A in direction y, and if A is convex in a neighborhood of
x, then '

h(x + ty) — h(x)
TYxe v) = 1
h'(x; y) lim ;
is the one-sided directional derivative in direction y. The sublinearity and lower
semicontinuity of AT (x; -) make it possible to define the notion of a subgradient
of h at x, by exploiting the fact that there is a one-to-one correspondence
between the proper lower semicontinuous, sublinear functions g and the non-
empty closed convex subsets C of R”, given by

g(y) =supv-y forall y e R,
velC ’
and
C={veR"w-y<g(y)forall y e R"}
[see Rockafellar (1970)]. Assuming that A'(x;-) is proper, let dh(x) be the
nonempty closed convex set such that for all y,

h'(x;y) = sup v-y.
vedJh(x)
Every vector v in dh(x) is a subgradient of h at x. If h is smooth (continuously
differentiable), then

dh(x) = {vh(x), the gradient of & at x};
if A is convex, then
dh(x) = {v|h(x + y) > h(x) + vy forall y € R"}

is the usual definition of the subgradients of a convex function. More generally, if
h is locally Lipschitz at x, then

dh(x) = co{v = lim vA(x')|h is smooth at x’}.

For the proofs of these preceding assertions and further details, consult
Rockafellar (1981) and Aubin and Ekeland (1984).

Before we return to the problem at hand, we state the results about the
additivity of subgradients that are relevant to our analysis, we begin with a
general result that shows that the derivatives and subgradient functions of the
random Ls.c. function f and the expectation functionals E’f and Ef have the
appropriate measurability properties.
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THEOREM 4.1. Suppose h: R® X = — R is a random lower semicontinuous
function. Then so are its contingent derivative and its (upper) epi-derivative.
Moreover, for all x € R, £ = dh(x, §) is a random closed convex set.

PrROOF. Theorem 3.1 of Salinetti and Wets (1981) tells us that the limsup
and lim inf of sequences of random closed sets (closed-valued measurable multi-
functions) are random closed sets. Since the epigraphs of the epi-limsup and
epi-lim inf are, respectively, the liminf and lim sup of the corresponding sequence
of epigraphs [see, for example, Dolecki, Salinetti and Wets (1983), Section 2], the
assertion about the derivatives follows from their definitions and property (3.4)
of random lower semicontinuous functions. Since A'(x; -, ¢) is sublinear, it
follows that its conjugate—another random Ls.c. function [Rockafellar
(1976)]—is the indicator of the random closed convex set E- 0f(x,€). O

Our interest in subdifferential theory is conditioned by the fact that for a very
large class of functions (with values in the extended reals), we can characterize
optimality in terms of a differential inclusion, a point x° that minimizes the
proper Ls.c. function A on R", must necessarily satisfy

0 € 3n(x°);
if h is convex this is also a sufficient condition. There is a subdifferential
calculus, but for our purposes the following results about the subdifferentials on
sums of Ls.c. functions is all we need. We say that a l.s.c. function is subdifferen-
tially regular at x if h'(x;-)=h"(x;-). If h is convex or subsmooth on a
neighborhood of x, thus in particular if A is €' at x, it is subdifferentially
regular at x; h is subsmooth on a neighborhood V of x, if for all y € V,

h(y) = maxe(y),

where T is a compact topological space, each ¢, is of class ¥, and both ¢,(x) and
v,9,(x) are continuous with respect to (¢, x). If A is subsmooth on an open set
U, it is also locally Lipschitz on U [Clarke (1975)].

LemMMA 4.2 [Rockafellar (1979)]. Suppose h, and h, are l.s.c. functions on
R™ and x a point at which both h, and h, are finite. Suppose that dom h,(x; )
is nonempty and h, is locally Lipschitz at x. Then

d(h, + hy)(x) C dh(x) + dhy(x).
Moreover, equality holds if h, and h, are subdifferentially regular at x.

LEMMA 4.3 [Clarke (1983)]. Let U be an open subset of R", and suppose
h: U X E - R is measurable with respect to £ and there exist a summable
function B such that for all x°, x' in U and ¢ € Z,

|h(x°,§) — h(x", §) < B(£)IIx® — |-
Suppose, moreover, that for some x € U, Eh(X) is finite. Then Eh is finite and
Lipschitz on U, and for all x in U, '

0Eh(x) c E(h(x,£)} = [9h(x, £)P(d).
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Moreover, equality holds whenever h(-, §) is a.s. subdifferentially regular at x,
in which case also Eh is subdifferentially regular at x.

Theorem 4.1 shows that £ — dh(x, £) is a random (nonempty) closed set; it is
easy to verify that under the assumptions of Lemma 4.3, 4 is a random ls.c.
function on U X E. In fact, for all & dh(x, ) is a compact subset of R" [see
Clarke (1983), Proposition 2.1.2]. The integral of a random closed set I' defined
on = (with values in the closed subsets of R") is

JT©)P(de) = {x = [s(6)P(a)s(e) < (&) as. s < L'}

[see Aumann (1965)]. If P is absolutely continuous and T is integrably bounded
[the function £ - sup{||x|||||x|| € ['(§)} is summable], then [I'({§)P(d$) =
feco T'(£§)P(d$) is convex, where co I'(§) is the convex hull of £ If T' is uniformly
bounded, then [I'(§)P(d$) is a compact subset of R”™.

We shall be working with the same set-up as in Section 3, but with a
somewhat more restricted class of random ls.c. functions. Instead of Assumption
3.4, we shall be using the following one.

AssUMPTION 4.4. The function f: R"VX = — (—o00,00] is of the following
type:
f(x’ g) = fo(x, g) + \I,S(x)’

where ¥ is the indicator function of the closed nonempty set S c R", i.e,

Ys(x)=0 ifxeS,
= o0 otherwise,

and f, is a finite-valued function on R" X =, with

¢ = fo(x, £) relatively continuous on X,
for all x € S, and on any open set U that contains S, the function
x - fo(x, ) is locally Lipschitz

for all £ € =, and such that to any bounded open set V there corresponds a
function B uniformly integrable with respect to P*, v = 1,2,..., such that for
any pair x°, x! in V,

(4.1) fo( 2%, &) — fox", ) < B(&)Ix® — =Y.

The only condition of Assumption 3.4 that does not appear explicitly in
Assumption 4.4, either in exactly the same form or in a stronger form, is the
lower semicontinuity of f(-,£) on R™ for all £ in =. But that is an immediate
consequence of the fact that fy(-, £) is locally Lipschitz and S is closed. Thus, f
is a proper random lower semicontinuous function, and so is also f,. Moreover,
all the results and the observations of Section 3 are immediately applicable to
both f and f,, as well as to the corresponding expectation functionals. Of course,
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these functions will now have Lipschitz properties that we shall exploit in our
analysis. In the convex case it might be possible to work with weaker restrictions
on the function f by relying on finer results about the additivity of subgradients
[see Rockafellar and Wets (1982)]. Combining the results of Section 3 with those
about subgradients of random Ls.c. functions, in particular Lemma 4.3, we can
show that:

LEMMA 4.5. Under Assumptions 4.4 and 3.5, we have that p-a.s. Ef and
{E’f, v=1,...} are proper lower semicontinuous functions that are locally
Lipschitz on S. Moreover, we always have

0Efy(x) € E{afy(x,§)) = [ afi(x, )P(d£)
and forv=1,..., )
8Evf0(x’ {) c LafO(x’ g)P"(d§’§)7 p-a.s.,

with equality if for all &, f\(-, &) is subdifferentially regular at x. Moreover, if
x €S,

JEf(x) C JEfy(x) + d¥g(x)
and forv=1,...,
OE*f(x,%) C IE"o(x,8) + 3¥%s(x), pea.s.,
with equality if Yg and for all &, f|(-, §) are subdifferentially regular at x.

REMARK 4.6. If x € S, d¥(x) is the polar of the tangent cone Tg(x) to S at
x [Clarke (1975)]. If S is a differentiable manifold, then d¥g(x) is the orthogonal
complement of the tangent space at x and, of course, ¥ is differentially regular
at x. This is also the case when S is locally convex at x, or if x belongs to the
boundary of S and this boundary is locally a differentiable manifold. More
generally, ¥, is subdifferentially regular at x, if the tangent cone to S at x, has
the representation

Ts(x) = {yla}\klO, ykF > ywithx + A, y*k e S}.

So far, we have limited our assumptions to certain continuity properties of the
function f with respect to x and £. In order to derive the asymptotic behavior
we need to impose some additional conditions about the way the information
collected from the samples is included in the approximating probability measures
P?, in particular on how it affects the subgradients of the functions E*f. Let us
introduce the following notation: u,(x, £) will always denote an element of
dfo(x, £) and vg(x) an element of d¥g(x). In view of Theorem 4.1 and Lemma
45 if x €S, we always have that v(x) € dEf(x) implies the existence of
vg(x) € d¥g(x) and uy(x, -) measurable with uy(x, £) € dfy(x, ), P-as. such
that

o(x) = vg(x) + vs(x) = E{ug(x, §)} + vs().
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Moreover, similar formulas hold p-a.s. if the integration is with respect to
P*(-, ¢) instead of P. If the functions fy(-, £), as well as ¥, are a.s. subdifferen-
tially regular, then a type of converse statement also holds. We have that

0 € IEf(x*)

implies the existence of vg(x*) € d ¥g(x*) and of a random function uy(x*,-)
from = to R™ with uy(x*, -) € dfy(x*, £), P-a.s. such that

(4.2) 0 = E{uy(x*, £)} + vg(x*).
Similarly,
0 € dE"f(x")
means that there exist vg(x”) € 3 ¥4(x”) and a random function uy(x’, -) from =
to R™ with uy(x”, ) € dfy(x”, -) P*-as. such that *
0 =v)(x") + vg(x”)
= E"{uy(x”, £€)} + vg(x”).
AsSsSUMPTION 4.7 (Statistical information). The probability measures
{P*, v = 1,...} are such that for some v’ € JE’f(x*,{) and v € JEf(x”(S)):
) Vw[v'(x*, ¢) + v(x"(¢))] converges to 0 in probability;
(i) Vo [vs(x"($)) — vg(x*)] converges to 0 in probability;

(i) Vrv*(x*, {) is asymptotically Gaussian with distribution function
N(O, Z,), where =, is the covariance matrix.

(4.3)

Moreover,

(iv) Ef, is twice continuously differentiable at x* with nonsingular
Hessian H.

Before we prove the main result of this section, let us examine some of the
implications of these assumptions. The assumption that Ef, is of class C? is, of
course, rather restrictive, but without it it maybe hard to obtain asymptotic
normality; a more general class of limiting distributions (piecewise normal) for
constrained problems has recently been identified by King and Rockafellar
(1986). Note that this does not require that f, be of class C*.

The assumption that Vv [vg(x"({)) — vg(x*)] converges in probability to 0,
essentially means that the convergence of x” to x* is “smooth.” Of course, it will
be satisfied if x* belongs to the interior of the set S of constraints, in which case
vg(x*) and p-as. vg(x”($)) are O for » sufficiently large. It will also be trivially
satisfied if the binding constraints are linear and, x* and p-a.s. x*({), belong to
the linear variety spanned by these constraints. In fact, we can expect this
condition to be satisfied unless the vector x* is a boundary point at which the
boundary has high curvature, in particular at point at which the boundary is not
smooth, e.g., a vertex.

The condition about asymptotic normality of the subgradients yv v*(x*) is
best understood in the following context. Suppose condition (ii) is satisfied, in
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fact let us assume that vg(x*) = vg(x”({)) a.s. And suppose also that P” is the
empirical distribution. Then |[v*(x*, {)|| records the error of the estimate of the
subgradients of Ef at x*; note that 0 € JEf(x*).

The first condition yields an estimate for the errors of the subgradients of E*f
at x* and Ef at x”({). The assumption is that enough information is collected so
as to guarantee a certain convergence rate to 0. This is a crucial assumption and
after the statement of the theorem we will return to this condition and give
sufficient conditions that imply it.

THEOREM 4.8. Under Assumptions 4.4, 35 and 4.7, v (x’(-) — x*) is
asymptotically normal with distribution N(0, =), where £ = H 'S (H™1)".

PROOF. Since Ef, is assumed to be C* and x’(-) converges to x*, for »
sufficiently large,

VEfy(x") — VEfy(x*) = H(x" — x*) + o(|lx” — =¥), p-as.
Now, since v(x*) = 0,
Vv (VEfo(x*) = VEfy(x*)) = Vv [v(2”) + v'(x*)] = Vwro*(x*)
+W[vs(x*) - vs(x")].
By Assumption 4.7 the first term converges to 0 in probability, the second one
converges in distribution to N(0, =,) and the third one converges in probability
to 0. Hence, V»[VEf(x”) — VEf(x*)] converges in distribution to N(0, Z))

(Slutsky’s theorem). This is then also the asymptotic distribution of
Vv H(x” — x*). The result now follows by the nonsingularity of the matrix H. O

The remainder of this section, is devoted to recording certain conditions that
will yield condition (i) of Assumption 4.7. In view of Markov’s inequality it
would suffice to control the variance of |[v*(x*) + v(x”)|| to obtain the desired
convergence. More generally, we have the following:

LEMMA 4.9. Suppose that E {v’(x*,{)} = 0, that
E{llvg(x*,§) — vo(x*)II?} < B/»
and that
I (x*, &) + v(x())Il
v~ + v ()l

Then, under Assumptions 4.4 and 3.5, for any (measurable) selections v*(x*,- ),
with

converges to 0 in probability (p).

v (x*,¢) € IE'f(x*,¢), p-a.s.,
such that p-a.s. v(x*) = 0, the random vector
W [v(x*,§) + o(2(5))]

converges to 0 in probability as v — oo.
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ProOF. We need to show that to any & > 0, there corresponds », such that
for all » > »,,
ulilo"(x*) + o(=")l 2 »7%8] <,

where §, > 0as ¢ = 0.
Chebychev’s inequality and the assumptions of the theorem imply that for all
a,

pllv(a*, Il > av='2] < va2E, v"(x*, )12 < »(B/a)”.
And hence with a? = 282 /¢, we have
[l (=*) > v=2/8V2 Ve < e/2.
This, in conjunction. with the last one of our assumptiens, i.e.,
(4.4) ulilv (x*) + »(2) = e(»™2 + |o(=")I])] < &/2,
implies that the events
[v"(x*) + v(x”)]| < e(»~ 2 + [lv(x”)]])
and ,
v (x*)l| < »=1/By2/¢
have probability (u) at least 1 — &. Thus, for ¢ small,

pllr(x) < v 2(B+e)/(1 - a)] > 1 -,
since |[u(x”)|| < |lv(x*) + v(x”)|| + |[v*(x*)||- This, together with (4.4), gives
pliv(x*) + v(x”) < v~ 2%(1+ (B+e)/(1—¢)] >1—¢
and this yields the desired expression with 8, = &(1 + (B8 + €)/(1 — ¢)). O

It is easy to see why the condition E {v’(x* {)} = 0 would be satisfied when
the P’ are providing moment estimates that are at least as good as the empirical
distributions. The same holds for the second assumption in Lemma 4.9, there is a
reduction in the variance estimate that is at least as significant as that which
would be attained by using the empirical distribution. Finally, the last assump-
tion of Lemma 4.9 means that we can allow for a certain slack in the convergence
in probability of Vo |lv(x*) + »(x”)|| to 0. In the Appendix of Dupadova and
Wets (1987) we gave a derivation of this condition by using assumptions that are
related to those used by Huber (1967). The differences are due to the fact that
the probability measures P*(-, {£) are not necessarily the empirical ones and that
subgradients are used instead of gradients.

5. Asymptotic Lagrangians. The results of Sections 3 and 4 can be ex-
tended to Lagrangians by relying on the theory of epi/hypo-convergence for
saddle functions, Attouch and Wets (1983a). This gives us not just asymptotic
properties for the sequence {x”, » = 1,...} of optimal solutions but also for the
associated Lagrange multipliers.
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We now introduce an explicit representation of the constraints in the formula-
tion of the problem:

minimize z=E{fy(x, )}
(5.1) subject to  f;(x) <0, i=1,...,s,
f.(x) =0, i=s+1,...,m,

where for i = 1,..., m, the f; are finite-valued continuous functions and f, is a
finite-valued random ls.c. function. When instead of P, we use P’ then the
objective function is modified and becomes

E'fy(x) = [ fo(x, §)P(d8).
The (standard) associated Lagrangians are

Ef(x) + fi(x) ify=0fori=1,...,s,
L(x,y)= fO( ) iglyf( ) Y

— 00 otherwise

and

E’f(x) + f(x) ify>0fori=1,...,s,
Lv(x’ y)= fO( ) iglyzfz( ) yt

— 00 otherwise.

Consistency can be studied in the same framework as that described at the
beginning of Section 3. The Lagrangians L’ also depend on {. Suppose that f,
satisfies the conditions of Assumption 3.4. Note that some of these conditions
are automatically satisfied since f, is a finite-valued random ls.c. function.
Suppose also that the {P?, » = 1,...} satisfy Assumption 3.5 with f, replacing
f (in the asymptotic negligibility condition), then it follows from Lemma 3.6
that p-a.s. the Lagrangians L* are finite-valued random Ls.c. functions on
(R™ X (R, X R™™®)) X Z; on the complement all functions L” are — co. This is
all we need to guarantee the required measurability properties, in particular we
have that

((x, ¥),¢) » L*(x, y,¢) is B"*™ ® sfmeasurable.

DEFINITION 5.1. The sequence of functions {A”: R* X R™ - [— o0, 0], » =
1,...} epi/hypo-converges to h: R" X R™ — [ — o0, oo] if for all (x, y) we have

(i) for every subsequence {h”, k = 1,...} and sequence {x*}¥_, converging to
x, there exists a sequence { y*)¥_, converging to y such that
h(x, y) < liminf A" (x*, y*)
k— oo
and .
~ (ii) for every subsequence {A", k = 1,...} and sequence {$*}¥_, converging
to y, there exists a sequence {£*)¥_, converging to x such that

A

h(x, y) > limsup A (£*, 9*).

k— oo
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This type of convergence of bivariate functions was introduced by Attouch
and Wets (1983a) in order to study the convergence of saddle points; in Attouch
and Wets (1983b) it is argued that it actually is the weakest type of convergence
that will guarantee the convergence of saddle points.

THEOREM 5.2 (Consistency). From Assumptions 3.4 and 3.5, with f replaced
by f,, it follows that there exists Z, € ¥ with p(Z \ Z;) = 0 such that
L = epi/hypo-limL*, p-a.s.

v—> 00

and hence

(i) for all §{ € Z,, any cluster point (£, 9) of any sequence {(x’, y*), v =
1,...}, with (x”, ¥*) a saddle point of L*(-, -, ), is a saddle point of L;

(ii) ¢f D is a compact subset of R™ X R™ that meets for all v, or at least for
some subsequence, the set of saddle points of L*(-,-,§) for some { € Z,, then
there exist (x*, y”) saddle points of L*(-,+,¢) for v =1,... that have at least
one cluster point;

(iii) moreover, if the preceding condition is satisfied for all { € Z, and L has
a unique saddle point, then there exists a sequence

{(2",¥"):Zy> R*"XR™, v=1,...}
of #*-measurable functions that for all { € Z,, determine saddle point of the L’,
and converge to the saddle point of L.

We note that sufficient condition for the existence of saddle points
are provided by the condition introduced in Proposition 3.10 [with f the
essential objective function of problem (5.1)], in conjunction with the
Mangasarian-Fromovitz constraint qualification.

5.3 AsYMPTOTIC NORMALITY. The techniques of Section 4 can also be
used to obtain asymptotic normality results. However, there is not yet a good
concept of subdifferentiability for bivariate functions, except in the convex case
[Rockafellar (1964)], and in the differentiable case, of course. With dL (dL’
resp.) the set of subgradients of the Lagrangians in the convex or differentiable
case, the condition that (x*, y*) is a saddle point of L can be expressed as

0 € dL(x*, y*),
and 0 € dL*(x’, ¥*, ¢{) in the case of L. For example, in the convex case when all
the functions {f;, i = 0,1,..., m} are differentiable, this condition is equivalent
to :

0= E{vfy(x* §)} + i yi*f(x*),

i=1
0> f.(x*), i=1,...,s,
0 = fi(z%), i=s+1,...,m,

0 = y*fi(x*), y*¥*=0,i=1,...,s,
and similarly for L’.
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It is easy to see that when Assumptions 4.4 and 3.5 hold (with f, instead of
f), as well as Assumption 4.7, but this time with v” and v subgradients of L” and
L, respectively, and S = R™ X (R%. X R™%), then by the same argument as in
the proof of Theorem 4.8, we obtain

W (x*(+) — x*, y*(+) — y*) is asymptotically normal.

For an application to the preceding results to the case of linearly restricted
L ,-regression (2.3), see Dupacdova (1987).
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