
II 15 Dup
2003/10/13
page 263

�

�

�

�

�

�

�

�

Chapter 15

Melt Control: Charge
Optimization via
Stochastic Programming

Jitka Dupačová∗ and Pavel Popela†

15.1 Motivation
Melt control problems belong to the broad field of production control applications. They
are studied as one of the production steps in iron and steel works. Melt control problems
may be fully separated from other foundry optimization problems, which simplifies the
model building and its solution. Their importance arises because foundries usually have
high overheads, and hence, even small percentual savings may recover a significant amount
of money. In addition, material inputs represent the biggest part of the total melting costs.

The produced alloys and input materials are composed of certain basic elements (iron,
carbon, etc.). The production process consists of several steps (e.g., charge, alloying). In
each of them, the hot melt in the furnace is enriched with certain input materials (return
materials, scrap, ferroalloys, etc.) and a new mixture is melted again. Hence, the problem
has a natural multistage decision structure. Whereas the unit costs of the inputs are known
at the time of decision making, the composition of input materials is not known precisely
and it was modeled as random already in Evers (1967). In each step of the process, the
melt composition changes and particularly, random losses of elements in the melt must be
considered. During heating of the melt the amounts of elements change randomly, e.g.,
due to arise of slag and oxidation. These losses depend on the composition of the melted
materials. In some cases, they may be influenced also by the used amounts of these materials,
which will not be considered here. The remaining amount of an element is expressed as a
linear function in the input quantities of all considered elements, the coefficients are called
utilizations of the considered element related to the amount of other elements in the melt.

The goal is to find amounts of the input materials in the lowest cost so that the prescribed
output alloy composition is achieved. We use scenario-based two- and three-stage stochastic
linear programs to illustrate basic modeling ideas for charge optimization of induced and
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264 Chapter 15. Melt Control: Charge Optimization via Stochastic Programming

electric-arc furnaces. For a general approach to melt control, developed for any alloy, furnace,
and technology see Popela (1996, 1998).

15.2 Examples
In the following two simplified examples, the random losses, and hence the related utilizations
of elements are taken as the only random variables. This assumption can be accepted for
example for melting ferroalloys of a guaranteed composition and it will be relaxed in the
last example. Historical melt reports are available and may be used to construct scenarios or
scenario trees of utilizations for the melt control problems; see section 15.3.

15.2.1 Two-stage induced furnace charge optimization

We begin with a simple model for charge optimization of iron production in an induced
furnace–a model with a common two-stage structure: Through the initial charge decision
the final cost of the melt is minimized taking into account also the consequences of possible
random losses and the requirements on the final composition of the melt. The problem in
extensive form (see Birge and Louveaux (1997)) is

minimize
∑
j∈J1

cjx
1
j +

∑
k2∈K2

pk2

∑
j∈J2

cjx
k2
j (15.1)

subject to

li1 ≤
m1∑
l=1

τE
il

∑
j∈J1

alj x
1
j ≤ ui1, i = 1, . . . , m1, (15.2)

li2 ≤
m1∑
l=1

τ
k2
il

∑
j∈J1

alj x
1
j +

∑
j∈J2

aij x
k2
j ≤ ui2, i = 1, . . . , m2, k2 ∈ K2, (15.3)

x1
j ≥ 0, j ∈ J1, x

k2
j ≥ 0, j ∈ J2, k2 ∈ K2, (15.4)

where

• t = 1, 2 are stages;

• Jt is the set of indices of input materials available at stage t , mt is the number of
elements at stage t and indices i and l specify them;

• cj ≥ 0, j ∈ Jt are known unit costs of j th input material;

• lit , uit ≥ 0 are prescribed lower and upper goal bounds for the amount of the ith
element in melt composition at stage t ;

• aij ≥ 0,
∑

i aij ≤ 1 ∀j denote the amount of ith element in the unit amount of j th
input material;

• x1
j ≥ 0 denote the first-stage decision variables, the amount of j th input material at

the beginning of the melt process (charge),

• x
k2
j , k2 ∈ K2 denote the second-stage decision variables, which stay for the additional

amount of j th input material assigned under scenario k2 (alloying).



II 15 Dup
2003/10/13
page 265

�

�

�

�

�

�

�

�

Jitka Dupacová and Pavel Popela 265

The only random elements are utilizations. Let

• τ
k2
il be the utilization of ith element related to the amount of lth element in the melt

when scenario k2 occurs, 0 ≤ τ
k2
il ≤ 1;

• k2 be indices of scenarios with probabilities pk2 ≥ 0.

The frequently considered case τ
k2
il = 0 when i �= l means that interactions of random losses

are ignored.
In the first-stage constraints (15.2), τE

il stands for an experience-based “standard’’
utilization which applies to the first stage. Usually, τE

il = ∑
k2∈K2

pk2τ
k2
il ∀i, l, i.e., the

average utilizations. These constraints reflect the metallurgical rules which aim at the process
control stability and in general, they cannot be neglected. On the other hand, possible losses
of the materials added in the second stage of the melting process are negligible and are not
considered.

The model has a common two-stage structure with fixed recourse. The charge decisions
x1

j take into account consequences of the random utilizations at the second stage, making the
final alloy composition reachable.

15.2.2 Three-stage electric-arc furnace charge optimization

The situation is more complicated with a steel production in an electric-arc furnace. Because
of two alloying phases, the whole process must be modeled as a three-stage problem. To
simplify the model description, we mostly utilize the notation of the example in section 15.2.1
and the arborescent form introduced, e.g., in Birge and Louveaux (1996) or in Part II of
Dupačová et al. (2002), with indices kt corresponding to nodes of the t th stage (i.e., to stage
t scenarios) t = 2, 3, and a(kt ) denoting the index of the ancestor node to the node kt .

To obtain the Markovian structure of the model constraints, the melt composition is
described explicitly by additional auxiliary variables h

kt

i describing the state of the decision
process—the amount of ith melt element at node kt of stage t before a subsequent decision
was taken. We assume an empty furnace at the beginning of the process, hence, h1

i = 0 ∀i at
stage 1, then h

k2
i = ∑m1

l=1 τ
k2
il

∑
j∈J1

alj x
1
j , etc. Hence, for t > 1 and all elements considered

at stage t ,

h
kt

i =
mt−1∑
l=1

τ
kt

il


h

a(kt )
l +

∑
j∈Jt−1

alj x
a(kt )
j


 . (15.5)

The model is

minimize
∑
j∈J1

cjx
1
j +

3∑
t=2

∑
kt∈Kt

pkt

∑
j∈Jt

cj x
kt

j (15.6)

subject to

mt−1∑
l=1

τ
kt

il


h

a(kt )
l +

∑
j∈Jt−1

alj x
a(kt )
j


− h

kt

i = 0, i = 1, . . . , mt−1, kt ∈ Kt , t = 2, 3,

(15.7)

lit−1 ≤
∑
kt∈Kt

pkt
h

kt

i ≤ uit−1, i = 1, . . . , mt−1, t = 2, 3, (15.8)
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li3 ≤ h
k3
i +

∑
j∈J3

aij x
k3
j ≤ ui3, i = 1, . . . , m3, (15.9)

x1
j ≥ 0, j ∈ J1, x

kt

j ≥ 0, kt ∈ Kt , j ∈ Jt , t = 2, 3. (15.10)

The expected cost of melt is minimized subject to constraints requiring that during the
whole melt process the average melt composition satisfies the given bounds and that the final
product satisfies these bounds for all scenarios. In the last stage, full utilization of added
materials is assumed. For t = 2, the constraints (15.8) are in agreement with (15.2) based
on average utilizations τE

il = ∑
k2∈K2

pk2τ
k2
il .

An extension to more that three stages is evident. However, it is clear that the two
introduced models must be further generalized and significantly extended (e.g., involving
additional linear technological and inventory constraints, uncertain scrap composition or for
more than three stages) before they become applicable in real-world foundries; see Popela
(1996, 1998) for a discussion and suggestions.

15.2.3 Random input composition

Theoretically, the probability distribution of the j th input composition aij ∀j may be esti-
mated from data obtained by a repeated chemical analysis of the input. In practise, normative
values (based on such measurements) are used and/or intervals aij ≤ aij ≤ aij are built sep-
arately for each of input materials. This information is exploited in the scenario generation
procedure which will be explained in section 15.3 and which provides scenarios s ∈ S of
input matrices A = (aij , i = 1, . . . , m1, j ∈ J1) and their probabilities πs ; we index by su-
perscripts s the corresponding elements of matrices A and the second stage variables. These
scenarios and their probabilities are supposed to be known before the melting process starts
and the first-stage decisions depend on this probabilistic specification. In addition, suppose
that the composition of the (high quality) input added in the second stage (alloying) is known
and that the initial charge is based on expert estimates aE

ij , i = 1, . . . , m1, of the composition
of input materials j ∈ J1. Assuming independence of the random input composition and
utilizations we rewrite the example in section 15.2.1 as follows:

minimize
∑
j∈J1

cjx
1
j +

∑
s∈S

∑
k2∈K2

pk2πs

∑
j2∈J2

cj2x
k2s
j2

(15.11)

subject to

li1 ≤
m1∑
l=1

τE
il

∑
j∈J1

aE
lj x

1
j ≤ ui1, i = 1, . . . , m1, (15.12)

li2 ≤
m1∑
l=1

τ
k2
il

∑
j∈J1

as
lj x

1
j +

∑
j∈J2

aij x
k2s
j ≤ ui2, i = 1, . . . , m2, k2 ∈ K2, s ∈ S,

(15.13)

x1
j ≥ 0, j ∈ J1, x

k2s
j2

≥ 0, j2 ∈ J2, k2 ∈ K2, s ∈ S. (15.14)

15.3 Scenario generation
When building a melt control program, scenario generation is one of the most important
tasks. There is a large amount of melt control reports, however, these reports contain only
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an indirect information about scenarios. Usually only measurements h
kt

i ∀i, kt and the inputs
x

kt

j ∀j, kt are specified together with a full or partial information about the composition
A := (aij , ∀i, j) of the input materials. Although the ideas are also valid for multistage
problems, we will explain them for the simple two-stage melt control program formulated in
the example in section 15.2.1. In this case the melt control reports list most of all the inputs
amounts x1

j , j ∈ J1 and the resulting melt composition

h
k2
i =

m1∑
l=1

τ
k2
il

∑
j∈J1

alj x
1
j , i = 1, . . . , m1, k2 ∈ K2. (15.15)

15.3.1 Scenarios of diagonal utilization matrices

In the simplest case, with diagonal utilization matrices T and a known composition A of
input materials, the nonzero utilizations τ

k2
ii are obtained as the solution of the trivial system

of equations

h
k2
i = τ

k2
ii

∑
j∈J1

aij x
1
j , i = 1, . . . , m1, k2 ∈ K2. (15.16)

Utilizations obtained in this way may be used directly as measurement-based scenarios
in the second-stage constraints

li2 ≤ τ
k2
ii

∑
j∈J1

alj x
1
j +

∑
j∈J2

aij x
k2
j ≤ ui2, i = 1, . . . , m2, k2 ∈ K2

compare with (15.3).
The melt control reports contain measurements on the auxiliary state variables and

report the applied decisions for all stages of the production process: The t th stage related
information is composed from the initial measurement h

kt−1
i , stage related inputs x

kt

j and the

final measurement h
kt

i . Assuming an empty furnace at the beginning, the result is a “fan’’ of
measurement-based scenarios of utilizations (τ

k1
ii , . . . , τ

kT

ii ) ∀i which branch only at the root
and have equal probabilities.

Another possibility is to generate a limited number, say K, of diagonal utilization ma-
trices taking into account specific statistical properties of marginal probability distributions
of their diagonal elements τii ∀i, e.g., their expectations µi and variances σ 2

i , and also co-
variances ρil of couples τii , τll . This means to estimate these moment values, e.g., using the
past melt reports, and to find a feasible solution T k, pk , k = 1, . . . , K of the moment fitting
problem

K∑
k=1

pkτ
k
ii = µi, i = 1, . . . , m1,

K∑
k=1

pk(τ
k
ii − µi)

2 = σ 2
i , i = 1, . . . , m1,

K∑
k=1

pk(τ
k
ii − µi)(τ

k
ll − µl) = ρil, i, l = 1, . . . , m1,

K∑
k=1

pk = 1, pk ≥ 0, k = 1, . . . , K.
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To get the fitted scenarios and their probabilities means to solve this nonlinear system with
respect to pk and τ k

ii , ∀i, k. The system can be further extended for constraints on the
ranges of the utilization values, on higher order moments, etc. For a consistent statistical
specification, the general results of the moment problem imply that a solution of such system
exists for a modest number of scenarios. Otherwise one may try to get an approximate
solution, e.g., by minimizing the weighted sum of squares of differences

m1∑
i=1


αi

(
K∑

k=1

pkτ
k
ii − µi

)2

+ βi

(
K∑

k=1

pk(τ
k
ii − µi)

2 − σ 2
i

)2



+
m1∑

i,l=1

γil

(
K∑

k=1

pk(τ
k
ii − µi)(τ

k
ll − µl) − ρil

)2
(15.17)

subject to
∑K

k=1 pk = 1, pk ≥ 0, k = 1, . . . , K. Parameters αi, βi, γil can be used to reflect
importance and quality of data; see Dupačová et al. (2000) and Høyland and Wallace (2001)
for a detailed discussion.

The assumption of diagonal utilization matrices facilitates scenario generation for the
three- and multistage models, it is frequently used in practise and will be accepted also in the
numerical illustration in section 15.4. Still, an extension to general utilization matrices and
to random composition of input material is important. System (15.15) cannot identify the
utilizations in a unique way even if there is an experience based benchmark for their values,
expressed for instance in the form of simple box constraints, lower and upper bounds on τ

k2
il

valid for all k2. Allowing for random coefficients alj , independent of utilizations may help;
see section 15.3.4.

15.3.2 Scenario tree generation

The pathwise input by scenarios as described above does not display the information structure
given by the technological process and a scenario tree should be built. The number of
branching points is linked with the stages of corresponding production process, similarly as
in the example in section 15.2.2.

A simple case of a scenario tree refers to the interstage independence with t th stage
utilizations τ

kt

ii independent of utilizations in the preceding stages. This means that all melt
reports concerning stage t may be used to get utilizations τ

kt

ii for all nodes identified by
τ

kt−1
ii . This approach carries over the equal scenario probabilities at all stages so that the

probabilities of all paths from the root to leaves of the scenario tree are equal, too.
Accepting interstage independence means a simplification whose disadvantage is that

the number of nodes of such tree grows rapidly. There are other ways to construct the scenario
tree; see, e.g., Dupačová et al. (2000, 2002). In section 15.4, we apply the moment fitting
approach by Høyland and Wallace (2001) explained briefly in subsection 15.3.1 to generate
a tree which mimics the statistical properties of the joint probability distribution, including
the interstage dependence.

15.3.3 Scenarios of input composition

It is natural to build independent scenarios of composition for individual input materials. On
the other hand, statistical dependence of the contents of the considered elements in the given
input material should not be, in general, disregarded.
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As the first possibility assume that the composition of the j th input material, aj :=
(aij ∀i) is a multinormal vector, N (ajE, V j ), with expectations aE

ij ∀i and the variance
matrix estimated from experimental data obtained by chemical analysis. Scenarios ajs may
be then sampled from this distribution. Another possibility is to sample scenarios from one-
dimensional marginal distributions N (aE

ij , σ
2
ij ) or to discretize these marginal distributions

independently for all i and to accept all m1-tuples of these independent marginal scenarios
as scenarios of aj . The next step is to select representative scenarios and their probabilities
so that the moments values ajE, V j are retained; see, e.g., Cariño et al. (1998) or Høyland
and Wallace (2001).

If the intervals aij ≤ aij ≤ aij listed separately for each element i provide the only
available information we may accept the corresponding uniform distributions as the model
of the random composition and to approximate these distributions by the nearest (in the
sense of a selected probability metric) discrete uniform one-dimensional distributions. Such
approximation depends on the chosen probability metric.

Let F(t) denote the distribution function of a random variable and F̂ (t) the distribution
function obtained by an approximation. For instance, think of distributions carried by three
scenarios aE

ij − δij , aE
ij , aE

ij + δij , with equal probabilities 1/3. The optimal values of δij are
equal to 1/3(aij − aE

ij ) for the Kolmogorov metric

	K(F, F̂ ) = sup
t

|F(t) − F̂ (t)|

and to 2/3(aij − aE
ij ) for the Wasserstein metric

	W(F, F̂ ) =
∫

|F(t) − F̂ (t)|dt.

Another recommendation is to put expectations aE
ij = 1/2(aij + aij ) and the σ 2

ij =
1

16 (aij − aij )
2, to accept normal marginal distributions with these parameters and to ap-

proximate them by symmetric discrete probability distributions concentrated, say, again in
three atoms, aE

ij − δij , aE
ij , aE

ij + δij , with equal probabilities 1/3. This time the optimal
values of δij obtained by minimization of the Wasserstein metric are equal to 1.225σij , i.e.,
to 0.612(aij − aE

ij ). See Pflug (2001) for further examples of approximations by discrete
distributions.

Concerning covariances, there are typically no records and only experts’ knowledge
may be used. Hence, once more, one may accept all m1-tuples of the independent marginal
scenarios obtained by discretization and select representative scenarios and their probabilities
to fit the moments values ajE, V j .

Finally, observe that the random coefficients appear only on the “right-hand’’ sides of
constraints (15.13) that may be rewritten as

li2 −
m1∑
l=1

τil

∑
j∈J1

alj x
1
j ≤

∑
j∈J2

aij x
2
j ≤ ui2 −

m1∑
l=1

τil

∑
j∈J1

alj x
1
j , i = 1, . . . , m1. (15.18)

Hence for a given charge x1
j , j ∈ J1, observed utilizations τil ∀i, l and compositions aj , j ∈

J1 the minimum cost additional input x2
j , j ∈ J2 solves the second-stage linear program

min
x2

j ≥0∀j

∑
j∈J2

cjx
2
j subject to (15.18)
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whose optimal value is a convex function of hi := ∑m1
l=1 τil

∑
j∈J1

alj x
1
j ∀i. For aij ∈

[aij , aij ] with expectation aE
ij = 1/2(aij + aij ) we have

hi ∈ Ii := [hi, hi] and hE
i = 1/2(hi + hi) (15.19)

where hi = ∑m1
l=1 τil

∑
j∈J1

alj x
1
j ∀i and hi = ∑m1

l=1 τil

∑
j∈J1

alj x
1
j ∀i. Hence, the mini-

mum expected cost of the additional input is attained for the average values hE
i by Jensen’s

inequality, i.e., by solving program (15.1)–(15.4) with aij = aE
ij ∀i, j ∈ J1 in (15.3). In this

optimistic case, one uses the most favorable, degenerated distribution of state variables im-
plied by the assumed intervals and expectations of the random composition aij∀i, j ∈ J1 of
the input materials. The pessimistic, worst-case distribution corresponding to (15.19) is dis-
crete, concentrated on vertices of the Cartesian product of intervals Ii ∀i; cf. the Edmundson–
Madansky bound. In the multi-dimensional case, an explicit formula may be given only under
special assumptions such as the stochastic independence or separability of the second-stage
optimal value with respect to hi, ∀i (see Birge and Louveaux (1)) which is not realistic in our
context. One obtains then the worst-case probability distribution for which the marginal dis-
tributions of hi ∀ are concentrated on hi, hi with equal probabilities 1/2. As a consequence
(compare with (15.13)), for each j ∈ J2 there are nonnegative second-stage variables x

k2
j

and x
k2
j ∀k2 and inequalities (15.3) split into

li2 ≤
m1∑
l=1

τ
k2
il

∑
j∈J1

alj x
1
j +

∑
j∈J2

aij x
k2
j ≤ ui2, i = 1, . . . , m2, k2 ∈ K2

and

li2 ≤
m1∑
l=1

τ
k2
il

∑
j∈J1

alj x
1
j +

∑
j∈J2

aij x
k2
j ≤ ui2, i = 1, . . . , m2, k2 ∈ K2.

In the objective function (15.1), xk2
j is replaced by the average 1/2(x

k2
j +x

k2
j ) ∀k2 ∈ K2, j ∈

J2. This is in agreement with (15.11).
An additional assumption of unimodal marginal distributions of hi separately for each

i results in one-dimensional worst-case marginal distributions uniform over the intervals Ii .
This conclusion and other extensions may be found among results of the minimax approach
and moment problems; see, e.g., Dupačová (1987).

Scenarios of matrices of the input composition may be then created by combining all
possibilities taken into account for individual input materials:

Let sj , sj ∈ Sj be scenarios representing the random composition of the j th input and
πsj

their probabilities. Combining all possible outcomes for each of input materials leads to
S = ∏

j∈J1
(#Sj ) scenarios of the technological matrices A = (aij ). Their probabilities πs

are equal to the product of the corresponding probabilities πsj
∀j .

15.3.4 Scenarios of nondiagonal utilization matrices

Assume that independently of utilizations the composition of individual inputs is indicated
in the melt reports. To simplify the notation we index scenarios of the matrices A = (aij ) by
a superscript s similarly as in the example in section 15.2.3. Assume that an expert is able
to select groups of melting reports, say S(k2), for which the same utilizations τ

k2
il are likely.
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It means that for each k2 separately utilizations τ
k2
il satisfy the system

h
k2
i =

m1∑
l=1

τ
k2
il

∑
j∈J1

as
lj x

1
j , i = 1, . . . , m1, s ∈ S(k2). (15.20)

The as
lj ∀i, j and s ∈ S(k2) in (15.20) are known coefficients. The chance to identify the

utilizations τ
k2
il ∀i, l by solving system (15.20) depends on scenarios As , s ∈ S(k2); the

system may have more than one solution as well as to be inconsistent. In the first case the
final scenario of utilizations τ

k2
il ∀i, l may be sampled from a larger set of candidates, in the

second case an approximate solution (the best one with respect to a chosen metric) may be
accepted and the linear model (20) may be used to estimate utilizations τ

k2
il . The probability

of the resulting scenario—the (nondiagonal) matrix T k2 —is proportional to the cardinality
#S(k2) of S(k2). If #S(k2) is large in comparison with m1, the set S(k2) may be replaced
by a union of disjoint sets S ′(k2) each consisting of m1 elements so that the matrix of the
corresponding subsystem of (20) is nonsingular. By solving these subsystems of equations
separately, one gets several equiprobable scenarios of matrices of utilizations for each k2.

Theoretically, the moment fitting procedure (see subsection 15.3.1) may be used again.
However, its numerical tractability—numerical solution of a large nonconvex weighted least
squares problem—is an open question.

The scenario tuning procedure by Popela (1996) assumes that there are at disposal

experts’ scenarios T̂
k2

, k2 ∈ K2. Hence, the corresponding number of second-stage decision
vectors x

k2
2 that satisfy (15.3) for k2 ∈ K2 is introduced. One expects that also the already

recorded decisions, say, (x̂
1
, x̂

2
) should be feasible, or nearly feasible, for each of experts’

scenarios. If it is not the case, using the past recorded experience the input experts’ scenarios
are tuned for the sake of feasibility of the production process. One allows small perturbations

�k2 , k2 ∈ K2 of the matrices of utilizations T̂
k2

and applies the perturbations which provide
the best fit. This can be done for by solving separately for each k2 ∈ K2 the quadratic
program

minimize ‖�k2‖2

with respect to 

k2
il ∀i, l, k2, subject to

li2 ≤
m1∑
l=1

(τ̂
k2
il + 


k2
il )
∑
j∈J1

alj x̂
1
j +

∑
j∈J2

aij x̂
k2
j ≤ ui2, i = 1, . . . , m2

for all couples (x̂
1
, x̂

2
).

The matrices �k2∗ of minimal perturbances are used to “tune’’ or update for each k2

the initial experts’ scenarios T̂
k2

to T̂
k2 + �k2∗ which provide then the sought input for the

stochastic program in question.

15.4 Model implementation
In this section, we illustrate discussions about melt control modeling principles introduced
in previous sections by examples based on real-life data. We consider a steel production in
one Czech foundry with the furnace capacity of 20 tons. We focus on a specific technology
combining production steps realized in an electric-arc furnace (EAF) with a ladle furnace (LF)
finishing. We restrict ourselves to the steel denoted 42CrMo. See Table 15.1 for the required
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composition of the produced alloy. The goal intervals [liT , uiT ] ∀i are specified by decimal
numbers between 0 and 1 defining how many kilograms of ith element should be contained
in 1 kilogram of the produced liquid metal. The factory-defined goal intervals are tighter
than those given by Czech standards to achieve the higher product quality. The required
amount of the produced steel is 14.9 tons. The input materials, prices, their compositions,
and elements are in Table 15.1.

Table 15.1. Produced alloy and input materials.

∪Jt cj t liT and uiT

Material Price Stage L/U Fe C Mn Si P S Cr Mo Al Cu

42CrMo final L 0.9500 0.0038 0.0060 0.0010 0.0100 0.0020 0.0001
U 0.9800 0.0050 0.0085 0.0035 0.0003 0.0003 0.0150 0.0028 0.0004 0.0001

Scrap 3.0 1 L 0.9600 0.0010 0.0040 0.0020 0.0001 0.0001 0.0020 0.0001
U 0.9900 0.0040 0.0080 0.0040 0.0003 0.0004 0.0040 0.0003

RM955 3.9 1 0.9804 0.0025 0.0035 0.0003 0.0003 0.0110 0.0020
T951 3.7 1 0.9829 0.0025 0.0035 0.0003 0.0003 0.0070 0.0035
Coke 1.5 1 2 1.0000
FeMo 525.0 2 0.3490 0.0010 0.6500
FeSiMn 18.9 2 3 0.0850 0.0100 0.7000 0.2000 0.0050
AlInput 50.0 2 3 0.0500 0.9500
FeCr6 21.2 3 0.2350 0.0650 0.7000
FeSi45 10.1 3 0.5497 0.4500 0.0002 0.0001

The whole production process is a multistage one. A two-stage model is applied first in
subsection 15.4.1. In this case, we may obtain it either by aggregation of all stages following
the first stage or by modeling only the end of the production process. We begin with the
second possibility. It may be interpreted as the model for the initial and final alloying phases.
Frequently, the results have to be obtained under real-time control restrictions, so a sensible
scenario generation becomes very important.

Then, in subsection 15.4.2, a three-stage model adds the first stage called a charge
to the previously discussed two-stage model. In addition, with the three-stage model, the
interstage dependence and the random composition of the scrap must be considered.

The both subsections have a similar structure and use the same set of data. At first,
available data are presented and discussed. Then, models already defined in section 15.2
are slightly extended to allow realistic computations. The special attention is devoted to the
collection of the model input data, and hence, to the generation of scenarios in different ways.
Therefore, computations are realized for various deterministic reformulations starting from
simple ones. The models are implemented in GAMS and solved using solvers implementing
either standard (CPLEX and OSL) or decomposition-based solution algorithms (OSLSE).
The most interesting results are further analysed.

15.4.1 Two-stage melt control

The electric-arc furnace with ladle teeming is chosen. The important general information
can be found in Table 15.1, i.e., for t = 1, 2, 3 we find there sets of input materials Jt

and the number of considered elements m = mt = 10 ∀t , coefficients cj , j ∈ Jt , aij , j ∈
Jt , i = 1, . . . , m and lit , uit ∀i = 1, . . . , m. Specifically, we are interested now only in
rows numbered by 2 and 3 in the Stage column of Table 15.1. To continue, we need more
information about the process flow. It is important that all melts are documented in melt
reports. Hence, together with general information contained in Table 15.1 that is valid for
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all technologies developed for 42CrMo steel production in combination of EAF and LF, we
have several tables such as Table 15.2 storing information just about one melt.

Table 15.2. (a) Amounts of input materials in kg. (b) Measurements in 100%.

∪Jt xjt in kg
Material Stage 1 Stage 2 Stage 3

Scrap 5400
RM955 6000
T951 5000
Coke 100 20
FeMo 11
FeSiMn 100 50
AlInput 8 2
FeCr6 130
FeSi45 45
Sum [kg] 16500 139 227

m hi(T +1)/w
T +1

Elements Stage 1 Stage 2 Stage 3

Fe 0.9722 0.9634 0.9697
C 0.0029 0.0043 0.0049
Mn 0.0011 0.0056 0.0079
Si 0.0001 0.0001 0.0020
P 0.0002 0.0002 0.0002
S 0.0002 0.0002 0.0002
Cr 0.0066 0.0064 0.0124
Mo 0.0019 0.0024 0.0024
Al 0.0002 0.0003
Cu 0.0000 0.0000 0.0000

Melt weight
wT +1 in kg 15299 14960 14928

Table 15.1 and 15.2 fully identify one run of the steel production process for 42CrMo.
At first, the furnace is empty (h1

i = 0 ∀i). During the charge stage the amounts of input
materials (see the second column of Table 15.2(a) for x1

j ) must be taken into the account.
Then, the mixture is melted and the composition is measured (multiply proportions and melt
weight from the first column of Table 15.2(b) to obtain h2

i ). The alloying cost for the melt
related with Table 15.2 is z2

HB = 12351 and the total melt cost equals z1
HB = 70601.

The idea may be applied repeatedly and at the end all xt
j and h

(t+1)
i are specified.

In addition, h
(T +1)
i ∈ [liT , uiT ] so the required alloy is made. As in (15.5), we introduce

h
kT +1
i = ∑mT

l=1(h
a(kT +1)

l +∑
j∈JT

alj x
a(kT +1)

j ). For simplicity we replace h
kt

i by ht
i when only

one fixed scenario, completely specified by stage t and index i, is taken into account.
With the two-stage model, we are asked to continue the melting process, knowing the

weight and chemical composition of the melt before alloying begins (see the first column
of Table 15.2(b)). Although Tables 15.1 and 15.2 contain all necessary information for
initial deterministic optimization, we still need to modify the model (15.1)–(15.4). We
begin our computations in stage 2, i.e., after the charge and before alloying, having the first
measurement results at disposal. Thus, we must recognize that the furnace already contains
the melt. We also see that the composition of input materials for stages 2 and 3 is known.
The goal intervals are specified by relative proportions, hence, lit , and uit represent fractions
from unity. It is useful to introduce auxiliary variables wt, t = 1, . . . , T + 1 denoting the
amounts of melt at considered stages specified as wt = ∑mt

i=1 ht
i and wkt = ∑mt

i=1 h
kt

i for
t = 1, . . . , T + 1 and kt ∈ Kt . Then, the bounds for amounts of elements are specified
by litw

kt+1 and uitw
kt+1 . It is also necessary to define lower bound wT +1

L for the minimum
amount of the produced steel and the upper bounds wt

U , t = 1, . . . , T + 1 derived from the
furnace capacity. The updated two-stage model (15.1)–(15.4) is

minimize
∑
j∈J2

cjx
2
j +

∑
k3∈K3

pk3

∑
j∈J3

cjx
k3
j (15.21)

subject to

li2w
3E ≤

m1∑
l=1

τE
il


h2

i +
∑
j∈J2

alj x
2
j


≤ ui1w

3E, i = 1, . . . , m2, (15.22)
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w3E =
m2∑
i=1

m1∑
l=1

τE
il


h2

i +
∑
j∈J2

alj x
2
j


, (15.23)

li3w
k3 ≤

m2∑
l=1

τ
k3
il


h2

l +
∑
j∈J2

alj x
2
j


+

∑
j∈J3

aij x
k3
j ≤ ui3w

k3 , i = 1, . . . , m3, k3 ∈ K3,

(15.24)

wk3 =
m3∑
i=1


m2∑

l=1

τ
k3
il


h2

i +
∑
j∈J2

alj x
2
j


+

∑
j∈J3

aij x
k3
j


, k3 ∈ K3, (15.25)

x2
j ≥ 0, j ∈ J2, x

k3
j ≥ 0, j ∈ J3, k3 ∈ K3, wk3 ≥ w4

L, wkt ≤ wt+1
U , t = 2, 3.

(15.26)

This is again a fixed recourse problem based on scenarios.
Before we may begin computations, we have to complete our input data set; see Table

15.3 for measurements h2
i , bounds lit , uit , t = 1, 2, 3, and expert- and measurement-based

utilizations τ̂ t
ii , τ

t
ii , i = 1, . . . , mt , t = 2, 3. (Notice the distinction between the expert-based

utilizations τ̂ t
ii and the standard or average utilizations τE

il introduced earlier.)

Table 15.3. Melt composition, goal intervals, expert- and measurement-based utilizations.

Scenario Fe C Mn Si P S Cr Mo Al Cu

τ̂ 2
ii 0.94750 0.31750 0.25000 0.05950 0.60250 0.60250 0.88250 1.00000 0.00575 0.01750

τ 2
ii 0.94000 0.32000 0.24000 0.05600 0.60000 0.60000 0.88000 1.00000 0.00400 0.01000

h2
i /w

2 0.97219 0.00291 0.00110 0.00006 0.00017 0.00018 0.00664 0.00190 0.00000
l1
i 0.0018
u1

i 1.0000 0.0033 0.0038 1.0000 0.0004 0.0004 1.0000 0.0025 1.0000 0.0001

τ̂ 3
ii 0.98300 1.00000 0.97625 0.04250 0.98750 0.98750 0.96000 1.00000 0.42625 1.00000

τ 3
ii 0.98500 1.00000 0.99500 0.04700 0.98000 0.97000 0.98000 1.00000 0.44000 1.00000

h3
i /w

3 0.96336 0.00428 0.00558 0.00005 0.00017 0.00018 0.00644 0.00237 0.00022 0.00000
l2
i 0.00350 0.00520 0.00005 0.00500 0.00200 0.00010
u2

i 1.00000 0.00440 0.00900 0.00350 0.00035 0.00035 0.01300 0.00280 0.00035 0.00010
l3
i 0.95000 0.00380 0.00600 0.00100 0.01000 0.00200 0.00010
u3

i 0.98000 0.00500 0.00850 0.00350 0.00030 0.00030 0.01500 0.00280 0.00040 0.00010

Interstage goal intervals lit , uit ∀i, t = 1, 2 have been derived by metallurgical rules,
the experience of previous melts, and the goal interval relaxation. In foundry, τ

k3
ij are often

specified by experts. Usually, they consider only diagonal utilization matrices and keep in
view one expert-based scenario, τ̂ t

ii , i = 1, . . . , mt , t = 2, 3, for one stage. We may try to

verify expert-based utilizations, e.g., for our two-stage model, computing T̂
3
(h2 + A2x2) +

A3x3 to get the final composition of melt. Boldface letters x t , ht , At , and T̂
t

denote vectors
and matrices having components xt

j , h
t
i , a

t
ij , and τ̂ t

ij , respectively.
It can be found easily that in our example with the expert utilizations τ̂ii , the goal

requirements for 42CrMo are not satisfied (see Table 15.1) and even the final measurements
cannot be obtained by the described matrix multiplications (cf. Table 15.2(b)). It seems
that experts’ suggestions are useless and even meaningless. This motivates a more careful
scenario generation. By solving the separated system of linear equations (15.16) for unknown
τ

k3
ii , with the known compositions aij , different amounts of inputs x

a(k3)
j and varying results



II 15 Dup
2003/10/13
page 275

�

�

�

�

�

�

�

�

Jitka Dupacová and Pavel Popela 275

of measurements h
a(k3)
i and h

k3
i

h
k3
i = τ

k3
ii (h

a(k3)
i +

∑
j∈J2

aij x
a(k3)
j ), i = 1, . . . , m2, k3 ∈ K3, (15.27)

we obtain a measurement-based utilization τ 3
ii which corresponds to one of scenarios τ

k3
ii .

In a similar way, we get also measurement-based utilizations τ
k2
ii . In this way, we may trace

realized trajectories of the considered production process. Table 15.4 presents four different
scenarios of τ

k2
ii (indexed by superscripts k2 = 1, . . . , 4) and four different scenarios τ

k3
ii

(indexed by superscripts k3 = 5, . . . , 8) derived from four melt reports, along with the
related costs of the alloying and of the whole melting process.

Table 15.4. Measurement-based scenarios of utilizations—sets K2 and K3.

Scenario Fe C Mn Si P S Cr Mo Al Cu zt
HB zt

SB1
τ 1
ii 0.937 0.35 0.192 0.061 0.58 0.66 0.88 1.00 0.005 1.00 70610 55065

τ 2
ii 0.941 0.37 0.199 0.057 0.55 0.69 0.86 1.00 0.004 1.00 70040 56508

τ 3
ii 0.952 0.40 0.21 0.047 0.57 0.55 0.89 1.00 0.003 1.00 69359 54149

τ 4
ii 0.946 0.43 0.183 0.058 0.59 0.64 0.87 1.00 0.005 1.00 69326 57728

τ 5
ii 0.989 1.00 0.98 0.041 0.98 0.96 0.978 1.00 0.55 1.00 12351 4766

τ 6
ii 0.983 1.00 0.985 0.037 0.96 0.95 0.965 1.00 0.55 1.00 12725 5193

τ 7
ii 0.992 1.00 0.981 0.040 0.97 0.955 0.981 1.00 0.55 1.00 11680 4469

τ 8
ii 0.987 1.00 0.983 0.038 0.95 0.94 0.969 1.00 0.55 1.00 11466 5868

Because our goal is to find another cheaper way to produce the same steel, we allow
the “computer knowing our two-stage program’’ to choose other inputs arbitrarily feasible
but with the lowest cost; see Table 15.5 for results.

Table 15.5. Comparison of optimal solutions.

Inputs x2
j,HB x2

j,SB1,min x̂2
j,SB1,min x2

j,SB4,min x2
j,SB4096,min x2

j,SBcov ,min

Coke 20.0 7.0 6.8 16.9 17.6 17.3
FeMo 11.0 1.6 1.5 2.1 2.1 2.1
FeSiMn 100.0 87.5 89.4 105.0 107.7 106.0
AlInput 8.0 3.6 3.7 4.0 4.1 4.0
Objective z2

HB z2
SB1,min ẑ2

j,SB1,min z2
SB4,min z2

j,SB4096,min z2
j,SBcov ,min

function 12351 4766 4813 6140 7896 6920

We also know the cost of the whole realized process and its part related to our two-
stage problem, i.e., z2

HB = 12351 (with HB for “history based’’ and superscript 2 referring
to the current initial alloying second stage). It may be compared with one-scenario-based
(deterministic) optimization solution z2

SB1,min = 4766 obtained from (15.21)–(15.26) model
for K3 set having the only element. (The index SBs denotes here and in the sequel scenario-
based problems using s scenarios.) In this case, knowing losses in advance and utilizing our
model, a melter could save more than 61% of alloying costs. This looks surprising, as the
alloying stages could be considered as a source of minor changes regarding the initial charge.
However, we must remember that we have obtained the best solution given a complete
foresight, whereas in reality, losses are uncertain and unknown in advance. Therefore, we
will apply now the true scenario-based stochastic programming model. At first, we assume
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that only a few melt reports for steel 42CrMo are available, namely, those which were used
to get the four scenarios of utilizations τ

k3
ii , k3 = 5, . . . , 8 from Table 15.4. Assume that

probabilities of scenarios are equal, so p5 = · · · = p8 = 1/4. Using GAMS/OSL again to
solve the program (15.21)–(15.26) with the new data set, we obtain z2

SB4,min = 6140 (savings
50.28%, see Table 15.5 for the optimal solution). We see that z2

SB1,min ≤ z2
SB4,min ≤ z2

HB,min

in our example. However, computing the expected cost with respect to the four given
scenarios for solution x2

SB1,min, i.e., checking first the feasibility in (15.21)–(15.26) and then

computing the objective function values for recourse actions x
k3
j obtained by the solution of

separate linear programs, we get z2
SB4

(x2
SB1,min) = 9421. This 23.72% saving in comparison

with melter’s decision (which was bad indeed in this case, but useful for illustration of our
sceanrio-based approach) shows that even the deterministic approach may bring help in melt
control and it illustrates why the scenario approaches are advantageous. We may also return
back to expert-based utilizations τ̂ t

ii which were marked as wrong for computations along
individual scenarios. Using them for the two-stage problem at the place of the measurement-
based τ t

ii we get the related optimal value ẑ2
SB1,min = 4813, less optimistic than z2

SB1
but the

corresponding expected cost z2
SB4

(x̂
2
SB1,min) = 9024 means saving of 26.93%. Hence, we

can understand now why metallurgists are overestimating their expert-based estimates of
utilizations. They intuitively use the worst case approach to avoid the surprise coming with
the overfilled furnace. In certain sense, their aggregated values for τ̂ t

ii are chosen to find a
robust decision. Although we understand the basic idea, we must say that the reasoning is
wrong, as we have a better scenario-based model.

At this moment, we have only four melt reports. A reasonable question is whether we
may significantly increase the number of scenarios before more information about further
melts is available. The simplest step is to assume independent random losses within the
alloying stage. Therefore, we may create new scenarios easily just combining all elements
utilizations. The number of derived scenarios becomes large, equals 46 = 4096 as four
utilizations remain constant, independent of the scenario changes; see Table 15.4. Several
solvers (CPLEX, OSL, OSLSE) have been tested with the GAMS source code. The results
are the same, we obtain zSB4096,min = 7896, however different amounts of computing time
were needed. In this case, we can see even from the visual analysis of scenarios in Table
15.4 that there might be some nonzero correlations among utilizations. Thus, our instage-
independence-based scenario set is built in a too defensive way: We skipped an available
information, hence, we considered also unrealistic scenarios and their recourse costs were
taken into account. As a result we obtained a too pessimistic solution. Still, the obtained
solution may be implemented and used as it gives a good chance to decrease the melting
costs. However, there is a bottleneck. This approach is useless for a large set of scenarios
because computations for the alloying stage should be realized in real time, i.e., at most during
tens of seconds. For this purpose, scenario set reduction techniques have been developed
(see Popela and Zeman (1999) for the application of principal components and Popela and
Roupec (1999) for identification of so called extreme scenario sets). In this paper we try to
remove the unrealistic independence assumption and to apply another approach—the moment
fitting procedure from subsection 15.3.1. As the number of scenarios is quite small (four
melt reports until now) to obtain reasonable values for covariances, we may exploit general
metallurgical laws and experience. The idea is that the relationships among utilizations are
quite general and they do not vary too much when similar steels are produced and similar
technologies are used. Therefore, we set the values of ρil analyzing similar steel melt
reports, we roughly estimate µi and σ 2

i from 42CrMo steel melt reports. We have eight
new scenarios minimizing the objective (15.17) from subsection 15.3.1 (with equal weights)
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under additional experience-based constraints saying that scenarios have nearly the same
probabilities and that the utilizations are bounded below and above by the existing extremal
cases of their values derived from melt reports. The obtained scenarios are listed in Table
15.6 and the optimal value is 6920; see the last column of Table 15.5.

Table 15.6. Fitted scenarios and probabilities.

Scenario Fe C Mn Si P S Cr Mo Al Cu pk

τ 1
ii 0.989 1.00 0.98 0.041 0.98 0.956 0.968 1.00 0.55 1.00 0.628

τ 2
ii 0.983 1.00 0.985 0.037 0.96 0.945 0.965 1.00 0.55 1.00 0.623

τ 3
ii 0.992 1.00 0.981 0.040 0.97 0.952 0.971 1.00 0.55 1.00 0.620

τ 4
ii 0.987 1.00 0.983 0.038 0.95 0.949 0.969 1.00 0.55 1.00 0.630

τ 5
ii 0.988 1.00 0.982 0.042 0.98 0.961 0.978 1.00 0.55 1.00 0.626

τ 6
ii 0.984 1.00 0.984 0.039 0.95 0.953 0.975 1.00 0.55 1.00 0.625

τ 7
ii 0.993 1.00 0.981 0.040 0.97 0.955 0.981 1.00 0.55 1.00 0.626

τ 8
ii 0.987 1.00 0.983 0.037 0.96 0.944 0.979 1.00 0.55 1.00 0.622

At this moment we may think what to do when more melt reports are available. At
the first glance, it seems that there is no necessity to build artificial scenarios as the number
of scenarios is growing, they are related to historical melts and they may be considered as
representative enough. However, after one year with several melts per day we face again
the question how to reduce the number of scenarios under real-time restrictions. Hence,
the approaches of subsection 15.3.1 and those suggested in Popela and Zeman (1999) or
Popela and Roupec (1999) remain useful. The list may be completed by methods based on
random sampling from the given huge set of scenarios; see, e.g., Shapiro and Homem-de-
Mello (1998).

15.4.2 Three-stage melt control

As the next step we continue with a three stage model: We want to include optimization of
the first step of 42CrMo production. One possibility is reduction of the number of stages to
two simply thinking about all alloying steps incorporated in one stage only. In this case, we
optimize the charge under rather rough forecasting of all further alloying consequences. This
is definitely better than one stage model and it is comparable with another approximating
two-stage model whose horizon is restricted to the end of the first alloying stage. As we
have discussed before, because the charge can be computed in advance, we are not restricted
by the real-time requirements and our model my be larger. Again we use the update of the
previously introduced model (15.5)–(15.10) incorporating melt weights wkt and relative goal
intervals lit and uit . At the beginning, we assume that the scrap composition is fixed to the
midpoints of intervals.

The resulting form of the model is

minimize
∑
j∈J1

cjx
1
j +

3∑
t=2

∑
kt∈Kt

pkt

∑
j∈Jt

cj x
kt

j (15.28)

subject to

mt−1∑
l=1

τ
kt

il


h

a(kt )
l +

∑
j∈Jt−1

alj x
a(kt )
j


− h

kt

i = 0, i = 1, . . . , mt−1, kt ∈ Kt , t = 2, 3,

(15.29)
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lit−1

∑
kt∈Kt

pkt
wkt ≤

∑
kt∈Kt

pkt
h

kt

i ≤ uit−1

∑
kt∈Kt

pkt
wkt , i = 1, . . . , mt−1, t = 2, 3,

(15.30)

li3w
k4 ≤ h

k3
i +

∑
j∈J3

aij x
k3
j ≤ ui3w

k4 , i = 1, . . . , m3, (15.31)

wkt =
mt∑
i=1

h
kt

i , kt ∈ Kt , t = 1, . . . , 4, (15.32)

(x1
1 , . . . , x

1
n1

) ∈ X , x
kt

j ≥ 0, kt ∈ Kt , j ∈ Jt , t = 2, 3, (15.33)

wk3 ≥ w4
L, wkt ≤ wt+1

U , t = 1, 2, 3. (15.34)

With the charge, special metallurgical constraints may be added, from the simplest bounds on
the scrap amount, on the sum of amounts of return materials to the additional constraints based
on linear functions of the melt composition (restricted amount of the sum of phosphorus and
sulfur, satisfactory C-equivalent, etc.; see Popela (1998)). In general, all these constraints
can be modeled by a polyhedral set X . Therefore, we do not present them explicitly although
they were utilized in computations.

We are ready now to present computational results. The input data are again taken
from Tables 15.1–15.4. At first, we get z1

HB,min = 70601 as a consequence of the melt report
information. Then, knowing melt related inputs xt

j , j ∈ Jt , t = 2, 3 and measurement results
ht

i, i = 1, . . . , mt , t = 2, 3, solving two systems of separate linear equations (15.16), we can
easily identify the measurement-based scenario of utilizations related with the melt report in
question, which consists of two diagonal matrices with elements τ

kt

ii , i = 1, . . . , mt , t = 2, 3.
In what follows, we solve program (15.28)–(15.34) for this scenario and obtain the best
single scenario cost z1

SB1,min = 55065. Similarly, we may obtain results for remaining three
scenarios. The last two columns of Table 15.4 indicate that we may save between 16 −22%.
However, further computations provide Table 15.7 that is based on analogous analysis as
Table 15.5 for two-stage model. And the conclusion is quite clear, real savings with just one-
scenario approach will be significantly lower. Therefore, we utilize approaches developed
in section 15.3.

Table 15.7. Comparison of optimal solutions.

Inputs x1
j,HB x1

j,SB1,min x̂1
j,SB1,min x1

j,SB4,min x1
j,SB16,min x1

j,SBcov ,min x1
j,SBri,cov ,min

RM955 6000.0 5780.3 5830.6 5902.1 6172.6 5930.3 6010.6
T951 5000.0 4900.5 4930.5 4950.1 5120.1 5200.1 5150.5
Scrap 5400.0 5600.2 5809.7 5510.0 5107.7 4960.0 4820.3
Coke 210.0 180.4 200.3 190.0 198.1 192.0 193.0
Objective z1

HB z1
SB1,min ẑ1

j,SB1,min z1
SB4,min z1

j,SB16,min z1
j,SBcov ,min z1

j,SBri,cov ,min

function 70601 55065 57112 59601 61396 60020 60997

Using the four melt reports we may derive data for 4-scenario-based model. Ex-
ploitation of these melt reports on the complete melt implies that there is a one-to-one
correspondence of the terminal nodes indexed by 5, . . . , 8 and their ancestors, a(k) = k −4,
k = 5, . . . , 8, elements of K2 listed in Table 15.4. The computation based on the fan of these
four scenarios will return the total expected cost of the production process (consisting now
of the charge and alloying) z1

SB4,min = 59601. As in subsection 15.4.1, we may compute
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values z1
SB4

(x1
HB) = 66934 for the historical first-stage solution, z1

SB4
(x1

SB1,min) = 63121

for the optimal first-stage solution based on one scenario and z1
SB4

(x̂
1
SB1

) = 62115 for the
optimal first-stage solution based on one scenario of expert-based utilizations. For the related
first-stage optimal solutions x1 and some additional results, see Table 15.7.

The conclusion is similar to that in section 15.4.1. The use of optimization, even for
the deterministic (one-scenario) problem is better then the melter’s intuition and experience
(9.18% savings in our example). The practitioners may achieve some improvement using
the expert-based scenario (10.18% savings) to hedge against uncertainty. Nevertheless, the
numerical results provide again an evidence that the proposed scenario-based stochastic
programming approach is the right way to hedge against uncertainty (15.58% savings for
four scenarios).

The next questions are how to increase the number of scenarios and how to create
a nontrivial scenario tree to capture the multistage decision structure of the problem. The
first step could be simple. As discussed in subsection 15.3.2, we may assume the interstage
independence. Accordingly, we may generate a scenario tree with 42 = 16 scenarios from
Table 15.4. The result is z1

SB16,min
= 61396 (12.42% savings).

In practise, the interstage dependence has not yet been analyzed, so it is hard to get
reliable experts’ opinions. The common sense says that if random utilizations of certain
elements have been high for the first stage, it may be caused by a short time of heating and
the nonrealized loss may be realized during the alloying phase. Hence, negative correlations
between stage related utilizations may occur. We shall apply again the general idea of
moment fitting approach assuming for simplicity that the instage structure of utilizations is
fully specified by the related melt report and also that there is no dependence between losses
of different elements belonging to different stages. Similarly as in subsection 15.4.1 we use
the moment conditions on utilizations in both stages and on their interstage correlations. In
the fitting objective function, such as (15.17), we put a lower weight (25%) on terms fitting
interstage covariances. The results of our computations are listed in Table 15.8.

Table 15.8. Fitted scenarios and probabilities for 4 × 2 tree.

Symbol Fe C Mn Si P S Cr Mo Al Cu pk

τ 1
ii 0.981 1.00 0.978 0.040 0.99 0.96 0.961 1.00 0.55 1.00 0.272

τ 2
ii 0.978 1.00 0.985 0.037 0.96 0.945 0.965 1.00 0.55 1.00 0.230

τ 3
ii 0.989 1.00 0.979 0.040 0.97 0.952 0.971 1.00 0.55 1.00 0.210

τ 4
ii 0.982 1.00 0.983 0.038 0.95 0.949 0.969 1.00 0.55 1.00 0.288

τ 5
ii 0.988 1.00 0.982 0.042 0.98 0.956 0.977 1.00 0.55 1.00 0.526

τ 6
ii 0.984 1.00 0.978 0.039 0.94 0.951 0.975 1.00 0.55 1.00 0.474

τ 7
ii 0.991 1.00 0.984 0.041 0.97 0.952 0.978 1.00 0.55 1.00 0.591

τ 8
ii 0.987 1.00 0.987 0.038 0.96 0.947 0.976 1.00 0.55 1.00 0.409

τ 9
ii 0.982 1.00 0.981 0.042 0.98 0.961 0.978 1.00 0.55 1.00 0.544

τ 10
ii 0.985 1.00 0.986 0.040 0.97 0.953 0.975 1.00 0.55 1.00 0.456

τ 11
ii 0.993 1.00 0.982 0.041 0.97 0.955 0.981 1.00 0.55 1.00 0.601

τ 12
ii 0.987 1.00 0.985 0.035 0.96 0.944 0.979 1.00 0.55 1.00 0.399

The last but one column of Table 15.7 indicates that some improvement of the objective
function value may be expected. The question is the reliability of our estimates on interstage
dependence characteristics.

The next step is to consider the random input. We know from Table 15.1, that this
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concerns only the scrap. We may extend our model (15.28)–(15.34) adding first stage input
scenarios using a modification of (15.11)–(15.14) to the three stage problem.

We consider only random content of chromium (Cr) as it is the important element for
the final composition and iron (Fe) as it is the main part of the alloy and it indirectly describes
the variation of the remaining elements within the scrap. We create 32 = 9 equiprobable
scenarios for scrap composition using ideas of subsection 15.3.3 (scenarios specified by
aE

ij − δij , aE
ij , aE

ij + δij , with δij = 2/3(aij − aE
ij )). Finally, we combine these nine scenarios

with eight scenarios of utilizations obtained by the moment fitting procedure listed in Table
15.8. The scrap composition data are utilized from Table 15.1. Bounds aij and aij are given
by the related rows denoted by L and U. The choice of the coefficient 2/3 was preferred
because it generates more distinct scenarios than other possibilities.

Analyzing results from Table 15.7, we may conclude that considering the random
composition of the scrap we have significantly decreased the risk of its use (cf. inputs for
other scenario-based models and notice the difference in the scrap input).

The obtained results based on 72 scenarios (z1
SBri,cov,min

= 60997 and savings 13.60%,
see the last column of Table 15.7) are considered as the most realistic and numerically
tractable representation of uncertainty achieved so far.

We emphasize that for illustrating purposes, we have chosen several melt reports of a
beginning melter. Because he was significantly unsuccessful, we have got the opportunity
to explain many different aspects just with one data set. Although data from experienced
melters are “more boring,’’ numerical experience shows that also in these cases, we may
save significant amount of money. The one-scenario models are usually forecasting savings
about 12% whereas the real savings decrease to 3%. With scenario models discussed above
it is quite realistic to expect real savings between 5% and 10%.

Regarding the modeled technological process, the obtained solutions must be inter-
preted as suboptimal only. Nevertheless, they are significantly better than solutions obtained
by the contemporary techniques used in melt control.

In this context there is also an interesting interpretation of EVSI (Expected Value of
Scenario Information; see Birge and Louveaux (1997)) for the charge problem: We may
compare whether the costs of sorting scrap are less than the attained profit. It means to
compute the model for unsorted scrap and compare the results for the case when the scrap
composition is fully known. In our case it means to distinguish different types of input scraps
with small intervals of uncertainty for aij .

15.5 Discussion and extensions
The scope of this paper has been mostly restricted to the iron production problem without
inclusion of technological and storage constraints. Neither the environmental aspects nor
the quality of production were taken into account. In principle, without any problems the
model may be extended for additional deterministic constraints and, following ideas of multi-
objective decision making, the objective function may be augmented for an additional term
related to the pollution limitations or to the metal quality.

The models and their implementation were based on several assumptions, such as di-
agonal utilization matrices and fully specified input composition, interstage independence of
utilities, their independence of the input quantities. Some of these assumptions were relaxed
in the discussed scenario generation procedure which in turn made use not only of historical
measurements, but exploited also experts’ opinion. Similarly as for other applications of
scenario-based stochastic programs, no recipe for the best scenario generation and selection
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procedure exists. We observed that simple, sound discretization procedures gave different
scenarios. Sensitivity of the results (of the minimal costs and the best initial charge) with re-
spect to the selected scenarios and their robustness related to various simplifying assumptions
should be carefully analyzed. Bounds based on the best- and worst-case analysis delineated
briefly in subsection 15.3.3 may help.

At the end, three specific problem and model properties of the stochastic program in
question have to be underlined:

1. Stages are not defined by modeler’s choice because they are given by the modeled
production process.

2. Because the filled furnace cannot be enlarged or emptied during the process (contrary to
the assumed unlimited borrowing and lending possibilities in financial applications, for
example), the related hard constraints imply that relatively complete recourse cannot
be assumed. Hence, feasibility of the first-stage solution must be analyzed.

3. Computations related to the alloying stages should be realized in real time and this asks
for a numerically tractable scenario generation procedure which results in a relatively
small number of representative scenarios.
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