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Abstract. The bond portfolio management problem is formulated as a stochastic program based on interest
rate scenarios. The coefficients of the resulting program are subject to errors of various kind. In this paper,
we complement the theoretical stability results of [10] by simulation experiments. Adapting the approach
of [16] to problems based on perturbed yield curves, we then provide bounds for the optimality gap for
various candidate first-stage solutions.
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1. Introduction

The main purpose of the considered bond portfolio management problem is to maxi-
mize the expected value of a bond portfolio of a risk averse or risk neutral institutional
investor over time. There are various options concerning the choice of an appropriate
model, starting with duration based immunization models or dedicated bond portfolio
management models, cf. [19], up to multistage stochastic programs which can be used
for complex asset/liability management problems, cf. [21]. In this paper, we model the
problem, similarly as in [15] or [12], as a multiperiod two-stage scenario based stochas-
tic program with random recourse. The main random element is the evolution of the
short interest rate over time which is regarded as the only factor that drives the prices of
the considered government bonds.

Given a sequence of equilibrium future short term interest rates rt valid for the time
interval (t, t + 1], t = 0, . . . , T − 1, the fair price of the j th bond at time t just after the
coupon was paid equals the total value of the cashflows fjτ , τ = t +1, . . . , T , generated
by this bond in subsequent time instances discounted to t :

Pjt (r) =
T∑

τ=t+1

fjτ

τ−1∏
h=t

(1 + rh)−1, (1.1)
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where T is greater than or equal to the time to maturity.
To build the stochastic programming model, one assumes a suitable probability

distribution of the T – dimensional vector r of the short rates rt , t = 0, . . . , T − 1,
where r0 (the rate valid in the first period) is supposed to be known. We intend to work
with a discrete approximation of this distribution whose support consists of finitely many
atoms, called scenarios; we shall index them as rs , s = 1, . . . , S, and assign them
probabilities ps > 0, s = 1, . . . , S,

∑
s ps = 1.

We denote
j = 1, . . . , J indices of the considered bonds and Tj the dates of their maturities;
T = maxj Tj ;
t = 0, . . . , T0 the considered discretization of the planning horizon;
bj � 0 the initial holdings (in face value) of bond j ;
b0 the initial holding in riskless asset;
f s

jt cashflow generated under scenario s from bond j at time t expressed as a frac-
tion of its face value;

ξ s
jt and ζ s

jt are the selling and purchasing prices of bond j at time t for scenario
s obtained from the corresponding fair prices (1.1) based on the scenario s rates rs by
adding the accrued interest As

jt and by subtracting or adding scenario independent trans-
action costs and spread; the initial prices ξj0 and ζj0 are known, i.e., scenario indepen-
dent;

Lt is an external cashflow, e.g., a scenario independent liability, at time t ;
xj/yj are face values of bond j purchased/sold at the beginning of the planning

period, at t = 0; xs
jt /ys

jt are the corresponding values for period t under scenario s.
zj0 is the face value of bond j held in portfolio after the initial decisions xj , yj have

been made; zs
jt are the corresponding holdings for period (t, t + 1] under scenario s.

The first-stage decision variables xj , yj , zj0 are nonnegative,

yj + zj0 = bj + xj ∀j, (1.2)

y+
0 +

∑
j

ζj0xj = b0 +
∑

j

ξj0yj , (1.3)

where the nonnegative variable y+
0 denotes the surplus in the riskless asset (cash) after

the first-stage decisions. Notice that in the first stage no borrowing is allowed.
Provided that an initial trading strategy determined by feasible scenario indepen-

dent first-stage decision variables xj , yj , y+
0 (and zj0) for all j has been accepted, the

subsequent second-stage scenario dependent decisions have to be made in an optimal
way regarding the goal of the model, i.e., to maximize the final wealth subject to con-
straints on conservation of holdings and rebalancing the portfolio:

maximize Ws
T0

:=
∑

j

ξ s
jT0

zs
jT0

+ y+s
T0

− αy−s
T0

(1.4)

subject to zs
jt + ys

jt = zs
j,t−1 + xs

jt ∀j, 1 � t � T0, (1.5)
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∑
j

ξ s
j t y

s
jt +

∑
j

f s
jtz

s
j,t−1 + (

1 − δ1 + rs
t−1

)
y+s

t−1 + y−s
t

= Lt +
∑

j

ζ s
j t x

s
jt + (

1 + δ2 + rs
t−1

)
y−s

t−1 + y+s
t , 1 � t � T0, (1.6)

xs
jt � 0, ys

jt � 0, zs
jt � 0, y−s

t � 0, y+s
t � 0 ∀j, 1 � t � T0, (1.7)

with y−s
0 = 0, y+s

0 = y+
0 , zs

j0 = zj0 ∀s, j . The variables y+s
t /y−s

t describe the (un-
limited) lending/borrowing possibilities for period t under scenario s. The variable δ1

accounts for the difference between the returns of bonds and cash while δ2 accounts for
the positive cost of borrowing. The multiplier α � 1 is fixed according to problem area;
in general, it can be interpreted as a penalty for a debt outstanding at the end of the
planning horizon.

Denote by WT0(r
s; x, y, z0, y+

0 ) the corresponding maximal value of (1.4), a con-
cave and piece-wise linear function in x, y, z0, y+

0 . The full stochastic program can be
now written as

maximize
S∑

s=1

psU
(
WT0

(
rs; x, y, z0, y+

0

))
(1.8)

subject to nonnegativity constraints on all variables and subject to (1.2)–(1.3), with U a
concave nondecreasing utility function.

There are various models of evolution of interest rates; we consider here inter-
est rate scenarios sampled from the binomial lattice obtained according to the Black–
Derman–Toy (BDT) model [7] which, according to [3] “is currently close to an industry
standard”.

The uncertainty concerning the numerical values of the components of the interest
rate scenarios, prices and of the resulting optimal solution of the portfolio management
problem stems mostly from the input information used for calibration and fitting the
binomial lattice, namely, the initial term structure obtained from the existing market
data, and the applied strategy for selection of a modest number of scenarios from the
2T −1 scenarios available from the lattice.

According to [10], the scenario subproblems (1.4)–(1.7) are stable linear programs
in the sense of Robinson [18] provided that certain acceptably weak and natural condi-
tions on the model coefficients (e.g., ζ s

jt > ξ s
jt ∀j, t, s) are met. This means, i.a., that

the optimal value function WT0(r
s; x, y, z0, y+

0 ) is jointly continuous in rs , x, y, z0, y+
0 .

Hence, also the objective function (1.8) is jointly continuous in rs , x, y, z0, y+
0 and in ps

∀s and concave in the first-stage decision variables on the compact convex set described
by (1.2), (1.3) and nonnegativity of all variables. This implies that the optimal value
function of the full problem is continuous in scenarios and their probabilities and that
for small changes of coefficients, also the sets of optimal first-stage solutions display
certain continuity properties.

However it is important to quantify the meaning of “small errors” in relation to the
input market data. To this purpose we design suitable framework for simulations which
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help to identify the magnitude of the “small errors”. Moreover, we exploit probabilistic
bounds of Mak et al. [16] to test the quality of the first-stage solutions obtained for
the binomial lattice calibrated by means of the estimated yield curve, from the point of
view of the hypothetical true problem for which the calibration of the binomial lattice
does not involve errors due to replacing the yield curve by its estimate. Such bounds
provide an evidence about robustness of alternative first-stage solutions with respect to
perturbations of the input yield curve.

Another important question is what changes can be expected in connection with
inclusion of additional out-of-sample scenarios. With respect to changes of the optimal
value function, this problem was studied via the contamination technique, see [13,14],
which has proved to be a useful and numerically tractable technique.

In the next section, we shall detail the procedure for scenario generation which is
the core of the simulation studies described in section 3. Numerical results are presented
in section 4.

2. Generation of scenarios

According to the Black–Derman–Toy [7] model, at each time point t there are t + 1
possible stages on the binomial lattice. The resulting one-period rates rs

t for scenario s

and for the time interval (t, t + 1] are given as

rs
t = rt0k

it (s)
t , it (s) =

t∑
τ=1

ωs
τ , (2.1)

where rt0 are the base rates, kt the lattice volatilities and it (s) is the number of the “up”
moves, coded by ωτ = 1, for the given scenario s which occur at time points 1, . . . , t .

To calibrate the Black–Derman–Toy model, i.e., to get all base rates rt0 and lattice
volatilities kt , means to use the yield and volatility curve related to yields to maturity of
zero coupon government bonds of all maturities corresponding to the chosen time steps
of the lattice. Such bonds are rare in the market and have to be replaced by synthetic zero
coupon bonds whose yields correspond to yields of fixed coupon government bonds that
do not contain any special provision such as call or put options. Out of several numerical
procedures for fitting the lattice parameters, see [1], we apply the forward Bjerksund and
Stensland [6] algorithm.

The calibration of the binomial lattice of the BDT model, in agreement with the
(estimated) today’s market term structure, provides 2T −1 interest rate scenarios rs whose
common first component equals r0 and the subsequent components rs

t (valid for the
interval (t, t+1], where t = 1, . . . , T −1), depend on scenario s. A smaller, manageable
number of scenarios has to be selected or sampled from this large set. An example is the
nonrandom sampling technique of Zenios and Shtilman [20] which aims at a uniform
approximation of the expected utility of the final wealth (1.8) computed for the full set
of the 2T −1 scenarios of the lattice by an expected value over a subset of these scenarios.
For a procedure based on ideas of importance sampling we refer to Nielsen [17]. The
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resulting scenarios rs are identified by the full set of the lattice parameters rt0, kt , t =
1, . . . , T − 1, and by the scenario dependent trajectories through the lattice identified by
the sequences it (s), t = 1, . . . , T − 1. This allows us to study separately the influence
of errors in the lattice parameters, the main topics of the present paper, and the impact
of the sampling strategy.

Various regression models have been used to estimate the yield curve from the ex-
isting market data on yields of fixed coupon government bonds at the given day. Having
tried different parametric nonlinear models as well as nonparametric ones, as reported
in [11], we chose to use a simple form of the yield curve applied already by Bradley and
Crane [9]

g(t;α, β, γ ) = αtβeγ t (2.2)

and we applied its linearized form to the logarithms of yields: for the market information
consisting of yields ui , i = 1, . . . , n, of various fixed coupon government bonds (without
option) characterized by their maturities ti , the postulated model is

lg ui = lg α + β lg ti + γ ti + ei, i = 1, . . . , n, (2.3)

where the random errors ei , i = 1, . . . , n, are independent, normal N (0, σ 2).
The least squares estimates lg α̂, β̂, γ̂ of parameters lg α, β, γ are approximately

normal, with the mean values equal the true parameter values and the covariance matrix

σ 2)−1, ) = G�G,

where G is the matrix of gradients of the function lg g(ti; θ) in (2.3) with respect to the
parameters and σ 2 is estimated by

s2 = 1

n − 3
min

lg α,β,γ

n∑
i=1

(lg ui − lg α − β lg ti − γ ti)
2.

To estimate the yields of zero coupon bonds of all required maturities, which are
not directly observable, t̃ 
= ti , we replace the unobservable logarithm of yield by the
corresponding value on the already estimated log-yield curve. Such estimates are subject
to additional error.

We assume that the logarithm of the yield ũ = u(t̃) for maturity t̃ is

lg ũ = lg α̂ + β̂ lg t̃ + γ̂ t̃ + ẽ

with ẽ normal, independent of ei , i = 1, . . . , n, Eẽ = 0, var ẽ = σ 2 and with the true
parameter values denoted by asterisks. Then lg ũ is approximately normal,

lg ũ − lg α̂ − β̂ lg t̃ − γ̂ t̃ ∼ N
(
0, σ 2

(
1 + Q2(t̃)

))
, (2.4)

where

Q2(t) = [1, lg t, t])−1[1, lg t, t]�. (2.5)
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We assume in this paper that volatilities of yields or log-yields are not a subject
of perturbation, which of course is a simplification. We use here “volatility of errors”
which is the (time dependent) standard deviation of the normal distribution (2.4).

3. Simulation studies

The simulation experiments described below aim at quantification of errors that are
present in the optimal first-stage solution of the stochastic programming model (1.8)
when a perturbation in the yield curve is introduced. As we have observed in the previ-
ous section, the perturbations will propagate in the interest rates lattice, in the prices and
finally in the coefficients of model (1.4), (1.6). The method of estimating the yield curve
by parametric regression presented briefly in section 2 provides a basis for simulation
of log-yields at individual points t which are needed for fitting the binomial lattice; we
keep the initial volatility curve.

We devise three approaches for simulation, all requiring repeated solution of the
scenario based program (1.8) for various sets of coefficients. The former allows to con-
struct simple statistics about the optimal values from simulation while the latest two
result in probabilistic bounds on the “optimality gap” which is the difference in objec-
tive values between a candidate solution and the optimal solution.

The first simulation approach requires two initial steps:
(i) At each point t of the discretization of the time horizon T generate the ran-

dom error e by sampling from the normal distribution N (0, σ 2(1 + Q2(t))) and put
lg ut = lg α̂ − β̂ lg t − γ̂ + e. Let e be the vector of the independent normally distributed
components e obtained in the described way.

(ii) For each vector of log-yields simulated according to (i), get the vector of sim-
ulated yields u together with the original volatility curve, fit the lattice and evaluate the
interest rates rs

t according to (2.1), prices P s
jt using (1.1) and the coefficients ξ s

jt , ζ s
jt of

(1.4), (1.6) for s = 1, . . . , S according to the chosen sampling strategy.
By repeated solution of the scenario based programs (1.8) for various sets of co-

efficients obtained by the simulation procedure (i), (ii) one gets repeated “observations”
ϕk, k = 1, . . . , K, of the optimal value and of the optimal initial trading strategy x̂k ,
ŷk , ẑk

0, ŷ+k
0 which allows to construct an empirical distribution of the maximal expected

utility of the final wealth, a useful information for subsequent, sample-based statistical
inference, and to discover how the bonds in the given portfolio cluster with respect to
the buy, sell or do nothing options.

The second simulation procedure adapts the approach suggested by [16] to test
the quality of the optimal first-stage solution, x̂, ŷ, ẑ0, ŷ+

0 based on the estimated yield
curve. Notice that the technique can be used to test the quality of any ad hoc candidate
first-stage solution. More specifically, the quality testing is based on the construction of
probabilistic bounds on the “optimality gap” of the objective function values which will
be detailed below.

Let us consider the first-stage (optimal) solution x̂, ŷ, ẑ0, ŷ+
0 of the unperturbed

problem as our candidate solution. Denote by f̂ (ek) the value of the objective function
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in (1.8) evaluated at this candidate solution for scenarios obtained in the kth simulation
experiment and by ϕ∗ the “true” optimal expected wealth based on a complete stochastic
information, i.e., the true yield curve, which should have been used for calibration of the
lattice.

The simulation procedure requires the two initial steps (i) and (ii) and the following
ones:

(iii) Let Kl be the number of simulation experiments; for i.i.d. ek the average value

L(Kl) = 1

Kl

∑
k

f̂
(
ek

)
(3.1)

is a stochastic lower bound for the “true” optimal value ϕ∗; it is an asymptotically normal
estimate of the true expectation of the (random) value f̂ (e) of the objective function
evaluated at the decision x̂, ŷ, ẑ0, ŷ+

0 (that need not equal the “true” optimal decision).
According to the central limit theorem, we have asymptotically

√
Kl[L(Kl)−Ef̂ (e)] ∼

N (0, σ 2
l ), for Kl → ∞, where σ 2

l = var f̂ (e).
(iv) To get a stochastic upper bound, one has to use Ku i.i.d. batches of K simulated

vectors ekh, h = 1, . . . , Ku, k = 1, . . . , K, to compute Ku optimal values f h∗ :=
max 1

K

∑K
k=1 f (ekh) of the objective functions in (1.8) that correspond to simulated data

ekh ∀k and their averages

U(Ku) = 1

Ku

∑
h

f h∗. (3.2)

Now, U(Ku) is a stochastic upper bound for the “true” optimal value ϕ∗, cf. [16] and,
once more it is an average of i.i.d. values f h∗ so that the central limit theorem implies
its asymptotically normal distribution. This bound does not depend on the candidate
solution and to evaluate it means to solve Ku stochastic programs based on KS scenarios
to get the values f h∗.

(v) An approximate (1−2α)-confidence interval for the optimality gap ϕ∗−Ef̂ (e)
of the obtained first-stage decision x̂, ŷ, ẑ0, ŷ+

0 is

[
0,

(
U(Ku) − L(Kl)

)+ + εl + εu

]
, (3.3)

where

εu = u(1 − α)su(Ku)√
Ku

, εl = u(1 − α)sl(Kl)√
Kl

, (3.4)

u(1 − α) is the 100(1 − α)% quantile of distribution N (0, 1), s2
u(Ku) is the sample

variance of f h∗, h = 1, . . . , Ku, and s2
l (Kl) is the sample counterpart of the variance

σ 2
l .

The third approach improves the upper bound of (3.3). The simulation procedure
again requires step (i) and (ii) and the following one:
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(vi) Estimate the optimality gap, say Ĝ, at the first-stage solution x̂, ŷ, ẑ0, ŷ+
0

directly. The empirical counterpart of Ĝ := ϕ∗ − Ef̂ (e) based on the sample of size K

is

ĜK = max
1

K

K∑
k=1

f
(
ek

) − 1

K

K∑
k=1

f̂
(
ek

)
, (3.5)

where, similarly as in (iv), f (ek) denotes the objective function in (1.8) which corre-
sponds to simulated perturbations ek and the optimality gap Ĝ � EĜK , see [16]. Us-
ing Kg i.i.d. batches of K simulated vectors ekh, h = 1, . . . , Kg , k = 1, . . . , K, we
compute Kg values of empirical optimality gaps Ĝh

K , h = 1, . . . , Kg . According to
the central limit theorem we have asymptotically

√
Kg[B(Kg) − EĜK ] ∼ N (0, σ 2

g ),

for Kg → ∞, where B(Kg) = 1
Kg

∑Kg

h=1 Ĝh
K and σ 2

g = var ĜK. Hence, with εg =
u(1 − 2α)sg(Kg)/

√
Kg where s2

g(Kg) is the sample variance of Ĝh
K , h = 1, . . . , Kg , we

have an approximate confidence interval for Ĝ[
0, B(Kg) + εg

]
, (3.6)

which is again valid with probability greater or equal to 1 − 2α.
These simulation experiments, namely, the repeated evaluation of the optimal val-

ues f h∗, are demanding both for the computing time and memory point of view and a
high performance environment can be of some help.

4. Numerical results

The numerical experiments were done for portfolio of bonds whose composition has
been suggested by a local bank and it was considered a good representative of an invest-
ment strategy including some short, medium, long bonds together with puttable bonds;
see table 1.

The quantities in the portfolio composition are expressed in lots of million items.
The initial value of this portfolio in market prices of September 1st 1994 is W0 =
10465.86 million Liras which includes also cash of 500 million Liras. No liability is

Table 1
Portfolio composition on September 1st, 1994.

Bonds Qt Coupon Payment dates Exercise Redemp. Maturity

BTP36658 10 3.9375 01Apr & 01Oct 100.187 01Oct96
BTP36631 20 5.0312 01Mar & 01Sep 99.531 01Mar98
BTP12687 15 5.2500 01Jan & 01Jul 99.231 01Jan02
BTP36693 10 3.7187 01Aug & 01Feb 99.387 01Aug04
BTP36665 5 3.9375 01May & 01Nov 99.218 01Nov23
CTO13212 20 5.2500 20Jan & 20Jul 20Jan95 100.000 20Jan98
CTO36608 20 5.2500 19May & 19Nov 19May95 99.950 19May98
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included, the value of α is set to 1 and the model parameters δ1 and δ2 are fixed respec-
tively to 0.0005 and 0.0016. Only the linear utility function was applied.

The yield curve for September 1, 1994 and the volatility of errors were estimated
from the market data of the day according to the linearized Bradley–Crane model, see
(2.3)–(2.5). To generate normally distributed perturbations, normally distributed random
numbers have been generated according to [2]. The perturbed yields vectors and the
initial volatility of errors were used to build the lattice using the Bjerksund–Stensland
[6] approximation.

One characteristic which is common to all experiments is that all perturbations to
the initial yield curve are maintained in a limited range. More precisely, the error vector
e is built to satisfy the property that its components belong to a normal distribution
with zero mean and standard deviation equal to h10−2σ [1 + Q2(t)]1/2, where h is in
the range (0, 1]. It has to be noted that, according to our experience, all numerical
procedures used to generate the binomial lattice are quite sensitive to big and irregular
fluctuations in the initial input yield curve. This observation confirms the comment of [8]
and it in fact gives an upper bound to “small perturbations” of the data in the considered
problem. Figure 1 shows graphical examples of perturbed yield curves that we used in
our simulation.

The parameters of the binomial lattice have been computed with a monthly dis-
cretization along 5 years. This choice guarantees that the perturbations do not destroy
the lattice construction. To evaluate the bonds with longest maturities, interest rates have
been kept constant after the 5th year and equal to the last computed interest rate value.
Bond prices along the lattice were computed by backwardation using formula (1.1) while
for CTO prices we took into account the possibility of exercise at the strike date depend-
ing on interest rate scenarios.

Figure 1. Perturbed yield curves (Sept. 1, 1994).
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The sampling strategy was chosen between different alternatives:
– use of Zenios and Shtilman [20] nonrandom sampling strategy with different

length in covering fully the beginning of the lattice, and proceeding with alternating
up-down movements, see [4]; the acronyms are ZS(No. of scenarios);

– use of 8 particular scenarios along the planning horizon (t = 1, . . . , 12), as
reported in exhibit 1 in appendix, and proceed with alternating up-down movements, cf.
[4]; the acronym is Part(8).

The first alternative, tested for 8, 16, 32 and 64 scenarios corresponding to fully
covering the beginning of the lattice till discretization times 3, 4, 5, 6 gives identical
first-stage optimal solutions with slightly different optimal values for 8 and 32 scenarios
and also for 16 and 64 scenarios; however some parts of the lattice were completely
ignored in the simulation. For this reason we decided to check a second alternative
where the scenarios were constructed in such a way to cover better the lattice up to the
model horizon T0 = 12. Again, we obtained a first-stage optimal solution different from
the previous ones, but with an optimal value close to the previous ones. Table 2 shows
in details the values obtained.

All the numerical tests were run on a PC IBM ThinkPad 380, based on Intel Pen-
tium 266 Mhz, 64 Mbytes RAM, under Windows 95 operating system. Visual C++
language (v. 4.0 compiler) was used on estimating the yield curve, on fitting the lattice
and on generating the perturbed yield curve. The optimization problem was solved by
the MINOS solver available in the GAMS package.

The expected value of perfect information (EVPI) and the value of stochastic so-
lution (VSS), see [5], were computed for the problems Part(8), ZS(8) and ZS(16), see
table 3. As expected, the Part(8) sampling strategy seems to represent better uncertainty
due to a large EVPI value associated to it in comparison to the remaining two sampling
strategies.

For the first part of the simulation study (i)–(ii) suggested in the previous section,
the number of simulations, i.e., the value of K has been fixed to 100 and then extended
to 1500 to obtain a better statistics concerning possible clustering. During this first
experiment, we chose the 8 particular scenarios as described in Part(8) alternative.

Table 2
First-stage optimal solutions.

Portfolio Initial Part(8) ZS(8) ZS(16) ZS(32) ZS(64)

Cash 500 0 0 7947 0 7947
BTP36658 10 0 0 10 0 10
BTP36631 20 0 0 0 0 0
BTP12687 15 15 103.4 15 103.4 15
BTP36693 10 0 0 0 0 0
BTP36665 5 114.4 0 0 0 0
CTO13212 20 0 0 0 0 0
CTO36608 20 0 0 0 0 0

Optimal value 11499 11560 11472 11559 11470
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Table 3
EVPI and VSS values for different sampling strategies.

Uncertainty measures Part(8) ZS(8) ZS(16)

EVPI 689.8031 73.1475 104.8809
VSS 2096.5764 1677.1441 2754.7234

The initial composition of the portfolio on September 1st, 1994 together with a
survey on how the considered bonds are distributed with respect to the strategies of sell-
ing, holding and buying, is displayed in figure 2 for K = 1500 (results are very similar
for K = 100); the optimal first-stage solutions together with the simulated optimal val-
ues ϕk for the first 100 simulation runs are displayed in exhibit 2. These exhibits and
figures suggest that there are only a few typical optimal strategies which, however, are
far from being similar. The reason is that the short rates and the prices obtained for
perturbed yield curves differ essentially. Even when the progression of errors in the
Black–Derman–Toy lattice was limited as the interest rates were kept constant after the
fifth year, we found out that for the perturbed problems the rates can differ up to 80%
(e.g., 78.8169% in the month 56 for the simulation run marked by * in exhibit 2) and,
consequently, the prices, especially for the long bond, exhibit relatively large differences,
too (e.g., for −14.3325% of the price of the long bond in the last period for the simu-
lation run * in exhibit 2). These errors differ for different simulation runs, e.g., for that
marked by ** in exhibit 2, the maximal difference of rates is 43.7424% and the maximal
difference in prices is 4.4136% and they depend on the magnitude of perturbations of
the yield curve which was less than 1.2472% in simulation **, and attained maximum
of 1.5459% in simulation *. The low price of the long bond at the planning horizon for
simulation * results in investment into cash only, whereas the increase of the price of the
long bond in simulation ** is reflected by investing solely into this bond.

Figure 2. First-stage investment strategies.
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Another observation comes from exhibit 2 by comparison of the performance of
expected values for the buy & hold strategy at the termination T0. The expected values
are computed again for the same 100 simulations of the particular 8 scenarios selected
according to exhibit 1 which are used in the simulated stochastic programs, and their
evaluation takes into account expiration of the CTOs and the cashflows due in the con-
sidered time period of September 1, 1994–August 31, 1995. Comparing the results for
the expected values of the buy & hold strategies, see buy-hold column of exhibit 2, with
those for optimal values for the 100 simulated stochastic programs, it is clear that the
distribution of the stochastic programming values is shifted to higher function values, is
nonsymmetrical, see exhibit 3, case C, and provides possibilities of rather large values.

Statistics for optimal values that correspond to particular strategies, which can be
verbally described for instance as “cash only” – case A, and “long bond only” – case B,
is given on exhibit 3. Clearly, it is the investment in the long bond which provides a
very skewed distribution with possibilities of large optimal values. The collection of the
first-stage optimal solutions of perturbed problems says that, under the fitted yield curve,
the longest bond is a dominant investment in the most of perturbed cases (see exhibits 2
and 4).

For 100 simulations, the mean of the (empirical) optimal values ϕk is 13041 with
the standard deviation of 2479, for 1500 simulations this changes to the mean value
12911 with the standard deviation of 2461. The resulting 2σ confidence interval around
the true optimal value is relatively large and covers also very low values which is in
agreement with the displayed skewness, and nonnormal behavior in general, of these
optimal values; see exhibit 3, case C.

These preliminary results are not satisfactory concerning the length of confidence
intervals for the optimal value. Moreover, due to the reported relatively large differences
in coefficients of the linear program for some of coefficients and some perturbations,
the theoretical stability properties of optimal solutions for the perturbed data cannot be
expected for the chosen magnitude of perturbations of the yield curve. The stability
properties can be demonstrated after the magnitude of the perturbations is decreased to
h10−5σ [1 + Q2(t)]1/2. In that case, the optimal first-stage solutions are equal to that for
the unperturbed case in all simulation runs.

To get information about the robustness of the obtained candidate solutions with
respect to the perturbed input data we test the quality of the optimal solutions coming
from stochastic programs based on the Part(8), ZS(8) (and also for the ZS(32)) and
ZS(16) (and on the ZS(64)) beds of scenarios, see table 2, and also of the buy & hold
strategy. This can be approached by the method of Mak et al. [16] described in the
second part of section 3.

The sample sizes, i.e., Kl , Ku and K, have been respectively fixed to 250, 25 and
10, and increased to 350, 35, 10 and 500, 50, 10.

The stochastic lower bounds (3.1) were evaluated for the first-stage optimal so-
lutions of the unperturbed stochastic programs based of scenario beds Part(8), ZS(8),
ZS(16) and ZS(32) and for the buy & hold strategy with a feasibility tolerance of E-12
in the optimization solver. Due to the relatively large size of the optimization problems
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which have to be computed repeatedly, the upper bound (3.2) was evaluated only with
precision of E-5 and only for the two stochastic programs ZS(8) and Part(8) based on
8 scenarios. Notice that in this case, evaluation of the upper bound requires a repeated
solution of stochastic programs based on 80 scenarios to get f h∗. The lower and upper
bounds L(Kl) and U(Ku) computed according to (3.1), (3.2), the tolerances εl , εu, see
(3.4), and the optimality gaps obtained as the upper limit of the interval (3.3) are reported
in exhibit 4 for the ZS(8) problem; results for Part(8) problem are similar.

The lowest upper limit for the optimality gap was obtained for the Part(8) based
optimal first-stage strategy and the value of the optimality gap decreases essentially with
the sample size, the worst upper limit for the optimality gap, as expected, is obtained
for the buy & hold investment strategy. We want to stress once more the meaning of
these results: they aim at analysis of the quality of a candidate first-stage solution for a
scenario-based stochastic program (1.8) with coefficients which are influenced by per-
turbations of the input data, in our case, by small random movements of the yield curve.
The recommendation is to use the optimal first stage solution which is based on the par-
ticular choice of the 8 scenarios as the obtained bounds indicate its most robust behavior.

The optimality gaps (3.6), evaluated for the first-stage optimal solutions of the un-
perturbed stochastic programs based of scenario beds Part(8), ZS(8), ZS(16) and ZS(32)
and for the buy & hold strategy, are shown in exhibit 5 for the ZS(8); again, the results
for Part(8) sampling strategy show no substantial differences. What is remarkable is that
the optimality gaps based on (3.6) are much better than those based on (3.3); compare
with exhibit 4.

5. Conclusions

We have proposed a framework which allows to quantify the behavior of our model with
respect to random movements in the initial term structure. It turns out that errors due
to small perturbations of the yield curve propagate into large errors in the short rate
interest rates and, consequently, in relatively large difference in the coefficients of the
linear program so that stability of optimal solutions for perturbed problems cannot be in
general expected. For the considered problem, we found out that the required magnitude
of perturbations for which stability of the optimal solution is achieved is very small.

Therefore we applied the simulation technique based on [16] to test the robustness
of the obtained candidate first-stage solutions. The technique is of a general applicabil-
ity; it only requires i.i.d. replicas of the problem. It can be thus, without any problem,
applied to analysis of the influence of a random sampling strategy for selection of limited
number of scenarios from the whole population.

The reported simulation studies are computationally expensive and require re-
peated replicas of the same kind of computations on different input data. This is exactly
the case when a parallel environment can help in speed-up the overall computing time.
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Appendix. Exhibits

Investment time horizon

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 continue
0 down down down down down down down down down down down down down up&down
1 down down down up down down down down down up down down down up&down
2 down up down down down up down up down down down up down up&down
3 up down up down up down up down up down up down up up&down
4 up down up down up up down up up down up down up up&down
5 up down up up up down up down up up up down up up&down
6 up up up down up up up up up down up up up up&down
7 up up up up up up up up up up up up up up&down

Exhibit 1. Part(8) sampling strategy.



SENSITIVITY OF BOND PORTFOLIO TO RANDOM MOVEMENTS IN YIELD CURVE 281

Exhibit 2. First stage optimal solutions versus buy and hold outcome for perturbed problems.
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Exhibit 2. Continued.
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Exhibit 3. Statistics for optimal values.
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Bounds

Lower bounds for optimal strategies of problems Upper bound

Initial strategy Part(8) ZS(8) ZS(16) ZS(32) Buy-hold
α 1% 1% 1% 1% 1% 1%
u(1 − α) 2,326342 2,326342 2,326342 2,326342 2,326342 2,326342

Sample size 250 250 250 250 250 25
Mean 12137,20 11580,38 11481,84 11580,38 11412,32 12342,58
Std. dev. 2741,76 562,89 83,19 562,89 286,51 1152,37
Error term 403,40 82,82 12,24 82,82 42,15 536,16
Optimality gap 1144,94 1381,19 1409,14 1381,19 1508,58 –

Sample size 350 350 350 350 350 35
Mean 12145,16 11586,09 11482,55 11586,09 11414,38 12342,80
Std. dev. 2655,86 558,72 82,55 558,72 281,52 1052,83
Error term 330,25 69,48 10,27 69,48 35,01 414,00
Optimality gap 941,89 1240,18 1284,51 1240,18 1377,42 –

Sample size 500 500 500 500 500 50
Mean 12165,72 11590,07 11483,39 11590,07 11420,87 12361,18
Std. dev. 2636,76 559,49 82,95 559,49 294,80 1071,14
Error term 274,32 58,21 8,63 58,21 30,67 352,40
Optimality gap 822,19 1181,72 1238,82 1181,72 1323,39 –

Exhibit 4. Lower and upper bounds under ZS(8) sampling strategy.
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Bounds

Gap for optimal strategies of problems
Initial strategy Part(8) ZS(8) ZS(16) ZS(32) Buy-hold
α 1% 1% 1% 1% 1%
u(1 − 2α) 2,053748 2,053748 2,053748 2,053748 2,053748

Sample size 25 25 25 25 25
Mean 205,38047 762,21 860,74 762,21 930,26
Std. dev. 232,06555 952,57 1122,42 952,57 1043,19
Error term 95,32 391,27 461,03 391,27 428,49
Optimality gap 300,70 1153,48 1321,77 1153,48 1358,76

Sample size 35 35 35 35 35
Mean 197,64 756,71 860,25 756,71 928,41
Std. dev. 213,24 864,24 1024,81 864,24 950,99
Error term 74,03 300,02 355,76 300,02 330,13
Optimality gap 271,66 1056,73 1216,01 1056,73 1258,55

Sample size 50 50 50 50 50
Mean 195,47 771,12 877,80 771,12 940,32
Std. dev. 196,93 874,56 1041,80 874,56 969,79
Error term 57,20 254,01 302,58 254,01 281,67
Optimality gap 252,67 1025,13 1180,38 1025,13 1221,99

Exhibit 5. Optimality gap under ZS(8) sampling strategy.
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[4] M. Bertocchi, J. Dupačová and V. Moriggia, Sensitivity analysis on inputs for a bond portfolio man-
agement model, in: Aktuarielle Ansätze für Finanz-Risiken AFIR 1996. Proc. of the 6th AFIR Collo-
qium, ed. P. Albrecht, VVW, Karlsruhe (1996) pp. 783–793.

[5] J.R. Birge and F. Louveaux, Introduction to Stochastic Programming (Springer, 1997).
[6] P. Bjerksund and G. Stensland, Implementation of the Black–Derman–Toy interest rate model, The

Journal of Fixed Income 6 (1996) 67–75.
[7] F. Black, E. Derman and W. Toy, A one-factor model of interest rates and its application to treasury

bond options, Financial Analysts Journal (January/February 1990) 33–39.
[8] F. Black and P. Karasinski, Bond and option pricing when short rates are lognormal, Financial Ana-

lysts Journal (July/August 1991) 52–59.
[9] S.P. Bradley and D.B. Crane, A dynamic model for bond portfolio management, Management Science

19 (1972) 139–151.
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[14] J. Dupačová, M. Bertocchi and V. Moriggia, Postoptimality for scenario based financial planning mod-
els with an application to bond portfolio management, in: World Wide Asset and Liability Modeling,
eds. W. Ziemba and J. Mulvey (Cambridge Univ. Press, 1998) pp. 263–285.

[15] B. Golub, M.R. Holmer, R. McKendall, L. Pohlman and S. Zenios, Stochastic programming models
for portfolio optimization with mortgage-backed securities, European Journal Operational Research
82 (1995) 282–296.

[16] W.K. Mak, D.P. Morton and R.K. Wood, Monte Carlo bounding techniques for determining solution
quality in stochastic programs, Operations Research Letters 24 (1999) 47–56.

[17] S. Nielsen, Importance sampling in lattice pricing models, in: Interfaces in Computer Science and
Operational Research: Advances in Metaheuristics, Optimization and Stochastic Modeling Technolo-
gies, eds. R.S. Barr et al. (Kluwer Academic, 1997) pp. 289–296.

[18] S.M. Robinson, A characterization of stability in linear programming, Operations Research 25 (1977)
435–447.

[19] S.A. Zenios, Financial Optimization (Cambridge Univ. Press, 1993).
[20] S.A. Zenios and M.S. Shtilman, Constructing optimal samples from a binomial lattice, J. of Informa-

tion & Optimization Sciences 14 (1993) 125–147.
[21] W.T. Ziemba and J. Mulvey, World Wide Asset and Liability Modeling (Cambridge Univ. Press, 1998).


