Convex Optimization 2025/26

Practical session # 5

October 30, 2025

Recall the definition of the norms on \mathbb{R}^n :

- $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$, for $p \ge 1$
- $||x||_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$
- 1. Discuss the unit balls $B_p = \{x \in \mathbf{R}^n \mid ||x||_p \le 1\}$, for both $p \in \{1, \infty\}$. Show that, in both cases, they are convex polytopes. Determine their vertices, and give a description by linear inequalities.
- 2. Let $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$. The norm approximation problem for a system of linear equation $Ax \approx b$ is the problem of minimizing ||Ax b||, for a given norm $||\cdot||$. Show that
 - (a) minimize $||Ax b||_{\infty}$
 - (b) minimize $||Ax b||_1$

are both equivalent to linear programs (that are of polynomial size in n and m).

- 3. Describe explicit solutions of the linear program of minimizing $c^T x$ for some $c \in \mathbf{R}^n$, subject to
 - (a) box constraints: $l \leq x \leq r$, for some $l \leq r$ in \mathbf{R}^n .
 - (b) probability constraints: $\sum_{i=1}^{n} x_i = 1$ and $x \succeq 0$.
 - (c) equational constraints: Ax = b. (Hint: If feasible, distinguish between the case where c is in the image of A^T , or not)
- 4. Show that the norm approximation problem

minimize
$$||Ax - b||_4$$

is equivalent to a QCQP.