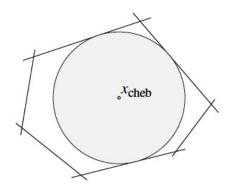
Convex Optimization 2025/26

Practical session # 4


October 23, 2025

1. Perform the simplex method for the problem:

maximize
$$f(x, y, z) = 2x + 3y + 4z$$

subject to $3x + 2y + z \le 10$
 $2x + 5y + 3z \le 15$
 $x, y, z \ge 0$

Discuss, which entering/leaving variable is the best choice in the first pivot step.

2. Let $P = \{x \in \mathbf{R}^n \mid a_i^T x \leq b_i, i = 1, ..., m\}$ be a polytope. The *Chebyshev center* of P is the center of the largest Euclidean ball $B = \{x_c + u \mid ||u|| \leq r\}$ that lies in P. Model the problem of finding the Chebyshev center as a Linear Program.

Recall the definition of the following norms on \mathbb{R}^n :

- $||x||_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$
- $||x||_1 = |x_1| + |x_2| + \ldots + |x_n|$
- 3. Discuss the *n*-dimensional crosspolytope $\{x \in \mathbf{R}^n \mid ||x||_1 \leq 1\}$. What are its vertices? Describe it as the intersection of 2^n halfspaces.
- 4. The norm approximation problem for a system of linear equation Ax = b is the problem of minimizing ||Ax b||, for a given norm $||\cdot||$. Show that both
 - (a) minimize $||Ax b||_{\infty}$
 - (b) minimize $||Ax b||_1$

are equivalent to an LP. Note that in (b) we are looking for an LP that is of polynomial size.