NMAI076 - Algebra 2 - spring semester 2023/24

Homework 1

Deadline 21.3.2024, 15:40

Exercise 1. (10 points) Let $G=\{f: \mathbb{R} \rightarrow \mathbb{R}: f(x)=a x+b, a, b \in \mathbb{R}, a \neq 0\}$.
(1.1) Prove that G is a group with respect to the composition of functions.
(1.2) Prove that $N=\{f: \mathbb{R} \rightarrow \mathbb{R}: f(x)=x+b, b \in \mathbb{R}\}$ is a normal subgroup of G.
(1.3) Describe the quotient G / N.

Exercise 2. (10 points) Consider the dihedral group D_{8} (the group of symmetries of the square, or equivalently $\left.D_{8}=\langle(1234),(14)(23)\rangle \leq S_{4}\right)$.
(2.1) Determine the order of D_{8} and the order of each of its elements.
(2.2) Determine (up to isomorphism) all homomorphic images of D_{8}.

Exercise 3. (10 points) Prove that every group G of order 6 is isomorphic to \mathbb{Z}_{6} or S_{3}.

Hint: Note that G must be isomorphic to \mathbb{Z}_{6} if it contains an element of order 6 , or if G is abelian (Why?). If this is not the case, show that $G=\langle a, b\rangle$ with $\operatorname{ord}(a)=3$, $\operatorname{ord}(b)=2$ and $a b \neq b a$. Use this to show that $G \cong S_{3}$.

