NMAI076 - Algebra 2 - spring semester 2023/24

Homework 1

Deadline 21.3.2024, 15:40

Exercise 1. (10 points) Let $G = \{f : \mathbb{R} \to \mathbb{R} : f(x) = ax + b, a, b \in \mathbb{R}, a \neq 0\}.$

- (1.1) Prove that G is a group with respect to the composition of functions.
- (1.2) Prove that $N = \{f : \mathbb{R} \to \mathbb{R} : f(x) = x + b, b \in \mathbb{R}\}$ is a normal subgroup of G.
- (1.3) Describe the quotient G/N.
- **Exercise 2.** (10 points) Consider the dihedral group D_8 (the group of symmetries of the square, or equivalently $D_8 = \langle (1234), (14)(23) \rangle \leq S_4 \rangle$.
 - (2.1) Determine the order of D_8 and the order of each of its elements.
 - (2.2) Determine (up to isomorphism) all homomorphic images of D_8 .

Exercise 3. (10 points) Prove that every group G of order 6 is isomorphic to \mathbb{Z}_6 or S_3 .

Hint: Note that G must be isomorphic to \mathbb{Z}_6 if it contains an element of order 6, or if G is abelian (Why?). If this is not the case, show that $G = \langle a, b \rangle$ with ord(a) = 3, ord(b) = 2 and $ab \neq ba$. Use this to show that $G \cong S_3$.