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Homomorphisms

1. Group homomorphisms

In mathematics, the word homomorphism is often used for mappings that pre-
serve the basic structure of mathematical objects. For example, in linear algebra,
homomorphisms are maps between vector spaces that preserve the addition and
multiplication with scalars (you may also know such homomorphisms as “linear
maps”). In graph theory, a (graph) homomorphism is an edge-preserving map
between two graphs.
In this section, we are going to define group homomorphisms as maps between

groups that preserve their basic algebraic operations. As we will see, group homo-
morphisms also preserve a number of other important properties.

1.1. Definition and basic properties. In this whole subsection, we will use the
notation G = (G, ·,−1 , 1) and H = (H, ∗, ′, e) for two distinct groups.
Definition. Let G,H be groups. A map φ : G → H is a homomorphism from G
to H, if, for all a, b ∈ G:

φ(a · b) = φ(a) ∗ φ(b), φ(a−1) = φ(a)′, φ(1) = e.

For short, we are going to write φ : G → H, if the map φ : G → H is a homomor-
phism from G to H.

We first show that the second and third equations in this definition already
follow from the first one. In many cases, this can make it significantly easy to
check, whether a map is a homomorphism:

Lemma 1.1. Let G,H be groups and φ : G→ H be a map between their domains.
Then φ is a homomorphism between G and H, if φ(a · b) = φ(a) ∗ φ(b) for all
a, b ∈ G.

Proof. Let us first show that φ(1) = e. For this note that e ∗ φ(1) = φ(1) =
φ(1 · 1) = φ(1) ∗ φ(1). Cancelling the right factor φ(1) gives us e = φ(1).
Next, let us show that φ(a−1) = φ(a)′ for all a ∈ G. For this, note that

e = φ(1) = φ(a · a−1) = φ(a) ∗ φ(a−1). By the uniqueness of inverse elements in
H, we get φ(a−1) = φ(a)′. □

Let φ : G → H be a homomorphism. Then, its image is the range of its values,
i.e. the set

Im(φ) = {φ(a) : a ∈ G}.
We define the kernel of φ as the set

Ker(φ) = {a ∈ G : φ(a) = e}.
Proposition 1.2. Let G,H be groups and φ : G → H a homomorphisms. Then

(1) Im(φ) is a subgroup of H;
(2) Ker(φ) is a subgroup of G.

Proof. (1) Clearly e ∈ Im(φ), since e = φ(1). If φ(a), φ(b) ∈ Im(φ), then φ(a)′ =
φ(a−1) ∈ Im(φ) and φ(a) ∗ φ(b) = φ(a · b) ∈ Im(φ). So Im(φ) is closed under the
group operations of H, i.e. a subgroup of H.
(2) Clearly 1 ∈ Ker(φ), since φ(1) = e. If a, b ∈ Ker(φ), then so are a−1 an a · b,

since φ(a−1) = φ(a)′ = e′ = e and φ(a · b) = φ(a) ∗ φ(b) = e ∗ e = e. □
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} ϕ(a · b) = ϕ(a) ∗ ϕ(b)
ϕ
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Figure 1. Homomophism φ : G → H.

Proposition 1.3. Let G,H be groups and φ : G → H be a homomorphism. Then
φ is injective, if and only if Ker(φ) = {1}.
Proof. If φ is injective, then it maps at most one element of G to e. Thus Ker(φ)
must be equal to 1. On the other hand, assume that φ(a) = φ(b), for two elements
a ̸= b. Then e = φ(a) ∗ φ(b)′ = φ(a · b−1), thus 1 ̸= a · b−1 ∈ ker(φ). □

Examples. Several important maps in mathematics are examples of group homo-
morphisms:

• The map z 7→ |z| for complex numbers z ∈ C is a homomorphism between
the multiplication groups C∗ → R∗, since |a · b| = |a| · |b|. Its kernel is the
subgroup of complex numbers of absolute value 1 (the unit circle). The
map is however not a homomorphism between the additive groups C → R,
since in general |a+ b| ≠ |a|+ |b|.

• Consider the map z 7→ ez, again on the complex numbers. This is a group
homomorphism C → C∗, since ea+b = ea · eb. Its kernel is the subgroup
⟨2πi⟩ = {k · 2πi : k ∈ Z} ≤ C, its image is C∗.

• Consider the map A 7→ det(A) for matrices A ≤ Tn×n over a field T.
Restricted to invertible matrices, this is a group homomorphismGLn(T) →
T∗, since det(AB) = det(A) · det(B). Its kernel is the special linear group
SLn(T), its image is all of T∗.

• Let’s consider the map π 7→ sgn(π) for permutations π ∈ Sn. This is a
homomorphism Sn → Z∗, since sgn(π ◦ σ) = sgn(π) · sgn(σ). Its kernel is
the alternating group An, its image is Z∗ = {±1}.

Example. Let G be a group, and a ∈ G an element of order n. Then, the
“discrete” exponential function Zn → G, k 7→ ak, is a homomorphism. Its image
is the subgroup ⟨a⟩G.
Example. The action of the groupG on the set X is nothing but a homomorphism
G → SX (recall the definition of group actions from Algebra 1!).

Homomorphisms are determined by their values on generators: To see this let
φ : G → H be a homomorphism, let G = ⟨X⟩ and denote the values φ(a) = ha
for all a ∈ X. A general element of the group G can be written in the form
g = ak1

1 · . . . · akn
n , where a1, . . . , an ∈ X and k1, . . . , kn ∈ Z. The value of g under

φ then must be equal to

φ(g) = φ(a1)
k1 · . . . · φ(an)kn = hk1

a1
· . . . · hkn

an
.

However, we remark that (unlike for vector spaces) it is not possible to obtain
a homomorphism by choosing arbitrary images for the elements of some minimal
generating set, as the following statement shows:
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Proposition 1.4 (the order of elements). Let φ : G → H be a group homomor-
phism and a ∈ G. Then

ord(φ(a)) | ord(a) (for ord(a) <∞).
If φ is injective, then

ord(φ(a)) = ord(a).

Proof. First, assume that ord(a) = n < ∞. Then φ(a)n = φ(an) = φ(1) = e, thus
there must be a k | n with φ(a)k = e.
If φ is injective, then ak ̸= 1 implies φ(a)k = φ(ak) ̸= e. Thus ord(φ(a)) = ord(a)

(even if ord(a) = ∞). □

Exercise. Describe all homomorphisms between Z10 → S3.

Solution. The group Z10 is cyclic and generated by 1. Thus every homomorphism
φ is already determined φ(1), as φ(k) = φ(1+. . .+1) = φ(1)◦. . .◦(1) = φ(1)k. The
order of 1 in Z10 is 10, thus, the order of φ(1) in S3 must divide 10. However, in S3

there are only elements of order 1, 2, 3, so we only have the following four possibil-
ities: φ(1) ∈ {id, (1 2), (1 3), (2 3)}. It is easy to verify that these four options give
rise to the four homomorphisms k 7→ id, and k 7→ (1 2)k, k 7→ (1 3)k, k 7→ (2 3)k.
(Think for a moment for yourself, why k 7→ (1 2 3)k is not a homomorphism,
without the help of Proposition 1.4.) □

Proposition 1.5. Let G,H,K be groups and φ : G → H, ψ : H → K homomorh-
pisms. Then

(1) ψ ◦ φ is a homomorphism G → K,
(2) if φ is bijective, then φ−1 is a homomorphism H → G.

Proof. (1) Let us denote K = (K,+,−, 0) (without implying that K is abelian).
For all a, b ∈ G we then have

(ψ◦φ)(a·b) = ψ(φ(a·b)) = ψ(φ(a)∗φ(b)) = ψ(φ(a))+ψ(φ(b)) = (ψ◦φ)(a)+(ψ◦φ)(b),
since ψ and φ are homomorphisms. Thus also ψ ◦ φ : G→ K is a homomorphism.
(2) Let u, v ∈ H such that u = φ(a) and v = φ(b) for some elements a, b ∈ G.

Then

φ−1(u ∗ v) = φ−1(φ(a) ∗ φ(b)) = φ−1(φ(a · b)) = a · b = φ−1(u) · φ−1(v),

since φ−1 is a homomorphism, and φ−1◦φ = id. Thus also φ−1 is a homomorphism.
□

Exercises.

1. Describe all homomorphisms Z2 × Z2 → Z4 and Z4 → Z2 × Z2.

2. Describe all homomorphisms Z15 → Z6 and Z6 → Z15. Based on this example, think
about the general case Zn → Zm.

3. Describe all homomorphism Z∗
11 → Z6 and Z6 → Z∗

11.

4. Describe all homomorphisms S3 → Zn for general n.

5. Describe all homomorphisms Z → Z, Q → Q and all continuous homomorphisms
R → R. Do there exist non-continuous homomorphisms R → R?
6. Let G be a group. Show that the following 3 statements are equivalent:

(1) G is abelian
(2) the map x 7→ x−1 is a homomorphism G → G;
(3) the map x 7→ x2 is a homomorphism G → G.
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1.2. Isomorphisms.

Definition. A bijective homomorphism is called an isomorphism.

From Proposition 1.5 it follows that the compositions and inverse functions of
isomorphisms are also isomorphisms.
An isomorphism can be viewed as a map that “copies” an algebraic structure:

If we have a group G and a bijective map φ : G → H, then we can define group
operations on H by

e = φ(1), a′ = φ((φ−1(a))−1), a ∗ b = φ(φ−1(a) · φ−1(b)).

It is not hard to see that φ−1 is an isomorphism from H = (H, ∗,′ , e) to the old
group G (and hence φ is an isomorphism from G to H). In other words, G and
H are copies of each other, only modulo renaming the elements by φ (because of
this H is also called an isomorphic copy of G). Note that every isomorphism can
be viewed in this way.
Two groups G,H are called isomorphic, if there exists an isomorphism G →

H; for short we then also write G ≃ H. Proposition 1.5 implies, that ≃ is an
equivalence relation in the class of groups:

• Reflexivity: G ≃ G is witnessed by the isomorphism id : G → G;
• Symmetry: If G ≃ H is witnessed by an isomorphism φ, then also H ≃ G,
as φ−1 is an isomorphism;

• Transitivity: If G ≃ H and H ≃ K, then there are isomorphisms ψ : G ≃
H, and φ : H ≃ K. Their composition ψ ◦ φ is an isomorphism from G to
K, hence G ≃ K.

If we restrict the codomain of an injective homomorphism φ : G → H to its
image, we obtain an isomorphism φ : G → Im(φ), so the image of φ is an isomorphic
copy of G in H. Injective homomorphisms are called embeddings.

Example. The groups Z2 and Z∗ are isomorphic. This can already be seen from
their operation tables:

+ 0 1
0 0 1
1 1 0

· 1 −1
1 1 −1
−1 −1 1

By renaming the elements in operation table for + by 0 7→ 1, 1 7→ −1, we obtain
the operation table for ·. Thus, this map is a group isomorphism from Z2 and Z∗.

Example. The groups C and R×R are isomorphic. Intuitively, complex numbers,
correspond to pairs of real numbers, and addition on C is defined coordinate-wise.
So, a+ bi 7→ (a, b) is a group isomorphism witnessing C ≃ R× R.

Example. The groups Zn and Cn = ⟨ζn⟩C∗ , with ζn = e2πi/n, are isomorphic. It
is not hard to see that ζk1

n · ζk2
n = ζk1+k2

n = ζk1+k2 mod n
n . Thus k 7→ ζkn is a group

isomorphism witnessing Zn ≃ Cn.

Example. The groups Z2 ×Z2, Z∗
8 and {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ≤ S4

are all isomorphic. This is not immediately clear, but one can prove that all three
groups are of the form G = ⟨a, b⟩, where a and b are generators satisfying a2 = 1,
b2 = 1, and ab = ba is the third non-unity element. The formal proof is left as an
exercise.

Exercises.

1. Show, that the three groups Z2×Z2, Z∗
8 and {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ≤ S4

are isomorphic.
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2. Show that R ≃ R+, where R+ is the subgroup of the multiplication group R∗ that
consists of all positive numbers.

3. Show that GL2(Z2) ≃ S3. (Hint: all permutations of nonzero vectors are linear
mappings.)

4. Show that C∗ ≃ R+ × S, where S is the subgroup of C∗ consisting of the unit circle.

5. Show that D12 ≃ S3 × Z2.

6. Show that the map
i 7→

(
i 0
0 −i

)
, j 7→

(
0 1
−1 0

)
can be extended to an injective group homomorphisms Q8 → GL2(C). This means the
quaternion group is isomorphic to a subgroup of 2× 2-matrices over C. Try to extend the
statement to an isomorphism of the entire ring of quaternions and a certain matrix ring.

1.3. Non-isomorphic groups. We saw that a + bi 7→ (a, b) is a group isomor-
phism C ≃ R × R; however, it is not an isomorphism between the multiplication
groups C∗ and R∗ × R∗. Still, could C∗ and R∗ × R∗ still be isomorphic via some
other isomorphism?
For another example, note that the Chinese remainder theorem states that, for

coprime numbers m,n, Zmn ≃ Zm ×Zn. But what is the situation for m,n, which
are not coprime? Then, the map x 7→ (x mod m,x mod n) is neither injective, nor
onto: Both 0 and the least common multiple lcm(m,n) are mapped to (0, 0). So
it cannot be an isomophism. But how can we exclude that there does not exist a
different isomorphism?
Invariants are a general principle that make it possible to resolve such questions.

We call a property V an invariant if for every two isomorphic groups G ≃ H it
holds that H has property V if G has property V (and vice-versa).
An example of an invariant is the number of elements of a given order: if φ is an

isomorphism, according to Proposition 1.4, the order of a and φ(a) are the same.

Examples.
• The group Zmn contains an element of order mn. However, the order of
every element Zm × Zn needs to divide the least common multiple of m
and n. So, if m and n are not coprime, then Zmn and Zm × Zn are not
isomorphic.

• The group C∗ contains elements of any order, but the group R∗ × R∗ only
contains elements of order 1, 2,∞. So these groups cannot be isomorphic.

• The quaternion group Q8 and the dihedral group D8 both have 8 elements,
and contain elements of order 1, 2, 4. But, since Q8 has six elements of
order 4, while D8 has only two, they cannot be isomorphic.

Another example of an invariant is the minimal number of generators:

Proposition 1.6. Let φ : G → H be a group homomorphism that is onto. If
G = ⟨X⟩, then H = ⟨φ(X)⟩.
Proof. Since G is generate by X, every element a ∈ G can be written as a =
uk1
1 · . . . ·ukn

n for u1, . . . , un ∈ X. Then, also φ(a) = φ(u1)
k1 ∗ . . .∗φ(un)kn ∈ ⟨φ(X)⟩.

Since φ is surjective, H = ⟨φ(X)⟩. □

Unlike vector spaces, groups can have minimal generating sets of different sizes,
e.g. Z = ⟨1⟩ = ⟨2, 3⟩. But an invariant is the smallest number of elements needed
to generate a given group:

Example. The groups Z and Z×Z are not isomorphic, because Z = ⟨1⟩ is generated
by one element, but this is not true for Z× Z: Every element (a, b) only generates
the subgroup ⟨(a, b)⟩ = {(ka, kb) : k ∈ Z}, which is not the full Z × Z. A similar
argument shows also that Zmn ̸≃ Zm × Zn, for non-coprime m,n.
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The two invariants mentioned above make it possible to prove nonisomorphicity
in many cases, but not in all. As an example, take the groups Q and Q+ = {a ∈
Q : a > 0} ≤ Q∗, which are both not finitely generated and contain only elements
of infinite orders in addition to their neutral element.

Example. We say that G has square-roots if for every a ∈ G, there exists an
element b ∈ G with a = b2. The existence of square-roots is invariant under
isomorphisms. To see this, let us assume φ : G → H is an isomorphism, and that
square-roots exist in G. Then for every element u ∈ H, let a = φ−1(u) be its
pre-image. By assumption, there is a b ∈ G with a = b · b. Then v = φ(b) is a root
of u, since u = φ(a) = φ(b2) = φ(b)2 = v2.
This invariant can be used to show that Q and Q+ are not isomorphic: On one

side, for every a ∈ Q, there exists a b ∈ Q such that a = b + b; on the other side,
there are numbers 0 < a ∈ Q such that there is no 0 < b ∈ Q with a = b2.

In general, any property that can be defined using the group operations, equal-
ity, logical connectives and quantifiers (i.e. every property that is definable by a
“first-order formula”) is an invariant. You can find details in any textbook on math-
ematical logic. However, even considering all such invariants may not be enough
to check if two groups are isomorphic or not. For example, the groups Q and
Q × Q, cannot be distinguished by any first-order formula, but are nevertheless
non-isomorphic.
We further remark that (depending on how they are presented) it can be compu-

tationally hard (or even undecidable) to check if two finitely generated groups are
isomorphic or not. The fastest algorithms known for checking if two finite groups,
given by their multiplication tables, are isomorphic have quasipolynomial running
time.

Exercises.

1. Decide whether the groups A4 and D12 are isomorphic.

2. Decide whether the groups Z∗
24 and Z∗

15 are isomorphic.

3. Decide whether the groups SL2(Z3) an S4 are isomorphic.

4. Show that Q ̸≃ Q × Q. (Hint: assume φ : Q → Q × Q is a homomorphism, and let
φ(1) = (r, s). Prove that this value already uniquely determines the map φ uniquely and
that we never get a mapping onto Q×Q .)

1.4. Classification theorems. One of the basic goals, when studying classes of
algebraic structures is to give a a complete list of them up to isomorphism. While it
can be very difficult to achieve this in general, it often is feasible for some subclasses.
Probably the easiest example is the classification of cyclic groups. A group is

called cyclic if it has one generator. Each such group is either isomorphic to Z or to
exactly one Zn for some n ∈ N. In other words, Z and Zn are, up to isomorphisms,
all cyclic groups.

Theorem 1.7 (classification of cyclic groups). Let G be a cyclic group.
(1) If G is infinite, it is isomorphic to Z.
(2) If G is of order n <∞, then it is isomorphic to Zn.

Proof. Let G = ⟨a⟩ be the cyclic group.
(1) If G is infinite, then ord(a) = ∞. We claim that

Z → G, k 7→ ak.

is an isomorphism. It is easy to see that it is a homomorphism, since ak ·al = ak+l.
The kernel of it is trivial, since ak ̸= 1 for all k ̸= 0, so by Proposition 1.3 it is
injective. By definition, it is also surjective, thus it is an isomorphism.
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(2) Assume that G is of order n, so ord(a) = n. Then consider the map

Zn → G, k 7→ ak.

This map is a again a homomorphism, since ak · al = ak+l = ak+l mod n; the second
equality follows from the following consideration: if k + l < n, the statement is
trivial; if k+ l ≥ n, then k+ l mod n = k+ l−n, and thus ak+l mod n = ak+l ·a−n =
ak+l · 1−1 = ak+l. Similarly to (1), we see that the kernel is trivial and that the
map is onto G. □

The classification of finitely generated abelian groups is already much more com-
plicated. It states that every abelian group with a finite set of generators is iso-
morphic to the direct product of finitely many cyclic groups. Moreover, using the
Chinese remainder theorem in the form of Proposition 4.4, it is sufficient to con-
sider only the order of the prime power of the finite cyclic group. These direct
components are uniquely determined (except for the order), i.e. by choosing non-
isomorphic cyclic groups we get non-isomorphic direct products.

Theorem 1.8 (Classification of finitely generated abelian groups). Let G be a
finitely generated abelian group with |G| > 1. Then there exist m,n ≥ 0, primes
p1, . . . , pm (not necessarily different ones) and integers k1, . . . , km > 0 such that

G ≃ Zn × Z
p
k1
1

× Z
p
k2
2

× · · · × Zpkm
m
.

The numbers m,n are unique, the prime powers pk1
1 , . . . , p

km
m are unique up to

reordering.

The proof of Theorem 1.8 is quite long; you can find it in every textbook on
basic group theory.

Example. By Theorem 1.8 every 4-element abelian group is isomorphic to Z4 or
to Z2 × Z2.

• The group Z∗
5 is of order 4 and abelian. Since ord(2) = 4, we get Z∗

5 ≃ Z4.
• The group Z∗

8 is also abelian and of order 4. Since ord(3) = ord(5) =
ord(7) = 2, we get Z∗

8 ≃ Z2 × Z2.

A favorite past-time of group theorists is to enumerate all small groups up to
isomorphism, which can also be seen as a classification theorem. Currently, a list
of all groups up to size 2047 = 211 − 1 is known. The following table contains the
classification of all groups of order n for n ≤ 15 and for n = p, 2p, p2, where p is a
prime number.

n groups of order n
1 Z1

2 Z2

3 Z3

4 Z4, Z2 × Z2

5 Z5

6 Z6, S3 = D6

7 Z7

8 Z8, Z2 × Z4, Z2 × Z2 × Z2, D8, Q8

p Zp

p2 Zp2 , Zp × Zp

2p Z2p, D2p

12 Z4 × Z3, Z2 × Z2 × Z3,A4,D12,X
15 Z3 × Z5
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The case n = p is a consequence of Lagrange’s theorem (recall Algebra 1): a
group of prime size cannot have proper subgroups, so it must be generated by any
of its elements (except the unit). By the classification of cyclic groups, it must be
isomorphic to Zp. Other cases in the above table are already considerably more
difficult.

Exercises.

1. Prove that every four-element group is isomorphic to Z4 or Z2 × Z2.

2. Prove that every six-element group is isomorphic to Z6 or S3.

3. Decompose the groups Z∗
16, Z∗

20 and Z∗
21 into a direct product of cyclic groups (i.e.

write some direct product to which these groups are isomorphic, see Theorem 1.8).

4. Is there a positive integer n such that Z∗
n is isomorphic to (a) Z7, (b) Z8, (c) Z9?

2. Quotient groups

2.1. Normal subgroups.
In this section, we discuss an essential construction in group theory, namely

quotient groups (also called factor groups). For this, we first need to introduce a
special type of subgroups, so-called normal subgroups and get acquainted with this
term.

Proposition 2.1 (equivalent definitions of normal subgroups). Let G be a group,
and H ≤ G be a subgroup. Then, the following statements are equivalent:

(1) aH = Ha for all a ∈ G (i.e. the left and right cosets of H are equal),
(2) aha−1 ∈ H for all h ∈ H and a ∈ G (i.e. H is closed under conjugation
by any element).

Proof. (1) ⇒ (2). Let h ∈ H, and a ∈ G. By assumption ah ∈ aH = Ha, thus
there exists an element k ∈ H, such that ah = ka. This implies aha−1 = k ∈ H.
(2)⇒ (1). We first prove that aH ⊆ Ha, so let ah ∈ aH. By (2), k = aha−1 ∈ H,

which implies ah = ka ∈ Ha. Thus aH ⊆ Ha. The opposite inclusion aH ⊇ Ha
can be shown symmetrically, thus aH = Ha. □

Definition. A subgroup H ≤ G is called a normal subgroup of G, if one of the
equivalent conditions in Proposition 2.1 holds. For short, we then also writeH ⊴ G.

In abelian groups, every subgroup is normal (both conditions in Proposition 2.1
are trivially satisfied). For trivial reasons, also {1} ⊴ G and G ⊴ G hold in every
group G. In the following, we discuss some non-trivial examples that we already
encountered:

Examples.
• The special linear group SLn(T) of matrices with determinant 1 is a normal
subgroup of the general linear group GLn(T), since condition (2) follows
from the following property of determinants: det(AHA−1) = (detA)(detH)(detA)−1 =
detH.

• The alternating group An, i.e. the subgroup of all even permutations, is a
normal subgroup Sn, by the following property of the signature: sgn(aha−1) =
(sgn a)(sgnh)(sgn a)−1 = sgnh.

• The dihedral groupD2n is not a normal subgroup of Sn for n > 3 ((12 · · ·n) ∈
D2n, but (12) ◦ (12 · · ·n) ◦ (12)−1 = (2134 · · ·n) /∈ D2n ).

The following fundamental observation connects normal subgroups to homomor-
phisms:
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1

[1] = N

a

[a] = aN

b

[b] = bN

c

[c] = cN

d

[d ] = dN G

[1] [a] [b] [c] [d ]
G/N

Figure 2. Construction of the quotient group G/N

Proposition 2.2. The kernel of a homomorphism is a normal subgroup.

Proof. Let φ : G → H be a homomorphism. By Proposition 1.2 we already
know that Ker(φ) is a subgroup of G. The normality follows from the identity
φ(uau−1) = φ(u)∗φ(a)∗φ(u)′ = φ(u)∗φ(u)′ = e, for all a ∈ Ker(φ) and u ∈ G. □

Exercises.

1. Find all normal subgroups of D12.

2. Show that all subgroups of the quaternion group Q8 are normal.

3. Prove that the group A5 contains no proper normal subgroups. Prove that the group
A4 contains a unique proper normal subgroup (the Klein group). (Hint: consider a normal
subgroup N that contains a permutation of a certain cycle-type; since N is closed under
conjugation, it then must contain every other permutations of this type (recall Algebra 1).
Then think, about which subgroups are generated by the 3-cycles (...), or by permutations
of the form (..)(..).)

4. Prove that the group S5 contains a single proper normal subgroup, A5. Prove that the
group S4 contains two proper normal subgroups, A4 and the Klein group. (Instructions:
if N contains only even permutations, use the previous exercise; otherwise, show that N
contains a transposition, and conclude that it is equal to the full group.)

5. Let G be a group and H ≤ G, such that [G : H] = 2. Show that H is normal.

2.2. The construction of quotient groups. The idea of quotient objects can
be found in various branches of mathematics. Informally speaking, we start with
an object with a very fine structure (like the stars in the sky). If we move away
from the object, some elements will merge (when viewed with the naked eye, we
cannot distinguish stars of the same, far-away galaxy). What we see is then a
quotient object (bright points in the sky) of the original object (all stars). A little
more formally, we identify similar objects (those stars that are not distinguishable
by our eyes). What exactly is meant by the relation of similarity depends on the
specific type of object. For groups this “similarity” is defined by the following
equivalence relation:

Definition. LetG be a group, andN a normal subgroup. We then define a relation
∼ on G, by

a ∼ b ⇔ a · b−1 ∈ N.

According to a theorem in Algebra 1 (see the Section on Lagrange’s theorem) a ∼ b
holds, if and only if Na = Nb. Therefore ∼ is an equivalence relation on G. Its



13

blocks are the cosets of N in G, and because N is a normal subgroup, left and right
cosets are the same (Proposition 2.1), so

[a] = aN = Na.

On these blocks we define the following operations

[a] · [b] = [a · b] and [a]−1 = [a−1]

(in the following lemma we will check that this is well-defined). Together with the
block [1] = N , these operations form a group, whose elements are the blocks of
∼. This group is called the quotient group (or factor group) of G modulo N. For
short, it is denoted by

G/N = ({[a] : a ∈ G}, ·,−1 , [1]).

Lemma 2.3. Let G be a group and N a normal subgroup of G. Then
(1) the operations · and −1 of G/N are well-defined, and
(2) the quotient group G/N is indeed a group.

Proof. (1) Let us consider two blocks of ∼ given by two different representatives
[a] = [c] and [b] = [d]. We need to show that [a · b] = [c · d] and [a−1] = [c−1]. Since
a ∼ c and b ∼ d, we get that a · c−1 ∈ N and b · d−1 ∈ N . Using that N is closed
under conjugation, we can then show that

(ab) · (cd)−1 = abd−1c−1 = ac−1cbd−1c−1 = (ac−1)︸ ︷︷ ︸
∈N

· c(bd−1)c−1︸ ︷︷ ︸
∈N

∈ N,

thus a ·b ∼ c ·d. In other words [a ·b] = [c ·d], which is what we wanted to prove. For
the inverse, note that ac−1 ∈ N ⇒ a−1(ac−1)a = c−1a ∈ N , and thus c−1 ∼ a−1.
(2) We next show that G/N satisfies the group axioms. The operation · is

associative, since [a] · ([b] · [c]) = [a · (b · c)] = [(a · b) · c] = ([a] · [b]) · [c], and
[a] · [1] = [a · 1] = [a] = [1 · a] = [1] · [a] = [a]. Similarly, it can be checked that
[a] · [a]−1 = [a · a−1] = [1] = [a]−1 · [a]. □

Example. Let’s consider the group G = Z, and the normal subgroup H = nZ for
some n > 1. We then compute

a ∼ b ⇔ n | a− b ⇔ a ≡ b (mod n).

The classes of this equivalence relation are of the form

[a] = {k ∈ Z : k ≡ a (mod n)} = a+ nZ, a = 0, . . . , n− 1.

The operations of the quotient group are [a] + [b] = [a + b] = [a + b mod n] and
[−a] = [n−a], i.e. like addition and subtraction on 0, . . . , n− 1 modulo n. It is not
difficult to verify that [a] 7→ a is an isomorphism Z/nZ ≃ Zn.

Example. Next, let us consider G = Sn and the normal subgroup H = An. It
holds that

π ∼ σ ⇔ π ◦ σ−1 ∈ An ⇔ sgn(π) = sgn(σ).

In other words, the equivalence relation ∼ has exactly two blocks: the set E of
even permutations and the set O of odd permutations. The multiplication on the
quotient group G/H is then given by E ◦E = O ◦O = E and E ◦O = O ◦E = O.
So G/H is isomorphic to Z∗.

How can we easily determine all the quotient groups of a given group? The
following proposition will help us in this task, and provide a connection to homo-
morphic images.

Theorem 2.4 (Homomorphism Theorem). let φ : G → H be a group homomor-
phism.
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(1) If N ≤ Ker(φ) is a normal subgroup of G, then the map

ψ : G/N → H, [a] 7→ φ(a)

is well-defined, and a group homomorphism.
(2) (1st Isomorphism Theorem) G/Ker(φ) ≃ Im(φ).

Proof. (1) We first need to verify that the mapping ψ is well defined, as it can
happen that the same block is represented in two different ways, i.e. that [a] = [b]
for some a ̸= b. But, in this case,

[a] = [b] ⇔ a · b−1 ∈ N ⇒ a · b−1 ∈ Ker(φ) ⇔ φ(a · b−1) = 1 ⇔ φ(a) = φ(b),

thus ψ([a]) does not depend on the choice of the representative a, and ψ is a well-
defined mapping. Since ψ([a · b]) = φ(a · b) = φ(a) · φ(b) = ψ([a]) · ψ([b]), it is
homomorphism.
To prove (2), we use (1) for N = Ker(φ). The resulting homomorphism ψ is

injective, since

[a] = [b] ⇔ a · b−1 ∈ Ker(φ) ⇔ φ(a · b−1) = 1 ⇔ φ(a) = φ(b).

If we restrict ψ to its image, it is also onto, and thus G/Ker(φ) ∼= Im(ψ) =
Im(φ). □

The first isomorphism theorem is a good tool if we want to determine what a
given quotient group looks like: Proving that G/N ≃ H is the same, as finding a
homomorphism from G onto H whose kernel is N. We illustrate the method with
several examples.

Example. What does the quotient group Z/nZ look like? We analyzed the situ-
ation already in the examples above, so we know we should look for a surjective
homomorphism Z → Zn whose kernel is the subgroup nZ. The map a 7→ a mod n
is obviously a homomorphism onto Zn. Its kernel is {a ∈ Z : a mod n = 0} = nZ.
By the 1st isomorphism theorem

Z/nZ ≃ Zn.

Example. What does the quotient group Sn/An look like? We analyzed the
situation already above and know we should look for the homomorphism Sn → Z∗,
whose kernel is the subgroup An. This homomorphism is given by π 7→ sgn(π),
which maps Sn to Z∗; the kernel is given by the even permutations. By the 1st
isomorphism theorem

Sn/An ≃ Z∗.

Example. What does the factor group GLn(T)/SLn(T) look like? Recall that
the equivalence relation corresponding to SLn(T) is given by:

A ∼ B ⇔ AB−1 ∈ SLn(T) ⇔ detAB−1 = detA·(detB)−1 = 1 ⇔ detA = detB.

The blocks of this equivalence are thus determined by the value of the determinant,
which can be any non-zero element of the fieldT. At the same time, the determinant
of a product is the product of determinants, i.e. det(A · B) = det(A) · det(B). So,
the mapping det : GLn(T) → T∗ is a homomorphism onto the group T∗. Its
kernel is formed by the matrices of determinant 1, i.e. SLn(T). According to the
1st isomorphism theorem,

GLn(T)/SLn(T) ≃ T∗.

There are however cases, in which such an analysis does not give us any deeper
insight. Other tricks can sometimes be used, such as considering the order of the
quotient group and knowledge of small groups.
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Figure 3. Illustration of the 2nd isomorphism theorem. A larger
subgroup H determines a coarser equivalence (with larger blocks)

Example. Let us determine the quotient group S4/K for the normal subgroup
K = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. According to Lagrange’s theorem,
|S4/K| = [S4 : K] = 24/4 = 6. Thus, the quotient group S4/K is either isomorphic
to the group S3 or cyclic group Z6. We prove that it is not abelian, which confirms
the first option:

[(1 2 3)] ◦ [(1 2 3 4)] = [(1 2 3) ◦ (1 2 3 4)] = [(1 3 4 2)],

[(1 2 3 4)] ◦ [(1 2 3)] = [(1 2 3 4) ◦ (1 2 3)] = [(1 3 2 4)],

and [(1 3 4 2)] ̸= [(1 3 2 4)], since (1 3 4 2) ◦ (1 3 2 4)−1 = (1 2 4) ̸∈ K.

The 1st isomorphism theorem allows us also to give a more elegant proof of the
classification of cyclic groups:

Alternative proof of Theorem 1.7. Let G = ⟨a⟩ be a cyclic group and consider the
mapping

φ : Z → G, k 7→ ak.

Clearly, this map is surjective onto G. If φ is also injective, then G ≃ Z is an
isomorphism. Otherwise, Ker(φ) = nZ, where n = ord(a), and by the 1st isomor-
phism theorem, G ≃ Z/nZ ≃ Zn. □

What do quotients of quotient groups look like? This is what the 2nd theorem
on isomorphism is about:

Theorem 2.5 (2nd isomorphism theorem). Let G be a group and N a normal
subgroup.

(1) If N ⊴ H ⊴ G, then H/N is a normal subgroup of G/N.
(2) If K ⊴ G/N, then there exists a normal subgroup H ⊴ G such that K =

H/N.
(3) For N ⊴ H ⊴ G,

(G/N)
/
(H/N) ≃ G

/
H holds.

Proof. (1) Let [a], [b] be elements of H/N, that is, a, b ∈ H, and let [g] be an
element of G/N. Then [a][b] = [ab] is an element of H/N because ab ∈ H. For the
same reasoning H/N also contains [1], [a]−1 = [a−1] and [g][a][g]−1 = [gag−1].
(2) Let H = {a ∈ G : [a] ∈ K}. For a, b ∈ H and g ∈ G, ab ∈ H holds because

[ab] = [a][b] ∈ K, and for the same reason the elements of H also 1, a−1 and gag−1.
Obviously K = H/N.
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Figure 4. An ideal I of the ring R.

(3) Consider the homomorphism φ : G/N → G/H, [a]N 7→ [a]H. It is well
defined because N ≤ H and thus [a]N = [b]N implies [a]H = [b]H. It is a ho-
momorphism, φ([a]N[b]N) = φ([ab]N) = [ab]H = [a]H[b]H = φ([a]N)φ([b]N). Its
image is the entire G/H and its kernel consists of those [a]N for which a ∈ H,
i.e. Ker(φ) = H/N. Applying the 1st isomorphism theorem, we obtain the above
relation. □

Exercises.

1. Using the 1st isomorphism theorem, describe what the quotient groups R∗/R+,
R∗/{1,−1} and C∗/S look like, where S denotes the subgroup of numbers with abso-
lute value 1.

2. Describe the groups R/Z and Q/Z.
3. Show that C∗/Cn ≃ C∗.

4. Determine all quotient groups of the quaternion group Q8.

5. Let n be even (and think of the dihedral group D2n as the symmetries of an n-gon).
Show that the subgroup N of D2n, which is generated by the point reflection is normal,
and that D2n/N ≃ Dn.

3. Ideals and divisibility

Before we discuss ring homomorphisms and the construction of quotient rings,
we need to introduce ideals, which fulfill a role similar to normal subgroups in group
theory.

3.1. Ideals.

Definition. Let R be a commutative ring. An ideal of R is a subset I ⊆ R, such
that

• if a, b ∈ I, then −a ∈ I and a+ b ∈ I
• if a ∈ I and r ∈ R, then r · a ∈ I.

Example. The sets nZ = {nz : z ∈ Z} = {u ∈ Z : n | u} are ideals of the ring
Z. There are no other ideals of Z (proof left as an exercise; it also follows from
Theorem 3.2, which we discuss later).

The above construction in the example above can be generalized to arbitrary
commutative rings:
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Proposition 3.1 (Definition of principal ideals). Let R be a commutative ring and
a ∈ R. Then

aR = {ar : r ∈ R} = {u ∈ R : a | u}
is an ideal of R. If R is a ring with unity 1, then aR is the smallest ideal (with
respect to inclusion), which contains a.

Proof. If u and v are divisible by a. then so are u+ v and −u. Furthermore a | ru
for every r ∈ R. Hence aR is an ideal.
Now let I be any ideal containing the element a. Then I must contain all its

multiples, i.e. aR ⊆ I. Since R has a unity a · 1 ∈ aR, therefore aR is the smallest
ideal containing the element a. □

Definition. An ideal aR as in Proposition 3.1 is called principal. Especially {0} =
0R and R = 1R are principal ideals in every commutative ring with unity; we call
them the trivial ideals.

Principal ideals nicely reflect divisibility: the transitivity of the divisibility rela-
tion immediately implies that

• a | b if and only if bR ⊆ aR;
• a ∥ b if and only if aR = bR.

The historical motivation for the study of ideals was to solve the problem of
non-unique factorisations. The idea was that the ambiguity is due to the absence
of elements that separates the factors in ambiguous decompositions. For example,
in Z[

√
5] we have 4 = 22 = (1 +

√
5)(−1 +

√
5). If there were “ideal” irreducible

elements (“ideal” meaning “hypothetical” here) p, q such that 2 = pq, 1 +
√
5 = p2

and −1 +
√
5 = q2, we would have a unique factorisation 4 = p2q2. These “ideal

elements” eventually turned out to be the so-called prime ideals, we will see a
definition later. Modern algebraic number theory is based on the knowledge that
in many rings, including Z[

√
5], each ideal can be uniquely decomposed into a

product of prime ideals.

3.2. Principal ideal domains.

Definition. A commutative ring R, in which every ideal is a principal ideal is
called a principal ideal ring ; if R is additionally an integral domain, we call it a
principal ideal domain (PID).

The aim of this subsection is to characterise PIDs among all integral domains
by properties of divisibility.

Example. The integral domains Z and T[x], for a field T are principal ideal do-
mains. More generally, every Euclidean domain has only principal ideals (Theorem
3.2).
The opposite implication does not hold, but it is not easy to find an example.

Probably the easiest example of a non-Euclidean domain that has only principal
ideals is Z[ 1+i

√
19

2 ]; the proof of this fact is rather difficult.

In Algebra 1 we showed that Z[x] and the multivariate polynomial ringsT[x1, . . . , xn]
for a field T are not Euclidean, because Bézout’s identity does not hold. We can
also show that they are not PIDs, by constructing a non-principal ideal in them.
Both examples are based on the following idea: If aR is a principal ideal that con-
tains two coprime elements u, v, then a | u and a | v. But this implies that a ∥ 1, in
other words, aR = R. In other words, any ideal containing two comprime elements
must be full or not principal.
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Figure 5. Illustration of Theorem 3.2 in the case of R = Z.

Example. The ring Z[x] is not a PID. To show this, let us define the subset

I = {f ∈ Z[x] : f(0) is even}.
It is not hard to see that I is an ideal of Z[x]. At the same time, I contains the
polynomials 2 and x, which are coprime. Thus I cannot be principal.

Example. The ring R[x1, . . . , xk] (where R is an arbitrary integral domain, and
k > 1) is not a PID. For this we define

I = {f ∈ R[x1, . . . , xk] : f(0, . . . , 0) = 0}.
It can be shown that I is an ideal of R[x1, . . . , xk]. On the other hand I contains
the polynomials x1 and x2, which are coprime. Thus I cannot be principal.

Theorem 3.2. In Euclidean domains, every ideal is principal.

Proof. Let I be an ideal of the Euclidean domain R. If I = {0}, then I = 0R,
so without loss of generality, let us assume that I contains an element a ̸= 0. Let
us pick such an element a for which the Euclidean norm ν(a) is minimal. We are
going to prove that I = aR. Since I is an ideal, clearly aR ⊆ I; thus we only need
to prove the opposite inclusion. For contradiction, let us assume that there is an
element b ∈ I ∖ aR.
By the properties of Euclidean domains, there are q, r ∈ R with b = aq + r

and ν(r) < ν(a). It holds that r ̸= 0 since b is not divisible by a, and thus
0 < ν(r) < ν(a). On the other hand

r = b︸︷︷︸
∈I

− aq︸︷︷︸
∈I

∈ I,

which contradicts to the choice of a as the element of I with the smallest norm
ν(a). □

Proposition 3.3 (ideals in fields). Let R be a commutative ring with unity. Then
R is a field if and only if R has only trivial ideals.

Proof. (⇒) Every field is a Euclidean domain, so all of its ideals are principal. As
R is a field a ̸= 0 implies a ∥ 1, and thus for every non-zero ideal aR we have
aR = 1R = R.

(⇐) For every principal ideal aR, a ̸= 0, by assumption aR = R = 1R holds,
thus every element a ̸= 0 is invertible. □

We next prove an auxiliary statement about general ideals.

Proposition 3.4 (intersection, sum and union of ideals). let R be a commutative
ring.

(1) If I, J are ideals of R, then also I ∩ J is an ideal R.
(2) If I, J are ideals of R, then so is their sum I + J = {a+ b : a ∈ I, b ∈ J}.
Furthermore I + J is the smallest ideal containing I ∪ J .

(3) If Ij, j ∈ N, are ideals of R such that I1 ⊆ I2 ⊆ I3 ⊆ . . ., then so is their
union

⋃
j∈N Ij.
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Proof. (1) Let a, b ∈ I ∩ J and r ∈ R. Then a + b,−a, ra belongs to both ideals
I, J , i.e. also to their intersection.
(2) Let a + b, c + d ∈ I + J , with a, c ∈ I and b, d ∈ J . Then clearly also

(a+ b) + (c+ d) = (a+ c) + (b+ d) ∈ I + J , −(a+ b) = (−a) + (−b) ∈ I + J . For
any element r ∈ R also r(a + b) = ra + rb ∈ I + J . Thus I + J is an ideal. Both
ideals I, J are a subset of I + J . Conversely, if an ideal K contains both I and J ,
then it surely also contains all sums of elements from I and elements from J , i.e.
I + J ⊆ K.
(3) Let a, b ∈ ⋃j∈N Ij and r ∈ R. Then there exist j, k ∈ N such that a ∈ Ij and

b ∈ Ik, i.e. a, b ∈ Imax(j,k), and thus a+ b,−a, ra ∈ Imax(j,k) ⊆
⋃

j∈N Ij . □

By the above, the smallest ideal containing two elements a, b is the ideal

aR+ bR = {ar + bs : r, s ∈ R},
and further, by induction, the smallest ideal containing the elements a1, . . . , an (the
so-called ideal generated by the elements a1, . . . , an) is

a1R+ · · ·+ anR = {
∑

airi : r1, . . . , rn ∈ R.}
The elements a1, . . . , an are then also called an ideal basis of a1R+· · ·+anR (not to
be confused with e.g. bases in linear algebra, as we do not assume independence).
For example, the non-principal ideals we discussed for Z[x] and R[x1, . . . , xk] can

be written as 2Z[x] + xZ[x], respectively x1R[x1, . . . , xk] + . . .+ xkR[x1, . . . , xk].
We next discuss how PIDs can be characterized among all rings, by properties

of the divisibility relation:

Theorem 3.5. Principal ideal domains are unique factorization domains. Fur-
thermore, Bézout’s identity holds in them.

Proof. Let R be a PID. In order to show that R is a UFD (recall Algebra 1), it
suffices to show that in it (1) the greatest common divisor of two elements always
exists and (2) there are no infinite sequences of proper divisors. Recall that for any
u, v u | v ⇔ vR ⊆ uR holds.
(1) Let a, b ∈ R be two arbitrary elements and let us define I = aR+ bR. Since

every ideal is principal, there exists a c ∈ R such that I = cR. Since aR, bR ⊆ cR,
we have both c | a and c | b. Further, if d is a common divisor of a, b, then aR ⊆ dR
and bR ⊆ dR, so I = cR ⊆ dR and we get d | c. We see that c = gcd(a, b) and
additionally c ∈ aR + bR, so c = ar + bs for some r, s ∈ R, which is exactly the
statement of Bézout’s identity.
(2) For the sake of argument, assume that R has an infinite sequence of proper

divisors a1, a2, . . . (i.e., ai+1 | ai and ai ∤ ai+1). In other words, a1R ⊂ a2R ⊂
a3R ⊂ . . .. Let us define I =

⋃
i∈N aiR. This set also forms an ideal, and hence

I = bR for some b ∈ I. However, this b must be an element of some aiR, for some
i ∈ R. But then bR ⊆ aiR ⊂ ai+1R ⊂ . . . ⊂ I = bR, which is a contradiction. □

Summary:

Euclidean domain =⇒ principal ideal domain =⇒ unique factorization domain
The basic properties of these classes are summarized in the following table:

irreducible existence Bézout’s Euclidean
ring/domain decompositions of gdc identity algorithm

Euclidean domain ✓ ✓ ✓ ✓
PID ✓ ✓ ✓ ×
UFD ✓ ✓ × ×
general × × × ×
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And finally, a few examples that are worth remembering.

Euclidean domain fields, Z, T[x] (T field), Z[i], Z[
√
2], Z[i

√
2]

PID, not Euclidean Z[ 1+i
√
19

2 ]
UFD, not PID Z[x], R[x1, x2, . . . ] (for R UFD)

not UFD Z[
√
5], Z[i

√
3]

Exercises.

1. In Z, find (small) generators of the following ideals: 15Z + 24Z, 15Z ∩ 24Z, (100Z +
60Z+ 16Z) ∩ 21Z ∩ 9Z.
2. Let R be a PID. Prove that aR ∩ bR = cR, where c is the least common multiple of
the elements a, b.

Analogous to the notion of a polynomial, we define a formal power series of the variable
x over a commutative ringR with unit to be an expression

∑∞
i=0 aix

i, where a0, a1, . . . ∈ R
(we are not interested in convergence, only the expressions; polynomials are those power
series in which there are only finitely many non-zero coefficients). We define the operations
+ and · on these series using the same formulas as for polynomials, only that the upper
limit n = deg f is replaced by ∞ (the coefficients of the product are still defined using a
finite sum, so it is well-defined). We denote the ring of power series over R by R[[x]].

3. Show that R[[x]] is indeed a commutative ring with unity, and if R is an integral
domain, then R[[x]] is also an integral domain. (Attention, the second part of the problem
is not a trivial generalization of the analogous statement for polynomials!)

4. Consider the integral domain T[[x]] of formal power series over a field T. Prove that

(a) the series f =
∑∞

i=0 aix
i ∈ T [[x]] is invertible if and only if the coefficient a0 is

nonzero,
(b) for each series f ∈ T [[x]] there is an n such that f ∥ xn.

5. Is T[[x]] a UFD? Is it Euclidean?

6. Show that the quotient field of T[[x]] (the smallest field containing T[[x]]) can be
represented by expressions of the form f =

∑∞
−∞ aix

i (such that ai = 0 for i < N for
some N).

7. For two ideals I, J in a ring R, is also S = {xy | x ∈ I, y ∈ J} an ideal? (Hint: take
two non-principal ideals in R = Z[x])

4. Ring homomorphisms and quotient rings

4.1. Homomorphisms. Throughout this subsection, R and S will denote two
arbitrary rings. Before discussing ring homomorphism, we need to define ideals in
general, so even for rings that are not commutative.

Definition. A non-empty subset I ⊆ R is called a (two-sided) ideal of a ring R if

• for all a, b ∈ I: −a ∈ I and a+ b ∈ I, and
• for all a ∈ I, r ∈ R: r · a ∈ I and a · r ∈ I.

Ring homomorphisms are naturally defined as maps that preserve ring opera-
tions. Most of the facts in this section are direct analogies to what we discussed
for group homomorphisms.

Definition. A map φ : R → S is called a homomorphisms between the rings R
and S, if for all a, b ∈ R it holds that

φ(a+ b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b).
For short, we write φ : R → S if φ is a homomorphism from R to S. It follows
directly from Lemma 1.1 that φ(−a) = −φ(a) for all a ∈ R, and φ(0) = 0.
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The image of φ is defined as the set

Im(φ) = {b ∈ S : b = φ(a) for some a ∈ R}.
The kernel of φ is defined as

Ker(φ) = {a ∈ R : φ(a) = 0}.
We next show that ideals play a similar role as normal subgroups with respect to
homomorphisms.

Proposition 4.1 (image and kernel of ring homomorphisms). Let R,S be rings
and φ : R → S be a homomorphism. Then

(1) Im(φ) is a subring of S;
(2) Ker(φ) is an ideal of R.

Proof. A ring homomorphism is also a group homomorphism with respect to the
operations +,−, 0. That is, we can use Theorem 1.2 and immediately get that the
kernel and the image are closed under the operations +,−, 0. It is also easy to see
that the image is closed under multiplication. It remains to complete the proof of
(2): if φ(a) = 0 and r ∈ R is arbitrary, then φ(r · a) = φ(r) · φ(a) = φ(r) · 0 = 0.
The analogous statement holds for the product a · r, i.e. Ker(φ) forms an ideal in
R. □

The following statement immediately follows from Proposition 1.3:

Proposition 4.2. Let R,S be rings and φ : R → S a homomorphism. Then φ is
injective, if and only if Ker(φ) = {0}.
Similarly to groups, the following statement also holds (prove it as an exercise!).

Proposition 4.3. Let R,S,T be rings, and φ : R → S, ψ : S → T homomor-
phisms. Then

(1) ψ ◦ φ is a homomorphism R → T,
(2) if φ is bijective, then φ−1 is a homomorphism S → R.

Example. Several important homomorphisms can be described by taking the re-
mainder modulo some element. For example, in Z, for any number m > 0, the
map

φm : Z → Zm, a 7→ a mod m

is a homomorphism. In every polynomial ring T[x] (T field), also every element
0 ̸= m ∈ T[x] gives rise to a homomorphism

φm : T[x] → T[x]/(m), f 7→ f mod m.

It is not difficult to check that these maps are indeed homomorphisms and that
their kernels are mZ, or mT[x]. Similar homomorphisms exist for every ring, in
which division with a remainder is defined.

Example. Another important family are so-called substitution homomorphisms.
Consider the commutative ring R ≤ S and an element a ∈ S. Then we define the
map

φa : R[x] → S, f 7→ f(a).

It is not difficult to verify that this is a homomorphism. If R = S, its kernel is the
principal ideal (x − a)R[x] and the image is R (due to constant polynomials). In
general, this is not true, e.g. for R = Z, S = C, a = i we get the kernel (x2+1)Z[x]
and the image Z[i].



22

Example. Both of the above types can be combined, for example, the mapping

φ : Z[x] → Z2, f 7→ f(0) mod 2

is also a homomorphism, its kernel consists of those polynomials whose the absolute
term is even, which is not a principal ideal.

Exercises.

1. Prove Proposition 4.3.

2. Prove that the mapping R[x, y] → R, f 7→ f(0, 0) is a ring homomorphism. Compute
its kernel and image. Is the kernel a principal ideal?

4.2. Isomorphisms. Bijective homomorphisms are called isomorphisms. We call
two rings isomorphic, if there is an isomorphism between them; we then also write
R ≃ S for short. Everything that was said in Section 1.2 about group isomorphisms
applies also to ring isomorphisms:
An isomorphism can be regarded as a map that “copies” a ring: if we have a

ring R, and a bijective map φ : R → S, then we can define a ring on the set S by
the operations

a ∗ b = φ(φ−1(a) ∗ φ−1(b)),

for ∗ ∈ {+, ·}.
The map φ−1 then is an isomorphism between the new ring S and the old ringR.

The rings R and S are “isomorphic copies” of the other since only a “ renaming”
of the elements by φ has occurred. Every isomorphism can be viewed in this way.

Example. It is easy to see that the set of matrices

S =
{(

a b
−b a

)
: a, b ∈ R

}
forms a subring ofM2(R), the ring of all 2×2 matrices over the real numbers. The
map

φ : C → S, a+ bi 7→
(

a b
−b a

)
is an isomorphism, since it is bijective and for all a, b, c, d ∈ R:

φ((a+ bi) + (c+ di)) = φ((a+ c) + (b+ d)i) =
(

a+c b+d
−b−d a+c

)
=
(

a b
−b a

)
+
(

c d
−d c

)
= φ(a+ bi) + φ(c+ di)

and

φ((a+ bi) · (c+ di)) = φ((ac− bd) + (ad+ bc)i) =
(

ac−bd ad+bc
−ad−bc ac−bd

)
=
(

a b
−b a

)
·
(

c d
−d c

)
= φ(a+ bi) + φ(c+ di).

Thus, the field C is isomorphic to the matrix ring S; the isomorphism identifies the
number a+ bi with the corresponding matrix

(
a b
−b a

)
.

Example. Let R be an arbitrary ring of characteristic n > 0. It is easy to see that
the elements of the form 1 + · · · + 1 form a subring P, which is sometimes called
prime ring. It is easy to see that mapping

φ : Zn → P, 0 7→ 0, k 7→ 1 + · · ·+ 1︸ ︷︷ ︸
k

,

is a ring isomorphism. An analogous statement applies to rings of characteristic
0. Then the prime ring also includes elements of the form −(1 + · · · + 1), and is
isomorphic to Z.
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Another important example of a ring isomorphism, which we saw in Algebra 1, is
the modular map in the proof of the Chinese remainder theorem. It is not only a ring
isomorphism but also a group isomorphism when restricted to the corresponding
multiplication groups:

Proposition 4.4 (algebraic version of the Chinese remainder theorem). Letm1, . . . ,mn

be pairwise coprime integers, and let M = m1 · . . . ·mn. Then, the map

φ : ZM → Zm1
× . . .× Zmn

a 7→ (a mod m1, . . . , a mod mn).

is an isomorphism. It’s restriction φ|Z∗
M
is a group isomorphism

Z∗
M ≃ Z∗

m1
× . . .× Z∗

mn
.

Proof. We already showed in Algebra 1 that φ is bijective. We next verify that it
is a homomorphism: for both operations, ∗ ∈ {+, ·}:

φ(a) ∗ φ(b) = (a mod m1, . . . , a mod mn) ∗ (b mod m1, . . . , b mod mn)

= ((a ∗ b) mod m1, . . . , (a ∗ b) mod mn) = φ(a ∗ b modM),

where the last equality uses the fact that all mi divide M .
We leave the proof of the second part as an exercise: prove that invertible ele-

ments modulo M are mapped onto invertible elements modulo an individual mi,
i.e. φ|Z∗

M
is a bijection onto the set Z∗

m1
× . . .× Z∗

mn
. □

Analogously, the Chinese remainder theorem for polynomials can be phrased
using isomorphisms (left as exercise).

Exercises.

1. Decide whether Q(i) ≃ Q(
√
2), or not. Think about the answer for the general pair

Q(
√
r), Q(

√
s). (Hint: show that any isomorphism must preserve the solution of the

equation x2 = r.)

4.3. The construction of quotient rings.
In Algebra 1, we already met a special case of the construction of quotient rings:

we declared two polynomials in R[x] to be equivalent if they have the same remain-
der modulo a given polynomial m, and we defined the quotient ring R[x]/(m) on
the resulting equivalence classes, by computing + and · modulo m. This construc-
tion works in a more general setting: we can replace the polynomial m with any
ideal I and declare two elements similar if their difference is in I. We will see that,
by the properties of ideals, this construction is again a ring. As every ideal is also
a normal subgroup of the additive group (R,+, 0,−), we only have to focus on the
multiplication in the following.

Definition. LetR be a ring, and I an ideal. Then we define an equivalence relation
on R by

a ∼ b ⇔ a− b ∈ I.

Then a ∼ b holds, if and only a+ I = b+ I, i.e. the equivalence classes are of the
form [a] = a+ I. We define the following operations on these blocks:

[a] + [b] = [a+ b], −[a] = [−a], [a] · [b] = [a · b].
(in the following lemma, we verify that they are well-defined). The set of equivalence
blocks, together with the above operations is called the quotient ring (or factor ring)
of R modulo I,

R/I = ({[a] : a ∈ R},+,−, ·, [0]).
Lemma 4.5. Let R be a ring and I an ideal of R. Then:
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(1) the operations in Definition 4.3 are well-defined,
(2) the quotient ring R/I is indeed a ring.

Proof. We already know from the construction of the quotient group ({[a] : a ∈
R},+,−, [0]) that addition and subtraction are well-defined. For the multiplication,
let us assume [a] = [c] and [b] = [d]. We then need to show that [ab] = [cd]. by our
assumption a− c ∈ I and b− d ∈ I holds, and we compute

ab− cd = a (b− d)︸ ︷︷ ︸
∈I

+(a− c)︸ ︷︷ ︸
∈I

d ∈ I,

hence ab ∼ cd, i.e. [ab] = [cd]. Similar to groups, it turns out that the operations
defined in this way satisfy all ring axioms, including commutativity and the exis-
tence of a unit if these hold in the original ring R (note however, that the property
of being an integrity domain does not have to be preserved, see Section 4.4). □

Example. Consider the commutative ring R = Z and the ideal I = nZ. It holds
that

a ∼ b ⇔ n | a− b ⇔ a ≡ b (mod n).

As with groups, it is not hard to show that Z/nZ ≃ Zn.

Similar to the group case, a version of the homomorphism theorem and first
isomorphism theorem holds for rings:

Theorem 4.6 (Homomorphism Theorem). Let φ : R → S be a ring homomophism.

(1) If I ⊆ Ker(φ) is an ideal of R, then the map

ψ : R/I → S, [a] 7→ φ(a)

is well-defined and a ring homomorphism.
(2) [1st isomorphism theorem] R/Ker(φ) ≃ Im(φ).

Proof. The proof is the same as in the group version (Theorem 2.4), all you need
to check that all defined mappings are additionally also ring homomorphisms. □

Example. The homomorphism Z → Zn, a 7→ a mod n, induces a ring isomorphism
Z/nZ ≃ Zn.

If R is a commutative ring and I = mR is a principal ideal of it, then

a ∼ b ⇔ m | a− b ⇔ a ≡ b (mod m).

In general, if R admits a division with remainder (e.g. R = Z or R = T[x], T is
a field), the elements of R/mR can be represented as all possible remainders after
division by the element m and the operations in R/mR are the operations in the
original ring modulo m, since

[a]± [b] = [a± b] = [a± b mod m], [a] · [b] = [a · b] = [a · b mod m].

In particular, for R = T[x] we see that the quotient ring construction from Algebra
1, and the quotient ring construction from this section, are essentially identical:
The 1st isomorphism theorem applied to the modular mapping T[x] → T[x]/(m)
yields the isomorphism

T[x]/mT [x] ≃ T[x]/(m),

in which a polynomial f of degree < degm uniquely corresponds to the corre-
sponding block [f ]. The notation is usually mixed, both notations T[x]/mT [x] and
T[x]/(m) are used for the two formally different but isomorphic constructions.
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Example. What does the quotient ring T[x]/(x − a) for a ∈ T look like? Let us
consider the map

T[x] → T, f 7→ f(a).

Its image is T and its kernel is

{f ∈ T [x] : f(a) = 0} = {f ∈ T [x] : x− a | f} = (x− a)T [x].

By the first isomorphism theorem T[x]/(x− a) ≃ T.

For polynomials of a higher degree, the situation is more complicated.

Example. What does the quotient ring Q[x]/(x2 + 1) look like? Let us consider
the homomorphism

Q[x] → Q(i), f 7→ f(i).

Its image is Q(i) and its kernel is

{f ∈ Q[x] : f(i) = 0} = {f ∈ Q[x] : f(i) = f(−i) = 0}
= {f ∈ Q[x] : x− i | f, x+ i | f}
= {f ∈ Q[x] : (x− i)(x+ i) = x2 + 1 | f}
= (x2 + 1)Q[x].

By the first isomorphism theorem Q[x]/(x2 + 1) ≃ Q(i).

Example. What does the quotient ring Q[x]/(x2 − 1) look like? Let us consider
the homomorphism

Q[x] → Q×Q, f 7→ (f(1), f(−1)).

This is a map to Q×Q, and its kernel is

{f ∈ Q[x] : f(1) = f(−1) = 0} = {f ∈ Q[x] : x− 1 | f, x+ 1 | f}
= {f ∈ Q[x] : (x− 1)(x+ 1) = x2 − 1 | f}
= (x2 − 1)Q[x].

By the first isomorphism theorem Q[x]/(x2 − 1) ≃ Q×Q.

Finally, let us also look at an example with a non-principal ideal:

Example. What does the quotient ring Z[x]/I look like, where I = {f ∈ Z[x] :
m | f(0)}? Two polynomials f, g are equivalent modulo I, if f − g ∈ I, i.e. if
m | f(0) − g(0). This is equivalent ot f(0) ≡ g(0) (mod m). Thus, there are
exactly m equivalence classes. It is not hard to see that the map

Z[x] → Zm, f 7→ f(0) mod m

is a homomorphism, its kernel is I, and thus Z[x]/I ≃ Zm.

Similar to the group case, a 2nd isomorphism theorem also holds for rings (proof
left as exercise!).

Proposition 4.7 (2nd isomorphism theorem). Let R be a ring, and I an ideal of
it.

(1) If also I ⊆ J is an ideal of R, then J/I = {[a] : a ∈ J} is an ideal of R/I.
(2) If K is an ideal of R/I, then there exists an ideal J of R such that K = J/I.
(3) In both cases it holds that

(R/I)
/
(J/I) ≃ R

/
J.



26

Exercises.

1. What do the quotient rings Z[x]/I look like, where (a) I = (x − 1)Z[x], (b) I =
(x2 + 1)Z[x], (c) I = (x2 − 1)Z[x] ? Note that the last one is not isomorphic to Z × Z:
think carefully about what the image of the substitution homomorphism is!

2. What does the quotient ring T[x]/(x4 − 4) look like for T = Q,R,C ?
3. What does the quotient ring R[x, y]/I look like, where (a) I = yR[x, y], (b) I =
(x+ y)R[x, y], (c) I = {f : f(0, 0) = 0} ?
4. Prove the second isomorphism theorem for rings.

4.4. Quotient rings modulo maximal and prime ideal. In this section, we
will show a generalization of the result that a ring T[α]/(m) is a field if and only if
T [α]/(m) is an integral domain if and only if m is an irreducible element of T[α].
In general, the situation is more complicated: it may happen that the quotient ring
modulo an ideal is an integral domain, but not a field.

Definition. We say an ideal I of a ring R is
• a prime ideal, if for all a, b ∈ R with ab ∈ I, either a ∈ I or b ∈ I holds;
• maximal, if I is maximal with respect to the inclusion relation, i.e. there is
no ideal J such that I ⊂ J ⊂ R.

Example. Left as an exercise:
• An ideal nZ of Z is maximal if and only if it is a prime ideal, if and only if
n is prime.

• An ideal fT [x] of T[x] is maximal if and only if it is a prime ideal, if and
only if f is irreducible in T[x]

An analogous statement holds in all principal ideal domains. However, in general
not every prime ideal needs to be maximal. For example, the ideal I = xZ[x] in
the domain Z[x]

• is a prime ideal
• is not maximal, since the ideal {f ∈ Z[x] : 2 | f(0)} is bigger.

Theorem 4.8 (quotient rings modulo prime and maximal ideals). Let R be a
commutative ring with unity, and I an ideal. Then

(1) R/I is an integral domain, if and only if I is prime;
(2) R/I is a field, if and only if I is maximal.

Proof. (1) By definition, the quotient ring R/I is an integral domain, if for all
a, b ∈ R such that [ab] = [a] · [b] = [0] either [a] = [0] or [b] = [0] holds. Since
[0] = I, this is equivalent to the statement that ab ∈ I implies a ∈ I or b ∈ I, which
is the definition of I being a prime ideal.
(2) By Proposition 3.3 R/I is a field if and only if it contains no proper ideals.

The second isomorphism theorem says that R/I contains a proper ideal K, if and
only if K = J/I, for an ideal I ⊂ J ⊂ R of R. Thus R/I is a field, if and only if I
is maximal. □

Example. Recall the examples of Q[x]/(f) from Section 4.3:

• the polynomial x2 + 1 is irreducible, so the ideal (x2 + 1)Q[x] is maximal,
and hence Q[x]/(x2 + 1) ≃ Q(i) is a field;

• the polynomial x2 − 1 is not irreducible, so the ideal (x2 − 1)Q[x] is not
maximal (e.g. the ideal (x− 1)Q[x] is larger), and indeed, Q[x]/(x2 − 1) ≃
Q×Q is not a field.

Example. Recall the example of the ideal I = xZ[x] in the ring Z[x]. I is a
prime ideal that is not maximal, and indeed, the factor ring Z[x]/I ≃ Z (given by
substitution homomorphism) is an integral domain, but not a field.
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Exercises.

1. Explain why R[α]/(α2 + 1) ≃ C but C[α]/(α2 + 1) ≃ C× C.
2. Using the 2nd isomorphism theorem, prove that Z[i]/pZ[i] ≃ Zp[α]/(α

2+1). For which
p do we get a field? Find an argument for Z[i]/pZ[i] and Zp[α]/(α

2+1) and deduce which
primes are irreducible elements of Z[i].
3. In Z[

√
5], the element 4 has the two distinct decompositions into irreducibles 4 = 22 =

(1 +
√
5)(−1 +

√
5). Show that I = 2Z[

√
5] + (1 +

√
5)Z[

√
5] is a prime ideal, but not

principal. Compare this with the historical remark at the end of Section 3.1.
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Algebraic number fields and roots of polynomials

5. Ring and field extensions

5.1. Definition.
In this section, we define the general notion of ring extension and show that its

elements can be expressed in terms of polynomial operations.

Definition. Let R ≤ S be commutative rings and let a a1, . . . , an ∈ S. We define

• R[a1, . . . , an] to be the smallest subring of S containing R and a1, . . . , an;
called the extension ring of R in S generated by the elements a1, . . . , an.

If R,S are fields, we instead define

• R(a1, . . . , an) to be the smallest subfield of S containing R and a1, . . . , an;
called the extension field of R in S generated by the elements a1, . . . , an

Example (Gaussian integers). The ring of Gaussian integers can be written as an
extension ring of Z in C generated by i, that is Z[i]. Analogously, Gaussian rational
numbers can be written as the smallest subring of C containing both Q and i, that
is Q[i]. Observe that Q[i] is indeed a field, since

(a+ bi)−1 =
a

a2 + b2
− b

a2 + b2
i ∈ Q[i],

hence Q[i] = Q(i). In the same way, we have R[i] = R(i) = C.

The construction of Gaussian integers and rationals can be naturally general-
ized in two different ways: extending Z either by means of a square root of other
numbers, instead of i =

√
−1, or by higher complex roots of one.

Example (Quadratic extensions). For any s ∈ Z consider the quadratic extensions

Z[
√
s] = {a+ b

√
s : a, b ∈ Z} ≤ C,

Q[
√
s] = Q(

√
s) = {a+ b

√
s : a, b ∈ Q} ≤ C.

It is easy to see that the right-hand side is a subring (resp. a subfield) of C.

Example (Cyclotomic extensions). For ζn = e2πi/n (the so-called n-th root of
unity) consider the n-th cyclotomic extensions

Z[ζn] = {a0 + a1ζn + a2ζ
2
n + . . .+ an−1ζ

n−1
n : a0, . . . , an−1 ∈ Z} ≤ C,

Q[ζn] = Q(ζn) = {a0 + a1ζn + a2ζ
2
n + . . .+ an−1ζ

n−1
n : a0, . . . , an−1 ∈ Q} ≤ C.

For n = 3 we obtain the Eisenstein integers, for n = 4 the Gaussian integers. We
remark that, in general, different such sums can describe the same element. For
instance, for n = 3 we have ζ23 = −1− ζ3. The proof that Q[ζn] = Q(ζn) is not as
straightforward as for quadratic extensions. Later we will show a general statement
(Proposition 6.4), from which this fact immediately follows.

Example. We can also consider extension rings generated by more than one ele-
ment. For instance

Z[
√
2,
√
3] = {a+ b

√
2 + c

√
3 + d

√
6 : a, b, c, d ∈ Z}.
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S

R[a1, ..., an]

R

a1 ... an

Figure 6. Extension ring R[a1, . . . , an] ≤ S.

Proposition 5.1 (Ring extension structure theorem). Let R ≤ S be commutative
rings with unity and let a ∈ S. Then

R[a] = {f(a) : f ∈ R[x]}
= {u0 + u1a+ . . .+ una

n : n ∈ N, u0, . . . , un ∈ R}.
If R ≤ S are fields, then

R(a) =

{
f(a)

g(a)
: f, g ∈ R[x], g(a) ̸= 0

}
.

Proof. Let us denote by M = {f(a) : f ∈ R[x]}. We have to prove that the set M
(1) is a subring of S,
(2) contains R ∪ {a},
(3) is the smallest subring S satisfying the previous conditions.

(1) Let f(a), g(a) ∈ M , where f, g ∈ R[x]. Their sum f(a) + g(a) = (f + g)(a)
is also in M , because f + g ∈ R[x]. In a similar way we get f(a) · g(a) ∈ M and
−f(a) ∈M . Moreover, by choosing f = 0 we obtain 0 ∈M .
(2) By choosing constant polynomials, we get R ⊆ M . By choosing f = x we

also obtain a ∈M .
(3) Consider any subring U containing R ∪ {a}. This subring must contain all

the powers ai, their arbitrary multiples by elements of R, and also arbitrary sums
of these multiples. That is, it must contain all elements of the form u0+u1a+ . . .+
una

n, where u0, . . . , un ∈ R, therefore M ⊆ U .
The statement for R(a) can be shown analogously, but particular attention must

be paid to the inverses (exercise!). □

Example. Consider the quadratic extensions Z[
√
s]. Since

√
s
2
= s,

√
s
3
= s

√
s,

etc., the value of every polynomial f ∈ Z[x] on the element
√
s will be equal to

a+ b
√
s, a, b ∈ Z. Hence Z[

√
s] = {f(√s) : f ∈ Z[x]} = {a+ b

√
s : a, b ∈ Z}.

Analogously, for cyclotomic extensions we get the expression Z[ζn] = {a0+a1ζn+
. . .+ an−1ζ

n−1
n : a0, . . . , an−1 ∈ Z}, because ζnn = 1, ζn+1

n = ζn, etc.

For every field T, clearly the inclusion T[a] ≤ T(a) holds. But under which
conditions do we get equality T[a] = T(a)? In Section 6 we will show that this
happens when a is a so-called algebraic element, that is, when it is the root of some
nonzero polynomial of T[x]. One implication can be proven right away:

Proposition 5.2. Let T ≤ S be fields and a ∈ S an element that is not a root of
any nonzero polynomial in T[x]. Then T[a] ̸= T(a).
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Proof. From Theorem 5.1 we have T[a] = {f(a) : f ∈ T [x]}. If there was an
element a−1 in this set, then there would be a polynomial f ∈ T [x] such that
f(a) = a−1, that is af(a) = 1, and thus a would be a root of the non-zero polynomial
xf − 1 ∈ T [x], which contradicts our assumptions. □

Exercises.

1. Describe the elements of the following rings and order them by inclusion

(a) Z[
√
6], Z[

√
24], Z[

√
2,
√
3].

(b) Q[
√
6], Q[

√
24], Q[

√
2,
√
3].

2. Do the rings Q[
√
2,
√
3] and Q[

√
2 +

√
3] coincide? What is the answer for Z[

√
2,
√
3]

and Z[
√
2 +

√
3] ?

3. Describe the elements of Q[ 3
√
s] and Q( 3

√
s). Do they coincide?

4. For which s, t ∈ Z does
√
s ∈ Z[

√
t] hold? Consider s, t, such that they are not divisible

by the square of a prime number.

5. Let R be a subring of S, and let u1, . . . , un ∈ S. Show that

R[u1, . . . , un] = {f(u1, . . . , un) : f ∈ R[x1, . . . , xn]} .

If they are fields, show that

R(u1, . . . , un) =

{
f(u1, . . . , un)

g(u1, . . . , un)
: f, g ∈ R[x1, . . . , xn], g(u1, . . . , un) ̸= 0

}
.

5.2. Field extensions as vector spaces.
In this section, we introduce the degree of a field extension. Here, a general field

extension is just a pair of fields T,S such that T ≤ S. We say T is a subfield of S,
or that S is an extension of T.
The main idea of this section is that the extension field S can be considered as

a vector space over the field T: the addition and subtraction of this vector space
are simply the addition and subtraction of S. Instead of the multiplication as an
operation S × S → S we only consider the restriction T × S → S. If we consider
the elements of the larger field S to be vectors, the elements of the smaller field T
to be scalars, this describes the multiplication of a scalar times a vector. We will
denote the resulting vector space by ST.
Note that this is indeed a vector space: the additive structure (S,+,−, 0) is an

Abelian group, and for all a, b ∈ T (scalars), v, w ∈ S (vectors) each of the axioms of
a vector spaces holds: a(bv) = (ab)v follows from the associativity of multiplication,
1v = v from the unit property, and a(v+w) = av+aw and (a+ b)v = av+ bv from
distributivity.

Definition. The dimension of the vector space ST is called the degree of the ex-
tension, and is denoted by

[S : T] = dimST.

If the degree of [S : T] is finite, we say that it is an extension of finite degree.

Examples.
• [C : R] = 2. Every complex number can be written uniquely as a + bi,
a, b ∈ R, that is the elements 1, i form a basis of the vector space CR.

• Analogously, for a non-square integer s, the degree [Q(
√
s) : Q] = 2. Hence,

the elements 1,
√
s form a basis of the vector space Q(

√
s)Q.

• [Q(
√
2,
√
3) : Q] = 4, the basis of the vector space Q(

√
2,
√
3)Q consists, for

example, of the elements 1,
√
2,
√
3,
√
6.

• Attention! For ζ3 = e2πi/3 the degree [Q(ζ3) : Q] = 2 and not 3. The
elements 1, ζ3, ζ23 are linearly dependent because ζ

2
3 = −1− ζ3.
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• If u is a transcendental number (i.e. not algebraic, like the constants e or
π), the degree of [Q(u) : Q] is infinite (countable): a linearly independent
set consists, for example, of elements 1, u, u2, . . . (see Theorem 6.7).

• The degree of [R : Q] is uncountably infinite.
(Vector spaces of finite or countable dimension over a countable field are
countable themselves. But the real numbers are uncountable.)

Next, for any ring with unity R consider the mapping

Z → R, n 7→ 1 + . . .+ 1︸ ︷︷ ︸
n

.

It is easy to see that this is a homomorphism; its image is called the prime ring
of the ring R, and its kernel is an ideal nZ. Note that the prime ring is the
smallest subring of R containing 1. We call n the characteristic of R. The first
isomorphism theorem implies that the prime ring of R is either isomorphic to Z if
R has characteristic 0, or to Z/nZ ≃ Zn if R has characteristic n > 0.
Now, let us similarly define the prime field of a field T to be its smallest subfield.

It certainly contains the prime ring of T, but it must also contain the inverse of
every non-zero element in it. The characteristic of the field is either 0 or the prime
number p. In the second case, the prime ring is already a field (isomorphic to Zp),
so the two concepts agree. In the case of characteristic 0, the prime field consists of
all the fractions ab−1, where a, b are elements of the prime ring, that is, the prime
field is isomorphic to Q.
Naturally, each field is an extension of its prime field. In the particular case of

finite fields, we obtain a very interesting consequences:

Proposition 5.3. The number of elements of a finite field is a power of a prime
number.

Proof. The finite field T of characteristic p is an extension of its prime field P ≃ Zp.
By the discussion above, T can be considered as a vector space TP over Zp. So, if
k = [T : P], then T has pk elements. □

6. Algebraic elements and extensions of finite degree

6.1. Algebraic and transcendental numbers.
One of the main mathematical problems in the 18th and 19th centuries involved

the following two questions:

• How to find the roots of a given polynomial? Can we express those roots
by a formula involving only arithmetic operations on the coefficients?

• Given a (real or complex) number. Is there any polynomial with integer
coefficients of which that number is a root? How to find it?

The answer to the first question was addressed by Galois, who was able to
characterize all polynomials whose roots can be expressed by formulas (involving
+,−, ·, n

√·). For degree ≤ 2 you know such formulas from school. Roots of polyno-
mials of degree ≤ 4 can be described by the so-called Cardano formulas. However,
for some polynomials of degree ≥ 5 there are provably no such formulas, and in
practice the roots can only be approximated by numerical methods.
In this subsection, we discuss the second question.

Definition. A complex number a is called algebraic if there exists a non-zero
polynomial f with integer coefficients such that f(a) = 0. Otherwise, a is said to
be transcendental.

Examples. Several “well-known” numbers are algebraic.
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• Rational numbers are algebraic, the rational number a
b is a root of the

polynomial bx− a.
• The n-root of an integer is algebraic, for instance n

√
s is a root of the

polynomial xn − s.
• Some other irrational numbers are also algebraic, even if it is not obvious
at a first glance. For example,

√
2 +

√
3 is a root of x4 − 10x2 + 1.

• Using the theory of field extensions, we will prove that the sum, difference,
product, and quotient of algebraic numbers is still an algebraic number
(Theorem 6.11).

Example. Apparently, Leonhard Euler was already assuming the fact that not
every number is algebraic, but the first proof of the existence of transcendental
numbers was given much later.

• Joseph Liouville proved that irrational algebraic numbers cannot be effi-
ciently approximated by rational numbers, in a certain sense. For that
reason, for example, the number

∑∞
i=1 10

−i! cannot be algebraic (that is,
a number that has a one in the decimal expansion precisely at positions of
the form i!, otherwise zeros).

• In 1873, Charles Hermite proved that the number e is transcendental, and
it was not until 1882 that Ferdinand von Lindemann found a proof of the
transcendence of the number π. It is however still open for e + π, e × π,
and several other well-known irrational numbers.

• Georg Cantor surprised mathematicians in 1874 when he proved that almost
all real numbers are transcendental (in the sense of probability given by a
uniform distribution, i.e. a random real number is transcendental with
probability 1).

Each of the known proofs of the transcendence of particular numbers is quite
complicated. Except for Cantor’s argument: he proved in a relatively simple way
that there are many transcendental numbers without having to find any. His ar-
gument is based on counting: there are many more transcendental numbers (un-
countably many) than algebraic numbers (only countably many). We will now show
Cantor’s proof, which was one of the main motivations for the development of set
theory.
Recall that an infinite set is called countable if its elements can be listed as a

sequence indexed by natural numbers (i.e., it is a set “as large” as N). We call all
other (i.e. larger than N) infinite sets uncountable.
First, note that the union of two countable sets is countable: If A = {a1, a2, . . . }

and B = {b1, b2, . . . }, then A ∪ B = {a1, b1, a2, b2, . . . }. So the integers Z form
a countable set (as the union of 0, all positive and all negative numbers). Even
the set Q is countable: simply order the positive rational numbers according to
the sum of the numerator and denominator (ordering those with the same sum
arbitrarily); do the same for the negative rationals, take their union and add a zero
to the beginning.

Proposition 6.1. The set of algebraic numbers is countable.

Proof. Let’s define the index of a polynomial f = a0 + a1x + . . . + anx
n ̸= 0 as

the sum |a0|+ |a1|+ . . .+ |an|+ n. Note that there are only finitely many integer
polynomials of a given index (for instance, for index 1: f = ±1; index 2: f = ±2,
f = ±x; index 3: f = ±3, f = ±2x, f = ±x± 1, f = ±x2), that is, all polynomials
can be arranged in a sequence according to the increasing index. At the same time,
every non-zero polynomial has only finitely many roots, i.e. by substituting the
polynomial for its roots we obtain a sequence containing all algebraic numbers. □
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Theorem 6.2. The set of real numbers is uncountable.

Proof. If the set of real numbers was countable, the interval [0, 1) would certainly
also be countable, and therefore we could arrange the numbers from this interval
into a sequence

a1 = 0, a11a12a13 . . .

a2 = 0, a21a22a23 . . .

a3 = 0, a31a32a33 . . .

. . . ,

such that ai,j denote the digits of ai in the decimal expansion. Now, let’s pick a
number b = 0, b1b2b3 . . . so that b1 ̸= a11, b2 ̸= a22, etc. This number cannot be in
the list, because it differs in the i-th position from the i-th number, for every i ∈ N.
This is a contradiction with the fact that all numbers from the interval [0, 1) should
have been there. (For this argument to be correct, decimal expansions ending in
just nines must be avoided.) □

Every real number is either algebraic or transcendental. There are only a few of
the former, so the latter must be uncountable. So, not only must transcendental
numbers exist, but there are many more of them than rational ones.
In the following, we will relate the algebraic nature of a given number to the

degree of a certain field extension and we will also discuss how to find polynomials
whose roots are algebraic numbers.

6.2. Minimal polynomial and degree of simple extension.
In this section, we relate the notion of an algebraic number to the properties of

so-called simple extensions, i.e. extensions of the form T(a), determined by one
element. The main goal of this section is to develop a theory that ends up with
the following characterization: a number a is algebraic if and only if the degree of
[Q(a) : Q] is finite, moreover, this degree is equal to the degree of any irreducible
polynomial, of which a is the root.
We start with a general definition of the algebraic property, for an element of an

arbitrary field.

Definition. Let T ≤ S be a field extension and let a ∈ S. We say that a is
algebraic over T if there exists a nonzero polynomial in T[x] of which a is a root.
Otherwise, the element a is called transcendental over T.

Note that a number is algebraic in the sense of Section 6.1 if and only if it is
an algebraic element over the field Q: the given number is a root of some rational
polynomial if and only if it is a root of some integer polynomial, just multiply
coefficients.

Definition. Let T ≤ S be a field extension and let a ∈ S be algebraic over T. By
a minimal polynomial of a over T we mean an irreducible monic polynomial ma,T

of T[x], which has a as a root.

Proposition 6.3 (Properties of the minimal polynomial). Let T ≤ S be a field
extension and let a ∈ S be algebraic over T. Then

(1) The minimal polynomial ma,T exists and it is uniquely determined;
(2) The element a is a root of the polynomial f ∈ T [x] if and only if ma,T | f .

Proof. The set I = {f ∈ T [x] : f(a) = 0} is an ideal of T[x], and since T[x] is a
principal ideal domain (Theorem 3.2), there exists a monic polynomial m ∈ T [x]
such that I = mT [x]. We thus showed that f(a) = 0 if and only if m | f . If the
polynomial m was not irreducible in T[x], i.e. if m = fg, where f, g ∦ m, then
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0 = m(a) = f(a)g(a), i.e. the element a would be a root of at least one of the
polynomials f, g, but m ∤ f, g, contradiction. That is, m is the minimal polynomial
of the element a over T. For any other monic irreducible polynomial m̃ ∈ T [x] of
which a is a root, we have m | m̃ holds and from irreducibility and monicity we get
m̃ = m. □

Example. It is easy to see that

m1,Q = x− 1, mi,Q = x2 + 1, m 3√2,Q = x3 − 2,

because they are irreducible polynomials that have the given element as a root.

Example. Attention, because for ζ3 = e2πi/3 the minimal polynomial is mζ3,Q
and not x3 − 1, because the latter polynomial is not irreducible. It holds that
x3 − 1 = (x − 1)(x2 + x + 1), the ζ3 is a root of the second factor, which is
irreducible, and thus mζ3,Q = x2 + x+ 1.

Example. Let’s compute the minimal polynomial of a =
√
2 +

√
3. We have

a2 = 5 + 2
√
6, a3 = 11

√
2 + 9

√
3, a4 = 49 + 20

√
6

and we see that a4 = 10a2−1. Therefore, a is a root of the polynomial x4−10x2+1.
This polynomial is irreducible: thanks to the criterion of the existence of a rational
root, we see that it does not have a rational root, and it cannot be decomposed
into the product of two polynomials of degree 2, since

√
2+

√
3 is not a solution of

any quadratic equation.

Proposition 6.4 (Structure of simple extensions). Let T ≤ S be a field extension,
and let a ∈ S be an algebraic element over T. Then

T(a) = T[a].

Proof. From Theorem 5.1 we get

T [a] = {f(a) : f ∈ T [x]}.
We prove that these elements form a subfield. Let 0 ̸= f(a) ∈ T [a], we are looking
for its inverse, i.e. a polynomial g ∈ T [x] such that f(a)g(a) = 1. Since f(a) ̸=
0, the polynomial ma,T does not divide f . The irreducibility of ma,T implies
gcd(ma,T, f) = 1 i.e., according to Bézout’s identity, there are polynomials u, g ∈
T [x] such that 1 = uma,T + gf . By substituting the element a we get that

1 = u(a)ma,T(a) + g(a)f(a) = u(a) · 0 + g(a)f(a) = f(a)g(a),

therefore g(a) is the inverse element of f(a). □

Alternative proof. Consider the homomorphism φ : T[x] → T[a], f 7→ f(a). It
is clearly surjective and its kernel is the ideal ma,TT [x]. The first isomorphism
theorem implies that T[x]/(ma,T) ≃ T[a]. Since ma,T is irreducible, this ideal is
maximal, therefore T[a] is a field, and then T[a] = T(a). □

Example. The number
√
s, for s ∈ Z, is algebraic over Q, therefore Q(

√
s) =

Q[
√
s]. Indeed,

(a+ b
√
s)−1 =

a

a2 − b2s
− b

a2 − b2s

√
s ∈ Q[

√
s].

Note that for extensions by more than one element, the formulas might not be
so neat as in the above example (try it!). Moreover, Proposition 6.4 does not need
to hold then.
Next recall that in Proposition 5.2 we proved that, if a is transcendental over T,

then T[a] ̸= T(a). Together with Proposition 6.4 this implies:
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Observation 6.5. Let T ≤ S be a field extension and a ∈ S. Then a is algebraic
over T if and only if T(a) = T[a].

Proposition 6.6 (Degree of simple extensions). Let T ≤ S be a field extension
and let a ∈ S be an algebraic element over T. Then

[T(a) : T] = degma,T.

Proof. Let us denote by n = degma,T. We prove that the elements 1, a, a2, . . . , an−1

form the basis of the vector space T(a)T, and thus that its dimension is n.
If the elements 1, a, a2, . . . , an−1 were linearly dependent, then

∑n−1
i=0 tia

i = 0
would hold for some ti ∈ T of which would at least one was non-zero. Thus, the
element a would be the root of the (non-zero) polynomial

∑n−1
i=0 tix

i ∈ T [x] with
degree less than that of ma,T, which would be a contradiction with the minimality.
We now prove that the elements 1, a, a2, . . . , an−1 generate the vector space T(a)T.
Consider the element f(a) of the field T(a) = T[a]. We want to express it as a linear
combination. Let q, r ∈ T [x] be such that f = q·ma,T+r and deg r < degma,T = n.
Then

f(a) = q(a) ·ma,T(a) + r(a) = q(a) · 0 + r(a) = r(a),

and since the degree of r is less than n, we have f(a) = r(a) =
∑n−1

i=0 tia
i, where

ti ∈ T are the coefficients of the r polynomial. □

Example. Using Proposition 6.6, one can determine the degree of a simple exten-
sion.

• [C : R] = [R(i) : R] = degmi,R = deg(x2 + 1) = 2.
• [Q( n

√
p) : Q] = deg(xn − p) = n for any n ∈ N and a prime number p, since

the given polynomial is irreducible according to Eisenstein’s criterion. (If
p is not prime, then the situation is more complicated.)

• [Q(e2πi/n) : Q] = φ(n) (Euler’s totient function). This is not that straight-
forward to prove; the corresponding minimal polynomials are called the
cyclotomic polynomials. If n is prime, the cyclotomic polynomial is xn−1+
xn−2 + . . . + 1 = xn−1

x−1 . Its irreducibility can be shown using Eisenstein’s
criterion after the substitution x = y + 1.

Corollary 6.7. Let T ≤ S be a field extension, and let a ∈ S. The element a is
algebraic over T if and only if the degree [T(a) : T] is finite).

Proof. If a was transcendental, then 1, a, a2, . . . would form an infinite linearly
independent set: if

∑n
i=0 tia

i = 0 for some coefficients ti ∈ T , at least one nonzero,
would be a the root of the nonzero polynomial

∑n
i=0 tix

i of T[x], contratiction.
The opposite implication follows from Proposition 6.6. □

Example. We will show the structure of so-called quadratic extensions, i.e. exten-
sions of degree 2. We prove that if T < S ≤ C and [S : T] = 2, then

S = T(
√
s) for some s ∈ T.

Let 1, a be a basis of the space ST. Then S = T(a) and by Proposition 6.6 a is a
root of some polynomial in T[x] of degree 2. A well-known formula for computing
the roots of a quadratic polynomial says that a = u+v

√
s for some u, v, s ∈ T , and

thus S = T(u+ v
√
s) = T(

√
s).

Exercises.

Recall the notation ζn = e2πi/n.

1. Compute the minimal polynomial ma,Q, where a is 1 +
√
5, 1 − 3

√
2, 3+

√
2√

2−1
, i +

√
5,

ζ7 + ζ−1
7 .
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2. Compute the dimension and find a basis of the vector space Q(ζn)Q for n = 5, 6, 8.

3. LetT ≤ S be a field extension and a ∈ S an algebraic element. Describe the polynomial
ma−1,T using the coefficients of the polynomial ma,T.
A rupture field of a polynomial f ∈ Q[x] is an extension Q(a) of Q by a root a of f .

4. Compute the degree of the rupture fields of x5 − 3x+ 3 over Q.
5. Compute the rupture fields of x4 + x3 + 2x2 + x+ 1 over Q.

6.3. Extensions by multiple elements.
The following general rule is used to calculate the degree of extensions by more

than one element.

Proposition 6.8 (degree of non-simple extensions). Let T ≤ S ≤ U be field
extensions. Then

[U : T] = [U : S] · [S : T].

Proof. Let us choose a basis A of the vector space ST and a basis B of the vector
space US. We are then going to prove that

C = {ab : a ∈ A, b ∈ B}
is a basis of the vector space UT.
First, we are going to prove that C is a generating set of UT (clearly C ⊆ U ,

and thus C generates a subspace of UT). If u ∈ U , then u =
∑

j sjbj for some
sj ∈ S and bj ∈ B. Each sj can be written as sj =

∑
i tijai for some tij ∈ T and

ai ∈ A, and by substituting the second equality into the first we get

u =
∑
j

(∑
i

tijai
)
bj =

∑
i,j

tij · aibj .

Thus, u is a linear combination of elements of C with coefficients from the field T.
Next, we prove linear independence. Assume that

∑
i,j tij · aibj = 0 for some

tij ∈ T and aibj ∈ C. We break the sum down into

0 =
∑
i,j

tijaibj =
∑
j

(∑
i

tijai
)

︸ ︷︷ ︸
∈S

bj .

The linear independence of elements bj over the field S gives us
∑

i tijai = 0 for
each j and from the linear independence of elements ai over the field T we get
tij = 0 for all i, j.
It follows that C is a basis of UT, and thus

[U : T] = |C| = |A×B| = |A| · |B| = [S : T] · [U : S].

□

Proposition 6.6 and 6.8 can be applied to compute the degree of expansions of
the type T(a1, a2, . . . ): We can split the double extension T ≤ T(a, b) into two
simple extensions T ≤ T(a) ≤ T(a, b) and compute

[T(a, b) : T] = [T(a, b) : T(a)] · [T(a) : T] = degmb,T(a) · degma,T

≤ degmb,T · degma,T.

But attention! When expressing the degree [T(a, b) : T(a)] we have to use the
minimal polynomial of the element b over the field T(a), which may be of smaller
degree than the minimal polynomial over by the body T. By repeatedly applying
the described procedure, we can easily prove the following corollary:

Corollary 6.9. Let T ≤ S be an extension of fields and let a1, . . . , an ∈ S be
algebraic elements over T. Then T(a1, . . . , an) is a finite degree extension over T.
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Example. Let us show

Q(
√
2 +

√
3) = Q(

√
2,
√
3).

using the above statements. Clearly Q(
√
2+

√
3) ≤ Q(

√
2,
√
3). So if we can prove

that both spaces have the same dimension, they must be identical. Let’s calculate
the minimal polynomials:

• m√
2+

√
3,Q = x4 − 10x2 + 1;

• m√
2,Q = x2 − 2;

• m√
3,Q(

√
2) = x2 − 3 (note that this is irreducible in Q(

√
2)[x] !).

By Proposition 6.6 and 6.8 we get [Q(
√
2 +

√
3) : Q] = 4 and [Q(

√
2,
√
3) : Q] =

[Q(
√
2,
√
3) : Q(

√
2)] · [Q(

√
2) : Q] = 2 · 2 = 4.

If T ≤ S is a field extension and every element of the field S is algebraic over T,
we speak of an algebraic extension. All finite degree extensions have this property.

Proposition 6.10. Finite degree extensions are algebraic.

Proof. Let us denote n = [S : T]. For any element a ∈ S, we can prove that it is
algebraic over T. The elements 1, a, a2, . . . , an−1, an are linearly dependent because
there are more of them than the dimension of the vector space ST. Thus there is
a non-trivial linear combination of them equal to 0, such that

∑n
i=0 tia

i = 0. That
is, the element a is the root of the non-zero polynomial

∑n
i=0 tix

i ∈ T [x]. □

We can use Proposition 6.10 to prove algebraicity in a non-constructive way: to
prove that an element a is algebraic over T, it suffices to find an extension S ≥ T
of finite degree that contains a. A typical example is the proof that the sum,
difference, product, and quotient of two algebraic elements are algebraic element:

Theorem 6.11 (algebraic elements form a subfield). Let T ≤ S be a field extension.
The elements of S, which are algebraic over T form a subfield of S.

Proof. Let us consider elements a, b ∈ S which are algebraic over T. The extension
T ≤ T(a, b) is of finite degree (Corollary 6.9), and therefore algebraic (Proposition
6.10). That is, all the elements of T(a, b) are algebraic over T, especially the
elements a+ b, a · b, −a and a−1 (for a ̸= 0). Thus, the algebraic elements form a
subfield of the field S. □

Exercises.

1. Compute the degree of the extension [Q(
√
3, 3

√
3) : Q]).

2. Show that [Q(
√
p1, . . . ,

√
pn) : Q] = 2n, where p1, . . . , pn are pairwise different primes.

3. Let T ≤ S ≤ U be a field extension, U algebraic over S, and S algebraic over T. Is U
necessarily algebraic over T? If so, prove it. If not, provide a counterexample.

4. Let T ≤ S be a field extension and a ∈ S an algebraic element. Prove that if [T(a) : T]
is odd, then T(a) = T(a2).

5. Let S be the splitting field of the polynomial f ∈ T [x] of degree n. Prove that [S : T]
divides n!.

6. Complete the details of the proof that every extension T ≤ S of finite degree can be
written as S = T(a1, . . . , an), where a1, . . . , an are some algebraic elements over T.
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7. Problems that cannot be solved with a ruler and a compass

In ancient Greece, mathematics mainly meant to do geometry. So, several classi-
cal math problems from that time ask to construct some geometrical object by using
only a ruler and compass. Some of these problems are easy enough to be taught in
primary schools, such as doubling a square or bisecting an angle. There are however
problems that have been unresolved for millennia: for example, the construction of
a regular heptadecagon (17-gon) was only discovered by Gauss in 1796. Already
at that time, it was suspected that some problems could not be solved, but it was
only the development of algebra at the beginning of the 19th century that made it
possible to prove it. Among the most famous unsolved problems were:

• doubling the cube: construct a cube that has double the volume of a given
cube. This is equivalent to, for a given line segment, construct one that is
3
√
2 times longer

• angle trisection: construct the third of a given angle;
• squaring the circle: for a given line segment, construct one that is π times
longer (original formulation: for a given circle k, construct a segment such
that its square has the same area as the circle k; or construct a line segment
that is the same length as the circumference of k; both problems can easily
be converted to the construction of a line segment that is π times longer).

• construction of a regular n-gon, for arbitrary n.

In this section, we will show the algebraic method invented by Pierre Wantzel
in 1837 that can be used to prove the unsolvability of all the problems mentioned
(in some cases with the help of additional results, such as the transcendence of the
number π).

Before we start, we need to clarify what we actually mean by a ruler-and-compass
construction. Initially, a finite set ofM0 points in the plane is given. From this set
we can construct a new point as an intersection of straight lines or circles determined
by already constructed points; this procedure can be repeated several times.
Formally a construction by ruler and compass is a sequenceM0 ⊆ M1 ⊆ . . . ⊆

Mn of sets, such thatMi+1 = Mi ∪ {X}, where the point X can be obtained by

(1) intersecting lines AB and CD;
(2) intersecting a line AB and a circle k(C, |DE|) with center C and radius

|DE|;
(3) intersecting circles k(A, |BC|) and k(D, |EF |)

for some points A,B,C,D,E, F ∈ Mi.
The principle of Wantzel’s method is the translation of ruler-and-compass con-

structions into the language of algebra: instead of sets of points, we will consider
coordinates. So let us choose coordinates in the plane and consider the small-
est field Ti ≤ R, which contains the x and y coordinates of all points from Mi.
That is, if Mi contains points A1, . . . , Ak with coordinates (a1, b1), . . . , (ak, bk),
then Ti = Q(a1, b1, . . . , ak, bk). Adding the point X with coordinates (u, v) gives
Ti+1 = Ti(u, v). The result is a series of field extensions T0 ≤ T1 ≤ T2 ≤ . . . ≤
Tn.

Example (Bisecting an angle). Let’s see us formalize the task of bisecting an angle.
For this let us have an angle given by three points A,B,C (where A is the vertex
of the angle).
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A B

C

D

E
o

We construct the points

D = k(A, |AB|) ∩AC and E = k(B, |BD|) ∩ k(D, |BD|),
and the resulting angle will be given by points A,B,E. So

M0 = {A,B,C}, M1 = M0 ∪ {D}, M2 = M1 ∪ {E}.
Let’s choose coordinates such that A = (0, 0), B = (1, 0) and C = (a, b). It is not

difficult to check that D = ( a√
a2+b2

, b√
a2+b2

) and E = ( 12 +
a−b

√
3

2
√
a2+b2

,
√
3
2 + b+a

√
3

2
√
a2+b2

),
thus

T0 = Q(a, b), T1 = T0(
√
a2 + b2), T2 = T0(

√
a2 + b2,

√
3).

The key part in Wantzel’s method is the following lemma:

Lemma 7.1. For all constructions with ruler and circle we have [Ti+1 : Ti] ∈
{1, 2}, for all i.
Proof. We will check that the lemma holds for all expansions corresponding to the
three different types of constructions:
(1) If we intersect two straight lines, we obtain the coordinates of the new point

by solving a system of two linear equations with two variables over the field Ti.
More precisely, the line defined by points A,B with coordinates (a, b), (c, d), where
a, b, c, d ∈ Ti, has the equation

(b− d)x+ (c− a)y = bc− ad

and we see that all three coefficients are in the field Ti. The solution of the system
of linear equations of two variables over the field Ti is the pair (u, v) of elements
of the field Ti, so that Ti+1 = Ti(u, v) = Ti and

[Ti+1 : Ti] = 1.

(2) If we intersect a straight line and a circle, we obtain the coordinates of the
new point by solving a system of one linear and one quadratic equation with two
variables over the field Ti. We discussed straight lines above; a circle k(A, |BC|)
determined by the points A = (a, b), B = (c, d), C = (e, f), with a, b, c, d, e, f ∈ Ti,
satisfies the equation

(x− a)2 + (y − b)2 = (c− e)2 + (d− f)2.

Note that all coefficients are from Ti. If we express y from the linear equation and
substitute it into the quadratic, we get a quadratic equation for x, whose coefficients
are from Ti and the solution is x′ = u + v

√
s for some u, v, s ∈ Ti. Substituting

into the linear equation, we also obtain that y′ = u′ + v′
√
s for some u′, v′ ∈ Ti.

That is, Ti+1 = Ti(x
′, y′) = Ti(

√
s), from which it follows that

[Ti+1 : Ti] ∈ {1, 2}
depending on whether

√
s ∈ Ti or not. (Exercise: Perform the described calculation

in detail and verify that indeed both solutions belong to Ti(
√
s) !)

(3) If we take the intersection of two circles, we obtain the coordinates of the
new point by solving a system of two quadratic equations with two variables over
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the field Ti. By subtracting the equations from each other, we get rid of squares
of variables (they all have a coefficient of 1) and thus obtain an equivalent system
consisting of one linear and one quadratic equation, all over the field Ti. By the
same argument as in (2), we get

[Ti+1 : Ti] ∈ {1, 2}.
(Perform the described calculation in detail yourself!) □

Proposition 7.2 (degree of a field extension for ruler and compass constructions).
For every field extension obtained by a construction with ruler and compass, we
have [Tn : T0] = 2k for some k ≤ n.

Proof. By Theorem 6.8 we have

[Tn : T0] = [Tn : Tn−1] · . . . · [T2 : T1] · [T1 : T0],

which is a power of 2, by Lemma 7.1. □

Example (doubling the cube). Starting with a line segment of length 1, the goal is
to construct a line segment of length 3

√
2. By picking e.g. the line segment between

(0, 0) and (0, 1), we can assume that T0 = Q. Also, without loss of generality, we
can assume that the resulting line segment has endpoints (0, 0) and ( 3

√
2, 0). So, if

there is a ruler-and-compass construction T0,T1, . . . ,Tn, then
3
√
2 must belong to

the field Tn, i.e. Q ≤ Q( 3
√
2) ≤ Tn. According to Proposition 6.8 we get

[Tn : T0] = [Tn : Q(
3
√
2)] · [Q(

3
√
2) : Q] = 3 · [Tn : Q(

3
√
2)],

which contradicts Proposition 7.2.
(More generally, we can prove that no line segment of length a, whose minimal

polynomial ma,Q has a degree that is not a power of two, can be constructed from
the unit segment.)

Example (squaring the circle). Let’s choose the coordinates so that the endpoints
of the specified segment (indicating the center and radius of the circle) are (0, 0)
and (1, 0); so T0 = Q. The goal now is to construct a segment of length π (or 2π
and

√
π in the original assignment). If that’s true, the transcendental number π

would be an element of some extension field Tn, obtained by ruler-and-compass
construction. But according to Proposition 7.2 Tn is an extension of finite degree,
and therefore according to Theorem 6.10 contains only algebraic numbers, which
contradicts to π being transcendental.
(More generally, we can prove that no line segment of transcendental length

cannot be constructed from the unit line segment.)

Example (trisection of an angle). To show that we cannot trisect angles by ruler
and compass, it is enough to find one specific angle, for which it is impossible.
So let us consider the angle 60◦ given by the points (0, 0), (1, 0) and ( 12 ,

√
3
2 ) =

(cos 60◦, sin 60◦); so T0 = Q(
√
3). We prove that it is not possible to construct the

point

(cos 20◦, sin 20◦).

(This is enough, since if we have a line of angle 20◦, we can get this one by inter-
section with the unit circle.) If we can prove that

[Q(
√
3, cos 20◦) : Q(

√
3)] = 3,

then the rest of the proof works as for doubling the cube. So, according to Theorem
6.6, it suffices to find the minimal polynomial of the number cos 20◦ over the field
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Q(
√
3), i.e. some irreducible polynomial whose number is cos 20◦ by the root. If

we go through any collection of trigonometric formulas, we find the relationship

cos 3α = 4(cosα)3 − 3 cosα,

from which it follows that cos 20◦ is a root of the polynomial 4x3 − 3x− 1
2 ∈ Q[x].

This polynomial is irreducible in Q(
√
3)[x] because it has no root in Q(

√
3) (as we

can easily find out by substituting x = a+ b
√
3). So

mcos 20◦,Q(
√
3) = x3 − 3

4
x− 1

8

and we get [Q(
√
3, cos 20◦) : Q(

√
3)] = degmcos 20◦,Q(

√
3) = 3.

Exercises.

1. Complete the details in the proof of the Lemma 7.1. Specifically, prove that

• if the points A,B have coordinates in the field T, then the line AB is given by
the equation with coefficients in T,

• if the points A,B,C have coordinates in the field T, then the circle k(A, |BC|) is
given by equation with coefficients in T,

• a system of one linear and one quadratic equation over the field T has at most
two solutions, which are all in the field T (

√
s), for some s ∈ T .

We call a real number a constructible if a line segment of length 1 can be constructed into
a line segment of length a.

2. Prove that the constructible numbers form a subfieldK of the field R such that
√
a ∈ K

for every a ∈ K.

3. Prove that a regular n-gon can be constructed with a ruler and compass if and only if
cos(2π/n) is a constructible number.

4. Prove that one cannot construct a regular k-gon for any k that is divisible by nine.

5. Let p be prime. Prove that if a regular p-gon can be constructed with a ruler and
compass, then p− 1 is a power of two.

6. Let p be prime. Prove that if a regular p-gon can be constructed with a ruler and
compass, then p = 22

k

+1 for some k. (Hint: according to the previous exercise, p = 2m+1.
Show that, if an odd n divides m, then 2m/n + 1 divides p.)

7. Prove that if a regular n-gon can be constructed with a ruler and a compass, then a
regular 2n-gon can also be constructed.

8. Which regular n-gons for n < 17 can be constructed with a ruler and compass?

8. Isomorphisms of rupture fields and splitting fields

Definition. Let T be a field and let f be a polynomial of T[x] of degree ≥ 1.

• A rupture field S of f is a field extension of T by some root of f . In other
words, there exists an a ∈ S with S = T(a) and f(a) = 0.

• A splitting field of f over T is a minimal extension field in which f decom-
poses into linear factors. In other words, S is a field such that there exist
a1, . . . , an ∈ S with S = T(a1, . . . , an) and f ∥ (x− a1) · . . . · (x− an).

In Algebra 1, we already proved that splitting fields exist for every field T and
every polynomial f (one root is constructed in the factor ring T[α]/(f(α)), then
we proceed recursively with the polynomial f/(x − α)). In this section, we prove
the uniqueness of splitting fields, up to for isomorphism.

Example. By the fundamental theorem of algebra, we know that every polynomial
f ∈ Q[x] decomposes into linear factors in C[x]. Thus we can obtain rupture fields
Q(a), for every complex root a of f , and a splitting field as Q(a1, . . . , am), where
a1, . . . , am are all the complex roots of f .
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• Consider the polynomial x2 + 1. The only rupture field of it, within C, is
the field Q(i) = Q(−i), which contains both roots ±i. It is therefore also a
splitting field.

Let us denote by ζ = e2πi/3.

• Consider the polynomial x3 − 1. This polynomial has two different rupture
fields in C, namely Q = Q(1) and Q(ζ) = Q(ζ2). These fields are not
isomorphic. The larger one is a splitting field, as it contains all three roots
1, ζ and ζ2.

• Consider the polynomial x3 − 2. This polynomial has two different rupture
fields in C, namely Q( 3

√
2) and Q( 3

√
2·ζ) (the latter contains both imaginary

roots). Although it is not clear at first glance, the two fields are isomorphic.
The splitting field is the field Q( 3

√
2, 3

√
2 · ζ) = Q( 3

√
2, ζ).

As we saw in the examples, the rupture fields of a polynomial are in general not
isomorphic (e.g. the roots of the irreducible factors x− 1 and x2 + x+ 1 of x3 − 1
lead to different extensions). But, perhaps somewhat surprisingly, for irreducible
polynomials all rupture fields are isomorphic. We are also going to prove that
all splitting fields of a polynomial are isomorphic (this time without needing to
assume irreducibility). Before we move on to the proof, we need the following
helpful definition.

Definition. Let T ≤ S,U be fields. A T-isomorphism S → U is an isomorphism
φ for which φ(t) = t holds for every t ∈ T .

Theorem 8.1 (Uniqueness of rupture fields and splitting fields). Let T be a field
and f ∈ T [x] be of degree ≥ 1.

(1) If f is irreducible, then every two rupture fields of f over T are T-isomorphic.
(2) Every two splitting fields of f over T are T-isomorphic.

Theorem 8.1 is a special case of the slightly more general Lemmas 8.2 and 8.3
below. We need the following observations to formulate them:

Note. Let T ≤ T1, T ≤ T2 be field extensions and φ : T1 → T2 be a T-
isomorphism. Then φ can be extended to a T-isomorphism between the polynomial
rings of T1 and T2, which we will again denote it by φ:

φ : T1[x] → T2[x],
∑

aix
i 7→

∑
φ(ai)x

i.

Proof. Let us denote f =
∑
aix

i, g =
∑
bix

i. The coefficients of the sum f +g are
ai + bi, the coefficients of the sum φ(f)+φ(g) are φ(ai)+φ(bi) = φ(ai + bi), so we
see that φ(f+g) = φ(f)+φ(g). The coefficients of the product fg are

∑
i+j=k aibj ,

the coefficients of the product φ(f)φ(g) are
∑

i+j=k φ(ai)φ(bj) = φ(
∑

i+j=k aibj),
so φ(fg) = φ(f)φ(g), i.e. φ is a homomorphism. It is easy to see φ is bijective,
since φ : T1 → T2 is bijective. Moreover, by definition we get that φ(a) = a, for
all a ∈ T. □

An immediate consequence of this observation is that

• f | g in T1[x] if and only if φ(f) | φ(g) in T2[x];
• The polynomial f is irreducible in T1[x] if and only if φ(f) is irreducible
in T2[x].

We then get:

Lemma 8.2. Let T ≤ T1,T2 be field extensions and φ : T1 → T2 be a T-
isomorphism. Let f ∈ T1[x] be an irreducible polynomial, T1(a) be a rupture field
of f over T1 and T2(b) be a rupture field of φ(f) over T2. Then there exists a
T-isomorphism ψ : T1(a) → T2(b) such that ψ(a) = b and ψ|T1 = φ .
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Figure 7. Illustration of the proof of the uniqueness of a splitting field.

Proof. By Theorem 6.4, T1(a) = T1[a] = {g(a) : g ∈ T1[x]} and T2(b) = T2[b] =
{g(b) : g ∈ T2[x]}. So consider the mapping

ψ : T1(a) → T2(b), g(a) 7→ φ(g)(b).

First, it is necessary to prove that this is well-defined. Note that f = ma,T1 since f
is an irreducible polynomial and a is its root, and likewise φ(f) = mb,T2

. We have

g(a) = h(a) ⇔ (g − h)(a) = 0 ⇔ f | g − h

and analogously

φ(g)(b) = φ(h)(b) ⇔ φ(g − h)(b) = 0 ⇔ φ(f) | φ(g − h).

The equivalence of the two statements on the right-hand side follows from the ob-
servation above. We have proved that φ is a well-defined mapping and, moreover,
injective. Obviously, this is a bijection and it is easy to verify that it is a ring
homomorphism: for every g, h ∈ T1[x] we have ψ(g(a) + h(a)) = ψ((g + h)(a)) =
φ(g+h)(b) = φ(g)(b)+φ(h)(b) = ψ(g(a))+ψ(h(a)) and analogously for multiplica-
tion. The elements of the field T1 correspond to the choice of a constant polynomial
c, for such a polynomial ψ(c) = ψ(c(a)) = φ(c)(b) = φ(c) holds, so ψ|T1 = φ. By
choosing g = x we verify that ψ(a) = b. □

Lemma 8.3. Let T ≤ T1,T2 be field extensions and φ : T1 → T2 be a T-
isomorphism. Let f ∈ T1[x] be a polynomial of degree ≥ 1 and denote by S1 the
splitting field of the polynomial f over T1 and S2 the splitting field of the polynomial
φ(f) over T2. Then there exists a T-isomorphism ψ : S1 → S2 such that ψ|T1

= φ.

Proof. We proceed by induction on the degree of the polynomial f . If deg f = 1,
then S1 = T1, S2 = T2, and ψ = φ. In the induction step, consider the irreducible
divisor g of the polynomial f and its root a in S1. Then φ(g) is an irreducible
divisor of the polynomial φ(f) and has a root b in S2. By Lemma 8.2 there is a
homomorphism ρ : T1(a) → T2(b) such that ρ(a) = b and ρ|T1

= φ. Let’s write
f = (x − a) · h for some h ∈ T1[x], i.e. also ρ(f) = (x − b) · ρ(h). Then S1 is the
splitting field of the polynomial h over T1(a) and S2 is the splitting field of the
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polynomial ρ(h) overT2(b). Since deg h < deg f , by the induction assumption there
exists a T-isomorphism ψ : S1 → S2 such that ψ|T1(a) = ρ , i.e. also ψ|T1

= φ. □

By choosing T1 = T2 = T and φ = id in both lemmas, we get Theorem 8.1.

9. Classification of finite fields

In this section we are going to completely classify all finite fields up to isomor-
phism. Recall that in Algebra 1 we already encountered a method how to construct
field of prime power order pk as quotient field Zp/(m), where m is an irreducible
polynomial of degree k. In this section we are going to prove that these are all
finite fields up to isomorphism.

9.1. Frobenius endomorphism.
We begin by discussing a homomorphism that plays a crucial role in rings with

positive characteristic:

Theorem 9.1 (Frobenius endomorphism). Let R be a commutative ring with unit
and of prime characteristic p. Define the mapping

φp : R → R, a 7→ ap.

(1) The mapping φp is a homomorphism.
(2) If R is an integral domain, then φp is injective.
(3) If R is a finite field, then φp is an automorphism.

The map φp is called Frobenius endomorphism, or Frobenius automorphism in
the case when it is bijective. An implication of (1) is that the identity

(a+ b)p = ap + bp

holds. This is also called the Freshman’s dream, as many inexperienced students
dream about it holding in the real numbers. Note however, that the assumption of
the ring R being of prime characteristic p > 0 is essential!

Proof. (1) Clearly (a · b)p = ap · bp and, according to the binomial theorem,

(a+ b)p =

p∑
i=0

(
p

i

)
aibp−i = ap + bp;

the last equality holds, since p divides all the binomial coefficients
(
p
i

)
for all i =

1, . . . , p − 1 (as the denominator of p!
i!(p−i)! can only have prime factors that are

smaller than p).
(2) In an integral domain φp(a) = ap = 0 implies that a = 0. Thus, the kernel

of the homomorphism φp is equal to {0}. Hence φ is injective (Theorem 4.2).
(3) Any injective map on a finite set is a bijection. □

9.2. Derivatives and multiple roots.
Let R be an integral domain. Let a ∈ R and f ∈ R[x]. Recall that an element

a is a root of f if and only if x− a | f . We call a a multiple root if (x− a)2 | f . A
root that is not a multiple root is called a simple root.
By the (formal) derivative of a polynomial f =

∑n
i=0 aix

i we mean the poly-
nomial f ′ =

∑n−1
i=0 (i + 1)ai+1x

i. It is not difficult to verify (exercise!) that the
derivative defined in this way satisfies all the differentiation rules that you know
from analysis (linearity, product rule, composition rule, etc.). Note that derivatives
can be defined for polynomials over arbitrary rings R, we need no properties of real
numbers for it; also the idea of the derivative as a tangent line is not needed.
The following observation will be useful in the classification of finite fields:

Lemma 9.2. Assume a is a multiple root of the polynomial f . Then f ′(a) = 0.
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Proof. By assumption f = (x − a)2 · g for some g. By the product rule we obtain
the derivative f ′ = 2(x− a) · g + (x− a)2 · g′, and thus f ′(a) = 0. □

9.3. Classification of finite fields. We are going to finish the classification of
finite field by proving that a field has exactly pk elements if and only if it is a
splitting field of the polynomial xp

k − x over the field Zp. From the existence and
uniqueness of splitting fields in the previous section, it then follows that there exists
exactly one such field up to isomorphism.

Lemma 9.3. The splitting field of the polynomial xp
k − x over the field Zp has

exactly pk elements.

Proof. Let us denote q = pk. Let T be the splitting field of the polynomial f =
xq − x over Zp. We show that the roots of f form a subfield in T. Theorem 9.1
says that the map φ : a 7→ ap is an automorphism T → T. Its k-fold composition,
φk : a 7→ (((ap)p) . . . )p = ap

k

= aq is hence also an automorphism. In particular

(a+ b)q = aq + bq and (a · b)q = aq · bq

for all a, b ∈ T . Thus, if a, b are the roots of the polynomial f , i.e. aq = a and bq = b,
then (a+b)q = aq+bq = a+b is also a root of f and likewise (a ·b)q = aq ·bq = a ·b,
(−a)q = −aq = −a and (a−1)q = (aq)−1 = a−1. In other words, the roots of f
form the subfield. It follows from the definition of the splitting field that T consists
only of the roots of f . Therefore has at most deg f = q elements.
To prove that T has exactly q elements, it suffices to show that f does not have

multiple roots. If a was a multiple root, according to Lemma 9.2 f ′(a) = 0 would
hold. However, f ′(a) = qaq−1 − 1 = −1. Hence f has only simple roots. □

Lemma 9.4. Let T be a finite field, |T | = pk. Then T is the splitting field of the
polynomial xp

k − x over the field Zp and in T[x]

xp
k − x =

∏
a∈T

(x− a).

Proof. Let us denote q = pk. First, note that every element a ∈ T is a root of the
polynomial f = xq−x. This applies trivially for 0. For a non-zero element a we use
Lagrange’s theorem for the multiplication group T ∗ to see ord(a) | |T ∗| = q−1, i.e.
aq−1 = 1 and thus aq = a. So every element a ∈ T is a root of f , i.e.

∏
a∈T (x− a) |

f . From the equality of both the degree and the leading coefficient we get that
f =

∏
a∈T (x− a). By the Lemma 9.3, T must be the splitting field of f . □

Theorem 9.5 (Classification of finite fields).

(1) A finite field of size n exists if and only if n = pk for some prime p and
natural number k.

(2) Finite fields of the same size are isomorphic.

Proof. (1) (⇒) follows from Proposition 5.3, (⇐) follows from Lemma 9.3 and the
existence of splitting fields. (2) follows from Lemma 9.4 and Theorem 8.1, i.e. the
uniqueness of splitting fields. □

In the winter semester, we constructed finite fields as quotient rings Zp[α]/(m)
for some irreducible m ∈ Zp[α]. Can every finite field be presented in this way?

Proposition 9.6 (Representation of finite fields). For every prime p and natural
number k there exists an irreducible polynomial m ∈ Zp[α] of degree k and

Fpk ≃ Zp[α]/(m).
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Proof. According to Theorem 9.5 there exists a field T ≥ Zp of size pk. In the
chapter on cyclic groups, we proved that the group T∗ is cyclic. Let a denote
some generator and consider the minimal polynomial ma,Zp . By definition ma,Zp is
irreducible and its degree is

degma,Zp
= [Zp(a) : Zp] = [T : Zp] = k,

where the first equality follows from Proposition 6.6, the second from the fact that
T = Zp(a) (since T is generated by powers of a), and the third from the fact that
a vector space with pk elements has dimension k. It follows from the uniqueness in
Theorem 9.5 that T ≃ Zp[α]/(ma,Zp

). □

Note the way in which we proved the existence of an irreducible polynomial of
degree k in Zp[x]: we first proved the existence of some field of size pk in order to
take the generator of its multiplicative group and its minimal polynomial. A direct
proof of the existence of these polynomials is possible, but it would be much more
technical and give less insight of the whole situation.
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Algorithms in polynomial arithmetic

10. Modular representations

The goal of this section is to understand modular representations and to become
familiar with an algorithm that computes such representations quickly, the so-called
fast Fourier transformation (FFT).
The base principle of modular representation is the following: instead of a single

computation in a large ring (such as the integers, or a polynomial ring T[x]), we
perform several small computations in smaller rings (integers modulo m, or the ring
of the coefficients T) and reconstruct from the result the solution of the original
problem. Clever use of this idea leads to surprisingly fast algorithms for some tasks.
Let R be a domain, which admits a division with remainder. Then, a modular

representation of R, is an isomorphism

R/(m) ≃ R/(m1)× . . .×R/(mn)

a 7→ (a mod m1, . . . , a mod mn)

for pairwise coprime elementsm1, . . . ,mn ∈ R, such thatm = m1 ·. . .·mn. The fact
that this map is an isomorphism follows from the generalized Chinese remainder
theorem. (Recall that, in Algebra 1, we did not prove the Chinese remainder
theorem in full generality, but for two important special cases: R = Z andR = T[x]
for some field T.)
Note that a modular representation does not faithfully represent the entire ring,

but only its elements up to multiples of m (in Z this allows for a faithful represen-
tation of the numbers 0, 1, . . . ,m − 1; in T[x] for polynomials of degree less than
degm). In practice, this does not matter, as long as we choose as many elements
m1, ...,mn as are needed to faithfully execute a computation.
There is an obvious algorithm for converting an element to its modular rep-

resentation: dividing by the remainder. But, this naive algorithm has quadratic
complexity, which may be too slow for some applications.
Converting a modular representation back to the original element means solving

a system of linear congruences. We already discussed a general algorithm in Algebra
1 and showed some examples in the practicals. It is not difficult to check that this
is also an algorithm with quadratic complexity.
Can we find faster algorithms? In general, the answer is no, but, in special cases,

the answer is yes. We are going to focus on polynomial rings T[x] and the special
case of linear polynomialsmi = x−ui, where the roots ui are two different elements.
In that case, the map computing a modular representation is the substitution map
f 7→ (f(u1), ..., f(un)).
Thus converting an element quickly to a modular representation and back cor-

responds to finding fast algorithms for substituting values in polynomials / inter-
polating values by polynomials. To achieve this faster than in quadratic time is
seemingly impossible: after all, we have n values and the polynomial has n terms,
so how do we get under quadratic time? The solution is to choose the root elements
ui in a smart way.

10.1. Discrete Fourier transformations. In this whole section, let T be a fixed
field. We say that an element ω ∈ T is a primitive n-th root of unity if its order is
ord(ω) = n in the group T∗. In other words
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(1) ωn = 1,
(2) ωi ̸= 1 for all i = 1, 2, . . . , n− 1.

Note that, by Lagrange’s theorem, it is sufficient to test condition (2) only for i | n;
this condition also implies that ωi ̸= ωj for all i ̸= j < n.
To represent polynomials of degree < n over the field T, we consider their values

at points 1, ω, ω2, . . . , ωn−1, where ω is a primitive n-th root of unity in T. Such
a representation is called a discrete Fourier transform and a fast algorithm for its
calculation is called a fast Fourier transform. Under certain assumptions, we get a
fast Fourier transform algorithm of time complexity O(n log n).

Examples.

• The field C contains a primitive n-th root of unity for every n ∈ N, e.g.

ω = e
2πi
n = cos(2π/n) + i sin(2π/n).

Note that ω generates a cyclic group can be seen as the vertices of a regular
n-gon on the unit circle in the complex plane. Each of its generators is also
a primitive n-th root.

• In Q, ω = −1 is a primitive square root of unity. There are no other
primitive roots of unity.

• The finite field Fq contains the primitive n-th root of unity if and only if
n | q − 1: in the chapter on cyclic groups (Algebra 1) we proved that the
group F∗

q is cyclic, and it has q − 1 elements. Thus it contains an element
of order n if and only if n | q − 1.

Definition. The Discrete Fourier transform at the point ω is the mapping DFTω :
Tn → Tn defined by

DFTω(a0, . . . , an−1) = (f(ω0), f(ω1), . . . , f(ωn−1)),

where f =
∑n−1

i=0 aix
i.

The value of the polynomial f =
∑n−1

i=0 aix
i at the point α can be written as a

matrix product

f(α) =

n−1∑
i=0

aiα
i =

(
1, α, . . . , αn−1

)
·


a0
a1
...

an−1

 .

In general, if we substitute n values of α1, . . . , αn, we get the expression
f(α1)
f(α2)
...

f(αn)

 =


α0
1 α1

1 α2
1 . . . αn−1

1

α0
2 α1

2 α2
2 . . . αn−1

2
...

α0
n α1

n α2
n . . . αn−1

n

 ·


a0
a1
...

an−1

 .

Thus, the modular representation at the points α1, . . . , αn is actually a linear
map (an endomorphism of the vector space Tn)

φ : Tn → Tn, u 7→ A · u,
where u = (a0, a1, . . . , an−1)

T is the column vector of coefficients and A is the so-
called Vandermond matrix mentioned above. This matrix is regular if and only if
the elements of αi are two different. Thus, the discrete Fourier transform at the
point ω is a linear mapping

DFTω : Tn → Tn, u 7→ Aω · u,
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whereAω is the Vandermond matrix corresponding to the elements ω0, ω1, . . . , ωn−1,
i.e.

Aω = (ωij)n−1
i,j=0.

Since DFTω is a bijection, we can consider the inverse of DFT−1
ω , which is called

inverse DFT , also denoted by IDFTω. By the properties of DFTω, the inverse
corresponds to the interpolation of values at the mentioned points ω0, ω1, . . . , ωn−1

by a polynomial of degree n. Note that

IDFTω(u) = A−1
ω · u.

The following statement shows that the IDFT is a special case of the DFT. This
will allow us to focus on just one algorithm for converting between normal and
modular representations.

Proposition 10.1. If ω is a primitive n-th root of unity in T, then

(Aω)
−1 =

1

n
·Aω−1 .

For the statement to make sense at all, we must first check that the characteristic
of the field T does not divide n. This can be deduced from the fact that there is a
primitive n-th root of unity in T (exercise!).

Proof. It is enough to show that Aω · ( 1n ·Aω−1) is the identity matrix. Since

Aω =
(
ωij
)n−1

i,j=0
and Aω−1 =

(
ω−ij

)n−1

i,j=0
,

we obtain the following matrix-product:

Aω ·Aω−1 =

(
n−1∑
k=0

ωikω−kj

)n−1

i,j=0

.

For i = j we obtain the value
n−1∑
k=0

ωikω−ki =

n−1∑
k=0

1 = n,

and for i ̸= j we obtain
n−1∑
k=0

ωikω−kj =

n−1∑
k=0

ωk(i−j) =

n−1∑
k=0

(ωi−j)k,

which is a geometric sum with base ωi−j ̸= 1 (since ω is a primitive n-th root and
|i− j| < n). Thus

n−1∑
k=0

(ωi−j)k =
(ωi−j)n − 1

ωi−j − 1
=

1− 1

ωi−j − 1
= 0,

as ωn = 1. In conclusion, we proved that there are n elements on the diagonal and
zeros off the diagonal, so after multiplying 1

n we get an identity matrix. □

10.2. Fast Fourier transform. The fast Fourier transform (FFT) is a fast algo-
rithm for calculating the DFT. It relies on the divide and conquer method. The
idea is as follows: if we substitute the value of α in the polynomial f =

∑n−1
i=0 aix

i

of odd degree (i.e. n is even), we can write

f(α) = (a0 + a2α
2 + . . .+ an−2α

n−2)︸ ︷︷ ︸
g(α2)

+α · (a1 + a3α
2 + a5α

4 + . . .+ an−1α
n−2︸ ︷︷ ︸

h(α2)

),

i.e.
f(α) = g(α2) + α · h(α2),
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where g, h are polynomials of at most half the degree of f , defined by

g =

n
2 −1∑
i=0

a2ix
i and h =

n
2 −1∑
i=0

a2i+1x
i.

Thus, we divided the task of substituting the value of α into a polynomial with n
coefficients into two tasks of substituting the value of α2 into half size polynomials.
Now recall that, in DFT, we need to substitute the n-many values ω0, . . . , ωn−1.

The second part of the trick consists in the observation that we actually only need
to substitute the values ω0, . . . , ωn/2−1. For the primitive n-th root of one, it holds

ωn/2+i = ωn/2 · ωi = (−1) · ωi = −ωi,

so both ωi and ωn/2+i have the same square. Thus, in g and h we only need to
substitute half of them. So, we have divided the original task into two smaller
subtasks: we need to substitute half the values into half the polynomials.

Algorithm 1 (fast Fourier transform, FFT).
Input: n = 2k, ω primitive n-th roof of unity, a0, a1, . . . , an−1

Output: DFTω(a0, a1, . . . , an−1)

0. if n = 1 then return a0
1. (b0, . . . , bn

2 −1) := FFT(n/2, ω2, a0, a2, . . . , an−2)
(c0, . . . , cn

2 −1) := FFT(n/2, ω2, a1, a3, . . . , an−1)
2. di := bi + ωici, dn

2 +i := bi − ωici for all i = 0, . . . , n2 − 1
return (d0, . . . , dn−1)

Proposition 10.2. Algorithm 1 is correct.

Proof. We perform the proof by induction on n. For n = 1, DFTω outputs a0,
which is correct.
We next look at an induction step n

2 → n. First, note that ω2 is a primitive
n
2 -th root of one: clearly (ω2)n/2 = ωn = 1 and further for all i = 1, 2, . . . , n2 − 1

(ω2)i = ω2i ̸= 1 because 2i < n and ω is a primitive square root.
So let f =

∑n−1
i=0 aix

i and define the polynomials g, h as above. By induction
assumption

(b0, . . . , bn
2 −1) = (g(1), g(ω2), g(ω4), . . . , g(ωn−2)),

(c0, . . . , cn
2 −1) = (h(1), h(ω2), h(ω4), . . . , h(ωn−2)).

We want to prove that for i = 0, 1, . . . , n2 − 1

di = f(ωi) and di+n
2
= f(ωi+n/2).

The first identity follows directly from the formula derived above:

f(ωi) = g(ω2i) + ωih(ω2i) = bi + ωici = di.

The second identity is similarly obtained

f(ωi+n/2) = g(ω2i+n) + ωi+n/2h(ω2i+n) = bi − ωici = di+n
2

using the easy observation that ω2i+n = ω2iωn = ω2i and that ωi+n/2 = ωiωn/2 =
−ωi. Here ωn/2 = −1, because it is the square root of one, and there are only two:
1 and −1. □

Proposition 10.3. Algorithm 1 has running time O(n log n).

Proof. We will follow a proven scheme in analyzing divide-and-conquer algorithms:
Let us denote by T (n) the number of operations in the field T that the algorithm
performs on an input of length n. Then T (1) = 0 and

T (n) = 2T (n/2) +O(n),
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therefore T (n) ≤ 2T (n/2) + cn for some c and by substituting n = 2k we get

T (2k) ≤ 2T (2k−1) + c2k ≤ 2(2T (2k−2) + c2k−1) + c2k

≤ 4T (2k−2) + c(2k + 2k)

≤ . . .

≤ 2kT (2k−k) + ck2k = 2kT (1) + ck2k = O(k2k).

Hence T (n) = O(n log n). □

Example. For the field T = Z41, calculate the modular representation of the
polynomial

5x3 + x+ 1.

First, we need to find the primitive fourth root of 1: e.g. ω = −9 (we see that
ω2 = −1, ω3 = 9 and ω4 = 1). Next, we calculate DFT−9(1, 1, 0, 5). We divide the
task into

DFT−1(1, 0) = (1, 1) and DFT−1(1, 5) = (6,−4).

The result is

(1 + (−9)0 · 6, 1 + (−9)1 · (−4), 1− (−9)0 · 6.1− (−9)1 · (−4)) = (7,−4,−5, 6).

10.3. Primitive roots of unity. The existence of a primitive root of unity is
essential for FFT to work. But, if it does not exist in the field T, we can sometimes
work in an alternative field instead.
For finite fields Fq the situation is clear: the primitive n-th root in Fq exists if

and only if n | q − 1 and we obtain it as a power of ω = a(p−1)/n, where a is the
generator of the cyclic group F∗

q . The generator a can be found by random selection
— the probability of success is φ(q− 1)/(q− 1), which is typically a relatively large
fraction. (See Algebra 1.)
We also discuss the case of the rational field Q in detail. Unfortunately, there

are no primitive roots of one (except for the element −1). But, FFT is still used,
and there are basically two ways to do it. In both cases, it is a good idea to convert
to polynomials over Z first: we simply multiply the input values by a large enough
integer so that all denominators disappear (and revert this, after we are done with
our computations).
The first option is to work in the complex numbers with approximate values for

ω = e
2πi
n = cos(2π/n) + i sin(2π/n).

This is a numeric method, which requires to use floating-point arithmetic. There
are rigorous estimates of how precisely we need to approximate ω to get the desired
precision of the result. If we know that the result is an integer, absolute precision
can be achieved: just take ω so that the resulting error is less than 1

2 and simply
round the resulting values. Compared to the modular method below, however, this
strategy turns out to be more time-consuming.
If we have an integer polynomial as an input, the following trick can be used:

instead of Z we do computations in the field Zp, where p is chosen so large that
modular arithmetic does not affect the result. The specific implementation depends
on the given problem, we will illustrate the method in the next section using the
example of multiplying integer polynomials. Let us note at this point that we will
mainly be interested in those prime numbers p for which p − 1 is divisible by a
sufficiently large power of two – large enough that Zp contains a primitive root
suitable for FFT. Such primes are sometimes called FFT-primes, a relatively large
power of two divides p − 1, e.g. for primes 17, 41, 97. Where to get them? The
existence of FFT-primes follows from Dirichlet’s theorem: it says that for every
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coprime a,m there are infinitely many primes ≡ a (mod m), i.e., in particular
infinitely many primes ≡ 1 (mod 2k) for any k. However, Dirichlet’s theorem does
not say anything about how these prime numbers are distributed, i.e. how long
we will search for some. The exact answer to this question is not yet known (the
Riemann hypothesis, a problem for which a million dollar reward is offered, implies
that we don’t have to look for long).

Exercises.

1. Prove that if there is a primitive n-th root of unity in T, then the characteristic of the
field T does not divide n.

2. Let (2, 0, 2, 0) be the modular representation of the polynomial f given by DFT4 in
Z17. Compute the polynomial f using the FFT.

3. Compute the time complexity of one attempt of the probabilistic algorithm to find the
primitive n-th root of unity in the field Zp, where n | p − 1. (Recall that we choose a at
random, compute ω = a(p−1)/n and verify that ω1, . . . , ωn−1 ̸= 1.) Why is this algorithm
inefficient at the task of finding the generator of the group Z∗

p ?

4. The non-existence of the n-th primitive root of unity in the field Q could be solved by
working in the splitting field Q(ω) of the polynomial xn − 1, which apparently contains
such a root. Why is this not a good idea?

11. Fast polynomial multiplication and division

11.1. Fast multiplication.
Perhaps the best known application of modular representations is a fast algorithm for

multiplying polynomials. This algorithm is practically used in all real-world applications
since, even for relatively small polynomials, it is usually faster than the “long multiplica-
tion” from school (depending on the field T).
Recall that a modular representation is a ring homomorphism, i.e. it preserves the

basic operations of addition and multiplication. Specifically for polynomials, we consider
maps

φ : T[x]/m ≃ Tn

f 7→ (f(α1), . . . , f(αn)),

where m = (x− α1) · . . . · (x− αn). It then holds that

φ(f · g mod m) = φ(f) · φ(g);

here the multiplication in Tn is understood component-wise. When choosing

n > deg(f · g) = deg f + deg g

we get φ(f · g) = φ(f) · φ(g), i.e. products in the modular representation corresponds
exactly to the product in the standard representation of polynomials. The advantage of
the modular representation is that we only need to perform n operations in the field T to
compute the product.
The algorithm for fast multiplication in T[x] is based on this principle. First, we choose

a suitable modular representation for the given polynomials – except for the condition
n > deg f + deg g, we also need to choose a representation for which we have a fast
conversion algorithm, such as FFT. Then we compute the modular representations ā, b̄ of
the polynomials f, g, calculate their (componentwise) product c̄ = ā · b̄ and use again FFT
to compute the inverse discrete Fourier transform of c̄, i.e. f · g.
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Algorithm 2 (modular multiplication of polynomials).
Input: f, g ∈ T [x]
Output: f · g
0. choose n > deg f + deg g and suitable points α1, . . . , αn ∈ T
1. ā = (f(α1), . . . , f(αn))

b̄ = (g(α1), . . . , g(αn))
2. c̄ = ā · b̄
3. return polynomial h of degree < n such that (h(α1), . . . , h(αn)) = c̄

Example. We compute the product of the polynomials f = 1
2
x2 + 1

2
x+1, g = x3 − 1

3
x ∈

Q[x]:

0. we choose, for example α1 = 0, α2 = 1, α3 = −1, α4 = 2, α5 = −2, α6 = 3,
1. ā = (1, 2, 1, 4, 2, 7), b̄ = 1

3
· (0, 2,−2, 22,−22, 78),

2. c̄ = ā · b̄ = 1
3
· (0, 4,−2, 88,−44, 546),

3. by interpolation we find h = f · g = 1
2
x5 + 1

2
x4 + 5

6
x3 − 1

6
x2 − 1

3
x.

If we leave aside the choice in step 0., the algorithm involves two transformations:
one to the modular representation of polynomials of degree < n, one from this modular
representation, and n multiplications in the field T. By randomly choosing α1, . . . , αn,
using simple value substitution and standard interpolation algorithms, we get a time
complexity of 3 ·O(n2)+O(n) = O(n2), which is good for nothing. With the smart choice
of the DFT representation and the use of the FFT algorithm, we get a time complexity of

3 ·O(n logn) +O(n) = O(n logn).

(Formally speaking, this is the complexity expressed with respect to the parameter n,
which we choose in step 0. However, this n typically depends linearly on the sum of
the degrees of the given polynomials – e.g. in the case of FFT, we choose n = 2k >
deg f + deg g, i.e. n ≤ 2 · (deg f + deg g), so the complexity has the same asymptotic
behavior also with respect to the sum of the degrees of the input polynomials.)

In the rest of the section, we will discuss a concrete implementation of step 0. If there is
a primitive n-th root of unity in T, we can straightforwardly apply FFT. If T = Zp and the
corresponding root does not exist, we can instead solve the problem in Z and then reduce
the result modulo p. Multiplication of rational polynomials can also be easily converted
to multiplication over Z: we multiply the specified polynomials by numbers u, v that the
denominators in the coefficients disappear, perform the product of integer polynomials
and divide the result by the product uv. So we will now solve the multiplication in Z[x]
problem.
As we mentioned in the previous section, one option is numerical computation with

the complex root ω = e2πi/n. Since the result is an integer, it is enough to choose such
precision that the resulting error is < 1

2
(specific estimates can be found in the literature).

Example. We compute the product of the polynomials f = 1
2
x2+ 1

2
x+1 and g = x3− 1

3
x,

or, equivalently, the product of 2f = x2 + x+ 2 and 3g = 3x3 − x.

0. We choose n = 8 = 23 and the representation DFTω for ω = e2πi/8 .
= 0.71+0.71i.

We will perform computations up to two decimal points.
1. ā = DFTω(2, 1, 1, 0, 0, 0, 0, 0) =

(4, 2.71 + 1.72i, 0.98 + 1.01i, 1.28− 0.31i, 2.02, 1.28 + 0.32i, 0.95− 1.02i, 2.73− 1.79i),

b̄ = DFTω(0,−1, 0, 3, 0, 0, 0, 0) =

(2,−2.86 + 1.44i,−4.08i, 2.92 + 1.48i,−2.13, 2.98− 1.53i, 4.25i,−3.04− 1.58i),

2. c̄ = ā · b̄ =
(8, −10.21− 1.01i, 4.12− 4.02i, 4.20 + 1.01i,

−4.30, 4.30− 1.01i, 4.36 + 4.04i, −11.12 + 1.11i),

3. 1
8
DFTω−1(c̄) = (0.03, −2.00, −1.00, 4.98, 3.00, 2.98, 0.00, 0.00). After round-
ing, we get the (correct) result

h = 2f · 3g = 3x5 + 3x4 + 5x3 − x2 − 2x.
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So f · g = 1
6
· h = 1

2
x5 + 1

2
x4 + 5

6
x3 − 1

6
x2 − 1

3
x.

In practice, the modular method turns out to be more effective. Instead of in Z[x], we
will compute the product in Zp[x], where we choose the prime p large enough such that

f · g = (f · g) mod p,

i.e., so large that no coefficient of the product exceeds p/2 in absolute value. We interpret
the elements of Zp here as −⌈p/2⌉, . . . ,−1, 0, 1, . . . , ⌊p/2⌋. How big p do we need? Let’s
recall the formula ( n∑

i=0

aix
i) · ( m∑

i=0

bix
i) =

m+n∑
i=0

( i∑
j=0

ajbi−j

)
xi

(assume n ≥ m). Each coefficient of the polynomial f · g is the sum of at most n + 1
products of aj · bi−j . If we denote r = max |ai| and s = max |bi|, then the absolut value of
each coefficient f · g is bounded by (n+ 1)rs. For p, we therefore choose a prime number
greater than

2(n+ 1)rs,

which also satisfies the FFT condition 2k | p− 1, for some 2k > m+ n.

Example. We compute the product of the polynomials f = 1
2
x2+ 1

2
x+1 and g = x3− 1

3
x.

In fact, we will compute the product of 2f = x2 + x+ 2 and 3g = 3x3 − x.

0. We see that r = 2, s = 3, so we need a prime number p > 2 · 4 · 2 · 3 = 48
satisfying n = 23 | p− 1. We will therefore compute in Z97 and choose the DFTω

representation, e.g. for ω = 50.
1. ā = DFTω(2, 1, 1, 0, 0, 0, 0, 0) = (4, 30, 76, 88, 2, 27, 23, 57),

b̄ = DFTω(0,−1, 0, 3, 0, 0, 0, 0) = (2, 45, 88, 86, 95, 52, 9, 11),
2. c̄ = ā · b̄ = (8, 89, 92, 2, 93, 46, 13, 45),
3. 1

8
DFTω−1(c̄) = (0,−2,−1, 5, 3, 3, 0, 0), so h = 3x5 + 3x4 + 5x3 − x2 − 2x.

So f · g = 1
6
· h = 1

2
x5 + 1

2
x4 + 5

6
x3 − 1

6
x2 − 1

3
x.

Various variants of the above principle are used in practice. E.g. the following two
enhancements are implemented in the NTL library (Number Theory Library for C++):

• (Chinese Remainder Theorem) A element of Zp[x] is represented by Zp1 [x], . . . ,
ZpN [x], with the result reconstructed using the Chinese remainder theorem per-
formed on each coefficient of the resulting polynomial separately. Of course, all
pi must be FFT primes, in the sense of 2k | pi − 1. If p1 · . . . · pN > 2(n+1)rs, we
are guaranteed to get the correct result. The advantage of this method is that
all pi usually fit into one machine word, so operations in Zpi are very fast.

• (Schönhage-Strassen’s trick) Instead of a prime number p, we pick a value M =

22
k−1u + 1, where u is large enough so that M > 2(n+ 1)rs. The ring ZM is not
a field, but this does not matter for FFT to work (left as exercise). Importantly,
the element 2u is the 2k-th primitive root of unity (exercise!). The advantage of
these rings is that computations modulo a number of the form M = 2e + 1 are
very fast (linear, compared to the classic quadratic): because 2e ≡ −1 (mod M),
to reduce the number a modulo M it suffices to perform ⌊logM a⌋ operations of
addition and subtraction modulo M ; multiplication and division by the power of
two are implemented as a bit shift, i.e. cost (almost) nothing.

Exercises.

1. Compute the product of the polynomials f = x+1 and g = x2−1 by all the mentioned
methods (random point interpolation, numerical FFT, modular FFT).

2. Why is it not possible to compute the quotient and the remainder of a polynomial
division in an analogous way?

3. Let us have two polynomials of degree n as input and assume that we know the
corresponding primitive root (i.e., step 0. is trivial). Compute the exact (not asymptotic)
time complexity of fast multiplication using algorithm 1 for the FFT. Compare it with
long multiplication.



55

4. Formulate an efficient (subquadratic) algorithm for dividing the number a ∈ N by
the number M = 2e + 1 and estimate its time complexity with respect to ℓ(a) and e =

O(ℓ(M)) (ℓ denotes the length of the binary expansion). Compute the time complexity of
multiplication in the ring ZM depending on ℓ(M).

11.2. Fast polynomial division. Unfortunately, modular representations can-
not be used directly to divide polynomials. But, we are going to present a more
sophisticated algorithm that is based on fast multiplication and the computation
of inverse elements in the ring of formal power series. We already know how to
multiply quickly. For the fast computation of inverse elements, we will present a
variant of Newton’s method.
Let us briefly repeat the notion of formal power series over the commutative ring

R. Its elements are formal expressions of the form
∑∞

i=0 aix
i, where ai are coeffi-

cients from R. The addition and multiplication on these expressions are similarly
defined as for polynomials:( ∞∑

i=0

aix
i

)
±
( ∞∑

i=0

bix
i

)
=

∞∑
i=0

(ai ± bi)x
i,( ∞∑

i=0

aix
i

)
·
( ∞∑

i=0

bix
i

)
=

∞∑
i=0

(

i∑
j=0

ajbi−j)x
i.

We denote the ring of formal power series over a ring R by R[[x]]. If R is an
integral domain, then R[[x]] is also an integral domain. The polynomials over R
always form a subring of R[[x]]. We will further need the following important
property.

Proposition 11.1. Let R be an integral domain and f =
∑
aix

i ∈ R[[x]]. Then
f is invertible in R[[x]] if and only if a0 is invertible in R.

The proof of this statement is not difficult and follows from the considerations
in Section 11.3, where we will deal with the efficient computation of inverse power
series. For now, let’s see how polynomial division can be converted to this problem.

For the purposes of this section, we introduce a technical notation: for the
polynomial f we define

f∗ = xdeg f · f(x−1).

In other words, f∗ is a polynomial that arises from f when we write its terms in
reverse order. E.g. for f = 3x3+2x2−1 is f∗ = x3 ·(3x−3+2x−2−1) = 3+2x−x3.
Let T be a field and consider the polynomials f, g ∈ T [x], g ̸= 0. Denote

n = deg f , m = deg g and assume n ≥ m. We want to compute the quotient and
the remainder, i.e. we are looking for polynomials q, r ∈ T [x] satisfying

f = gq + r, deg r < m.

For such polynomials clearly also

f(x−1) = g(x−1)q(x−1) + r(x−1)

holds, and after multiplying xn we get the condition

f∗ = g∗q∗ + xn−deg rr∗.

Next, let’s work in the ring of power series T[[x]]. Since g∗ is guaranteed to have
a nonzero absolute term, there exists an inverse (g∗)−1 ∈ T[[x]]. After multiplying
by this series we get the expression

q∗ = f∗ · (g∗)−1 − xn−deg r · r∗ · (g∗)−1.
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The left-hand side of the equality is a polynomial of degree at most n − m, so
on the right-hand side, all coefficients of powers xn−m+1 and bigger are equal to
0. But the coefficients of the power series xn−deg r · r∗ · (g∗)−1 are 0 for the first
n− deg r > n−m terms, so q∗ is in fact equal to the first n−m+ 1 terms of the
power series f∗ · (g∗)−1!

Algorithm 3 (fast polynomial division).
Input: f, g ∈ T [x], g ̸= 0
Output: f div g, f mod g

0. n := deg f , m := deg g, if n < m then return 0, f
1. h := the first n−m+ 1 terms of (g∗)−1

2. w := f∗ · h mod xn−m+1

3. let q be the polynomial of degree n−m, for which q∗ = w
4. return q, f − gq

Note that in step 3, we cannot simply set q = w∗, because the degrees may not
fit: e.g. for f = x3, g = x, w = 1, but q = x2 ̸= w∗.
The correctness of the algorithm follows from the analysis above it. In terms

of complexity, we converted division with a remainder to two multiplications and
one inverse power series computation. Specifically, for an input of degree n,m, we
perform two multiplications of polynomials of degree < n and look for n−m+1 ≤ n
terms of the power series (g∗)−1. We can solve the multiplication in time O(n log n).
If we could search for the first n terms of the inverse power series with the same
complexity, we would get the time complexity of the division

O(n log n).

(In practice, the division of integer polynomials is roughly five times slower than
multiplication, see the exercise.)

Example. We compute the quotient and remainder of

f = x4 + x3 + x2 + x+ 1, g = x2 + x− 1.

1. For g∗ = −x2 + x+ 1 we get (g∗)−1 = 1− x+ 2x2 + . . . , thus h = 2x2 − x+ 1.
2. w = 1 + 2x2 + 2x3 + . . . mod x3 = 2x2 + 1.
3. q = w∗ = x2 + 2.
4. The answer is f div g = x2 + 2 and f mod g = −x+ 3.

11.3. The computation of inverses of power series.
To complete the fast algorithm for dividing polynomials, it remains to find an

algorithm for computing the initial terms of the inverse power series of a given
polynomial. So let us consider the power series f =

∑
aix

i ∈ T [[x]], we then look
for the series g =

∑
bix

i ∈ T [[x]] such that f · g =1
Recall the Proposition 11.1. If a0 = 0, then x | f , and thus there can be no such

series g. So suppose a0 ̸= 0. The following conditions follow from the formula for
multiplying power series:

a0b0 = 1

a0b1 + a1b0 = 0

a0b2 + a1b1 + a2b0 = 0

a0b3 + a1b2 + a2b1 + a3b0 = 0

. . .
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We can rewrite this to

b0 = a−1
0

b1 = −a−1
0 (a1b0)

b2 = −a−1
0 (a1b1 + a2b0)

b3 = −a−1
0 (a1b2 + a2b1 + a3b0)

. . .

and see that g = f−1 exists (and is uniquely determined). At the same time we got
an algorithm to compute g.
To obtain the first n members of b0, . . . , bn−1 we need to compute 1 inverse,

2 + 3 + 4 + · · ·+ n multiplication operations and 1 + 2 + 3 + · · ·+ (n− 1) addition
operations in the field T, i.e.

O(n2)

operations in total. But that’s too much!
For a reasonable algorithm, we would like a runtime of O(n log n). For this, it

would be enough to find a procedure that would computes the n-th coefficient in
only O(log n) steps. Or, in other words, we would like a procedure that doubles
in every step the number of coefficients that we obtain. We will show a procedure
inspired by Newton’s method for finding the roots of arbitrary functions (see any
introduction to numerical mathematics).
The computation of the first n terms of the series f−1 can be interpreted in the

following way: for the given series f we are looking for a polynomial g of degree
< n such that

f · g = 1 + 0x+ 0x2 + · · ·+ 0xn−1 + xn · h,
where h is an arbitrary series, or in other words

f · g ≡ 1 (mod xn).

(In the end, only the first n terms of the f series matter.)
Let’s rewrite this relation as xn | fg− 1. Then x2n | (fg− 1)2 = f2g2 − 2fg+ 1

and we get
f · g · (2− fg) ≡ 1 (mod x2n).

We see that g · (2− fg) mod x2n consists of the first 2n terms of the inverse power
series f−1 and thus we get, as promised, that one step doubles the number of terms
double.

Algorithm 4.
Input: n, f =

∑
aix

i with a0 ̸= 0
Output: first n coefficients of f−1

0. g0 := a−1
0

1. for i = 1, . . . , ⌈log2 n⌉ do
gi := gi−1 · (2− fgi−1) mod x2

i

2. return g⌈log2 n⌉ mod xn

The correctness of the algorithm follows from the above considerations: each gi
contains exactly 2i members of the f−1 power series. Regarding the time complex-
ity, in the i-th step of the loop, we use the polynomial f mod x2

i

of degree < 2i

and the polynomial gi−1 of degree < 2i−1. The i-th step (computing one difference
and two multiplications) has thus a running time of O(2i log 2i) = O(i2i) and we
can express the total time complexity

O

⌈log2 n⌉∑
i=1

i2i

 = O

log n ·
⌈log2 n⌉∑

i=1

2i

 = O
(
log n · (2⌈log2 n⌉+1 − 1)

)
= O(n log n)
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(we used the estimate i ≤ ⌈log2 n⌉ and the formula for geometric sums).
Example. We compute the first 4 entries of the power series of f−1, where

f = 1− 2x+ 3x2 + x4 − x5.

The classical method yields

b0 = a−1
0 = 1

b1 = −a−1
0 (a1b0) = −(−2 · 1) = 2

b2 = −a−1
0 (a1b1 + a2b0) = −((−2) · 2 + 3 · 1) = 1

b3 = −a−1
0 (a1b2 + a2b1 + a3b0) = −((−2) · 1 + 3 · 2 + 0 · 1) = −4

whereas Newton’s algorithm gives us

g0 = 1
g1 = 1 · (2− f · 1) mod x2 = 1 + 2x
g2 = (1 + 2x)(2− f · (1 + 2x)) mod x4 = 1 + 2x+ x2 − 4x3

(Note that the entire computation only depends on f mod x4.)

Exercises.

1. Find the inverse power series of the polynomial x2+x+1 in Z3[x]. Try both algorithms
and think about which one is better (theoretically, computationally) for this type of task.

2. Compute the quotient and remainder of the polynomials x4 + 2x3 + 2 and x3 − x in
Z[x] using algorithm 3.
3. Estimate the time complexity of the algorithms 3 and 4 expressed in the number of
polynomial multiplications of degree < n.

12. Factorization of polynomials over finite fields

In this section, we are going to discuss algorithms to decompose polynomials
into irreducible factors. Most such factorization algorithms assume that the input
polynomial f is square-free, i.e. it is not divisible by any square of a polynomial.
This is not a problem, as first we will first discuss an algorithm that decomposes
a given polynomial into a product of square-free (but not necessarily irreducible)
polynomials, with a time complexity of O(n3). In the second part, we will show
Berlekamp’s algorithm for factorizing polynomials from Fq[x].

12.1. Square-free factorization.

Definition. A polynomial f is called square-free if there exists no nonconstant
polynomial g such that g2 | f . By a square-free decomposition of a polynomial f
we mean pairwise distinct square-free polynomials h1, . . . , hk such that

f = h1 · h22 · h33 · . . . · hkk
(that is, hi contains precisely those irreducible factors that occur in f to the i-th
power).

Example. The square-free decomposition of

f = x8 + x7 − x6 − x5 − x4 − x3 + x2 + x = (x3 + x) · (x− 1)2 · (x+ 1)3

in Z[x] is given by h1 = x3 + x, h2 = x− 1, h3 = x+ 1.

Let us recall that the characteristic of an integral domain is the smallest natural
k satisfying k · 1 = 0, if such k exists, and 0 otherwise. The finite field Fq, where
q = pn, has characteristic p.
The basic version of the algorithm for square-free factorization works for poly-

nomials over any unique factorization domain (UFD) of characteristic 0 (and thus
also for polynomials in more variables). In the case of a non-zero characteristic,
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a minor problem occurs; we will demonstrate the resolution of this problem for
polynomials in one variable over finite fields.

Lemma 12.1. Let f be a polynomial in Fq[x], q = pn, such that f ′ = 0. Then
f = gp for some polynomial g ∈ Fq[x].

We then denote the polynomial g by p
√
f .

Proof. If f ′ = 0, then all non-zero terms in f must have an exponent divisible by
p, i.e. we can write f =

∑
aix

ip. Let us define g =
∑
bix

i for bi such that b
p
i = ai

(we can choose bi = ap
n−1

i because bpi = ap
n

i = ai according to Proposition 9.3).
Using the Proposition 9.1 we get gp =

∑
bpi x

ip = f . □

The principle of the algorithm for square-free factorization is then described by
the following theorem.

Theorem 12.2. Let R be a UFD of characteristic 0 or R = Fq, and let f be a
primitive polynomial in R[x]. Then

(1) f is square-free if and only if gcd(f, f ′) = 1.
(2) Let f =

∏k
i=1 h

i
i be a square-free decomposition. Then

(a) if char(R) = 0, then gcd(f, f ′) =
∏k

i=1 h
i−1
i ;

(b) if R = Fq, q = pn, then gcd(f, f ′) =
∏

p|i h
i
i ·
∏

p∤i h
i−1
i .

Proof. (1) (⇐) Let’s assume that f is not square-free. Then f = g2 · h for g, h ∈
R[x], and g non-constant. Thus f ′ = 2gg′h + g2h′, so g is a common divisor of f
and f ′.

(⇒) Let f =
∏m

i=1 gi be the decomposition of f into irreducible factors (i.e.
g1, . . . , gm are pairwise non-associated irreducible polynomials). Then

f ′ = g′1 · g2 · . . . · gm + g1 · g′2 · g3 · . . . · gm + . . .+ g1 · . . . · gm−1 · g′m.
Let us assume that f and f ′ have some non-trivial common divisor. Then there is
also some irreducible common divisor, and it is equal to some gi. Since gi divides
f ′ and occurs in all summands in the above expression, except the i-th one, gi
must also divide the i-th term, i.e. gi | g1 · · · gi−1g

′
igi+1 · · · gm. Since gi ∤ gj for any

j ̸= i, gi must divide g′i. But deg g
′
i < deg gi, and therefore g′i = 0. In the case

of characteristic 0, this means that gi is constant, which is a contradiction. In the
case of finite fields, there is the possibility that gi = gp for some (non-constant)
polynomial g, but this contradicts the irreducibility of gi.
(2a) The derivative of the square-free expansion of f is

f ′ =

k∑
j=1

(hjj)
′ ·
∏
i ̸=j

hii =

k∑
j=1

j · hj−1
j · h′j ·

∏
i ̸=j

hii.

Note that
∏k

i=1 h
i−1
i is a common divisor of f and f ′. We are going to prove that

this is the greatest common divisor. For this, assume that there exists a nonconstant
polynomial g that divides both polynomials

f∏k
i=1 h

i−1
i

=

k∏
i=1

hi,
f ′∏k

i=1 h
i−1
i

=

k∑
j=1

j · h′j ·
∏
i ̸=j

hi.

Again, we can assume that the polynomial g is irreducible and thus that g | hm for
some m. Similar to (1), since hm occurs in all terms of the sum

∑k
i=1 j ·h′j ·

∏
i ̸=j hi

except the m-th one, g must divide mh′m. But the polynomial hm is square-free,
i.e. according to (1) it is coprime with h′m, a contradiction.
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(2b) The derivation can be expressed as in (2a); because we are in characteristic
p, all terms where p | j are dropped, so we get

f ′ =

k∑
j=1

j · hj−1
j · h′j ·

∏
i ̸=j

hii =
∏
p|i

hii ·

∑
p∤j

j · hj−1
j · h′j ·

∏
p∤i ̸=j

hii


and we see that ∏

p|i

hii ·
∏
p∤i

hi−1
i

is a common divisor of the polynomials f, f ′. Similar to the previous case, it turns
out to be the greatest common divisor. □

12.1.1. Square-free factorization with characteristic 0.
For a given polynomial f , let

f1 = gcd(f, f ′), g1 = f/f1

and further let us define inductively

gj+1 = gcd(fj , gj), fj+1 = fj/gj+1.

In characteristic 0, then the following holds for f =
∏k

i=1 h
i
i:

j fj gj
1

∏
i≥2 h

i−1
i

∏
i≥1 hi

2
∏

i≥3 h
i−2
i

∏
i≥2 hi

3
∏

i≥4 h
i−3
i

∏
i≥3 hi

. . . . . .
k − 1 hk hk−1hk
k 1 hk

k + 1 1 1
Note that the length of the square-free decomposition, i.e. the value of k, is the
step in which gk+1 turns into a constant value. In fact, much more can be seen
from the table: the quotient gj/gj+1 is equal to the sought factor hj .
We remark that, since gcds are only defined up to associated elements, all poly-

nomials in the table are defined up to ||; so, by this procedure, we do not necessarily
obtain the square-free decomposition of the polynomial f , but of some polynomial
associated with f (this technical difficulty is of course easy to resolve).
Based on the above table, we can formulate an algorithm.

Algorithm 5 (Square-free factorization in Gaussian rings of characteristic 0).
Input: f ∈ R[x] primitive, non-constant
Output: a square-free factorization h1, . . . , hk of a polynomial associated with f
1. f1 := gcd(f, f ′), g1 := f/f1, j := 1
2. while deg gj > 0 do

gj+1 := gcd(fj , gj), fj+1 := fj/gj+1, hj := gj/gj+1

j := j + 1
3. return h1, . . . , hj−1

Proposition 12.3. The algorithm 5 is correct.

Proof. Let f =
∏k

i=1 h
i
i be the input polynomial. It suffices to formally verify by

induction that fj ∥ ∏i≥j+1 h
i−j
i and gj ∥ ∏i≥j hi. It then follows that indeed

hj ∥ gj/gj+1 and also that the algorithm stops for j = k + 1.
For j = 1, both assertions follow from Theorem 12.2. In an induction step we

get
gj+1 ∥ gcd(fj , gj) = gcd(

∏
i≥j+1

hi−j
i ,

∏
i≥j

hi) =
∏

i≥j+1

hi,
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and hence fj+1 = fj/gj+1 ∥∏i≥j+1 h
i−j
i /

∏
i≥j+1 hi =

∏
i≥j+2 h

i−j−1
i □

Proposition 12.4. The time complexity of algorithm 5 is O(nN(n)), where n =
deg f and N(n) denotes the complexity of computing the gcd of two polynomials of
degree ≤ n in R[x].

Proof. The algorithm computes k+1 values of fj , gj and k values of hj . Computing
them requires computing a gcd and two divisions, with the divisions being less
computationally demanding. So we can estimate the time complexity to be (3k +
2)O(N(n)) = O(nN(n)). (The estimate k ≤ n is the best possible: equality occurs
if h1 = · · · = hn−1 = 1 and deg hn = 1.) □

Example. Let us consider the polynomial

f = x7 + x6 − x5 − x4 − x3 − x2 + x+ 1.

The algorithm 5 over the ring Z[x] leads to
j fj gj hj−1

1 x3 + x2 − x− 1 x4 − 1
2 x+ 1 x2 − 1 x2 + 1
3 1 x+ 1 x− 1
4 1 1 x+ 1

Thus, the answer is h1 = x2 + 1, h2 = x− 1, h3 = x+ 1, so

f = (x2 + 1)(x− 1)2(x+ 1)3.

Example. Let us consider the polynomial

f = (x+ 1)6.

The algorithm 5 over the ring Z[x] then results in:
j fj gj hj−1

1 (x+ 1)5 x+ 1
2 (x+ 1)4 x+ 1 1
3 (x+ 1)3 x+ 1 1
4 (x+ 1)2 x+ 1 1
5 x+ 1 x+ 1 1
6 1 x+ 1 1
7 1 1 x+ 1

So h1 = . . . = h5 = 1 and h6 = x+ 1.

12.1.2. Square-free factorization over finite fields. Let us now consider the same
procedure over the field Fq. According to Theorem 12.2, we get the following values
for the polynomial f =

∏k
i=1 h

i
i:

j fj gj
1

∏
p|i h

i
i ·
∏

p∤i≥2 h
i−1
i

∏
p∤i≥1 hi

2
∏

p|i h
i
i ·
∏

p∤i≥3 h
i−2
i

∏
p∤i≥2 hi

3
∏

p|i h
i
i ·
∏

p∤i≥4 h
i−3
i

∏
p∤i≥3 hi

. . . . . .
k

∏
p|i h

i
i

∏
p∤i≥k hi

k + 1
∏

p|i h
i
i 1

The length of the square-free decomposition, i.e., the value of k, can again be
determined by the fact that gk+1 turns out to be constant. There are two differences:
in fk we are left with the product of those square-free factors that are divisible by
the power of p. The quotient gj/gj+1 is equal to hj if p ∤ j, otherwise it will be
1. In the process, we will find all square-free factors except the p-th, 2p-th, etc.
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At the end, it is enough to take the p-th root of the polynomial fk and repeat the
procedure.

Algorithm 6 (square-free factorization in finite fields).
Input: f ∈ Fq[x] non-constant
Output: square-free factorization h1, . . . , hk of some polynomial associated with f
0. if f ′ = 0 then goto 3.
1. f1 := gcd(f, f ′), g1 := f/f1, j := 1
2. while deg gj > 0 do

gj+1 := gcd(fj , gj), fj+1 := fj/gj+1, hj := gj/gj+1

j := j + 1
f := fj

3. if deg f = 0 then return h1, . . . , hj−1

else compute the square-free factorization hp, h2p, . . . , hlp of the polynomial p
√
f ,

return h1, h2, . . . , hmax(j−1,lp)

The proof of correctness is analogous to that for the algorithm 5.

Example. Consider the input polynomial

f = x7 + x6 − x5 − x4 − x3 − x2 + x+ 1.

The algorithm 6 in Z3[x] runs as follows:

j fj gj hj−1

1 x4 − x3 + x− 1 x3 − x2 + x− 1
2 x3 + 1 x− 1 x2 + 1
3 x3 + 1 1 x− 1

We get h1 = x2 + 1, h2 = x − 1 and we are left with the polynomial f = x3 + 1.
The third root is x+ 1, so we will perform a new calculation with this polynomial
as input. we store the result in h3. We are getting

f = (x2 + 1)(x− 1)2(x+ 1)3.

Example. Consider the polynomial

f = x6 + x4 + x2 + 1.

The algorithm 6 in Z2[x] runs as follows: since f ′ = 0, we will immediately consider
the square root, i.e. the polynomial x3 + x2 + x+ 1.

j fj gj hj−1

1 x2 + 1 x+ 1
2 x+ 1 x+ 1 1
3 1 x+ 1 1
4 1 1 x+ 1

Hence
√
f = (x+ 1)3, so the result is f = (x+ 1)6.

Exercises.

1. Perform a square-free factorization of the polynomial x7+x6+x4+x3+x+1 in Z3[x].

2. Perform a square-free factorization of the polynomial x10 + x6 + x5 + x3 + x2 + 1 in
Z2[x].

3. Perform a square-free factorization of the polynomial x10+2x9+2x8+2x7+x6+x5+
2x4 + x3 + x2 + 2x+ 1 in the ring Z[x].
4. Carefully, prove the correctness of Algorithm 6.
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12.2. Berlekamp’s algorithm. The easiest factorization algorithm in Fq[x] is
Berlekamp’s algorithm. Its complexity with respect to the degree of the given poly-
nomial is cubic, the disadvantage of its basic version is the exponential complexity
with respect to l(q), where l(q) denotes the number of digits of the number q (ie
l(q) = Θ(log q)). The input is a monic square-free polynomial. The main principle
behind Berlekamp’s algorithm is the following statement.

Proposition 12.5. Let f be a monic square-free polynomial in Fq[x] and consider
a nonconstant polynomial h ∈ Fq[x] satisfying

hq ≡ h (mod f).

Then
f =

∏
a∈Fq

gcd(f, h− a).

Proof. The polynomials h− a are pairwise coprime (because gcd(h− a1, h− a2) =
gcd(h− a1, a1 − a2) = 1), hence also all polynomials gcd(f, h− a) are pairwise co-
prime. Since each of them divides the polynomial f , also the product

∏
a∈Fq

gcd(f, h−
a) divides f . It remains to prove that also f divides the product.
Let f = g1g2 · · · gm be the decomposition of f into irreducible factors. It follows

from the assumption that f | hq−h. If we apply Proposition 9.4 by substituting the
polynomial h for the variable x we get f |∏a∈Fq

(h−a). Since the gi are irreducible
and h− a are pairwise coprime, for each i there exists exactly one element a ∈ Fq

such that gi | h − a, and thus also gi | gcd(f, h − a). Due to the square-freeness,
the polynomials gi are pairwise distinct, so f = g1 · · · gm |∏a∈Fq

gcd(f, h− a).
So, we proved that f and

∏
a∈Fq

gcd(f, h−a) are associated. Since they are both
monic, they are equal. □

Proposition 12.5 provides a non-trivial decomposition of the polynomial f when-
ever we have a (non-constant) polynomial h of degree less than deg f satisfying
hq ≡ h (mod f). The question is where to get such h. Let’s define

W = {h ∈ Fq[x] : deg h < deg f, hq ≡ h (mod f)}.
The next proposition tells us more about the structure of this set.

Proposition 12.6. Let f be a square-free polynomial from Fq[x] with irreducible
decomposition f = g1g2 · · · gm. Then
(1) for every polynomial h ∈W and every i:

h mod gi ∈ Fq,

(2) the set W forms a vector space over Fq of dimension m and the map

φ :W → (Fq)
m, h 7→ (h mod g1, . . . , h mod gm)

is a vector space isomorphism.

Proof. (1) In the proof of Proposition 12.5, we saw that for every nonconstant
polynomial h ∈ W and every i there exists an element a ∈ Fq such that gi | h− a.
That is, h mod gi = a ∈ Fq. For constant polynomials the statement is trivial.
(2) The given map φ clearly preserves addition and scalar multiplication. If we

can verify that it is a bijection, it follows thatW is a vector space over Fq and φ is an
isomorphism. Let us choose an arbitrary vector (a1, . . . , am) ∈ Fm

q and consider the
set of elements h satisfying the congruences h ≡ ai (mod gi), i = 1, . . . ,m. Since
gi are pairwise coprime (due to square-freeness), the Chinese remainder theorem
guarantees exactly one solution h modulo g1 · · · gm = f (i.e. exactly one of degree
< deg f). At the same time, according to Proposition 9.3

hq ≡ aqi = ai ≡ h (mod gi),
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and thus, thanks to the coprimeness of the gi, hq ≡ h modulo g1 · · · gm = f holds.
Thus, the map φ is a bijection, and the only preimage of the vector (a1, . . . , am) is
the polynomial h. □

It remains the question of how to actually find some non-trivial elements of W .
Let us denote n = deg f . Consider the polynomial

h = a0 + a1x+ · · ·+ an−1x
n−1 ∈ Fq[x].

We are interested in finding h with hq mod f = h. From Proposition 9.1 and 9.3
we see that

hq =

(
n−1∑
i=0

aix
i

)q

=

n−1∑
i=0

(
aix

i
)q

=

n−1∑
i=0

aqix
iq =

n−1∑
i=0

aix
iq.

If we denote the coefficients of the polynomial xjq mod f by qi,j , then

1 = x0 mod f = q0,0 + q1,0x+ · · ·+ qn−1,0x
n−1

xq mod f = q0,1 + q1,1x+ · · ·+ qn−1,1x
n−1

. . . . . .

x(n−1)q mod f = q0,n−1 + q1,n−1x+ · · ·+ qn−1,n−1x
n−1,

so

hq mod f =

n−1∑
j=0

ajx
jq

 mod f =

n−1∑
j=0

aj(x
jq mod f) =

=

n−1∑
j=0

(
aj

n−1∑
i=0

qi,jx
i

)
=

n−1∑
i=0

n−1∑
j=0

qi,jaj

xi.

If we name the coefficients of hq mod f = b0 + b1x + · · · + bn−1x
n−1, then we can

write in matrix-form
b0
b1
...

bn−1

 = Q ·


a0
a1
...

an−1

 , where Q =


q0,0 q0,1 . . . q0,n−1

q1,0 q1,1 . . . q1,n−1

...
...

. . .
...

qn−1,0 qn−1,1 . . . qn−1,n−1


Thus, the equality hq mod f = h holds if and only if

Q · (a0, . . . an−1)
T = (a0, . . . , an−1)

T ,

so if and only if
(Q− E) · (a0, . . . , an−1)

T = (0, 0, . . . , 0)T

(here E denotes the identity matrix). We derive the following proposition

Proposition 12.7. Let Q be an n × n matrix whose columns are the coefficients
of polynomials

1, xq mod f, x2q mod f, . . . , x(n−1)q mod f.

Then the polynomial h = a0 + a1x + . . . + an−1x
n−1 lies in W if and only if

(a0, . . . , an−1) is a solution of a homogeneous system of linear equations, given by
the matrix Q− E.

According to Proposition 12.6, the dimension of the vector space W is equal to
the number of irreducible factors of the polynomial f . On the other hand, it is
equal to the dimension of the solution space of the given system, i.e. the value
n− rk(Q−E), where rk denotes the rank of the matrix. Note that the first column
Q−E matrix is zero, so the vectors (a, 0, 0, . . . , 0) are always solutions; these vectors
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correspond to constant polynomials in W , which we are not interested in because
they do not provide a nontrivial decomposition.
The core idea of Berlekamp’s algorithm is now as follows:

(1) We solve the system of equations with the matrix Q − E by Gaussian
elimination. If the dimension of the solution space is 1, the polynomial f is
irreducible. Otherwise, we take any solution of the given system different
from (a, 0, 0, . . . , 0) and denote the corresponding polynomial by h.

(2) From the formula in Proposition 12.5 we obtain a non-trivial decomposition
f = g1g2 . . . gl.

(3) If l is equal to the dimension of the solution space, we are done. Otherwise,
we continue recursively for each polynomial g1, g2, . . . , gl.

We remark that this procedure can be noticeably optimized: instead of randomly
choosing h in step 1, we can compute a basis of the solution space h1 = 1, h2, . . . , hm
(the polynomial h1 = 1 and its multiples correspond to the irrelevant constant
polynomials). We then can use h2 to find a non-trivial decomposition of f , and
find further decompositions using polynomial h3, etc. (Here we apply Proposition
12.5 to the individual factors, the assumption hq ≡ h (mod f ′) holds for any f ′ | f .)
We proceed in this way until we findm non-trivial factors. It is, of course, necessary
to show that the stated procedure leads to the goal.
In the description of the algorithm, we identify polynomials of degree < n with

the elements of (Fq)
n. The variable F will, in each step, contain a decomposition

of the polynomial f , which is refined in step 4.

Algorithm 7 (Berlekamp’s algorithm).
Input: f ∈ Fq[x] square-free, monic, of degree n
Output: decomposition of f into irreducible polynomials g1, . . . , gm in Fq[x]

1. Q := matrix with columns x0 mod f , xq mod f , . . . , x(n−1)q mod f
2. compute a base h1 = 1, h2, . . . , hm of the solution space of (Q− E)h = 0
3. i := 2, F := {f}
4. while |F | < m do

replace each g ∈ F by non-trivial factors from the decomposition
g =

∏
a∈Fq

gcd(g, hi − a)

i := i+ 1
5. return F

Proposition 12.8. The algorithm 7 is correct.

Proof. To prove the correctness, it remains to show that every two pairwise distinct
factors of the polynomial f can be separated by some polynomial hk, i.e. that
for every i, j there exists an index k and different elements a, b ∈ Fq such that
gi | gcd(f, hk − a) and gj | gcd(f, hk − b). Since gi, gj | f , it suffices to search
for k, a, b such that gi | hk − a and gj | hk − b, i.e. such that hk mod gi = a and
hk mod gj = b. In other words, for each i, j we look for k such that hk mod gi ̸=
hk mod gj . The existence of such k follows easily from Proposition 12.6: the vectors
φ(h1), . . . , φ(hm) form the basis of the space (Fq)

m, so it is not possible for them
to have all the same i-th and j-th component – recall that φ(h) = (. . . , h mod
gi, . . . , h mod gj , . . . ). □

Example. Consider the polynomial

f = x4 + 1 ∈ Z3[x].
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Since gcd(f, f ′) = 1, it is square-free, so we can use Berlekamp’s algorithm. First,
we compute the Q matrix. It holds that

x0 mod f = 1,

x3 mod f = x3,

x6 mod f = 2x2,

x9 mod f = x,

thus

Q =


1 0 0 0
0 0 0 1
0 0 2 0
0 1 0 0

 .

By Gaussian elimination we get the row echelon form

Q− E =


0 0 0 0
0 2 0 1
0 0 1 0
0 1 0 2

 ∼


0 1 0 2
0 0 1 0
0 2 0 1
0 0 0 0

 ∼


0 1 0 2
0 0 1 0
0 0 0 0
0 0 0 0

 .

One possible basis of the solution space is (1, 0, 0, 0), (0, 1, 0, 1), which corresponds
to the polynomials h1 = 1, h2 = x + x3. Thus, the polynomial f decomposes into
2 irreducible factors. We compute

gcd(f, h2 − 0) = gcd(x4 + 1, x3 + x) = 1,

gcd(f, h2 − 1) = gcd(x4 + 1, x3 + x+ 2) = x2 + 2x+ 2,

gcd(f, h2 − 2) = gcd(x4 + 1, x3 + x+ 1) = x2 + x+ 2.

Thus, we obtain the decomposition

x4 + 1 = (x2 + 2x+ 2)(x2 + x+ 2).

Proposition 12.9. The time complexity of Algorithm 7 in the field Fq is O(n3ql(q)2),
where l(q) denotes the number of digits of the number q.

Proof. Computing xq mod f by a binary algorithm has complexity O(n2l(q)3). In
step 1, when calculating the Q matrix, we use the relation

xiq mod f = (x(i−1)q mod f) · xq mod f,

so we need n divisions with remainder in Fq[x], dividing the xq-multiple of the
previous polynomial (degrees < 2n) by the polynomial f of degree n. Therefore,
Step 1 has running time O(n3l(q)3). The time complexity of the Gaussian elimi-
nation of the matrix Q − E of size n × n over the field Fq is O(n3l(q)2). We go
through the loop in step 4 at most m times, with m ≤ n. In a given loop, for
each element g ∈ F , we compute gcd(g, hi − a) for each a ∈ Fq, which is a total
of q gcd computations with each g. The total complexity of step 4. is therefore
m · q ·∑g∈F O(ndeg gl(q)2) = O(n2ql(q)2(

∑
g∈F deg g)) = O(n3ql(q)2). □

Berlekamp’s algorithm has exponential complexity with respect to the length of
the number q, because in step 4 we go through all elements a of the field Fq. At
the same time, the other steps have a complexity of only O(n3l(q)3), so this is the
bottleneck of this procedure.
No deterministic algorithm is know that is of polynomial complexity with respect

to both n and l(q). However, there are a number of probabilistic algorithms (e.g.
Cantor-Zassenhaus or Kaltofen-Shoup) that, on average, compute a factorization
in polynomial time. The first such algorithm was discovered by Berlekamp himself.

Exercises.
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1. Decompose the polynomial x7 + 2x5 + 2x4 + x3 + 2x+ 2 into a product of irreducibles
in Z3[x].

2. Decompose the polynomial x7 + 4x6 + 2x5 + 4x3 + 3x2 + 4x + 2 into a product of
irreducibles in Z5[x]. (Don’t forget to do the square-free factorization first.)

3. Based on Berlekamp’s algorithm, design an algorithm for testing the irreducibility of a
polynomial f ∈ Fq[x] and calculate its time complexity.
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Other classes of algebraic structures

13. General algebraic structures

13.1. Algebraic structures. So far, the reader has become familiar with three
classical algebraic theories: linear algebra, commutative algebra, and group theory.
Each of these disciplines studies a specific type of algebraic structures, namely
vector spaces, commutative rings, and groups. Every such algebraic structure can
be described as a set on which some operations are defined (e.g. a ring R, is given
by the carrier set R, and the operations +,−,·, 0). Each theory then imposes some
conditions on these operations, so-called axioms, which are based on properties
that are shared by key examples (e.g., in commutative algebra, the ring axioms
are satisfied by the integers Z, or polynomial rings R[x]). We generalize these
observations in the following definition of algebraic structures.

Definition. By a language (or signature) we mean the set Σ together with a
mapping ar : Σ → N ∪ {0}. The meaning of this definition is as follows: Σ is
the set of operational symbols that we will use in a given theory, and the function
ar assigns an arity to each symbol. We say that the symbol σ ∈ Σ is ar(σ)-ary.
Instead of 1-ary we say unary, instead of 2-ary we say binary. As a rule, infix
characters +, ·, ∗, ◦, etc. are only used for binary symbols, postfix characters ′,−1

etc. are sometimes used for unary symbols;
Let A be a set. By n-ary operation on A we mean a map from the Cartesian

power An = A× . . .× A to A. Specifically, a 0-ary operation is a mapping from a
one-element set to A, so it can be interpreted as a constant.
An algebraic structure in the language Σ is the pair A = (A,Φ), where A is a

non-empty set, called the carrier set (also universe, or domain of A), and Φ is a
map from Σ to the set of operations on A, that assigns a ar(σ)-ary operation σA

to every symbol σ.

Example. Groups are algebraic structures G = (G,Φ) in the language Σ =
{∗, ′, e}, where

ar(∗) = 2, ar(′) = 1, ar(e) = 0,

satisfying the following identities for all a, b, c ∈ G:

a ∗G (b ∗G c) = (a ∗G b) ∗G c,

a ∗G eG = eG ∗G a = a,

a ∗G a′G = a′G ∗G a = eG.

Example. Rings with unity are algebraic structures R = (R,Φ) in the language
Σ = {+,−, ·, 0, 1}, where ar(+) = ar(·) = 2, ar(−) = 1, ar(0) = ar(1) = 0,
such that (R,+R,−R, 0R) is an Abelian group, ·R is asociative, the left and right
associativity laws hold for +R, ·R, and a ·R 1R = 1R ·R a = a for every a ∈ R.

If it is clear from the context, whether we are talking about an operation symbol
(e.g. +) or an operation of an algebra (e.g. +A : A2 → A), we will omit the
superscript.

Example. A Latin square (ai,j)i,j∈X over a setX can be considered as an algebraic
structure (X, ∗) with one binary operation, where u∗v = au,v. Algebraic structures
formed from Latin squares are called quasigroups.



69

The following two examples show some pitfalls in the structure definition.

Example. In a field T on a set T , forming the inverse a→ a−1 is not an operation
on T , as it is not defined on 0. Thus, fields cannot be regarded as algebraic struc-
ture in the language {+,−, ·,−1 , 0, 1}. We can, however, regard them as algebraic
structures in the language of rings with unity {+,−, ·, 0, 1}, by defining them as
those commutative rings with unity in which, for every 0 ̸= a ∈ T there is exactly
one b ∈ T such that a · b = 1.

Example. Vector spaces over the field T can be considered as algebraic structures
in the language {+,−, 0} ∪ {fα : α ∈ T}, where ar(+) = 2, ar(−) = 1, ar(0) = 0
and ar(fα) = 1 for all α ∈ T , and (V,+,−, 0) is an Abelian group and for all
a, b ∈ V , α, β ∈ T ,

f(α+Tβ)(a) = fα(a) + fβ(a), fα·Tβ(a) = fα(fβ(a)),

fα(a+ b) = fα(a) + fα(b), f1(a) = a.

We interpret the symbols fα as scalar multiplication by the element α, i.e. fα(v) =
α · v. The scalar product in the traditional sense (so, as a map T ×V → V ) is then
not an operation of this algebraic structure.

With lattices and Boolean algebras will see some more examples of interesting
classes of algebraic structures in Section 14.
In the algebraic theories mentioned above, some basic constructions recurrently

appear: substructures, direct products, homomorphisms, and quotients. We will
next give a common framework for these concepts.

13.2. Substructures.

Definition. Let f be an n-ary operation on the set A and B ⊆ A. We say that a
subset B is closed under the operation f if for all b1, . . . , bn ∈ B

f(b1, . . . , bn) ∈ B.

Let A = (A,Φ) be a structure in the language Σ. By a substructure (or subalgebra)
of A we mean the algebraic structure B = (B,Ψ) in the same language, where B ⊆
A is closed under all operations from Φ and Ψ contains restrictions on operations
from Φ to the set B, i.e., σB = σA|B for all σ ∈ Σ. We denote by B ≤ A.

This definition is compatible with definitions of substructures you already know:
a substructure of a vector space is the same as a subspace, a substructure of a ring
is a subring, a substructure of a group is a subgroup.

Example. The operations of the given structure matter: the natural numbers N
form a substructure of the structure (Z,+), but not of (Z,−).

Proposition 13.1 (intersection of substructures). Let A be an algebraic structure
and let Bi, i ∈ I, be a family of substructures. Then

⋂
i∈I Bi is either the empty

set or also a substructure of A.

If the intersection is non-empty we denote the corresponding substructure by⋂
i∈I Bi.

Proof. Let B =
⋂

i∈I Bi and let us assume that B ̸= ∅. Let σ be a symbol of arity
n and b1, . . . , bn ∈ B. Then b1, . . . , bn ∈ Bi for all i ∈ I, so σA(b1, . . . , bn) ∈ Bi for
all i ∈ I, since every set Bi is closed under this operation. Thus σA(b1, . . . , bn) ∈⋂

i∈I Bi = B. □
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Next, consider a subset ∅ ̸= X ⊆ A of the carrier set of A. We define the
substructure generated by the set X to be the smallest substructure (with respect
to inclusion) of A containing X. For short, we write ⟨X⟩A. Such a substructure
always exists: just take the intersection of all substructures containing X, i.e.,

⟨X⟩A =
⋂

X⊆B, B≤A

B.

By Proposition 13.1, this intersection is also a substructure; clearly it contains the
set X, and is the smallest among all such substructures.
We can find the elements of the substructure ⟨X⟩A by starting with the elements

of the set X and by applying the operations of the structure A we obtain other
elements. If no more new elements arise, that is, when the resulting subset is closed
to all operations of the structure A, we have found the substructure.

Example. For a given n ∈ Z:
• ⟨n⟩(Z,+) = {kn : k ∈ N},
• ⟨n⟩(Z,·) = {nk : k ∈ N}.

Exercises.

1. List all substructures of the structureA = ({1, 2, 3, a, b, c}, f) with one unary operation
defined f(a) = f(1) = 2, f(b) = f(2) = 3, f(c) = f(3) = 1. Draw an ordered set of
substructures, with the inclusion order of support sets.

2. Find all substructures of the structure (Z, f) with one unary operation defined by
f(k) = k + 1.

3. Let A = (A, ∗) be a structure with one binary operation. Prove that the set

{a ∈ A : (x ∗ a) ∗ y = x ∗ (a ∗ y) for all x, y ∈ A}

is either empty or contains a substructure of the structure A. Give an example of a
structure in which this set is empty.

4. Describe the algebraic structures ⟨2⟩(Z,−) and ⟨2⟩(Q∖{0},:).
Let T3 = (T3, ◦) be a structure consisting of all {1, 2, 3} → {1, 2, 3}, together with the

composition operation ◦. Verify that T3 is generated by the permutations (1 2 3), (1 2)
and the mapping 1 7→ 1, 2 7→ 2, 3 7→ 1. Prove that T3 is not generated by any two-element
set.

5. Prove that every substructure of (N,+) is generated by finitely many elements.

13.3. Homomorphisms and isomorphisms.

Definition. Let A, B be algebraic structures in the same language Σ. A mapping
φ : A→ B is called a homomorphism between A and B if

φ(σA(a1, . . . , an)) = σB(φ(a1), . . . , φ(an))

for each n-ary symbol σ ∈ Σ and all a1, . . . , an ∈ A. We say that φ preserves the
operations of these algebras. We write φ : A → B.

The following terminology is used for special types of homomorphisms:

• An embedding is an injective homomorphism (sometimes the notationA ↪→
B is used),

• An isomorphism is a bijective homomorphism (notation A ≃ B),

and further

• an endomorphism of the structure A is a homomorphism A → A,
• an automorphism of the structure A is an isomorphism A → A.
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Note that the identity map id : A → A, x 7→ x, is always an automorphism.
The image of a given homomorphism φ : A → B is defined by Im(φ) = {φ(a) :

a ∈ A}. The image always forms a substructure of the structure B: if σ is an
n-ary symbol and b1, . . . , bn ∈ Im(φ), then b1 = φ(a1), . . . , bn = φ(an) for some
a1, . . . , an ∈ A and holds

σB(b1, . . . , bn) = σB(φ(a1), . . . , φ(an)) = φ(σA(a1, . . . , an)) ∈ Im(φ).

Homomorphisms are uniquely determined by their values on generators. (But
it is not true that a given map on generators can always be extended to a homo-
morphism: this is a specific feature of e.g. vector spaces, or, in general, so-called
free algebras.) This principle can be used to find all homomorphisms between two
structures.

Exercise. Find all homomorphisms (Z,−) → (Z,−) (for the binary operation −).
Solution. Note that (Z,−) = ⟨1⟩, so all other values can be computed from the value
in 1. Consider the homomorphism φ. If φ(1) = k, we can prove by induction that
φ(a) = ka for all a ≥ 0. Let’s first observe φ(0) = φ(1−1) = φ(1)−φ(1) = k−k = 0
and φ(−1) = φ(0 − 1) = φ(0) − φ(1) = −k. In the induction step, note that
φ(a) = φ((a − 1) − (−1)) = φ((a − 1)) − φ(−1) = (a − 1)k − (−k) = ak holds;
we can proceed similarly for negative a. It remains to verify that we have indeed
obtained a homomorphism: φ(a − b) = k(a − b) = ka − kb = φ(a) − φ(b) for all
a, b. □

If we are not able to effectively make use of generating sets, we can also try to
use elements with special properties that are preserved by each homomorphism (see
also the discussion of invariants in Section 1.3):

Exercise. Find all homomorphisms (Z, ·) → (Z,+).

Solution. Consider a homomorphism φ : (Z, ·) → (Z,+). From the equality φ(0) =
φ(0 · 0) = φ(0) + φ(0) it follows that φ(0) = 0 and we get 0 = φ(0) = φ(n · 0) =
φ(n)+φ(0) = φ(n) for each n ∈ Z. Thus, there exists only a single homomorphism,
the map n 7→ 0. □

The following properties can be proven similar to the group and ring case:

Proposition 13.2. Let A,B,C be algebraic structures in the same language and
let φ : A → B and ψ : B → C be homomorphisms. Then

(1) the composition ψ ◦ φ is a homomorphism A → C;
(2) if φ is an isomorphism, then the inverse map φ−1 is an isomorphism of

B → A.

It follows from Proposition 13.2 that the automorphisms of a given structure A
form a subgroup of the symmetric group SA, denoted by Aut(A).
We say that the structures A and B are isomorphic, we denote A ≃ B if there is

an isomorphism A → B. As with groups and rings, isomorphism can be thought of
as copying operations from one support set to another, i.e., two algebraic structures
are isomorphic if they differ only by renaming elements. It follows from Propositon
13.2 that isomorphisms induce an equivalence relation on the class of all algebras
in the given language.
Recall that an isomorphism invariant is a property V such that whenever A

has the property V and B ≃ A, then B also has the property V . In Section 1.3,
we discussed several such invariants for groups (minimum number of generators,
equalities, certain types of special elements). In general, an invariant is any prop-
erty that can be expressed using so-called first-order formulas in a given language,
i.e. expressions only using quantifiers, variables, logical conjunctions, equality, and
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operations from the given language. The exact formulation and proof can be found
in most textbooks on mathematical logic.

Exercises.

1. Let us denote N0 = N ∪ {0}. Find all homomorphisms (N0,+) → (N, ·) and (N, ·) →
(N0,+) .

2. Let Tn = (Tn, ◦) be the structure consisting of all mappings on the set {1, ..., n},
together with the composition ◦. Decide whether there is a homomorphism Tn → (N,+)
or Tn → ({0, 1}, ·).
3. Find all homomorphisms A → B where A = ({a, b, c, d}, f), f(a) = f(b) = c, f(c) =
f(d) = d and B = ({0, 1}, g), g(0) = g(1) = 1.

4. Decide which of the following structures are isomorphic: (N, ·), (2N, ·), (3N, ·), (N ∖
2N, ·), (Q+, ·).
5. Prove Proposition 13.2.

13.4. Congruences and quotient structures.
In the beginning of Section 2, we investigated the idea of the constructing quo-

tient object, by identifying closely related elements. This idea appears throughout
mathematics. In the following, we discuss how we can apply it to algebraic struc-
tures.
Let A = (A,Φ) be an algebraic structure in the language Σ. Consider an equiv-

alence ∼ on the set A, which will tell us which elements we want to identify. We
would like to define the operations of the factor structure A/∼ in such a way that
the result of the n-ary operation σA/∼ on the blocks [a1], . . . , [an] should be equal
to the block [σA(a1, . . . , an)]. However, in order for such an operation to be well
defined, the equivalence ∼ cannot be arbitrary. The equivalences for which the
construction works are called congruences.

Definition. Let A be a structure in the language Σ. An equivalence ∼ on the
support A is called a congruence of A if for every n-ary symbol σ ∈ Σ and all
a1, . . . , an, b1, . . . , bn ∈ A holds

a1 ∼ b1, . . . , an ∼ bn ⇒ σA(a1, . . . , an) ∼ σA(b1, . . . , bn).

For a unary symbol ′, this condition says that if a ∼ b, then a′ ∼ b′. For a binary
symbol ∗ the condition says

a ∼ b, c ∼ d ⇒ a ∗ c ∼ b ∗ d,
which, as the reader will easily deduce, is equivalent to the condition a ∼ b ⇒
a ∗ c ∼ b ∗ c and c ∗ a ∼ c ∗ b for all c. Constants (i.e. 0-ary symbols) play no role
in the definition, since c ∼ c for every c.

Example. Consider the structure (Z,+,−, ·). In Algebra 1, we proved that the
relation ≡ (mod n) is a congruence of it.

Caution: Unlike for groups or rings, where congruence are already completely
determined by one equivalence class that additionally forms a subalgebra (the ideal
[0]∼ in rings and the normal subgroup [e]∼ in groups), this does not hold in general!

Definition. Let A be an algebraic structure and ∼ a congruence. Consider the
set A/∼ = {[a]∼ : a ∈ A} and define operations on by

σA/∼([a1]∼, . . . , [an]∼) = [σA(a1, . . . , an)]∼

for each n-ary symbol σ ∈ Σ and all a1, . . . , an ∈ A. From the definition of congru-
ence, we see that the operations are well defined: if we label the blocks in a different
way, i.e. if [a1] = [b1], . . . , [an] = [bn], then [σA(a1, . . . , an)] = [σA(b1, . . . , bn)], i.e.



73

the result of the operation is independent of the representant. The algebraic struc-
ture

A/∼ = (A/∼, (σA/∼ : σ ∈ Σ))

is called the quotient structure of A by the congruence ∼.
Let φ : A → B be a homomorphism. By its kernel we mean the relation on A

defined
a ∼φ b ⇔ φ(a) = φ(b).

The following statement says that the kernel is a congruence of the structure A,
and that every congruence is the kernel of some homomorphism.

Proposition 13.3 (kernels vs. congruences). Let A be a structure and ∼ be a
relation on its support set A. Then ∼ is a congruence of the structure A if and
only if it is the kernel of some homomorphism from A to some structure B.

Proof. (⇒) Consider the map
φ : A→ A/∼, a 7→ [a]∼.

It immediately follows from the definition of quotient structure that it is a homo-
morphism A → A/∼. Its kernel consists of those pairs (a, b) for which [a]∼ = [b]∼,
i.e. a ∼ b.
(⇐) Consider some homomorphism φ : A → B. Its kernel is an equivalence

relation, so we only have to prove that it is even a congruence. Consider an n-ary
symbol σ. Let a1, . . . , an, b1, . . . , bn ∈ A be such that ai ∼φ bi, i.e. φ(ai) = φ(bi),
for all i. Then

φ(σA(a1, . . . , an)) = σB(φ(a1), . . . , φ(an))

= σB(φ(b1), . . . , φ(bn)) = φ(σA(b1, . . . , bn)),

and thus σA(a1, . . . , an) ∼φ σ
A(b1, . . . , bn). □

Similar to groups and rings, the homomorphism theorem and the 1st isomor-
phism theorem apply.

Theorem 13.4 (homomorphism theorem). Let φ : A → B be a homomorphism
between algebras.

(1) If ∼ is a congruence of the structure A that is a subset of the kernel ∼φ,
then the map

ψ : A/∼ → B, [a]∼ 7→ φ(a)

is well defined and a homomorphism.
(2) (1st isomorphism theorem) A/∼φ ≃ Im(φ).

Proof. (1) First, it is necessary to verify that the mapping ψ is well defined: if
[a]∼ = [b]∼, i.e. if a ∼ b, then a ∼φ b, and thus φ(a) = φ(b). It is a homomorphism
because for the n-ary symbol σ and every a1, . . . , an ∈ A

ψ(σA/∼([a1]∼, . . . , [an]∼)) = ψ([σA(a1, . . . , an)]∼) = φ(σA(a1, . . . , an))

= σB(φ(a1), . . . , φ(an)) = σB(ψ([a1]∼), . . . , ψ([an] ∼)).

(2) We apply (1) to the congruence ∼φ itself: the resulting homomorphism ψ is
injective, since a ∼ b⇔ φ(a) = φ(b). □

Exercises.

1. Let us define the relation x ∼ y ⇔ |x| = |y| on the set of complex numbers. Decide
whether it is a congruence of the structure (C,+) or (C, ·).
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2. Let us define the relation x ∼ y ⇔ x− [x] = y− [y] on the set of real numbers. Decide
whether it is a congruence of the structure (R,+) or (R, ·).
3. Find all congruences of the structures (a) A = ({a, b, c, d}, f) where f(a) = f(b) = c
and f(c) = f(d) = d, (b) A = ({0, . . . , n− 1}, f), where f(k) = k + 1 (mod n). Based on
these observations, try to describe all structures with one unary operation that have only
trivial congruences (i.e., only equality = and the full relation A×A).

14. Partial orders and lattices

14.1. Partially ordered sets.
In this section, we discuss some basic facts about partial orders. The reader

should know most of it from previous courses.

Definition. A (binary) relation ≤ on a set A is called a partial order if it is
(1) reflexive, i.e. a ≤ a for all a ∈ A,
(2) transitive, i.e. a ≤ b and b ≤ c imply a ≤ c,
(3) antisymmetric, i.e. a ≤ b and b ≤ a implies a = b.

We also say that (A,≤) is a partially ordered set (or poset for short). A partial
order is called a linear order if in addition a ≤ b or b ≤ a holds for all a, b ∈ A. We
denote closed intervals by

[a, b] = {u ∈ A : a ≤ u ≤ b}.
If a ≤ b and a ̸= b, we write a < b.

Example. We already encountered two important orders on the natural numbers:

• (N,≤) given by the standard ordering 1 < 2 < 3 < . . . (this is a linear
order);

• (N, |) given by divisibility, i.e. a is “less than” b if a | b (this partial order
that is not linear).

Example. Another class of examples arises from ordering sets of sets by inclusion:

• (P (X),⊆): for the set P (X) of all subsets of the given set X, we say that
A is smaller than B if A ⊆ B;

• (Eq(X),⊆): on the set Eq(X) of all equivalences on the set X, we say that
∼ is less than ≈ if ∼ ⊆ ≈, i.e. if a ∼ b implies a ≈ b;

• Similarly, the substructures of a given structure can be (partially) ordered
by inclusion. Also the congruences of a given structure are (partially) or-
dered by inclusion.

Finite posets can be described using the so-called Hasse diagram. It is a descrip-
tion of ≤ by the corresponding directed graph, but we do not draw all the loops
(given by reflexivity), omit all edges whose existence is guaranteed by transitivity,
and draw undirected edges instead of arrows, so that larger elements are on top.
For example:

A =

r
�� @@rrHHH

��� rr B =

rrrr
Definition. With respect to a partial order (A,≤) an element a ∈ A is

• the greatest element if for every b ∈ A b ≤ a holds;
• the least element if b ≥ a holds for every b ∈ A;
• maximal if there is no b ∈ A such that b > a;
• minimal if there is no b ∈ A such that b < a.
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Note that, in general such elements do not need to exist. If there is a least/greatest
element, then it is unique.

Examples.

• The ordered set A has a greatest element, which is also the unique maximal
element. It has no least element, but two minimal elements.

• The ordered set B has a greatest (and at the same time maximal) and a
least (and at the same time minimal) element. It is a linear order.

• Both the ordered sets (N,≤) and (N, |) have 1 as the least element but have
no maximal element.

• The minimal elements of the poset (N∖ {1}, |) are exactly the prime num-
bers.

Definition. Let (A,≤) be a partial order and B ⊆ A. We say that an element
a ∈ A is

• an upper bound of B, if a ≥ b for all b ∈ B;
• the supremum of B, if it is the least upper bound of B; we write a = supB;
• a lower bound of B, if a ≤ b for all elements b ∈ B;
• the infimum of B, if it is the greatest lower bound of B; we write a = inf B.

Examples.

• In the partial order A, the subset consisting of the two minimal elements
has neither supremum nor infimum. There is no infimum because it has no
lower bounds. There is no supremum because it has three upper bounds,
none of which is a least upper bound.

• In every linearly ordered set, every nonempty finite subset has both a supre-
mum and an infimum, with supB = maxB and inf B = minB. It may not
exist for infinite, e.g., supN in (N,≤).

• In the poset (P (X),⊆), every subset B ⊆ P (X) has an infimum and a
supremum, where inf B is equal to the intersection of all sets from B and
supB is equal to the union of all sets from B.

• In the poset (N, |), every finite subset has an infimum and supremum, where
inf B is equal to the gcd of all numbers from B and supB is equal to the
lcm of all numbers from B. On the other hand, for example, the supremum
of the set of all prime numbers does not exist.

Definition. We call a poset a lattice if it contains the supremum and infimum of
all two-element subsets (it is easy to prove by induction that then there also exist
the suprema and infima of all nonempty finite subsets). We call it a complete lattice
if there are suprema and infima of all subsets. In lattices, we usually denote by
abbreviated

a ∨ b = sup{a, b} a a ∧ b = inf{a, b},
and call the symbols ∨,∧ meet and join.
It follows from the definition that in a complete lattice there is always a smallest

and largest element (obtained by sup ∅ and inf ∅ respectively).
Examples.

• Linearly ordered sets are always lattices by a ∨ b = max(a, b), a ∧ b =
min(a, b). They don’t have to be complete lattices, an example is (N,≤).

• (P (X),⊆) is a complete lattice. For U ⊆ P (X) supU =
⋃

A∈U A, inf U =⋂
A∈U A.

• (N, |) is a lattice with a∨b = lcm(a, b), a∧b = gcd(a, b). It is not a complete
lattice.
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a ∧ b

a ∨ b

b

a

největš́ı

nejmenš́ı

Figure 8. Meet and join in a lattice

To verify whether a given order is a complete lattice, it is sufficient to verify only
the existence of infima (or only the existence of suprema).

Proposition 14.1. A partially ordered set in which infima of all subsets exist is
a complete lattice. Symmetrically, also a poset in which the superma of all subsets
exist is a complete lattice.

Proof. Let us denote the given poset by (A,≤). It follows from the definition of
suprema that

supB = inf{a ∈ A : a ≥ b for every b ∈ B},
so suprema can be defined using infima. Dually, inf B = sup{a ∈ A : a ≤ b for
every b ∈ B}. □

For some algebraic constructions we need Zorn’s lemma. It is one of the forms
of the so-called axiom of choice, one of the basic axioms of set theory. Therefore,
Zorn’s lemma is not proven but rather postulated. A chain in a partially ordered
set means a subset that is linearly ordered.

Axiom 14.2 (Zorn’s lemma). Let (X,≤) be a nonempty partially ordered set.
Assume that every chain in (X,≤) has an upper bound. Then (X,≤) contains at
least one maximal element.

Lastly, we will define isomorphism of ordered sets. Let (A,≤) and (B,≼) be two
ordered sets. We call the mapping φ : A→ B monotone if for every a, b ∈ A

a ≤ b ⇒ φ(a) ≼ φ(b).

We call a mapping φ an isomorphism between these ordered sets if it is bijective and
both mappings φ,φ−1 are monotone. The composition of monotone mappings is
monotone, but note that the inverse of a monotone bijection may not be monotone:
an example is the identical mapping x 7→ x between the ordered sets (N, |) and
(N,≤) which is monotone in one direction only (a | b implies a ≤ b, but not vice
versa).

Exercises.

1. Draw the Hasse diagrams of the partial orders ({1, . . . , 10}, |), (P ({1, 2, 3},⊆) and
(Eq({1, 2, 3},⊆).

2. Determine whether there exists a partial order that

• has at least two maximum and at least two minimum elements,
• has at least two largest elements,
• has at least one maximum but no minimum element,
• has at least one maximum but no minimum element,
• has exactly one minimum but no smallest element.
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In the case it exists, find an example that is as small as possible.

3. Which of the following posets are lattices?

4. Describe some linear order on the set N×N and check if it is isomorphic to (N,≤), or
not.

14.2. Lattices and Boolean algebras. Lattices can be viewed in two ways: as
ordered sets, in which each pair a, b of elements has both a supremum a ∨ b and
infimum a ∧ b, but also as algebraic structures with two binary operations ∨ and
∧. The properties of ∨ and ∧ can be described abstractly, by the following axioms:
Definition. An algebraic structure (A,∧,∨) with two binary operations is called
a lattice, if for all a, b, c ∈ A:

(a ∧ b) ∧ c = a ∧ (b ∧ c), a ∧ b = b ∧ a, a ∧ a = a,

(a ∨ b) ∨ c = a ∨ (b ∨ c), a ∨ b = b ∨ a, a ∨ a = a,

a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a (these last two conditions are also called the absorption laws).

Proposition 14.3 (lattices as orders vs. algebraic structures). (1) If (A,≤) is
a lattice (as a partially ordered set), then (A, inf, sup) is a lattice (as an
algebraic structure).

(2) If (A,∧,∨) is a lattice (as an algebraic structure), and we define a ≤ b ⇔
a ∧ b = a, then (A,≤) is a lattice (as a partially ordered set).

Proof. (1) We verify the lattice axioms. It is easy (albeit somewhat technical) to
verify that (a∧ b)∧ c = inf{a, b, c} = a∧ (b∧ c). Obviously, a∧ b = inf{a, b} = b∧a
and a∧a = inf{a, a} = a. Analogous statements apply to ∨ and sup. Furthermore,
a ∧ (a ∨ b) = inf{a, sup{a, b}} = a, since a ≤ sup{a, b}. We can verify the second
absorption law in an analogous way.
(2) Reflexivity of ≤ follows from a ∧ a = a. For transitivity: if a ≤ b ≤ c,

then a ∧ b = a and b ∧ c = b. So a ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c) = a ∧ b = a,
which implies a ≤ c. For the antisymmetry, assume that a ≤ b and b ≤ a. Then
a = a ∧ b = b ∧ a = b.
We next claim that infima of 2-element subsets exist and inf{a, b} = a∧ b. First,

note that a∧b is a lower bound of both elements, since (a∧b)∧a = (a∧a)∧b = a∧b,
and analogously for b. Furthermore, if c ≤ a, b is another common lower bound,
then (a ∧ b) ∧ c = a ∧ (b ∧ c) = a ∧ c = c, so c ≤ a ∧ b.
Now note that the condition a ≤ b can be equivalently expressed as a∨ b = b: if

a∧ b = a, absorption implies a∨ b = (a∧ b)∨ b = b; and conversely, if a∨ b = b, the
absorption follows a ∧ b = a ∧ (a ∨ b) = a.
Using this observation, it is easy to prove the existence of suprema by sup{a, b} =

a∨b: we use the same argument as for infima with the operation ∨ instead of ∧. □

You can find more about lattices in any textbook on universal algebra, or lattice
theory.

Boolean algebras are one of the basic algebraic tools of mathematical logic. Con-
sider the logical values T, F . If we interpret ∧ and ∨ as conjunction and disjunction,
we get a lattice. If we add the negation ′, we get an even richer structure.

Definition. An algebraic structure (A,∧,∨,′ , 0, 1) with two binary operations ∧,∨,
a unary operation ′ and constants 0, 1 is called a Boolean algebra, if the following
conditions hold for all a, b, c ∈ A:
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• (A,∧,∨) is a lattice,
• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (i.e. the lattice is distributive),
• a ∧ 0 = 0, a ∨ 1 = 1,
• a ∧ a′ = 0, a ∨ a′ = 1.

It is easy to derive other useful properties from the axioms:

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (dual distributivity),
• (a′)′ = a, 0′ = 1, 1′ = 0,
• (a ∧ b)′ = a′ ∨ b′ a (a ∨ b)′ = a′ ∧ b′ (de Morgan’s laws).

We leave the proof to the reader.

Example. A basic example of a Boolean algebra is the set algebra

(P (X),∪,∩, ,̄ ∅, X),

with the intersection, union, and complement operation (Ā = X ∖A).

It is not difficult to prove that every finite Boolean algebra is isomorphic to some
set algebra. There are, however, many other types of infinite Boolean algebras.

Example. As we already mentioned that the truth values T, F together with con-
junction, disjunction, and negation form the Boolean algebra ({T, F},∧,∨,¬, F, T ).
This algebra is tied to basic propositional logic.
Let us now consider a general theory T in a language L (for example, group

theory or Peano arithmetic). Let FL denote all first-formulas in the language L.
We call two formulas φ,ψ T -equivalent if the equivalence of φ↔ ψ can be proved
in the theory of T . Let us consider the set FT , in which we put one formula from
each equivalence class. The so-called Lindenbaum algebra (or Lindenbaum-Tarski
algebra) of the theory T is the Boolean algebra (FT ,∧,∨,¬, F, T ).
Lindenbaum algebras measure the incompleteness of a given theory: if every for-

mula is provable or falsifiable from the axioms, then FT will have only two elements,
otherwise there will be more (e.g. for group theory, where neither commutativity
nor its negation can be proved from the group axioms).

You can find more about Boolean algebras in most textbooks on logic and set
theory. Furthermore, many non-classical logics are based on generalizations of
Boolean algebras.
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15. Dictionary

English Čeština Deutsch Italiano
group grupa Gruppe gruppo
abelian group Abelova grupa abelscher Gruppe gruppo abeliano
ring okruh Ring anello
field tělo Körper campo
commutative ring komutativní okruh kommutativer Ring anello commutativo
integral domain obor integrity Integritätsring/Integritätsbereich dominio d’integrità
unique factorization domain (UFD) Gaussův obor integrity faktorieller/gaußscher Ring dominio a fattorizzazione unica
principal ideal domain (PID) Obor hlavních ideálů Hauptidealring dominio ad ideali principali
Euclidean domain/ring Eukleidovský obor/okruh Euklidischer Ring dominio euclideo
homomorphism homomorfismus Homomorphismus omomorfismo
isomorphism isomorfismus Isomorphismus isomorfismo
normal subgroup normální podgrupa Normalteiler sottogruppo normale
ideal ideál Ideal ideale
quotient/factor ring faktorokruh Faktorring/Quotientenring anello quoziente
quotient/factor group faktorgrupa Faktorgruppe/Quotientengruppe gruppo quoziente
kernel jádro Kern nucleo
image obraz Bild immagine
divisor dělitelnost Teiler divisore
prime number prvočíslo Primzahl numero primo
irreducible ireducibilní irreduzibel irriducibile
coprime/relatively prime nesoudělná teilerfremd coprimi
greatest common divisor (gcd) největší společný dělitel (NSD) größter gemeinsamer Teiler (ggT) massimo comun divisore (MCD)
least common multiple (lcm) Nejmenší společný násobek (NSN) kleinstes gemeinsames Vielfaches (kgV) minimo comune multiplo (mcm)
Chinese remainder theorem Čínská věta o zbytcích chinsesischer Restklassensatz teorema cinese del resto
field extension tělesové rozšíření Körpererweiterung estensione di campi
algebraic/transcendental element algebraický/transcendentní prvek algebraisches/transzendentes Element numero algebraico/trancendente
rupture field kořenové nadtěleso Nullstellenkörper
splitting field rozkladové těleso Zerfällungskörper campo di spezzamento
set množina Menge insieme
partial order částečné uspořádání partielle Ordnung/Halbordnung ordine
linear/total order lineární/úplné uspořádání lineare Ordnung/Totalordnung ordine semplice/lineare/totale
lattice svaz Verband reticolo
Boolean algebra Booleova algebra boolesche Algebra algebra di Boole
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