Universal Algebra 2 - Exercises 3

Exercise 2.5. Show the following properties of the centralizer relation C:

- $C(\alpha, \beta; \alpha)$ and $C(\alpha, \beta; \beta)$
- Let Γ be a set of congruences. If $C(\alpha, \beta; \gamma)$ for all $\gamma \in \Gamma$, then $C(\alpha, \beta; \Lambda \Gamma)$.

Exercise 3.1. Consider the Loop (L, \cdot) with universe $\mathbb{Z}_4 \times \mathbb{Z}_2$ given by the multiplication

$$(a,b) \cdot (c,d) = (a+c,b+d)$$
 unless $b = d = 1$
 $(a,1) \cdot (c,1) = (a*c,0)$ where

*	0	1	2	3
0	1	0	2	3
1	0	2	3	1
2	2	3	1	0
3	3	1	0	2
	* 0 1 2 3	 * 0 0 1 1 0 2 2 3 3 	* 0 1 0 1 0 1 0 2 2 2 3 3 3 1	$\begin{array}{c cccc} * & 0 & 1 & 2 \\ \hline 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 3 \\ 2 & 2 & 3 & 1 \\ 3 & 3 & 1 & 0 \end{array}$

Consider the map $f: L \to \mathbb{Z}_2, (a, b) \mapsto b$, its kernel α and the α -block N of (0, 0).

- Show that f is a homomorphism and that N is an abelian subloop.
- Show that α is not an abelian congruence, i.e. $C(\alpha, \alpha, 0)$ does not hold.

Exercise 3.2. Prove that the polynomial equivalence problem of nilpotent rings is solvable in polynomial time. Hint: Look at Example 2.26 in the script.

Exercise 3.3. We call an algebra k-supernilpotent if every k+1-ary absorbing polynomial is constant. Consider the algebra $(\mathbb{Z}_9, +, 0, -, f_n(x_1, \ldots, x_n) \mid n \in \mathbb{N})$ where $f_n(x_1, \ldots, x_n) = 3 \cdot x_1 \cdots x_n$. Show that this algebra is 2-nilpotent but no k supernilpotent for any k