
CSP lecture 24/25 – Problem Set 1

A = (A;R1, R2, . . . ) is called a relational structure if

• A is a set, called domain,

• R1, R2, . . . are relations on A, i.e. Ri ⊆ Ani for some finite arity ni ≥ 1.

CSP(A)

Given a list of constraints Ri(xi1 , . . . , xir ), Rj(xj1 , . . . , xjs), Rk(xk1
, . . . , xkt

), . . .

Decide whether they are satisfiable.

Consider the following relations on {0, 1}:

• Ci := {i}, for i ∈ {0, 1}

• R := {(0, 0), (1, 1)}

• N := {(0, 1), (1, 0)}

• Sij := {0, 1}2 \ {(i, j)}, for i, j ∈ {0, 1}

• H := {0, 1}3 \ {(1, 1, 0)}

• G1 := {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}, G2 := {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}

Problem 1. Find a polynomial–time algorithm for CSP(A), where

1. A = ({0, 1};R)

2. A = ({0, 1};R,C0, C1)

3. A = ({0, 1};S10)

4. A = ({0, 1};S10, C0, C1)

5. A = ({0, 1};S01, S10, C0, C1)

6. A = ({0, 1};N)

7. A = ({0, 1};R,N,C0, C1)

8. A = ({0, 1};R,N,C0, C1, S00, S01, S10, S11)

9. A = ({0, 1}; all unary and binary relations)

Problem 2. Find a polynomial–time algorithm for CSP({0, 1};H,C0, C1).

Problem 3. Find a polynomial–time algorithm for CSP({0, 1};C0, C1, G1, G2).

Problem 4. Find a polynomial–time algorithm for CSP(Q;<).

Problem 5. Prove that CSP(Q;<) ̸= CSP(A), for every finite relational structure A = (A;R).
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CSP lecture 24/25 – Problem Set 2

The type of a relational structure (A;R1, . . . , Rs) is the tuple (ar(R1), . . . , ar(Rs)), where ar(R)
is the arity of the relation R.
Suppose the type of A = (A;R1, . . . , Rt) and B = (A;S1, . . . , St) is (n1, . . . , nt). A mapping

ϕ : A→ B is called a homomorphism from A to B if (a1, . . . , ani) ∈ Ri ⇒ (ϕ(a1), . . . , ϕ(ani)) ∈ Si

for every i. If such a homomorphism exists we write A → B. A homomorphism A → A is an
endomorphism, a bijective endomorphism is an automorphism.

Hom(A)

Given a finite relational structure X of the same type as A.
Decide whether X → A.

Problem 1. Find a polynomial algorithm for Hom(A) where

1. A = ({0, 1};N) (notation is from the 1st problem set)

2. A = ({0, 1};N,C0, C1) (notation is from the 1st problem set)

3. A = ({0, 1};S00, S11) (notation is from the 1st problem set)

Recall that a decision problem P1 is polynomially reducible to P2 if there exists a polynomial-
time algorithm that transforms an input I of P1 to an input r(I) of P2 so that I is a Yes-instance
iff r(I) is a Yes-instance. In such a case, we write P1 ≤P P2. When P1 ≤P P2 ≤P P1, we write
CSP(A) ∼P CSP(B) and say that the two problems are polynomially equivalent.

Problem 2. A = ({0, 1, 2};N), where N = {0, 1, 2}2 \ {(0, 0), (1, 1), (2, 2)}. Prove that CSP(A) is
polynomially equivalent to Hom(A).

Problem 3. A is a relational structure. Prove that CSP(A) is polynomially equivalent to Hom(A).

Observe that if CSP(A) ≤P CSP(B) and CSP(B) is in P (i.e., solvable in polynomial time),
then CSP(A) is in P. Similarly, if CSP(A) ≤P CSP(B) and CSP(A) is NP–complete, then CSP(B)
is NP–complete.

Problem 4. Prove that CSP(A) ∼P CSP(B), where

• A = ({0, 1, 2};C0, C1, Q), where

C0 = {0}, C1 = {1}, Q = {000, 110, 120, 210, 101, 102, 201, 202, 011, 012, 021}

(Q is a ternary relation, we omit the commas and parentheses, eg. 110 stands for (1,1,0).)

• B = ({0, 1};C0, C1, G1) (where the notation is from the 1st problem set).

Hint: use homomorphisms A → B and B → A.

Problem 5. Prove that for each finite relational structure A there exists a relational structure B
such that

• there exists a homomorphism A → B and a homomorphism B → A, and

• B is a core, that is, each endomorphism of B is an automorphism.

Problem 5.1. Deduce that we can WLOG concentrate on CSPs over cores.

Problem 5.2. Prove that such a core is unique up to isomorphism.

Problem 5.3. Find a relational structure A such that every structure B with homomorphisms
A → B and B → A is not a core. Hint: A can be taken to be a directed graph.
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Problem 6. Suppose

• A = (A;R1, R2, R4) is a relational structure, where each Ri is an i-ary relation.

• E is the equality relation, i.e. E = {(a, a) : a ∈ A}

• S is the ternary relation on A defined by

S(x, y, z) = R1(x) ∧R2(x, z) ∧R4(y, z, y, x)

• T is the binary relation defined by T (x, y) = (∃z ∈ A) S(x, y, z)

Prove that

1. CSP(A;R1, R2, R4, E) ≤P CSP(A)

2. CSP(A;R1, R2, R4, E, S) ≤P CSP(A)

3. CSP(A;R1, R2, R4, E, S, T ) ≤P CSP(A)

Problem 6.1. Try to formulate a general theorem covering these particular cases.

Problem 7. Prove that

1. CSP({0, 1, 2};C0, C1, N) ∼P CSP({0, 1, 2};C0, C1, C2, N)

2. CSP({0, 1, 2};N) ∼P CSP({0, 1, 2};N ′)

3. CSP({0, 1};C0, C1, R) ∼P CSP({0, 1};R′)

where

N = {0, 1, 2}2 \ {(0, 0), (1, 1), (2, 2)} N ′ = {0, 1, 2}3 \ {(0, 0, 0), (1, 1, 1), (2, 2, 2)}
R = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} R′ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Hint: try to use the general theorem from Problem 6.1.

Problem 8. Prove that CSP(A),CSP(B) and CSP(C) are polynomially equivalent, where

A = ({0, 1, 2};C0, C1, C2, N), N = {0, 1, 2}2 \ {(0, 0), (1, 1), (2, 2)}
B = ({0, 1};S000, S001, S011, S111), Sijk = {0, 1}3 \ {(i, j, k)}
C = ({0, 1};C0, C1, R), R = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}

Problem 9. Prove that CSP(A) ∼P CSP({0, 1, 2};N), where A, N are from the previous problem.

Problem 10. For each finite relational structure A, find an input of CSP(A) whose solutions
precisely correspond to endomorphisms of A.

Problem 11. Let A be a finite core and let B be the relational structure formed from A by adding
all the unary relations Ca = {a}, a ∈ A. Prove that CSP(A) ∼P CSP(B).

Problem 12. Let A be a finite relational structure such that CSP(A) is in P. Prove that there is
a polynomial–time algorithm for finding a solution of CSP(A).
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CSP lecture 24/25 – Problem Set 3

An n-ary operation on a set A is a mapping An → A. The n-ary projection onto the i-th
coordinate (on a set A) is the operation πn

i defined by π
n
i (a1, . . . , an) = ai for any a1, . . . , an ∈ A.

An n-ary operation f : An → A preserves an m-ary relation R ⊆ Am if f(r1, . . . , rn) ∈ R
(operation is applied coordinate-wise) whenever r1, . . . , rn ∈ R. In other words, for any m × n
matrix whose columns are in R, f applied to the rows of this matrix gives a tuple in R. In such a
situation, we also say that R is compatible with f , or R is invariant under f , or f is a polymorphism
of R.
An operation An → A is a polymorphism of a relational structure A = (A; . . . ) if it preserves

all the relations in A. The set of all polymorphisms of A is denoted Pol(A).

Problem 1. Observe that

1. f : An → A is compatible with every singleton unary relation {a}, a ∈ A, iff f(a, . . . , a) = a
for all a ∈ A;

2. the constant unary operation ca : A→ A (defined by ca(x) = a for any x ∈ A) is compatible
with R ⊆ An iff R contains the tuple (a, a, . . . , a).

Problem 2. Let A be a set. Prove that f preserves every relation on A if and only if f is a
projection.

Problem 3. Let A = (A; . . . ) be a relational structure, f ∈ Pol(A) a binary polymorphism and
g ∈ Pol(A) a ternary polymorphism. Then the 4-ary operation h defined by

h(x1, x2, x3, x4) = g(x1, f(x3, g(x2, x2, x4)), x3)

is a polymorphism of A as well. Try to formulate a general statement.

Problem 4. Find all unary and binary polymorphisms of the structure A = ({0, 1};H,C0, C1)
from Problem Set 1 (Problem 2 – HORN-SAT).

Problem 5. Find all unary and binary polymorphisms of the structure

A = ({0, 1}; all unary and binary relations)

from Problem Set 1 (Problem 1 – 2-SAT). Find some nice nontrivial (= not a projection) poly-
morphism of A.

Problem 6. Find all unary, binary, and ternary polymorphisms of A = ({0, 1};C0, C1, G1, G2)
from Problem Set 1 (Problem 3 – LIN-EQ(Z2)).

A relation R ⊆ Am is pp-definable from A = (A; . . . ) if it can be defined from relations
in A by a pp-formula, that is, a formula which only uses conjunction, equality, and existential
quantification. A relational structure B = (B; . . . ) is pp-definable from A if A = B and each
relation in B is pp-definable from A. We also say that A pp-defines B.

Problem 7. Prove that any relation pp-definable from A is invariant under every polymorphism
of A.

Problem 8. Find all polymorphisms of the structure B in Problem Set 2 (Problem 8 – 3-SAT).
Hint: only projections; possible approach: (1) pp-define the four-ary relations of the form Ra,b,c,d =
{0, 1}4 \ {(a, b, c, d)}, (2) pp-define all four-ary relations (3) similarly, pp-define every relation, (4)
use Problem 2.

Problem 9. Let A be a finite structure. Prove that a relation invariant under every polymorphism
of A is pp-definable from A. Proof strategy:
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(i) Denote R = {(c11, . . . , c1k), . . . , (cm1, . . . , cmk)}

(ii) Let a1, . . . ,an be a complete list of m-tuples of elements of A (i.e. n = |A|m)

(iii) Prove that the relation

S = {(f(a1), . . . , f(an)) : f is an m-ary polymorphism}

is pp-definable from A (no need to use existential quantification)

(iv) Existentially quantify over all coordinates but those corresponding to (c11, . . . , cm1), . . . ,
(c1k, . . . , cmk)

(v) Prove that the obtained relation contains R (because of projections) and is contained in R
(because of compatibility)

Problem 10. Let A = (Z× Z;R,U), where

R = {((x, y), (x′, y′)) | x = x′, |y′ − y| ∈ {1, 2}}, U = {(0, 0)}.

Prove that {(0, y) | y ∈ Z} is invariant under every polymorphism of A, but that this set is not
pp-definable from A.

Problem 11. Observe that, for finite structures A and B,

1. A pp-defines B iff Pol(A) ⊆ Pol(B) and in such a case CSP(B) ≤P CSP(A);

2. any CSP over a two–element structure is polynomially reducible to 3–SAT

3. if Pol(A) ⊆ Pol(B), then the proof of Problem 9 gives an explicit pp-formulas defining
relations in B from relations in A.

4. In particular, for B and C as in Problem Set 2, Problem 4, we get CSP(C) ≤ CSP(B). How
large are the explicit formulas defining relations in C from relations in B?
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CSP lecture 24/25 – Problem Set 4

A set of operations on a set A is a (function) clone on A if it contains all projections and
is closed under composition (as in Problem 3, Problem Set 3). A function clone on A is called
idempotent if for every operation f in it and every a ∈ A, f(a, a, . . . , a) = a. For a se

Problem 1. Recall that for any relational structure A, Pol(A) is a clone.

In this problem set, we focus on function clones on the set A = {0, 1}. We use the following
notation for some special operations on {0, 1}:

∧ the binary minimum operation

∨ the binary maximum operation

maj the ternary majority operation defined by maj(a, a, b) = maj(a, b, a) = maj(b, a, a) := a for
every a, b ∈ {0, 1}

min the ternary minority operation defined by min(a, a, b) = min(a, b, a) = min(b, a, a) := b for
every a, b ∈ {0, 1}

An operation f : An → A is called essentially unary if there exist i and a unary operation
α : A→ A such that f(x1, . . . , xn) = α(xi) for every x1, . . . , xn ∈ A.

Problem 2. Assume that A is an idempotent clone on A = {0, 1} that contains neither ∧ nor ∨.
Show that the only binary operations in A are the two projections.

Problem 3. Assume that A is an idempotent clone on A = {0, 1} that contains neither of
the operations ∧,∨,maj,min. Show that the only binary and ternary operations in A are the
projections.

Problem 4. Assume that A is an idempotent clone on A = {0, 1} that contains neither of the
operations ∧,∨,maj,min. Show that A contains only projections.
Hint: possible strategy

• Let f ∈ A be n-ary with n ≥ 4.

• Assume first f(1, 0, 0, . . . , 0) = 1. Use the binary operation g(x, y) := f(x, y, . . . , y) to show
that f(0, 1, . . . , 1) = 0. Use ternary operations of the form g(x, y, z) := f(w1, w2, . . . ) where
w1, w2, . . . ∈ {x, y, z} to show that f is the projection onto the first coordinate.

• Deduce that if f is not a projection, then f(x, . . . , x, y, x, . . . , x) = x for every x, y and every
position of y.

• Assuming this and using appropriate ternary operations (similar as above) show that
f(x, . . . , x, y, y) = x, . . . , etc, and derive a contradiction

Problem 5. Let A be a clone on A = {0, 1} with an operation which is not essentially unary.
Prove that A contains a constant unary operation, or at least one of the operations ∧,∨,maj,min.
Hint: try to reduce to the idempotent case
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CSP lecture 24/25 – Problem Set 5

A ternary operation m : A3 → A is called a majority operation if m(a, a, b) = m(a, b, a) =
m(b, a, a) = a for each a, b ∈ A (note that for |A| ≤ 2 there is a unique majority operation on A,
otherwise there are more of them).

Problem 1. Let R ⊆ An be a relation compatible with a majority operation on A. Denote πi,j(R)
the projection of R onto the coordinates i, j (1 ≤ i, j ≤ n), that is,

πi,j(R) = {(ai, aj) : (a1, . . . , an) ∈ R} .

Prove that R is determined by these binary projections, that is,

(a1, . . . , an) ∈ R if and only if (∀i, j, 1 ≤ i, j ≤ n) (ai, aj) ∈ πi,j(R)

Hint: start with n = 3

Problem 2. Let A = (A; . . . ) be a relational structure with a majority polymorphism. Show that
there exists a relational structure B = (A; . . . ) which contains only binary relations such that A
is pp-definable from B and B is pp-definable from A. For A = {0, 1}, conclude that CSP(A) ≤P

2–SAT (and thus CSP(A) is solvable in polynomial time).

Problem 2.1. Let A = (Z;R1, . . . , Rk), where all relations R1, . . . , Rk admit a quantifier-free
definition over the relations y < x+ c and y = x+ c, where c ∈ Z. E.g. R can be the 4-ary relation
that holds on (x, y, z, t) iff (x > y + 1 ∨ x > z − 6) ∧ (x = z ⇒ t = y + 1) holds. Suppose that the
ternary median operation is a polymorphism of A. Show that CSP(A) is solvable in polynomial
time.

Problem 3. Let A = ({0, 1}; . . . ) be a relational structure with polymorphism min (from Problem
Set 4). Show that each n-ary relation of A is an affine subspace of Zn

2 . Conclude that CSP(A) is
solvable in polynomial time.

Problem 4. Let A = ({0, 1};C0, C1, H) be as in Problem Set 1 (the corresponding CSP is HORN-
3-SAT). For every relation R ⊆ {0, 1}n compatible with ∧ find a pp–definition from A.

Problem 5. Prove that for each relational structure A = (A; . . . ) with A = {0, 1}, either CSP(A)
is solvable in polynomial time or CSP(A) is NP–complete (this is Schaefer’s dichotomy theorem
(1978)). Describe the two cases in terms of polymorphisms.
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CSP lecture 24/25 – Problem Set 6

An instance of CSP(A) with set of variables V is called 1-minimal if there exists a system of
subsets Px ⊆ A, x ∈ V such that for every constraint R(x1, . . . , xk), the projection of R onto the
j-th coordinate is equal to Pxj

. We say the instance is non-trivial if none of the sets Px is empty.
Two instances of the CSP are equivalent if they have the same set of solutions.

Problem 1. Devise a polynomial-time algorithm that transforms an instance of CSP(A) to an
equivalent 1-minimal instance of CSP(B), where B is pp-definable in A.

Recall that a semilattice operation onA is a binary operation s that is associative, commutative,
and idempotent: that is, for all a, b, c ∈ A, the following equalities hold:

s(s(a, b), c) = s(a, s(b, c))

s(a, b) = s(b, a)

s(a, a) = a

A totally symmetric operation on A of arity n is an operation t : An → A such that t(a1, . . . , an) =
t(b1, . . . , bn) whenever {a1, . . . , an} = {b1, . . . , bn}, i.e., the value of the operation only depends on
the set of its arguments.

Problem 2. Give examples of semilattice operations.

Problem 2.1. Prove that every clone that contains a semilattice operation contains for every
n ≥ 1 a totally symmetric operation of arity n.

Problem 2.2. Let A be finite. Prove that if Pol(A) contains totally symmetric operations of all
arities n ≥ 1, then it contains a family of totally symmetric operations s1, s2, . . . where sn has
arity n and sn+1(x1, x1, x2, . . . , xn) = sn(x1, . . . , xn) holds for all x1, . . . , xn ∈ A.

Problem 3. Suppose that A is a finite relational structure that has totally symmetric polymor-
phisms of all arities n ≥ 1. Show that every non-trivial 1-minimal instance of CSP(A) has a
solution. Conclude that CSP(A) is solvable in polynomial time.
Hint: apply the totally symmetric polymorphisms to the non-empty sets Px whose existence is
guaranteed by 1-minimality.

Problem 4. Show the converse: let A be finite and suppose that every non-trivial 1-minimal
instance of A has a solution. Prove that Pol(A) contains totally symmetric polymorphisms of all
arities n ≥ 1.
Hint: Build an instance of CSP(A) whose variables are non-empty subsets of A, and whose solutions
define totally symmetric polymorphisms of A. Show that an equivalent 1-minimal instance is non-
trivial.

An instance of a CSP with variables V = {x1, . . . , xn} over the set A is called simple (2, 3)-
minimal if it satisfies all the following conditions:

• For each 1 ≤ i ≤ n, there is a single unary constraint Pi(xi) where Pi ⊆ A,

• For each i, j ∈ {1, . . . , n} with i ̸= j, there is a single binary constraint Pi,j(xi, xj), where
Pi,j ⊆ A2,

• Pi,j = P−1
j,i (i.e., Pi,j = {(b, a) | (a, b) ∈ Pj,i}),

• There are no other constraints except the ones mentioned above,

• The instance is 1-minimal: for all i, j, the restriction of Pi,j to its first coordinate equals Pi,

• For each triple i, j, k ∈ {1, . . . , n} of distinct integers and each (a, b) ∈ Pi,j , there exists a
c ∈ Pk such that (a, c) ∈ Pi,k and (b, c) ∈ Pj,k.
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Problem 5. Let us represent a simple (2, 3)-minimal instance as a multipartite graph as follows:
each variable xi corresponds to one set whose vertices are the elements of Pi, and for every
distinct i, j and (a, b) ∈ Pi,j , there is an edge between the corresponding vertices a ∈ Pi and
b ∈ Pj . Describe what the last two items in the definition of (2, 3)-minimality mean for this graph.

Problem 6. Let A be a finite structure and have only unary and binary relations. Devise a
polynomial-time algorithm that transforms any instance of CSP(A) into an equivalent simple
(2, 3)-minimal instance of CSP(B), where B is pp-definable in A.

Problem 7. Adapt the algorithm from the previous problem for the case where A has relations
of arbitrary arity but Pol(A) contains a majority operation.

Problem 8. Suppose that A has a majority polymorphism. Show that every non-trivial simple
(2, 3)-minimal instance of CSP(A) has a solution.
Hint: if V = {x1, . . . , xn} is the set of variables and h : {x1, . . . , xi} → A is an assignment

that satisfies all constraints involving only the variables from {x1, . . . , xi}, show that h can be
extended to an assignment h′ : {x1, . . . , xi, xi+1} → A that satisfies all the constraints involving
only the variables from {x1, . . . , xi, xi+1}. Conclude that CSP(A) is solvable in polynomial time.

Remark 1. It is also possible to characterize the property “Every non-trivial (2, 3)-minimal
instance of CSP(A) has a solution” in terms of Pol(A), although the proof is beyond the scope of
the course: the property is equivalent to Pol(A) containing for all n ≥ 3 an operation w of arity n
that satisfies

w(x, y, . . . , y) = w(y, x, y, . . . , y) = · · · = w(y, . . . , y, x).
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CSP lecture 24/25 – Problem Set 7

We assume throughout this sheet that every set is finite. A Maltsev operation is an operation
m : A3 → A that satisfies m(a, b, b) = m(b, b, a) = a for all a, b ∈ A.

Problem 1. A relation R ⊆ An is rectangular if for all i ∈ {1, . . . , n}, all a,b ∈ An, c, d ∈ A, whe-
never (a1, . . . , ai−1, c, ai+1, . . . , an), (b1, . . . , bi−1, c, bi+1, . . . , bn), (b1, . . . , bi−1, d, bi+1, . . . , bn) ∈ R,
then (a1, . . . , ai−1, d, ai+1, . . . , an) ∈ R. Show that every relation that is invariant under a Maltsev
operation is rectangular.

We say that t, t′ ∈ An witness (i, a, b) ∈ {1, . . . , n} × A2 if (t1, . . . , ti−1) = (t′1, . . . , t
′
i−1) and

ti = a, t′i = b. Let R ⊆ An. The signature of R is the set

SigR := {(i, a, b) ∈ [n]×A2 | ∃t, t′ ∈ R that witness (i, a, b)}.

We say that R′ ⊆ R is a representation of R if SigR′ = SigR, and that the representation is
compact if |R′| ≤ 2 · | SigR |. Note that for compact representations |R′| ≤ 2n|A|2 holds.

Problem 2. Observe that every R has a compact representation. Describe a concrete compact
representation of An.

Given a subset R ⊆ An and an operation f : Am → A, the relation generated by R under
f , denoted by ⟨R⟩f , is the smallest relation S containing R and that is invariant under f . For
i1, . . . , im ∈ {1, . . . , n}, let πi1,...,im(R) := {(ai1 , . . . , aim) | (a1, . . . , an) ∈ R}.

Problem 3. Suppose that R is invariant under a Maltsev operation f and that R′ is a repre-
sentation of R. Show that ⟨R′⟩f = R.
Hint: Show that π1,...,i(⟨R′⟩f ) = π1,...,i(R), for all i ∈ {1, . . . , n}.

In the next exercises, we use the following notation:

• R ⊆ An is invariant under a Maltsev operation f ,

• R′ ⊆ R is a compact representation of R,

• S ⊆ Am is also a relation of small arity m < n that is also invariant under f (we think of m
as a fixed parameter in contrast to n).

• Let i1, . . . , im ∈ {1, . . . , n} and T = {(a1, . . . , an) ∈ R | (ai1 , . . . , aim) ∈ S}.

Problem 4. Describe an algorithm that takes R′, (i1, . . . , im), S as input, and returns an element
of T (or ‘False’ if T = ∅). The running time should be polynomial in n (and |A|m).
Hint: apply the Maltsev operation to R′ until the projection on the coordinates (i1, . . . , im) stabi-
lizes.

Problem 5. Describe an algorithm that takes R′ and a constant c ∈ A as input, and returns a
compact representation of R|c := {(a1, . . . , an) ∈ R | a1 = c} in time polynomial in |R′| and n.
Hint: given any (i, a, b) ∈ SigR, use Problem 4 to decide whether (i, a, b) is in SigR|c .
Note that by iterating the algorithm, one can also compute a compact representation of

R|c1,...,cm = {(a1, . . . , an) ∈ R | a1 = c1, . . . , am = cm}.

Problem 6. Describe an algorithm that takes R′ and S as input, and returns a compact
representation of T in time polynomial in n (and |A|m).
Hint: simply describe the necessary and sufficient conditions for a given (i, a, b) ∈ SigR to be in
SigT , and use the previous two algorithms to check those conditions.

Problem 7. Prove that if A is a finite relational structure such that Pol(A) contains a Maltsev
polymorphism, then CSP(A) is solvable in polynomial time.
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CSP lecture 24/25 – Problem Set 8

Given an equivalence relation ∼ on a set V and v ∈ V , we denote by v/∼ := {w ∈ V | v ∼ w}
the equivalence class of v. Recall that given a relational structure G and an equivalence relation ∼
on the domain of G, the structure G/∼ is the structure with same signature as G, whose domain
is the set of ∼-equivalence classes, and where for every k-ary relation R in the signature, we have

(v1/∼, . . . , vk/∼) ∈ RG/∼ ⇔ ∃w1, . . . , wk s.t. w1 ∼ v1, . . . , wk ∼ vk and (w1, . . . , wk) ∈ RG

Definition. Let A,B be relational structure. We say that B has a pp-interpretation in A if B is
isomorphic to a structure of the form (S;R1, . . . , Rk) /∼, where:

• S ⊆ An is pp-definable in A,

• ∼⊆ S2 is an equivalence relation that is pp-definable in A, as a relation of arity 2n, i.e. there
exists a pp-formula ϕ (x1, . . . , xn, y1, . . . , yn) such that for all (a1, . . . , an) , (b1, . . . , bn) ∈ S,

(a1, . . . , an) ∼ (b1, . . . , bn) ⇔ A |= ϕ (a1, . . . , an, b1, . . . , bn)

• Similarly, for every Ri ⊆ Sm, there is a pp-formula ψi (x1,1, . . . , x1,n, . . . , xm,1, . . . , xm,n)
with mn free variables such that

(a1, . . . ,am) ∈ Ri ⇔ A |= ψi (a1, . . . ,am)

Problem 0. Show that if B has a pp-interpretation in A, then CSP(B) reduces to CSP(A).
Observe that if C has a pp-interpretation in B and B has a pp-interpretation in A, then C has a
pp-interpretation in A. Hint: See Problems 3 and 4 from Problem Set 2.

The goal of this problem sheet is to show the following:

Theorem. Let G = ({v1, . . . , vn} ;E) be an undirected graph without loops and containing a
triangle. Then K3 has a pp-interpretation in (G, {v1} , . . . , {vn}), the relational structure obtained
by expanding G by a unary relation for every vertex of G.

We prove the theorem by induction on n and |E|. For the base case n ≤ 3 it clearly holds.
So, for the rest of the sheet, let n > 3 and G = (V ;E) with V = {v1, . . . , vn} be an undirected,
loopless graph containing a triangle. Our goal is to prove that K3 has a pp-interpretation in
(G, {v1} , . . . , {vn}) under the induction assumption that the theorem holds for every graph with
< n vertices, and every graph with n vertices and < |E| edges.

Problem 1. Suppose that one of the conditions below is satisfied. Show that in every case,
(G, {v1} , . . . , {vn}) pp-interprets a proper subgraph H = (W ;F ) (i.e. W ⊆ V, F ⊆ E, and at least
one of the inclusions is proper) that contains a triangle.

a) G is unconnected,

b) G contains a complete graph on 4 vertices,

c) Some vertex vi does not belong to a triangle,

d) Some edge of G does not belong to a triangle.

Conclude that if any of the condition holds, K3 has a pp-interpretation in (G, {v1} , . . . , {vn}).

We assume from here on out that a)-d) do not hold for G.
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Problem 2. The diamond is the following graph:

Let x ∼ y be the relation that relates x and y iff they are connected by a chain of diamonds:

Show that ∼ is an equivalence relation that has a pp-definition in G.

Problem 3. Suppose that the following condition holds:

e) some edge of G belongs to two triangles.

In particular, G contains a diamond and ∼ from Problem 2 contains a pair (x, y) with x ̸= y.

• Show that if there is an edge (x, y) in G with x ∼ y, then (G, {v1} , . . . , {vn}) pp-interprets a
proper subgraph containing a triangle, thusK3 has a pp-interpretation in (G, {v1} , . . . , {vn}).

• Next suppose that x ∼ y implies that (x, y) is not an edge. What does this imply for
(G, {v1} , . . . , {vn}) /∼ ? Conclude that K3 has a pp-interpretation in (G, {v1} , . . . , {vn}).

Hint: for the first part, consider the shortest chain of diamonds connecting an edge (x, y), and
find a pp-definition of a proper subset of V containing a triangle.

So, from here on, we can also assume that condition e) fails, i.e., every edge of G belongs
to a unique triangle. The next goal is to show that some power of K3 has a pp-interpretation
in (G, {v1} , . . . , {vn}). For k ≥ 1, let Pk := (K3)

k be the k-th power of K3, whose universe is
{1, 2, 3}k and whose edges are of the form (a,b) where for all i ∈ {1, . . . , k}, ai ̸= bi.

Problem 4. Let h : Pk → G be a homomorphism. Show that there is a set I ⊆ {1, . . . , k} such
that for all x,y ∈ {1, 2, 3}k

h(x) = h(y) ⇔ ∀i ∈ I, xi = yi.

Conclude that the subgraph of G induced by the range of h is isomorphic to Pm, wherem = |I|.
The following strategy can be used:

• Let I ⊆ {1, . . . , k} be maximal such that h(x) = h(y) implies xi = yi for all i ∈ I.

• Let j ∈ {1, . . . , k}\I and let a,b tuples that agree on all coordinates except aj ̸= bj . We are
going to show that h(a) = h(b).

• By maximality of I, there exist x,y such that h(x) = h(y) but xj ̸= yj . Wlog. xj ∈ {aj , bj}.

• Show that the following graph is a (non-induced) subgraph of Pk (i.e., find witnesses for the
vertices t, u, v, w) and use it to conclude that h(a) = h(b):
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• Finally, conclude that if ai = bi for all i ∈ I, then h(a) = h(b).

Let k be maximal such that Pk is isomorphic to an induced subgraph of G (note that k ≥ 1
is well-defined since G contains a triangle). By abuse of notation, we consider Pk itself to be an
induced subgraph of G.

Problem 5. Show that the vertex set of Pk is pp-definable in (G, {v1} , . . . , {vn}).
Hint: This is equivalent to showing that for every idempotent polymorphism f of G, the vertex
set of Pk is invariant under f . Observe that f induces a homomorphism (Pk)

n = Pnk → G, where
n is the arity of f .

Problem 6. To conclude the proof of the theorem, show that for all k ≥ 1, K3 has a pp-
interpretation in the expansion of Pk by all unary constant relations.
Hint: show that the equivalence relation x ∼ y :⇔ x1 = y1 is pp-definable in the expansion of Pk by
all unary constant relations. There are two approaches, either by finding a concrete pp-definition,
or by showing that ∼ is preserved under every idempotent polymorphism of Pk.

Problem 7. Show the following corollary (Hell-Nešetřil, 1990): let G = (V ;E) be a finite
undirected graph without loops. Then CSP(G) is in P if G is bipartite, and CSP(G) is NP-
complete otherwise.
Hint: if G = (V ;E) is not bipartite, it has a cycle of length 2ℓ + 1 for some ℓ. Take ℓ minimal.
Consider the graph H on V where (x, y) is an edge iff in G there is a walk of length 2ℓ−1 between
x and y. What can be said about H?
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CSP lecture 24/25 – Problem Set 9

All sets in this sheet are assumed finite. Clones are idempotent. (These assumptions are some-
times not necessary.)

A relation R ⊆ A2 is subdirect, written R ⊆sd A
2, if its projection to each of the two coordinates

is equal to A. A relation R ⊆ A2 is linked if it is subdirect and, for every pair a, a′ ∈ A, there is
a “fence” from a to a′, i.e. there are elements a = a0, b0, a1, b1, . . . , bn−1, an = a′ ∈ A such that
R(a0, b0), R(a1, b0), R(a1, b1), R(a2, b1), . . . , R(an, bn−1) holds.

Problem 1. Suppose that G = (V ;E) is a connected undirected graph. Show that E ⊆ V 2 is
linked iff G is non-bipartite.

Problem 2. Let R ⊆ A2. Show that there exists a largest B ⊆ A (w.r.t. inclusion) such that
R∩ (B×B) ⊆sd B

2 and show that this B is pp-definable from R. Let’s call this B the “subdirect
part” of R. Show that the subdirect part of R is nonempty iff R contains a directed cycle.

Let f : An → A and B ⊆ A. We say that B absorbs A with respect to f , and write B ◁f A, if
f(a1, . . . , an) ∈ B whenever all the ai but at most one are in B. For a clone A on A, we say that
B is an absorbing subuniverse of A (with respect to f), written B ◁f A, if B is invariant under A,
f ∈ A and B ◁f A. We write B ◁A if there exists a f ∈ A such that B ◁f A.

Problem 3. Consider the important idempotent clones on {0, 1} (generated by the binary
minimum/maximum, majority, minority). What are the absorbing subuniverses?

Problem 4. Let A be a clone. Suppose that R ⊆sd A
2 is invariant under A and B,C ◁f A.

Show that B ∩ C ◁f A, that B + R := {c : ∃b (b, c) ∈ R} ◁f A, and that the “subdirect part” of
B ∩ (R×R) absorbs A with respect to f , as well.
Side note: Observe that for B ◁f A and C ◁g A, there is a common h ∈ A such that B,C ◁h A.
Hint: use star composition defined below.

Problem 5. Let A be a clone. Suppose that R ⊆sd A
2 is linked and invariant under A, B ◁f A,

and S := R ∩ (B ×B) ⊆sd B
2. Show that S is linked.

Problem 6. Let R ⊆ A2 be linked and invariant under A and let B ◁ A be nontrivial
(i.e., ∅ ̸= B ⊊ A). Show that there exists a nontrivial C ⊊ A invariant under A such that
S := R ∩ (C × C) ⊆sd C

2 and S is linked.
Hint: Find B′ ◁A such that R ∩ (B′ ×B′) has a nonempty subdirect part.

Let f : An → A and α : [n] → [m]. The operation fα : Am → A defined by fα(a1, . . . , am) =
f(aα(1), aα(2), . . . , aα(n)) is called a minor of f . For two clones A, B, an arity preserving mapping
ξ : A → B is a minion homomorphism if it preserves minors, i.e., ξ(fα) = [ξ(f)]α (for every n,
n-ary f ∈ A, and every α : [n] → [m]).
A clone is called Taylor if it is idempotent and there exists no homomorphism from ξ to the clone
of projections (say, on a two-element set).

Remark: There exists a minion homomorphism Pol(A) → Pol(B) iff A pp-constructs B, i.e.
B can be obtained from A by homomorphic equivalence and pp-interpretations. So Pol(A) is not
Taylor iff A pp-constructs all finite structures. As a consequence, CSP(A) is NP-complete if Pol(A)
is not Taylor.

A subset B ⊆ A is called a projective subuniverse of A if for every f ∈ A there exists a
coordinate i such that f(a1, . . . , an) ∈ B whenever ai ∈ B.

Problem 7. Let B be a projective subuniverse of A. Show that B ◁g A (where g can be taken
binary) or A is not Taylor.
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Hint: Show that if for each f the coordinate i (from the definition of projective subuniverse)
is unique, then we get a minion homomorphism to projections. Otherwise, a binary minor of an
operation f with non-unique i gives binary absorption.

Problem 8. Suppose that A has no nontrivial projective subuniverses. Show that A contains
a transitive operation, i.e., f ∈ A such that for every coordinate i and every a, b ∈ A, there exists
(a1, . . . , an) ∈ An such that ai = a and t(a1, . . . , an) = b.
Hint: try to make t(A,A, . . . , a, A,A, . . . ) as large as possible; use the “star-product” of ope-

rations, where for n-ary f and m-ary g, we define nm-ary f ⋆ g by

f ⋆ g(a1, . . . , anm) = f(g(a1, . . . , am), g(am+1, . . . , a2m), . . . , g(am(n−1)+1 . . . , amn)).

The left center of R ⊆ A2 is the set {a : ∀b ∈ A (a, b) ∈ R}.

Problem 9. Suppose that R ⊆sd A
2 is invariant under a transitive operation f : An → A and

let B be the left center of R. Show that B ◁f A.

Problem 10. Suppose that R ⊆sd A
2 is linked. Show that R together with the singleton unary

relations {a} pp-defines a relation S ⊆sd A
2, S ̸= A2 with a nonempty left center.

Hint: Denote by Tn the n-ary relation such that Tn(a1, . . . , an) iff there exists b with R(a1, b),
R(a2, b), . . . , R(an, b). First adjust R so that it is still proper and T2 = A2. Fixing appropriate
values in an appropriate Tn gives us S.

Problem 11. Suppose that A is Taylor and R ⊆ A2 is linked and invariant under A. Show that
there exists a nontrivial B ◁A. (This is the so-called Absorption Theorem.)

Problem 12. Suppose that A is Taylor and R ⊆ A2 is linked and invariant under A. Show
that (a, a) ∈ R for some a ∈ A. (This is the so-called Loop Lemma.) Deduce the Hell–Nešetřil
dichotomy theorem for undirected graphs (Problem 7 in Problem Set 8)
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CSP lecture 24/25 – Problem Set 10

In (the feasibility version of) linear programs (LPs) the task is to decide if a finite list of linear
equations and inequalities is satisfiable over Q or not (i.e. is there a vector x ∈ Qn that satisfies
inequality constraints Ax ≤ b and equality constraints Ex = f , for some A ∈ Qn×k,b ∈ Qk,
E ∈ Qn×l, and f ∈ Ql?). It is a famous result in optimization that LPs can be solved in polynomial
time.

Problem 1. Let A be a finite relational structure, and X be an instance of CSP(A). Then we
define a linear program as follows:

• for every x ∈ X and every value a ∈ A we introduce a variable λx(a) together with the
inequality constraints 0 ≤ λx(a) ≤ 1 and the equality constraints

∑
a∈A λx(a) = 1 (so, for

every x ∈ X, λx(·) is a probability distribution on A).

• for every constraint C in X, given by (x1, . . . , xk) ∈ RX, and every tuple a ∈ RA, we introduce
a variable λC(a) together with the inequality constraints 0 ≤ λC(a) ≤ 1 and the equality
constraints

∑
a∈RA λC(a) = 1 (so λC(·) is a probability distribution on RA).

• Additionally we add the following compatibility condition for every constraint C (given by
(x1, . . . , xk) ∈ RX), index i and b ∈ A:∑

a∈RA,ai=b

λC(a) = λxi
(b). (1)

The resulting LP is the basic linear programming relaxation BLPA(X) of X.

Discuss how solutions h : X → A correspond to {0, 1}-valued solutions of BLPA(X).

Problem 2. Find a tractable CSP(A) with NO-instance X, such that the relaxation BLPA(X)
has a solution.
Hint: it is enough to consider |A| = 2.

Our goal in the following is to characterize those finite structures A for which X → A if and
only if BLPA(X) is solvable. For such templates A, we say BLP solves CSP(A). Note that CSP(A)
is in P, if it is solvable by BLP.

Problem 3. Define an (infinite) relational structure A′, such that BLPA(X) has a solution if
and only if X → A′.
Hint: The domain of A′ consists of rational probability distributions on A. How to define the

relations?

Problem 4. Show that BLP solves CSP(A) if and only if there is a homomorphism h : A′ → A.

Problem 5. Show that there is a homomorphism h : A′ → A if and only if A has symmetric
polymorphisms of all arities. An operation f : An → Ais symmetric if it satisfies the identity
f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) for all permutations π ∈ Sym(n).

Problem 5. Conclude that BLP solves CSP(A) if and only if Pol(A) contains symmetric
operations of all arities.

Problem 6. Show that this is further equivalent to the existence of a minion homomorphism
from the clone of convex linear functions on Q, i.e. {x 7→

∑n
i=1 pixi | 0 ≤ pi ≤ 1,

∑n
i=1 pi = 1} to

Pol(A).

Problem 7. Discuss which of the tractable CSPs we discussed throughout the lecture can be
solved by BLP or not (in particular: minimal tractable Boolean CSPs, bipartite graphs, linear
equations over Zp, semilattices)?
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Problem 7. Alternatively, we define the AIP-relaxation (affine integer programming relaxation)
AIPA(X) of a CSP instance of X as in Problem 1, by considering variables λx(a) and λC(ā) over
the integers Z, such that

∑
a∈A λx(a) = 1,

∑
ā∈RA λC(ā) = 1 and the compatibility condition (1)

holds. Since AIPA(X) is a system of linear equations over Z, it can be solved in polynomial time.

Discuss analogues of Problem 1-4 for AIP-relaxation.

Problem 8. Show that AIP solves CSP(A) if and only if Pol(A) contains alternating operations
of all odd arities 2l + 1, i.e. operations t(x1, . . . , x2l+1), such that

• t is invariant under all permutations of variables that preserve the parity of indices

• t(x1, . . . , x2l−1, x, x) = t(x1, . . . , x2l−1, y, y) for all x1, . . . , x2l−1, x, y ∈ A.

For example t(x1, . . . , x2l+1) = x1 − x2 + x3 − . . . + x2l+1 is an alternating operations for any
abelian group +.

Problem 9. Try to find a clone C such that AIP solves CSP(A) if and only if there is a minion
homomorphism from C to Pol(A).

Problem 10. Which of the tractable CSPs we discussed throughout the lecture can be solved
by AIP?
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