2^{ω} maximal-closed subgroups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2^{ω} many maximal-closed subgroups of Sym(ω) via Henson digraphs

Michael Kompatscher

michael@logic.at

Institute of Computer Languages TU Wien

New Pathways between Group Theory and Model Theory 01/02/2016

Closed subgroups of $\mathsf{Sym}(\omega)$

 $\mathsf{Sym}(\omega)$ is a topological group with the basis of clopen subgroups:

 $\{f \in Sym(\omega) : f \upharpoonright_A = id \upharpoonright_A\}$ for all finite $A \subset \omega$.

A closed subgroup $\Sigma < \text{Sym}(\omega)$ is maximal-closed if there is no closed Σ' with $\Sigma < \Sigma' < \text{Sym}(\omega)$.

Question (Macpherson)

Are there 2^{ω} non-conjugate maximal-closed subgroups of Sym (ω) ?

Conjugation describes permutations up to renaming of elements:

If
$$f = \kappa^{-1}g\kappa$$
 then $y = f(x) \leftrightarrow \kappa(y) = g(\kappa(x))$

Closed subgroups of $Sym(\omega)$ $\circ \bullet \circ$ Reducts of Henson digraphs 00000

 2^{ω} maximal-closed subgroups

Reducts of ω -categorical structures

Aut(\mathcal{A}): automorphisms of relational structure $\mathcal{A} = (\omega, R_1, R_2, ...)$ Inv(F): relations preserved by $F \subseteq \text{Sym}(\omega)$

Aut(Inv(F)): Minimal closed group containing F

 $\begin{array}{l} \mathcal{A} \text{ is reduct of } \mathcal{A}' \text{ or} \\ \mathcal{A} \leq_{f.o.} \mathcal{A}' \text{ if every relation} \\ \text{in } \mathcal{A} \text{ is definable in } \mathcal{A}'. \end{array}$

$$\mathcal{A} \leq_{f.o.} \mathcal{A}'
ightarrow \mathsf{Aut}(\mathcal{A}) \geq \mathsf{Aut}(\mathcal{A}')$$
 .

Closed subgroups of $Sym(\omega)$ $\circ \bullet \circ$ Reducts of Henson digraphs 00000

 2^{ω} maximal-closed subgroups

Reducts of ω -categorical structures

Aut(\mathcal{A}): automorphisms of relational structure $\mathcal{A} = (\omega, R_1, R_2, ...)$ Inv(F): relations preserved by $F \subseteq \text{Sym}(\omega)$

For ω -categorical \mathcal{A}' structures: $\mathcal{A} \leq_{f.o.} \mathcal{A}' \leftrightarrow \operatorname{Aut}(\mathcal{A}) \geq \operatorname{Aut}(\mathcal{A}')$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Examples

Thomas '91

There are exactly 5 reducts of the Random graph.

For n > 2 there is a unique countable graph (H_n, \overline{E}) such that

- (H_n, \overline{E}) embeds all graphs not containing K_n ,
- (H_n, \bar{E}) is homogenous, ω -categorical. We call (H_n, \bar{E}) a Henson graph.

Thomas '91

Every Henson graph (H_n, \overline{E}) has only trivial reducts. So Aut (H_n, \overline{E}) is a maximal-closed subgroup of Sym (H_n) .

Closed subgroups of $Sym(\omega)$ 000	Reducts of Henson digraphs ●0000	2^{ω} maximal-closed subgroups
Henson digraphs		

T ... set of finite tournaments.

There is a unique countable digraph (D_T, E) such that

- Finite substructures of (D_T, E) are exactly the digraphs that don't embed tournaments from T,
- (D_T, E) is homogeneous, ω -categorical.

Let $T \neq \emptyset$ and not contain the 2-tournament. Then (D_T, E) is called a Henson digraph.

There are 2^{ω} Henson digraphs.

QuestionWhat are the reducts for a given Henson digraph (D_T, E) ?

Closed	subgroups	$Sym(\omega)$	

Reducts of Henson digraphs $0 \bullet 000$

 2^{ω} maximal-closed subgroups

Possible reducts

Example

Let T be closed under switching the direction of all edges. Then there is a bijection $-: D_T \to D_T$ such that $E(x, y) \leftrightarrow E(-y, -x)$.

x

Closed	subgroups	Sym	

 2^{ω} maximal-closed subgroups

Possible reducts

Example

Assume there is a bijection $sw : D_T \to D_T$ that switches all edges adjacent to a vertex c, while preserving all other edges:

The existence of *sw* only depends on *T*. If it exists $\langle sw \rangle$ is a closed supergroup of Aut (D_T, E) .

x

sw(x)

sw(c)

Reducts of Henson digraphs 00000

 $\substack{2^{\omega} \\ \text{oo}} \text{maximal-closed subgroups}$

The reducts of Henson digraphs

Let
$$\overline{E}(x,y) \leftrightarrow E(x,y) \lor E(y,x)$$
.

Theorem (Agarwal, MK '15)

Let (D_T, E) be a Henson digraph and $G \ge Aut(D_T, E)$. Then

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ 目 ▼ の < ⊙

 $\substack{2^{\omega} \\ \text{oo}} \text{maximal-closed subgroups}$

The reducts of Henson digraphs

Let
$$\overline{E}(x,y) \leftrightarrow E(x,y) \vee E(y,x)$$
.

Theorem (Agarwal, MK '15)

•
$$G < \operatorname{Aut}(D_T, \overline{E})$$
 or $G \ge \operatorname{Aut}(D_T, \overline{E})$

 2^{ω} maximal-closed subgroups

The reducts of Henson digraphs

Let
$$\overline{E}(x,y) \leftrightarrow E(x,y) \lor E(y,x)$$
.

Theorem (Agarwal, MK '15)

- $G < \operatorname{Aut}(D_T, \overline{E})$ or $G \ge \operatorname{Aut}(D_T, \overline{E})$
- If $G < \operatorname{Aut}(D_T, \overline{E})$, then $G = \operatorname{Aut}(D_T, E)$, $\langle - \rangle$, $\langle sw \rangle$ or $\langle -, sw \rangle$

 2^{ω} maximal-closed subgroups 00

The reducts of Henson digraphs

Let
$$\overline{E}(x,y) \leftrightarrow E(x,y) \lor E(y,x)$$
.

Theorem (Agarwal, MK '15)

- $G < \operatorname{Aut}(D_T, \overline{E})$ or $G \ge \operatorname{Aut}(D_T, \overline{E})$
- If $G < \operatorname{Aut}(D_T, \overline{E})$, then $G = \operatorname{Aut}(D_T, E)$, $\langle - \rangle$, $\langle sw \rangle$ or $\langle -, sw \rangle$
- One of the following holds
 - (D_T, \overline{E}) is the Random graph

 2^{ω} maximal-closed subgroups 00

The reducts of Henson digraphs

Let
$$\overline{E}(x,y) \leftrightarrow E(x,y) \lor E(y,x)$$
.

Theorem (Agarwal, MK '15)

- $G < \operatorname{Aut}(D_T, \overline{E})$ or $G \ge \operatorname{Aut}(D_T, \overline{E})$
- If $G < \operatorname{Aut}(D_T, \overline{E})$, then $G = \operatorname{Aut}(D_T, E)$, $\langle - \rangle$, $\langle sw \rangle$ or $\langle -, sw \rangle$
- One of the following holds
 - (D_T, \overline{E}) is the Random graph
 - (D_T, \overline{E}) is a Henson graph

 2^{ω} maximal-closed subgroups 00

The reducts of Henson digraphs

Let
$$\overline{E}(x,y) \leftrightarrow E(x,y) \lor E(y,x)$$
.

Theorem (Agarwal, MK '15)

- $G < \operatorname{Aut}(D_T, \overline{E})$ or $G \ge \operatorname{Aut}(D_T, \overline{E})$
- If $G < \operatorname{Aut}(D_T, \overline{E})$, then $G = \operatorname{Aut}(D_T, E)$, $\langle - \rangle$, $\langle sw \rangle$ or $\langle -, sw \rangle$
- One of the following holds
 - (D_T, \overline{E}) is the Random graph
 - (D_T, \overline{E}) is a Henson graph
 - (D_T, Ē) has no proper reducts and Aut(D_T, Ē) = max{Aut(D_T, E), ⟨−⟩, ⟨sw⟩, ⟨−, sw⟩}

Reducts of Henson digraphs 00000

 2^ω maximal-closed subgroups _____ 00

The reducts of Henson digraphs

The lattice to the left shows all potential closed supergroups of $Aut(D_T, E)$.

 $Aut(D_T, E)$ is maximal-closed if

• T not closed under – and sw

- ロ ト - 4 回 ト - 4 □ - 4

• (D_T, \overline{E}) is not homogeneous

Reducts of Henson digraphs 00000

2^ω maximal-closed subgroups ●0

2^{ω} non-isomorphic Henson digraphs

Let I_n be the tournament we obtain by taking a linear order of size n and flipping all edges (i, i + 1) for i < n and (1, n).

The Henson digraphs (D_T, E) for $T \subseteq \{I_n : n > 6\}$ are pairwise non-isomorphic.

Reducts of Henson digraphs 00000

 2^{ω} maximal-closed subgroups •••

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2^{ω} non-isomorphic Henson digraphs

Let I_n be the tournament we obtain by taking a linear order of size n and flipping all edges (i, i + 1) for i < n and (1, n).

The Henson digraphs (D_T, E) for $T \subseteq \{I_n : n > 6\}$ are pairwise non-isomorphic.

Let X have a sink, but no source and be not embeddable in any I_n . Let

$$T' = \{X' : |X'| = |X| + 1, X \subset X'\} \cup T.$$

Then $(D_{T'}, E)$ has only trivial reducts.

Closed	subgroups	Sym	

 $\substack{2^{\omega} \\ \circ \bullet} maximal-closed \ subgroups \\ \circ \bullet$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reconstruction

Conclusion

There are 2^{ω} many Henson digraphs $(D_{T'}, E)$ such that $Aut(D_{T'}, E)$ are maximal-closed and pairwise non-conjugate.

 $\substack{2^{\omega} \\ \circ \bullet} maximal-closed \ subgroups \\ \circ \bullet$

Reconstruction

Conclusion

There are 2^{ω} many Henson digraphs $(D_{T'}, E)$ such that $Aut(D_{T'}, E)$ are maximal-closed and pairwise non-conjugate.

Rubin '87

For two Henson digraphs (D_1, E) and (D_2, E) the following are equivalent:

- Aut(D₁, E) and Aut(D₂, E) are conjugate
- $\operatorname{Aut}(D_1, E) \cong_T \operatorname{Aut}(D_2, E)$
- $\operatorname{Aut}(D_1, E) \cong \operatorname{Aut}(D_2, E)$

 2^{ω} maximal-closed subgroups

Reconstruction

Conclusion

There are 2^{ω} many Henson digraphs $(D_{T'}, E)$ such that $Aut(D_{T'}, E)$ are maximal-closed and pairwise non-conjugate.

Rubin '87

For two Henson digraphs (D_1, E) and (D_2, E) the following are equivalent:

- Aut(D₁, E) and Aut(D₂, E) are conjugate
- $\operatorname{Aut}(D_1, E) \cong_T \operatorname{Aut}(D_2, E)$
- $\operatorname{Aut}(D_1, E) \cong \operatorname{Aut}(D_2, E)$

Corollary

There are 2^{ω} many *non-isomorphic* maximal-closed subgroups of $Sym(\omega)$.

 2^ω maximal-closed subgroups $_{\rm OO}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you!