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Schaefer’s theorem

Let Φ be a set of propositional formulas.

Boolean-SAT(Φ)

Input:

A set of propositional variables V and

statements φ1, . . . , φn about the variables taken from Φ

Problem:
Is φ1 ∧ . . . ∧ φn satisfiable?

Computational complexity is in NP and depends on Φ.

Schaefer ’78 (1661 citations on Google scholar!)

Boolean-SAT(Φ) is either in P or in NP-complete, for all Φ.
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Schaefer’s theorem for partial orders

Let Φ be a finite set of quantifier-free ≤-formulas.

Poset-SAT(Φ)

Input:

A set of variables V and

statements φ1, . . . , φn about the variables taken from Φ

Problem:
Is there a partial order that satisfies φ1 ∧ . . . ∧ φn?

Computational complexity is in NP and depends on Φ.

Theorem (MK, TVP ’16)

Poset-SAT(Φ) is either in P or in NP-complete, for all Φ.
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Constraint satisfaction problems

Informally in a constraint satisfaction problem or CSP the aim is to
check if there are objects that satisfy a given set of constraints
(e.g. Sudoku, Time scheduling, system of linear equations).

Γ... structure in relational language τ

CSP(Γ)

Input: A sentence ∃x1, . . . , xn(φ1 ∧ · · · ∧φk) where φi are τ -atomic.
Problem: Does the sentence hold in Γ?

∃x1, . . . , xn(φ1 ∧ · · · ∧ φk) is called a primitive positive sentence.

Question

Given Γ, what is the computational complexity of CSP(Γ)?
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Boolean-SAT

2-SAT

Instance: A set of 2-clauses (x , y)
Problem: Is there a satisfying truth assignment?

CSP({0, 1}; 2OR,NEQ) with
2OR = {(1, 1), (0, 1), (1, 0)} and NEQ = {(0, 1), (1, 0)}.

Positive 1-3-SAT

Instance: 3-clauses (x , y , z) with positive literals
Problem: Is there a truth assignment such that every clause has
exactly one true variable?

CSP({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)})

CSPs over {0, 1} are exactly the Boolean-SAT(Φ) problems.
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More examples

CSP(Q, <)

Instance: A pp-sentence in the language <
Problem: Does it hold in (Q, <)?

Equivalent to: Is there a linear order satisfying the pp-sentence?

Instance: ∃x1, x2, x3, x4(x1 < x2 ∧ x1 < x4 ∧ x4 < x3)

x1

x2
x3

x4
x1

x2
x3

x4
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More examples

3-COLOR

Instance: A finite graph (G ;E )
Problem: Is it colorable with 3-colors?

CSP with template (K3,E )

Instance: ∃x1, . . . , x5 E (x1, x2) ∧ E (x1, x4) ∧ · · · ∧ E (x4, x5)
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Finite CSPs

If Γ is finite, CSP(Γ) is in NP.

CSP(Γ) can be in P,

CSP(Γ) can be NP-complete,

Dichotomy conjecture (Feder, Vardi ’99)

For every finite relational structure Γ, CSP(Γ) is either in P or
NP-complete.

If |Γ| = 2: CSP(Γ) is in P or NP-complete (Schaefer ’78)

If |Γ| = 3: CSP(Γ) is in P or NP-complete (Bulatov ’06)

If |Γ| ≥ 4: ...?
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Primitive positive definability

For structures Γ, ∆ write Γ ≤pp ∆ if every relation in Γ has a
definition with primitive positive formulas in ∆.

Essential observation

Γ ≤pp ∆→ CSP(Γ) ≤ptime CSP(∆)

If Γ ≤pp ∆ and ∆ ≤pp Γ the problems CSP(Γ) and CSP(∆) are
ptime equivalent.

We only need to study structures up to pp-interdefinable.
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Polymorphism clones

We say a function f : Dn → D preserves a relation R ⊆ Dk if for
all r̄1, . . . , r̄n ∈ R also f (r̄1, . . . , r̄n) ∈ R.

A function f : Γn → Γ is called a polymorphism if it preserves all
relations in Γ. The set of all polymorphisms is called polymorphism
clone Pol(Γ).

Theorem (Geiger ’68)

For finite structures ∆ and Γ:

∆ ≤pp Γ↔ Pol(∆) ⊇ Pol(Γ)

→ the complexity of CSP(Γ) is determined by Pol(Γ)!
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Schaefer’s theorem revisited

The Boolean CSP(Γ) is in P if and only if

All relations in Γ Pol(Γ) contains

contain (0, . . . , 0) constant 0
contain (1, . . . , 1) constant 1
are Horn (x , y)→ x ∧ y
are dual Horn (x , y)→ x ∨ y
are affine (x , y , z)→ x − y + z
are 2-clauses (x , y , z)→ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

Tractability conjecture (Bulatov, Jeavons, Krokhin,...)

Let Γ be finite (+ mc core, contains all constants). Then either

∃f ∈ Pol(Γ) : f (x1, x2, . . . , xn) = f (x2, x3, . . . , xn, x1)
and CSP(Γ) is in P

or CSP(Γ) is NP-complete.
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The lattice of all clones on {0, 1}

NP-c

P
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Infinite CSPs

If Γ is infinite, CSP(Γ) can be undecidable:

Diophant

Instance: Equations using 0, 1,+, ·
Problem: Is there an integer solution?

CSP(Z; 0, 1,+, ·).

For |Γ| = ω all complexities can appear!

Clone lattice on ω is complicated...
Pol(Γ) ⊇ Pol(∆) does not imply Γ ≤pp ∆ in general.

Hope: Algebraic approach still works for “nice” structures.
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Poset-SAT as CSP

The random partial order P := (P;≤) is the unique countable
partial order that:

is universal, i.e., contains all finite partial orders

is homogeneous, i.e. for finite A,B ⊆ P, every isomorphism
I : A→ B extends to an automorphism α ∈ Aut(P).

For every {≤}-formula φ(x1, . . . , xn) we define the relation

Rφ := {(a1, . . . , an) ∈ Pn : φ(a1, . . . , an)}.

Poset-SAT(Φ) = CSP((P;Rφ)φ∈Φ).
(P;Rφ)φ∈Φ is a reduct of P, i.e. a structure that is first-order
definable in P.
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Rφ := {(a1, . . . , an) ∈ Pn : φ(a1, . . . , an)}.

Poset-SAT(Φ) = CSP((P;Rφ)φ∈Φ).
(P;Rφ)φ∈Φ is a reduct of P, i.e. a structure that is first-order
definable in P.
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CSPs over random partial order

ω-categorical structure

A structure Γ is called ω-categorial, if its theory has, up to
isomorphism, exactly one countable model.

Engeler, Ryll-Nardzewski, Svenonius

An countably infinite structure Γ with countable signature is
ω-categorical if and only if for every k ∈ N, there are finitely many
k-orbits of Aut(Γ).
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CSPs over random partial order

ω-categorical structure

A structure Γ is called ω-categorial, if its theory has, up to
isomorphism, exactly one countable model.

Engeler, Ryll-Nardzewski, Svenonius

An countably infinite structure Γ with countable signature is
ω-categorical if and only if for every k ∈ N, there are finitely many
k-orbits of Aut(Γ).

Why is P ω-categorical?

For every k ∈ N, there are finitely many posets on k elements.
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CSPs over random partial order

ω-categorical structure

A structure Γ is called ω-categorial, if its theory has, up to
isomorphism, exactly one countable model.

Engeler, Ryll-Nardzewski, Svenonius

An countably infinite structure Γ with countable signature is
ω-categorical if and only if for every k ∈ N, there are finitely many
k-orbits of Aut(Γ).

Bodirsky, Nešeťril ’03

For ω-categorical structures Γ, ∆ we have

Γ ≤pp ∆↔ Pol(Γ) ⊇ Pol(∆)
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Strategy for Poset-SAT(Φ)

Boolean-SAT(Φ) Poset-SAT(Φ)

↓ ↓

CSPs of Boolean structures CSPs of reducts
({0, 1};R1, . . .Rn) of random partial order P

are reducts of ({0, 1}, 0, 1)

↓ ↓

Clones over {0, 1} Closed clones containing Aut(P)
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Important NP-complete relations

Betw(x , y , z) := x < y < z ∨ z < y < x .

Cycl(x, y, z) := (x < y ∧ y < z) ∨ (z < x ∧ x < y) ∨ (y <
z ∧ z < x) ∨ (x < y ∧ z⊥x ∧ z⊥y) ∨ (y <
z ∧ x⊥y ∧ x⊥z) ∨ (z < x ∧ y⊥z ∧ y⊥x).

Sep(x , y , z , t) :=
((Cycl(x , y , z) ∧Cycl(y , z , t) ∧Cycl(x , y , t) ∧Cycl(x , z , t)) ∨
(Cycl(z , y , x) ∧ Cycl(t, z , y) ∧ Cycl(t, y , x) ∧ Cycl(t, z , x)).

Low(x , y , z) := (x < y ∧ x⊥z ∧ y⊥z)∨ (x < z ∧ x⊥y ∧ z⊥y).
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Complexity dichotomy

Theorem (MK, TVP ’16)

Let Γ be reduct of P. Then one of the following cases holds:

CSP(Γ) can be reduced to a CSP of a reduct of (Q;≤). Thus
CSP(Γ) is in P or NP-complete (M. Bodirsky and J. Kára).

Low, Betw, Cycl or Sep is pp-definable in Γ and
CSP(Γ) is NP-complete.

Pol(Γ) contains functions f , g1, g2 such that

g1(f (x , y)) = g2(f (y , x))

and CSP(Γ) can be solved in polynomial time.

Consequence:

Poset-SAT(Φ) is in P or NP-complete.

Given Φ, it is decidable to tell if Poset-SAT(Φ) is in P.
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The method for the classification

Canonicalization theorem (Bodirsky, Pinsker and Tsankov, 2012)

Let ∆ be ordered homogeneous Ramsey with finite relational
signature, f : ∆→ ∆, and let c1, c2, . . . , cn ∈ ∆. Then f generates
over ∆ a function which agrees with f on {c1, c2, . . . , cn} and
which is canonical as a function from (∆, c1, c2, . . . , cn).
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The method for the classification

Canonical functions

A function f : P2 → P is called canonical if the type of image
depends only on the types of arguments of the function in the
domain.

Example

e< = < > ⊥
= = ⊥ ⊥ ⊥
< ⊥ < ⊥ ⊥
> ⊥ ⊥ > ⊥
⊥ ⊥ ⊥ ⊥ ⊥

Embedding from (P;<)2 to
(P;<).

e≤ = < > ⊥
= = < > ⊥
< < < ⊥ ⊥
> > ⊥ > ⊥
⊥ ⊥ ⊥ ⊥ ⊥

Embedding from (P;≤)2 to
(P;≤).

for every x < y and x ′ > y ′, we have e<(x , x ′)⊥e<(y , y ′).
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The method for the classification

Lemma

Let Γ be a reduct of (P;≤). If <,⊥ ∈ 〈Γ〉pp,Low 6∈ 〈Γ〉pp, then e<
or e≤ is a polymorphism of Γ.

Proof

1. Since Low is not primitive positive definable in Γ, there is a
binary polymorphism f of Γ that violates Low.

2. We can find three elements a, b, c ∈ P such that
a < b ∧ ab⊥c , and (f (a, a), f (b, c), f (c , b)) 6∈ Low.

3. We can assume that f is canonical as a function from
(P;≤,�, a, b, c)2 to (P;≤,�, a, b, c).

4. Use an extensive combinatorial analysis on f . . .
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The method for classification

Using the same method one could successfully classify the
complexity of a number of CSPs on infinite domains.

1. Graph-SAT (M. Bodirsky and M. Pinsker, 2015).

2. Phylogeny CSPs (M. Bodirsky, P. Jonsson and T. V. Pham,
2015).

3. Henson graphs (M. Bodirsky, B. Martin, M. Pinsker and A.
Pongrács, 2016).

4. Semilinear order-SAT (M. Bodirsky and T. V. Pham, in
preparation).
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Lattice of polymorphism clones containing Aut(P)

Temp-SAT
Eq-SAT

NP-c

P
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Thank you!
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