Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary

Constraint satisfaction problems over infinite domains

Michael Kompatscher, Trung Van Pham

Theory and Logic Group TU Wien

Research Seminar, 27/04/2016

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00000000
Schaefer's theore	m		

Let Φ be a set of propositional formulas.

Boolean-SAT(Φ)

Input:

- A set of propositional variables \boldsymbol{V} and
- statements ϕ_1, \ldots, ϕ_n about the variables taken from Φ

Problem:

Is $\phi_1 \wedge \ldots \wedge \phi_n$ satisfiable?

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	00000	00	00000000
Schaefer's theore	m		

Let Φ be a set of propositional formulas.

Boolean-SAT(Φ)

Input:

- A set of propositional variables V and
- statements ϕ_1, \ldots, ϕ_n about the variables taken from Φ

Problem:

Is $\phi_1 \wedge \ldots \wedge \phi_n$ satisfiable?

Computational complexity is in NP and depends on Φ .

Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00000000
Schaefer's theore	m		

Let Φ be a set of propositional formulas.

Boolean-SAT(Φ)

Input:

- A set of propositional variables V and
- statements ϕ_1, \ldots, ϕ_n about the variables taken from Φ

Problem:

Is $\phi_1 \wedge \ldots \wedge \phi_n$ satisfiable?

Computational complexity is in NP and depends on $\Phi.$

Schaefer '78 (1661 citations on Google scholar!)

Boolean-SAT(Φ) is either in P or in NP-complete, for all Φ .

Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00000000
Schaefer's thec	orem for partial orders		

Let Φ be a finite set of quantifier-free \leq -formulas.

Poset-SAT(Φ)

Input:

- A set of variables V and
- statements ϕ_1, \ldots, ϕ_n about the variables taken from Φ

Problem:

Is there a partial order that satisfies $\phi_1 \wedge \ldots \wedge \phi_n$?

Computational complexity is in NP and depends on Φ .

Theorem (MK, TVP '16)

Poset-SAT(Φ) is either in P or in NP-complete, for all Φ .

Outline			
Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Onstraint satisfaction problems
- The universal algebraic approach
- Poset-SAT
- Summary

Outline			
Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	00000	00	00000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

O Constraint satisfaction problems

- The universal algebraic approach
- Poset-SAT
- Summary

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
●0000		00	00000000
Constraint satisfa	ction problems		

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
●0000	00000	00	00000000
Constraint satisfa	action problems		

 $\Gamma...$ structure in relational language τ

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
●0000		00	00000000
Constraint satis	faction problems		

 $\Gamma...$ structure in relational language τ

$CSP(\Gamma)$

Input: A sentence $\exists x_1, \ldots, x_n(\phi_1 \land \cdots \land \phi_k)$ where ϕ_i are τ -atomic.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
●0000		00	00000000
Constraint satis	faction problems		

 $\Gamma...$ structure in relational language τ

$CSP(\Gamma)$

Input: A sentence $\exists x_1, \ldots, x_n(\phi_1 \land \cdots \land \phi_k)$ where ϕ_i are τ -atomic. *Problem:* Does the sentence hold in Γ ?

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
●0000		00	00000000
Constraint satis	faction problems		

 $\Gamma...$ structure in relational language τ

$CSP(\Gamma)$

Input: A sentence $\exists x_1, \ldots, x_n(\phi_1 \land \cdots \land \phi_k)$ where ϕ_i are τ -atomic. *Problem:* Does the sentence hold in Γ ?

(日) (同) (三) (三) (三) (○) (○)

 $\exists x_1, \ldots, x_n(\phi_1 \land \cdots \land \phi_k)$ is called a primitive positive sentence.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
•0000		00	00000000
Constraint satisf	action problems		

 $\Gamma...$ structure in relational language τ

$CSP(\Gamma)$

Input: A sentence $\exists x_1, \ldots, x_n(\phi_1 \land \cdots \land \phi_k)$ where ϕ_i are τ -atomic. Problem: Does the sentence hold in Γ ?

 $\exists x_1, \ldots, x_n(\phi_1 \wedge \cdots \wedge \phi_k)$ is called a primitive positive sentence.

Question

Given $\Gamma,$ what is the computational complexity of $\mathrm{CSP}(\Gamma)?$

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
0●000		00	00000000
Boolean-SAT			

2-SAT

Instance: A set of 2-clauses (x, y)Problem: Is there a satisfying truth assignment?

$$\begin{split} & \mathrm{CSP}(\{0,1\}; \mathrm{2OR}, \mathrm{NEQ}) \text{ with } \\ & \mathrm{2OR} = \{(1,1), (0,1), (1,0)\} \text{ and } \mathrm{NEQ} = \{(0,1), (1,0)\}. \end{split}$$

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
0●000		00	00000000
Boolean-SAT			

2-SAT

Instance: A set of 2-clauses (x, y)Problem: Is there a satisfying truth assignment?

$$\begin{split} & \mathrm{CSP}(\{0,1\}; \mathrm{2OR}, \mathrm{NEQ}) \text{ with } \\ & \mathrm{2OR} = \{(1,1), (0,1), (1,0)\} \text{ and } \mathrm{NEQ} = \{(0,1), (1,0)\}. \end{split}$$

Positive 1-3-SAT

Instance: 3-clauses (x, y, z) with positive literals Problem: Is there a truth assignment such that every clause has exactly one true variable?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\mathrm{CSP}(\{0,1\};\{(0,0,1),(0,1,0),(1,0,0)\})$

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
0●000		00	00000000
Boolean-SAT			

2-SAT

Instance: A set of 2-clauses (x, y)Problem: Is there a satisfying truth assignment?

$$\begin{split} & \mathrm{CSP}(\{0,1\}; \mathrm{2OR}, \mathrm{NEQ}) \text{ with } \\ & \mathrm{2OR} = \{(1,1), (0,1), (1,0)\} \text{ and } \mathrm{NEQ} = \{(0,1), (1,0)\}. \end{split}$$

Positive 1-3-SAT

Instance: 3-clauses (x, y, z) with positive literals Problem: Is there a truth assignment such that every clause has exactly one true variable?

 $\mathrm{CSP}(\{0,1\};\{(0,0,1),(0,1,0),(1,0,0)\})$

CSPs over $\{0,1\}$ are exactly the Boolean-SAT(Φ) problems.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
00●00	00000	00	00000000
More examples			

$\operatorname{CSP}(\overline{\mathbb{Q}}, <)$

Instance: A pp-sentence in the language < Problem: Does it hold in $(\mathbb{Q}, <)$?

Equivalent to: Is there a linear order satisfying the pp-sentence?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
00●00	00000	00	00000000
More examples			

$\operatorname{CSP}(\mathbb{Q},<)$

Instance: A pp-sentence in the language < Problem: Does it hold in $(\mathbb{Q}, <)$?

Equivalent to: Is there a linear order satisfying the pp-sentence?

Instance: $\exists x_1, x_2, x_3, x_4 (x_1 < x_2 \land x_1 < x_4 \land x_4 < x_3)$

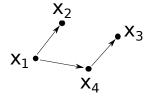
Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
00●00	00000	00	00000000
More examples			

$\operatorname{CSP}(\mathbb{Q},<)$

Instance: A pp-sentence in the language < Problem: Does it hold in $(\mathbb{Q}, <)$?

Equivalent to: Is there a linear order satisfying the pp-sentence?

Instance: $\exists x_1, x_2, x_3, x_4(x_1 < x_2 \land x_1 < x_4 \land x_4 < x_3)$



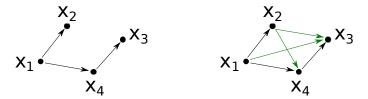
Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
00●00	00000	00	00000000
More examples			

$\operatorname{CSP}(\mathbb{Q},<)$

Instance: A pp-sentence in the language < Problem: Does it hold in $(\mathbb{Q}, <)$?

Equivalent to: Is there a linear order satisfying the pp-sentence?

Instance: $\exists x_1, x_2, x_3, x_4(x_1 < x_2 \land x_1 < x_4 \land x_4 < x_3)$

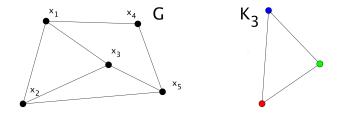


Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
000●0		00	00000000
More examples			

3-COLOR

Instance: A finite graph (*G*; *E*) *Problem:* Is it colorable with 3-colors?

CSP with template (K_3, E)



Instance: $\exists x_1, \ldots, x_5 \ E(x_1, x_2) \land E(x_1, x_4) \land \cdots \land E(x_4, x_5)$

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
0000●		00	00000000
Finite CSPs			

If Γ is finite, $\operatorname{CSP}(\Gamma)$ is in NP.

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
0000●		00	00000000
Finite CSPs			

If Γ is finite, $\operatorname{CSP}(\Gamma)$ is in NP.

• $\operatorname{CSP}(\Gamma)$ can be in P,

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
0000●		00	00000000
Finite CSPs			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If Γ is finite, $CSP(\Gamma)$ is in NP.

- $\operatorname{CSP}(\Gamma)$ can be in P,
- $\operatorname{CSP}(\Gamma)$ can be NP-complete,

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
0000●		00	00000000
Finite CSPs			

- $\operatorname{CSP}(\Gamma)$ can be in P,
- $\operatorname{CSP}(\Gamma)$ can be NP-complete,

Dichotomy conjecture (Feder, Vardi '99)

For every finite relational structure $\Gamma,\ \mathrm{CSP}(\Gamma)$ is either in P or NP-complete.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
0000●		00	00000000
Finite CSPs			

- $\operatorname{CSP}(\Gamma)$ can be in P,
- $\operatorname{CSP}(\Gamma)$ can be NP-complete,

Dichotomy conjecture (Feder, Vardi '99)

For every finite relational structure $\Gamma,\ \mathrm{CSP}(\Gamma)$ is either in P or NP-complete.

• If $|\Gamma| = 2$: CSP(Γ) is in P or NP-complete (Schaefer '78)

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
0000●		00	00000000
Finite CSPs			

- CSP(Γ) can be in P,
- $\operatorname{CSP}(\Gamma)$ can be NP-complete,

Dichotomy conjecture (Feder, Vardi '99)

For every finite relational structure $\Gamma,\ \mathrm{CSP}(\Gamma)$ is either in P or NP-complete.

- If $|\Gamma| = 2$: CSP(Γ) is in P or NP-complete (Schaefer '78)
- If $|\Gamma| = 3$: CSP(Γ) is in P or NP-complete (Bulatov '06)

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
0000●		00	00000000
Finite CSPs			

- CSP(Γ) can be in P,
- $\operatorname{CSP}(\Gamma)$ can be NP-complete,

Dichotomy conjecture (Feder, Vardi '99)

For every finite relational structure $\Gamma,\ \mathrm{CSP}(\Gamma)$ is either in P or NP-complete.

- If $|\Gamma| = 2$: CSP(Γ) is in P or NP-complete (Schaefer '78)
- If $|\Gamma| = 3$: CSP(Γ) is in P or NP-complete (Bulatov '06)
- If $|\Gamma| \ge 4$: ...?

Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00000000
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Constraint satisfaction problems
- **2** The universal algebraic approach
- Poset-SAT
- Summary

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	●0000	00	00000000
Primitive positive	definability		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	●0000	00	00000000
Primitive positive	e definability		

Essential observation

$$\Gamma \leq_{pp} \Delta \to \operatorname{CSP}(\Gamma) \leq_{ptime} \operatorname{CSP}(\Delta)$$

(日) (日) (日) (日) (日) (日) (日) (日)

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	●0000	00	00000000
Primitive positive	e definability		

Essential observation

$$\Gamma \leq_{pp} \Delta
ightarrow \operatorname{CSP}(\Gamma) \leq_{ptime} \operatorname{CSP}(\Delta)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $\Gamma \leq_{pp} \Delta$ and $\Delta \leq_{pp} \Gamma$ the problems $\mathrm{CSP}(\Gamma)$ and $\mathrm{CSP}(\Delta)$ are ptime equivalent.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	●0000	00	00000000
Primitive positive	e definability		

Essential observation

$$\Gamma \leq_{pp} \Delta
ightarrow \operatorname{CSP}(\Gamma) \leq_{ptime} \operatorname{CSP}(\Delta)$$

If $\Gamma \leq_{pp} \Delta$ and $\Delta \leq_{pp} \Gamma$ the problems $\mathrm{CSP}(\Gamma)$ and $\mathrm{CSP}(\Delta)$ are ptime equivalent.

We only need to study structures up to pp-interdefinable.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	0●000	00	00000000
Polymorphism clo	ones		

We say a function $f: D^n \to D$ preserves a relation $R \subseteq D^k$ if for all $\bar{r}_1, \ldots, \bar{r}_n \in R$ also $f(\bar{r}_1, \ldots, \bar{r}_n) \in R$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	0●000	00	00000000
Polymorphism clo	ones		

We say a function $f: D^n \to D$ preserves a relation $R \subseteq D^k$ if for all $\bar{r}_1, \ldots, \bar{r}_n \in R$ also $f(\bar{r}_1, \ldots, \bar{r}_n) \in R$.

A function $f : \Gamma^n \to \Gamma$ is called a polymorphism if it preserves all relations in Γ .

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	0●000	00	00000000
Polymorphism clo	ones		

We say a function $f: D^n \to D$ preserves a relation $R \subseteq D^k$ if for all $\bar{r}_1, \ldots, \bar{r}_n \in R$ also $f(\bar{r}_1, \ldots, \bar{r}_n) \in R$.

A function $f : \Gamma^n \to \Gamma$ is called a polymorphism if it preserves all relations in Γ . The set of all polymorphisms is called polymorphism clone $Pol(\Gamma)$.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	0●000	00	00000000
Polymorphism clo	ones		

We say a function $f : D^n \to D$ preserves a relation $R \subseteq D^k$ if for all $\bar{r}_1, \ldots, \bar{r}_n \in R$ also $f(\bar{r}_1, \ldots, \bar{r}_n) \in R$.

A function $f : \Gamma^n \to \Gamma$ is called a polymorphism if it preserves all relations in Γ . The set of all polymorphisms is called polymorphism clone $Pol(\Gamma)$.

Theorem (Geiger '68)

For finite structures Δ and Γ :

 $\Delta \leq_{pp} \Gamma \leftrightarrow \operatorname{Pol}(\Delta) \supseteq \operatorname{Pol}(\Gamma)$

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	0●000	00	00000000
Polymorphism clo	ones		

We say a function $f : D^n \to D$ preserves a relation $R \subseteq D^k$ if for all $\bar{r}_1, \ldots, \bar{r}_n \in R$ also $f(\bar{r}_1, \ldots, \bar{r}_n) \in R$.

A function $f : \Gamma^n \to \Gamma$ is called a polymorphism if it preserves all relations in Γ . The set of all polymorphisms is called polymorphism clone $Pol(\Gamma)$.

Theorem (Geiger '68)

For finite structures Δ and Γ :

 $\Delta \leq_{pp} \Gamma \leftrightarrow \operatorname{Pol}(\Delta) \supseteq \operatorname{Pol}(\Gamma)$

 \rightarrow the complexity of $\mathrm{CSP}(\Gamma)$ is determined by $\mathrm{Pol}(\Gamma)!$

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	00●00	00	00000000
Schaefer's theore	em revisited		

The Boolean $\mathrm{CSP}(\Gamma)$ is in P if and only if

All relations in Γ	$Pol(\Gamma)$ contains
contain (0,,0)	constant 0
$contain\;(1,\ldots,1)$	
are Horn	$ \begin{array}{c} (x,y) \to x \land y \\ (x,y) \to x \lor y \end{array} $
are dual Horn	$(x,y) \rightarrow x \lor y$
are affine	$(x, y, z) \rightarrow x - y + z$
are 2-clauses	$(x,y,z) ightarrow (x \lor y) \land (x \lor z) \land (y \lor z)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00000000
Schaefer's theo	rem revisited		

The Boolean $\operatorname{CSP}(\Gamma)$ is in P if and only if

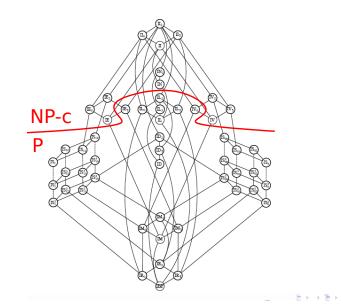
All relations in Γ	$\operatorname{Pol}(\Gamma)$ contains
contain (0,,0)	constant 0
contain $(1,\ldots,1)$	constant 1
are Horn	$(x,y) \rightarrow x \wedge y$
are dual Horn	$(x,y) \rightarrow x \lor y$
are affine	$(x, y, z) \rightarrow x - y + z$
are 2-clauses	$ \begin{array}{l} (x,y) \rightarrow x \wedge y \\ (x,y) \rightarrow x \lor y \\ (x,y,z) \rightarrow x - y + z \\ (x,y,z) \rightarrow (x \lor y) \wedge (x \lor z) \wedge (y \lor z) \end{array} $

Tractability conjecture (Bulatov, Jeavons, Krokhin,...)

Let Γ be finite (+ mc core, contains all constants). Then either

- $\exists f \in Pol(\Gamma) : f(x_1, x_2, \dots, x_n) = f(x_2, x_3, \dots, x_n, x_1)$ and $CSP(\Gamma)$ is in P
- or CSP(Γ) is NP-complete.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	000●0	00	00000000
The lattice of all	clones on $\{0,1\}$		



æ

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	0000●	00	00000000
Infinite CSPs			

If Γ is infinite, $\mathrm{CSP}(\Gamma)$ can be undecidable:

Diophant

Instance: Equations using $0, 1, +, \cdot$ Problem: Is there an integer solution?

```
\operatorname{CSP}(\mathbb{Z}; 0, 1, +, \cdot).
```

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	0000●	00	00000000
Infinite CSPs			

If Γ is infinite, $\mathrm{CSP}(\Gamma)$ can be undecidable:

Diophant

Instance: Equations using $0, 1, +, \cdot$ Problem: Is there an integer solution?

 $\operatorname{CSP}(\mathbb{Z}; 0, 1, +, \cdot).$

For $|\Gamma| = \omega$ all complexities can appear!

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	0000●	00	00000000
Infinite CSPs			

If Γ is infinite, $\mathrm{CSP}(\Gamma)$ can be undecidable:

Diophant

Instance: Equations using $0, 1, +, \cdot$ Problem: Is there an integer solution?

 $\operatorname{CSP}(\mathbb{Z}; 0, 1, +, \cdot).$

For $|\Gamma| = \omega$ all complexities can appear!

Clone lattice on ω is complicated...

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	0000●	00	00000000
Infinite CSPs			

If Γ is infinite, $\mathrm{CSP}(\Gamma)$ can be undecidable:

Diophant

Instance: Equations using $0, 1, +, \cdot$ Problem: Is there an integer solution?

 $\operatorname{CSP}(\mathbb{Z}; 0, 1, +, \cdot).$

For $|\Gamma| = \omega$ all complexities can appear!

Clone lattice on ω is complicated... $\operatorname{Pol}(\Gamma) \supseteq \operatorname{Pol}(\Delta)$ does not imply $\Gamma \leq_{pp} \Delta$ in general.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	0000●	00	00000000
Infinite CSPs			

If Γ is infinite, $\mathrm{CSP}(\Gamma)$ can be undecidable:

Diophant

Instance: Equations using $0, 1, +, \cdot$ Problem: Is there an integer solution?

 $\operatorname{CSP}(\mathbb{Z}; 0, 1, +, \cdot).$

For $|\Gamma| = \omega$ all complexities can appear!

Clone lattice on ω is complicated... $\operatorname{Pol}(\Gamma) \supseteq \operatorname{Pol}(\Delta)$ does not imply $\Gamma \leq_{pp} \Delta$ in general.

Hope: Algebraic approach still works for "nice" structures.

Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00000000
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Constraint satisfaction problems
- The universal algebraic approach
- Poset-SAT
- Summary

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	00000	●○	00000000
Poset-SAT as CS	βP		

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	00000	●○	00000000
Poset-SAT as CS	SP		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• is universal, i.e., contains all finite partial orders

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	00000	●0	00000000
Poset-SAT as C	SP		

- is *universal*, i.e., contains all finite partial orders
- is *homogeneous*, i.e. for finite $A, B \subseteq P$, every isomorphism $I : A \rightarrow B$ extends to an automorphism $\alpha \in Aut(\mathbb{P})$.

Constraint satisfaction	The universal algebraic approach	Poset-SAT ●0	Summary 00000000
Poset-SAT as CS	Ρ		

- is universal, i.e., contains all finite partial orders
- is *homogeneous*, i.e. for finite $A, B \subseteq P$, every isomorphism $I : A \to B$ extends to an automorphism $\alpha \in Aut(\mathbb{P})$.

For every $\{\leq\}$ -formula $\phi(x_1, \ldots, x_n)$ we define the relation

$$R_{\phi} := \{(a_1,\ldots,a_n) \in P^n : \phi(a_1,\ldots,a_n)\}.$$

Constraint satisfaction	The universal algebraic approach	Poset-SAT ●0	Summary 00000000
Poset-SAT as CS	Ρ		

- is universal, i.e., contains all finite partial orders
- is *homogeneous*, i.e. for finite $A, B \subseteq P$, every isomorphism $I : A \to B$ extends to an automorphism $\alpha \in Aut(\mathbb{P})$.

For every $\{\leq\}$ -formula $\phi(x_1, \ldots, x_n)$ we define the relation

$$R_{\phi} := \{(a_1,\ldots,a_n) \in P^n : \phi(a_1,\ldots,a_n)\}.$$

Constraint satisfaction	The universal algebraic approach	Poset-SAT ●0	Summary 00000000
Poset-SAT as CS	Ρ		

- is universal, i.e., contains all finite partial orders
- is *homogeneous*, i.e. for finite $A, B \subseteq P$, every isomorphism $I : A \rightarrow B$ extends to an automorphism $\alpha \in Aut(\mathbb{P})$.

For every $\{\leq\}$ -formula $\phi(x_1, \ldots, x_n)$ we define the relation

$$R_{\phi} := \{(a_1,\ldots,a_n) \in P^n : \phi(a_1,\ldots,a_n)\}.$$

Poset-SAT(Φ) = CSP(($P; R_{\phi})_{\phi \in \Phi}$). ($P; R_{\phi})_{\phi \in \Phi}$ is a reduct of \mathbb{P} , i.e. a structure that is first-order definable in \mathbb{P} .

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	00000	⊙●	00000000
CSPs over ran	dom partial order		

ω -categorical structure

A structure Γ is called ω -categorial, if its theory has, up to isomorphism, exactly one countable model.

Engeler, Ryll-Nardzewski, Svenonius

An countably infinite structure Γ with countable signature is ω -categorical if and only if for every $k \in \mathbb{N}$, there are finitely many k-orbits of $\operatorname{Aut}(\Gamma)$.

CSPs over random partia	Lorder	
Constraint satisfactionThe universal a0000000000	algebraic approach Poset-SAT 0●	Summary 0000000

ω -categorical structure

A structure Γ is called ω -categorial, if its theory has, up to isomorphism, exactly one countable model.

Engeler, Ryll-Nardzewski, Svenonius

An countably infinite structure Γ with countable signature is ω -categorical if and only if for every $k \in \mathbb{N}$, there are finitely many k-orbits of Aut(Γ).

Why is $\mathbb{P} \ \omega$ -categorical?

For every $k \in \mathbb{N}$, there are finitely many posets on k elements.

00000	00000	00	0000000
CSPs over ran	dom partial order		

ω -categorical structure

A structure Γ is called ω -categorial, if its theory has, up to isomorphism, exactly one countable model.

Engeler, Ryll-Nardzewski, Svenonius

An countably infinite structure Γ with countable signature is ω -categorical if and only if for every $k \in \mathbb{N}$, there are finitely many k-orbits of $\operatorname{Aut}(\Gamma)$.

Bodirsky, Nešetřil '03

For ω -categorical structures Γ , Δ we have

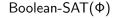
$$\bar{} \leq_{\it pp} \Delta \leftrightarrow {
m Pol}(\Gamma) \supseteq {
m Pol}(\Delta)$$

Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00000000
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Constraint satisfaction problems
- The universal algebraic approach
- Poset-SAT

Summary



Poset-SAT(Φ)

↓

CSPs of Boolean structures $({0,1}; R_1, \dots, R_n)$ are reducts of $({0,1}, 0, 1)$ $\mathsf{CSPs} \text{ of reducts} \\ \mathsf{of random partial order } \mathbb{P}$

Clones over $\{0,1\}$ Closed clones containing $Aut(\mathbb{P})$

Constraint satisfaction T	he universal algebraic approach	Poset-SAT	Summary
			0000000

Important NP-complete relations

- Betw $(x, y, z) := x < y < z \lor z < y < x$.
- $\operatorname{Cycl}(x, y, z) := (x < y \land y < z) \lor (z < x \land x < y) \lor (y < z \land z < x) \lor (x < y \land z \bot x \land z \bot y) \lor (y < z \land x \bot y \land x \bot z) \lor (z < x \land y \bot z \land y \bot x).$
- Sep(x, y, z, t) :=((Cycl $(x, y, z) \land Cycl(y, z, t) \land Cycl(x, y, t) \land Cycl(x, z, t)) \lor$ (Cycl $(z, y, x) \land Cycl(t, z, y) \land Cycl(t, y, x) \land Cycl(t, z, x)).$
- Low $(x, y, z) := (x < y \land x \bot z \land y \bot z) \lor (x < z \land x \bot y \land z \bot y).$

	00000	00	0000000
Complexity dick	iotomy		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (MK, TVP '16)

Let Γ be reduct of $\mathbb P.$ Then one of the following cases holds:

Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 0000000
Complexity did	chotomy		

Let Γ be reduct of $\mathbb P.$ Then one of the following cases holds:

 CSP(Γ) can be reduced to a CSP of a reduct of (ℚ; ≤). Thus CSP(Γ) is in P or NP-complete (M. Bodirsky and J. Kára).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00000000
Complexity did	chotomy		

Let Γ be reduct of $\mathbb P.$ Then one of the following cases holds:

 CSP(Γ) can be reduced to a CSP of a reduct of (Q; ≤). Thus CSP(Γ) is in P or NP-complete (M. Bodirsky and J. Kára).

• Low, Betw, Cycl or Sep is pp-definable in Γ and $\mathrm{CSP}(\Gamma)$ is NP-complete.

Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00●00000
Complexity did	chotomy		

Let Γ be reduct of $\mathbb P.$ Then one of the following cases holds:

- CSP(Γ) can be reduced to a CSP of a reduct of (Q; ≤). Thus CSP(Γ) is in P or NP-complete (M. Bodirsky and J. Kára).
- Low, Betw, Cycl or Sep is pp-definable in Γ and $\mathrm{CSP}(\Gamma)$ is NP-complete.
- $Pol(\Gamma)$ contains functions f, g_1, g_2 such that

$$g_1(f(x,y)) = g_2(f(y,x))$$

and $\operatorname{CSP}(\Gamma)$ can be solved in polynomial time.

Consequence:

Poset-SAT(Φ) is in P or NP-complete.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	00000	00	0000000
Complexity did	chotomy		

Let Γ be reduct of \mathbb{P} . Then one of the following cases holds:

- CSP(Γ) can be reduced to a CSP of a reduct of (ℚ; ≤). Thus CSP(Γ) is in P or NP-complete (M. Bodirsky and J. Kára).
- Low, Betw, Cycl or Sep is pp-definable in Γ and $\mathrm{CSP}(\Gamma)$ is NP-complete.
- $Pol(\Gamma)$ contains functions f, g_1, g_2 such that

$$g_1(f(x,y)) = g_2(f(y,x))$$

and $CSP(\Gamma)$ can be solved in polynomial time.

Consequence:

Poset-SAT(Φ) is in P or NP-complete. Given Φ , it is decidable to tell if Poset-SAT(Φ) is in P.

Constraint sat	isfaction		The 000	il algebrai	ic approach	Poset-SAT 00	Summary 00000000
		1.0					

The method for the classification

Canonicalization theorem (Bodirsky, Pinsker and Tsankov, 2012)

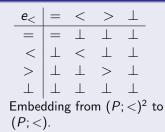
Let Δ be ordered homogeneous Ramsey with finite relational signature, $f : \Delta \to \Delta$, and let $c_1, c_2, \ldots, c_n \in \Delta$. Then f generates over Δ a function which agrees with f on $\{c_1, c_2, \ldots, c_n\}$ and which is canonical as a function from $(\Delta, c_1, c_2, \ldots, c_n)$.

Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	00000	00	00000000
The method f	or the classification		

Canonical functions

A function $f: P^2 \to P$ is called canonical if the type of image depends only on the types of arguments of the function in the domain.

Example



Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
	00000	00	00000000
The method for	or the classification		

Canonical functions

A function $f: P^2 \rightarrow P$ is called canonical if the type of image depends only on the types of arguments of the function in the domain.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

00000 00	00000000
Constraint satisfaction The universal algebraic approach Poset-SAT	Summary

Lemma

Let Γ be a reduct of $(P; \leq)$. If $<, \perp \in \langle \Gamma \rangle_{pp}$, Low $\notin \langle \Gamma \rangle_{pp}$, then e_{\leq} or e_{\leq} is a polymorphism of Γ .

Proof

- 1. Since Low is not primitive positive definable in Γ , there is a binary polymorphism f of Γ that violates Low.
- 2. We can find three elements $a, b, c \in P$ such that $a < b \land ab \perp c$, and $(f(a, a), f(b, c), f(c, b)) \notin Low$.
- 3. We can assume that f is canonical as a function from $(P; \leq, \leq, a, b, c)^2$ to $(P; \leq, \leq, a, b, c)$.
- 4. Use an extensive combinatorial analysis on f...

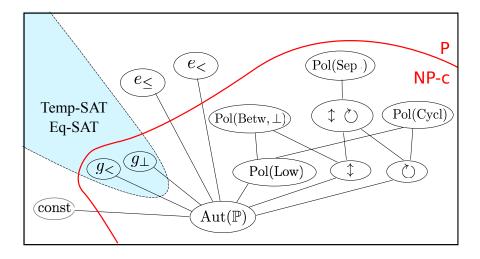
Constraint satisfaction	The universal algebraic approach	Poset-SAT 00	Summary 00000000
The method for	classification		

Using the same method one could successfully classify the complexity of a number of CSPs on infinite domains.

- 1. Graph-SAT (M. Bodirsky and M. Pinsker, 2015).
- 2. Phylogeny CSPs (M. Bodirsky, P. Jonsson and T. V. Pham, 2015).
- 3. Henson graphs (M. Bodirsky, B. Martin, M. Pinsker and A. Pongrács, 2016).

4. Semilinear order-SAT (M. Bodirsky and T. V. Pham, in preparation).

Lattice of polymorphism clones containing $Aut(\mathbb{P})$



Constraint satisfaction	The universal algebraic approach	Poset-SAT	Summary
			00000000

Thank you!