| Subgroups of Sym $(\omega)$ | Henson digraphs<br>000 | Reducts of Henson digraphs<br>00000 | $2^{\omega}$ maximal-closed subgroups 0000 |
|-----------------------------|------------------------|-------------------------------------|--------------------------------------------|
|                             |                        |                                     |                                            |

# Maximal-closed subgroups of $Sym(\omega)$ via Henson digraphs

Michael Kompatscher

michael@logic.at

Institute of Computer Languages TU Wien

KAFKA Seminar, Prague, 07/12/2015

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

| Subgroups of Sym $(\omega)$ | Henson digraphs<br>000 | Reducts of Henson digraphs | $2^{\omega}$ maximal-closed subgroups |
|-----------------------------|------------------------|----------------------------|---------------------------------------|
| Outline                     |                        |                            |                                       |

- Closed subgroups of  $Sym(\omega)$
- e Homogeneous graphs & Henson digraphs
- Reducts of Henson digraphs
- $2^{\omega}$  many maximal-closed subgroups of Sym $(\omega)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



 $\mathsf{Sym}(\omega)$  is a topological group with the basis of clopen subgroups:

 $\{f \in Sym(\omega) : f \upharpoonright_A = id \upharpoonright_A\}$  for all finite  $A \subset \omega$ .

There are  $2^{\omega}$  closed subgroups of Sym( $\omega$ ). A closed subgroup  $\Sigma <$ Sym( $\omega$ ) is maximal-closed if there is no closed  $\Sigma'$  with  $\Sigma < \Sigma' <$ Sym( $\omega$ ).

#### Question (Macpherson)

Are there  $2^{\omega}$  non-conjugate (non-isomorphic) maximal-closed subgroups of Sym( $\omega$ )?

Conjugation describes permutations up to renaming of elements:

If 
$$f = \kappa^{-1}g\kappa$$
 then  $y = f(x) \leftrightarrow \kappa(y) = g(\kappa(x))$ 



Aut( $\mathcal{A}$ ): automorphisms of relational structure  $\mathcal{A} = (\omega; R_1, R_2, ...)$ Inv(F): relations preserved by  $F \subseteq \text{Sym}(\omega)$ 



Aut(Inv(F)): Minimal closed group containing F

 $\begin{aligned} \mathcal{A} \text{ is reduct of } \mathcal{A}' \text{ or} \\ \mathcal{A} \leq_{f.o.} \mathcal{A}' \text{ if every relation} \\ \text{in } \mathcal{A} \text{ is definable in } \mathcal{A}'. \end{aligned}$ 

 $\mathcal{A} \leq_{f.o.} \mathcal{A}' 
ightarrow \mathsf{Aut}(\mathcal{A}) \geq \mathsf{Aut}(\mathcal{A}')$  .

| Subgroups of $Sym(\omega)$ | Henson digraphs<br>000 | Reducts of Henson digraphs | $2^{\omega}$ maximal-closed subgroups 0000 |
|----------------------------|------------------------|----------------------------|--------------------------------------------|
| Reducts                    |                        |                            |                                            |

#### Example

 $\mathcal{A} = (\omega, \{c\})...$  countable set with a constant c. Aut $(\mathcal{A}) = \{f \in \text{Sym}(\omega) : f(c) = c\}$ .  $\mathcal{A}$  has only trivial reducts, Aut $(\mathcal{A})$  is maximal-closed subgroup of  $\text{Sym}(\omega)$ .

### Let $(\mathbb{Q},<)$ be the natural order on the rational numbers.

#### Cameron '76

There are exactly 5 reducts of  $\mathbb{Q}:$ 

$$(\mathbb{Q}, <) \qquad \mathsf{Sym}(\mathbb{Q})$$

$$(\mathbb{Q}, \mathsf{Betw}) (\mathbb{Q}, \mathsf{Cycl}) \qquad \langle -\mathbb{Q}, sw_{\mathbb{Q}} \rangle$$

$$(\mathbb{Q}, \mathsf{Sept}) \qquad \langle sw_{\mathbb{Q}} \rangle \qquad \langle -\mathbb{Q}$$

$$(\mathbb{Q}, =) \qquad \mathsf{Aut}(\mathbb{Q}, <)$$



A subgroup  $\Sigma \leq \text{Sym}(\omega)$  is oligomorphic, if for every  $n \in \omega$  the action  $\Sigma \curvearrowright \omega^n$  has only finitely many orbits.

 $\operatorname{Aut}(\omega, \{c\})$ ,  $\operatorname{Aut}(\mathbb{Q}, <)$  are oligomorphic

Oligomorphic groups are "big"  $\rightarrow$  good candidates for maximal-closed subgroups.

#### Engeler, Ryll-Nardzewski, Svenonius '59

A closed group  $\Sigma \leq \text{Sym}(\omega)$  is oligomorphic, if and only if  $\Sigma = \text{Aut}(\mathcal{A})$  for an  $\omega$ -categorical structure  $\mathcal{A}$ . Invariants of  $\Sigma \curvearrowright \omega^n$  are exactly the definable relations in  $\mathcal{A}$ .



Aut( $\mathcal{A}$ ): automorphisms of relational structure  $\mathcal{A} = (\omega; R_1, R_2, ...)$ Inv(F): relations preserved by  $F \subseteq \text{Sym}(\omega)$ 



For  $\omega$ -categorical  $\mathcal{A}'$  structures:  $\mathcal{A} \leq_{f.o.} \mathcal{A}' \leftrightarrow \operatorname{Aut}(\mathcal{A}) \geq \operatorname{Aut}(\mathcal{A}')$ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

| Subgroups of $Sym(\omega)$ | Henson digraphs<br>000 | Reducts of Henson digraphs<br>00000 | $2^{\omega}$ maximal-closed subgroups |
|----------------------------|------------------------|-------------------------------------|---------------------------------------|
| Outline                    |                        |                                     |                                       |

- Closed subgroups of  $Sym(\omega)$
- e Homogeneous graphs & Henson digraphs
- Reducts of Henson digraphs
- $2^{\omega}$  many maximal-closed subgroups of Sym $(\omega)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Subgroups of $Sym(\omega)$ | Henson digraphs<br>●00 | Reducts of Henson digraphs | $2^{\omega}$ maximal-closed subgroups 0000 |
|----------------------------|------------------------|----------------------------|--------------------------------------------|
| Homogeneous                | structures             |                            |                                            |

A structure is called homogeneous, if every partial isomorphism between finite substructures extends to an automorphism.

#### Example

The Random graph  $(R, \overline{E})$  is the unique countable graph that:

- embeds all finite graphs and
- is homogeneous.

Aut $(R, \overline{E})$  is oligomorphic.

There are exactly 5 supergroups containing  $Aut(R, \overline{E})$ .

#### Thomas' conjecture

Every countable homogeneous structure in a finite relational language has only finitely many reducts.

| 00000         | 000 | 00000 | 0000 |  |  |
|---------------|-----|-------|------|--|--|
| Henson graphs |     |       |      |  |  |

Let n > 1. There is a unique countable graph  $(H_n, \overline{E})$ :

- Finite substructures of (H<sub>n</sub>, Ē) = graphs not containing the complete graph (K<sub>n</sub>, Ē),
- $(H_n, \overline{E})$  is homogeneous.
- $(H_n, \overline{E})$  is called a Henson graph.

#### Thomas '91

For every n > 1,  $(H_n, \overline{E})$  has only trivial reducts and so Aut $(H_n, \overline{E})$  is maximal-closed in Sym $(H_n)$ .

(日) (同) (三) (三) (三) (○) (○)

Also Aut $(H_n, \overline{E})$  are pairwise non conjugate.

| Subgroups of $Sym(\omega)$ | Henson digraphs | Reducts of Henson digraphs | $2^{\omega}$ maximal-closed subgroups |
|----------------------------|-----------------|----------------------------|---------------------------------------|
|                            | 00●             | 00000                      | 0000                                  |
| Henson digrap              | ohs             |                            |                                       |

Let be a set of finite tournaments. Then there is a unique countable digraph  $(D_T, E)$ :

- The finite substructures of  $(D_T, E)$  are exactly the digraphs omitting T,
- $(D_T, E)$  is homogeneous.

Let  $T \neq \emptyset$  and not contain the 2-tournament. Then  $(D_T, E)$  is called a Henson digraph.

There are  $2^{\omega}$  non-isomorphic Henson digraphs.

#### Question

What are the reducts for a given Henson digraph  $(D_T, E)$ ?

| Subgroups of Sym $(\omega)$ | Henson digraphs | Reducts of Henson digraphs | $2^{\omega}$ maximal-closed subgroups |
|-----------------------------|-----------------|----------------------------|---------------------------------------|
|                             | 000             | 00000                      | 0000                                  |
| Outline                     |                 |                            |                                       |

- Closed subgroups of  $Sym(\omega)$
- e Homogeneous graphs & Henson digraphs
- Reducts of Henson digraphs
- $2^{\omega}$  many maximal-closed subgroups of Sym $(\omega)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Subgroups of $Sym(\omega)$ | Henson digraphs<br>000 | Reducts of Henson digraphs<br>●0000 | $2^{\omega}$ maximal-closed subgroups |
|----------------------------|------------------------|-------------------------------------|---------------------------------------|
| Possible reduct            | ts                     |                                     |                                       |

#### Example

Let T be closed under switching the direction of all edges. Then there is a bijection  $-: D_T \to D_T$  such that  $E(x, y) \leftrightarrow E(-y, -x)$ .

x



| Subgroups of Sym $(\omega)$ | Henson digraphs | Reducts of Henson digraphs | $2^{\omega}$ maximal-closed subgroups |
|-----------------------------|-----------------|----------------------------|---------------------------------------|
|                             | 000             | 00000                      | 0000                                  |
| Possible reduc              | ts              |                            |                                       |

#### Example

Assume there is a bijection  $sw_c: D_T \to D_T$  that switches all edges adjacent to a vertex c, while preserving all other edges:

 $sw_c(c)$ 

Then  $\langle sw_c \rangle$  is a proper reduct. The existence of  $sw_c$  only depends on T.

c

x

 $sw_c(x)$ 

| Canonical fun              | ctions          |                            |                                       |
|----------------------------|-----------------|----------------------------|---------------------------------------|
| Subgroups of $Sym(\omega)$ | Henson digraphs | Reducts of Henson digraphs | $2^{\omega}$ maximal-closed subgroups |
| 00000                      | 000             |                            | 0000                                  |

A function  $f : \mathcal{A} \to \mathcal{B}$  is called canonical, if it maps *n*-orbits of Aut( $\mathcal{A}$ ) to *n*-orbits of Aut( $\mathcal{B}$ ).

#### Example

$$\begin{aligned} &-: (D_T, E) \to (D_T, E) \text{ is canonical.} \\ &sw_c: (D_T, E) \to (D_T, E) \text{ is not canonical, but} \\ &sw_c: (D_T, E, c) \to (D_T, E) \text{ is canonical.} \end{aligned}$$

#### Bodirsky, Pinsker, Tsankov '13

Let (D, E, <) be a Henson ordered digraph. Let  $f \in Sym(D)$  and  $c_1, \ldots, c_n \in D$ . Then there exists a function  $g : D \to D$  such that

• g lies in the topological closure of  $\langle \operatorname{Aut}(D, E) \cup \{f\} \rangle$  in  $D^D$ ,

• 
$$g(c_i) = f(c_i)$$
 for  $i = 1, ..., n$ ,

•  $g: (D, E, <, c_1, \dots, c_n) \rightarrow (D, E)$  is canonical.

There are only finitely many "behaviours" of canonical functions.

 $\begin{array}{c} \begin{array}{c} \mbox{Subgroups of Sym}(\omega) \\ \mbox{oooo} \end{array} & \begin{array}{c} \mbox{Henson digraphs} \\ \mbox{ooo} \bullet \end{array} & \begin{array}{c} \mbox{Reducts of Henson digraphs} \\ \mbox{ooo} \bullet \end{array} & \begin{array}{c} \mbox{2}^{\omega} \mbox{ maximal-closed subgroups} \\ \mbox{ooo} \bullet \end{array} \\ \end{array}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Theorem (Agarwal, MK '15)

Let  $(D_T, E)$  be a Henson digraph and  $G \ge \operatorname{Aut}(D_T, E)$ . Let  $\overline{E}(x, y) \leftrightarrow E(x, y) \lor E(y, x)$ . Then  $\begin{array}{c} \mbox{Subgroups of Sym}(\omega) & \mbox{Henson digraphs} & \mbox{Reducts of Henson digraphs} & 2^{\omega} \mbox{ maximal-closed subgroups} \\ \mbox{OOO} & \mbox{OOO}$ 

#### Theorem (Agarwal, MK '15)

Let  $(D_T, E)$  be a Henson digraph and  $G \ge \operatorname{Aut}(D_T, E)$ . Let  $\overline{E}(x, y) \leftrightarrow E(x, y) \lor E(y, x)$ . Then

 $\begin{array}{c} \mbox{Subgroups of Sym}(\omega) & \mbox{Henson digraphs} & \mbox{Reducts of Henson digraphs} & 2^{\omega} \mbox{maximal-closed subgroups} \\ \mbox{ooo} & \mbox{ooo} & \mbox{ooo} & \mbox{ooo} \\ \end{array}$ 

## Theorem (Agarwal, MK '15)

Let  $(D_T, E)$  be a Henson digraph and  $G \ge \operatorname{Aut}(D_T, E)$ . Let  $\overline{E}(x, y) \leftrightarrow E(x, y) \lor E(y, x)$ . Then

• If 
$$G < \operatorname{Aut}(D_T, \overline{E})$$
, then  
 $G = \operatorname{Aut}(D_T, E)$ ,  $\langle - \rangle$ ,  $\langle sw \rangle$  or  $\langle -, sw \rangle$ 

Subgroups of Sym( $\omega$ )<br/> $\circ\circ\circ\circ$ Henson digraphs<br/> $\circ\circ\circ\circ$ Reducts of Henson digraphs<br/> $\circ\circ\circ\circ$  $2^{\omega}$  maximal-closed subgroups<br/> $\circ\circ\circ$ The second se

# The reducts of Henson digraphs

#### Theorem (Agarwal, MK '15)

Let  $(D_T, E)$  be a Henson digraph and  $G \ge \operatorname{Aut}(D_T, E)$ . Let  $\overline{E}(x, y) \leftrightarrow E(x, y) \lor E(y, x)$ . Then

• If 
$$G < \operatorname{Aut}(D_T, \overline{E})$$
, then  
 $G = \operatorname{Aut}(D_T, E)$ ,  $\langle - \rangle$ ,  $\langle sw \rangle$  or  $\langle -, sw$ 

- One of the following holds
  - $(D_T, \overline{E})$  is the Random graph

Subgroups of Sym( $\omega$ )Henson digraphs<br/>000Reducts of Henson digraphs<br/>00000 $2^{\omega}$  maximal-closed subgroups<br/>0000The second seco

# The reducts of Henson digraphs

#### Theorem (Agarwal, MK '15)

Let  $(D_T, E)$  be a Henson digraph and  $G \ge \operatorname{Aut}(D_T, E)$ . Let  $\overline{E}(x, y) \leftrightarrow E(x, y) \lor E(y, x)$ . Then

• If 
$$G < \operatorname{Aut}(D_T, \overline{E})$$
, then  
 $G = \operatorname{Aut}(D_T, E)$ ,  $\langle - \rangle$ ,  $\langle sw \rangle$  or  $\langle -, sw \rangle$ 

- One of the following holds
  - $(D_T, \overline{E})$  is the Random graph
  - $(D_T, \overline{E})$  is a Henson graph

Subgroups of Sym( $\omega$ )Henson digraphs<br/>oooReducts of Henson digraphs<br/>oooo $2^{\omega}$  maximal-closed subgroups<br/>oooThe second second

# The reducts of Henson digraphs

#### Theorem (Agarwal, MK '15)

Let  $(D_T, E)$  be a Henson digraph and  $G \ge \operatorname{Aut}(D_T, E)$ . Let  $\overline{E}(x, y) \leftrightarrow E(x, y) \lor E(y, x)$ . Then

•  $G < \operatorname{Aut}(D_T, \overline{E})$  or  $G \ge \operatorname{Aut}(D_T, \overline{E})$ 

• If 
$$G < \operatorname{Aut}(D_T, \overline{E})$$
, then  
 $G = \operatorname{Aut}(D_T, E)$ ,  $\langle - \rangle$ ,  $\langle sw \rangle$  or  $\langle -, sw \rangle$ 

- One of the following holds
  - $(D_T, \overline{E})$  is the Random graph
  - $(D_T, \overline{E})$  is a Henson graph
  - $(D_T, \overline{E})$  has no proper reducts and Aut $(D_T, \overline{E}) = \max{\operatorname{Aut}(D_T, E), \langle - \rangle, \langle sw \rangle, \langle -, sw \rangle}$

Subgroups of Sym( $\omega$ ) Henson digraphs ocoo The reducts of Henson digraphs digraphs  $2^{\omega}$  maximal-closed subgroups ocoo

 $Sym(D_T)$  $\langle sw_{\bar{F}}, -\bar{F} \rangle$  $\langle sw_{\bar{E}} \rangle \qquad \langle -_{\bar{E}} \rangle$  $\operatorname{Aut}(D_T, \overline{E})$  $\langle sw, - \rangle$  $\langle sw \rangle$   $\langle - \rangle$  $Aut(D_T, E)$ 

The lattice to the left shows all potential reducts of a given Henson digraph  $(D_T, E)$ .

- Always finitely many reducts
- T' ⊃ T does not imply that D<sub>T'</sub> has less reducts that D<sub>T</sub>.

 $(D_T, E)$  has only trivial reducts if

- T not closed under and sw
- $(D_T, \overline{E})$  is not homogeneous

| Subgroups of $Sym(\omega)$ | Henson digraphs | Reducts of Henson digraphs | $2^{\omega}$ maximal-closed subgroups |
|----------------------------|-----------------|----------------------------|---------------------------------------|
|                            | 000             | 00000                      | 0000                                  |
| Outline                    |                 |                            |                                       |

- Closed subgroups of  $Sym(\omega)$
- e Homogeneous graphs & Henson digraphs
- Reducts of Henson digraphs
- $2^{\omega}$  many maximal-closed subgroups of Sym $(\omega)$

# $2^{\omega}$ non-isomorphic Henson digraphs

Let  $I_n$  be the tournament we obtain by taking a linear order of size n and flipping all edges (i, i + 1) for i < n and (1, n).



The Henson digraphs  $(D_T, E)$  for  $T \subseteq \{I_n : n > 6\}$  are pairwise non-isomorphic. But  $(D_T, \overline{E})$  is the random graph...



There is a tournament X that has a sink, but no source and is not embeddable in any  $I_n$ . Take

$$T = \{X' : |X'| = |X| + 1, X \subset X'\} \cup T' \text{ for } T' \subseteq \{I_n : n > |X| + 1\}$$

Then the induced Henson digraph has only trivial reducts.

Two such Henson digraphs are not isomorphic.

It is easy to see that their automorphism groups are non-conjugate.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

| Subgroups of Sym $(\omega)$ | Henson digraphs | Reducts of Henson digraphs | $2^{\omega}$ maximal-closed subgroups |
|-----------------------------|-----------------|----------------------------|---------------------------------------|
|                             | 000             | 00000                      | 0000                                  |
| Reconstruction              | 1               |                            |                                       |

#### Rubin '87

For two Henson digraphs  $(D_1, E)$  and  $(D_2, E)$  the following are equivalent:

- $Aut(D_1, E)$  and  $Aut(D_2, E)$  are conjugate
- $\operatorname{Aut}(D_1, E) \cong_T \operatorname{Aut}(D_2, E)$
- $\operatorname{Aut}(D_1, E) \cong \operatorname{Aut}(D_2, E)$

#### Conclusion

There are  $2^{\omega}$  non-isomorphic maximal-closed subgroups of Sym( $\omega$ ).

| Subgroups of Sym $(\omega)$ | Henson digraphs<br>000 | Reducts of Henson digraphs<br>00000 | $2^{\omega}$ maximal-closed subgroups 000 $\bullet$ |
|-----------------------------|------------------------|-------------------------------------|-----------------------------------------------------|
|                             |                        |                                     |                                                     |

# Thank you!