An introduction to Ramsey theory

Michael Kompatscher

michael@logic.at

Theory and Logic group TU Wien

Podzimní škola, 26.11.2016

What is Ramsey theory?

The philosophy of Ramsey theory:
In every large enough system there are regular subsystems.

What is Ramsey theory?

The philosophy of Ramsey theory:
In every large enough system there are regular subsystems.
Most basic example: the pigeonhole principle

k holes but $\geq k+1$ pigeons \rightarrow One hole contains more than 1 pigeon.

What is Ramsey theory?

The philosophy of Ramsey theory:
In every large enough system there are regular subsystems.
Most basic example: the pigeonhole principle

k holes but $\geq 2 k+1$ pigeons \rightarrow One hole contains more than 2 pigeons.

The pigeonhole principle

More formally:
Let X be a finite set $|X| \geq k n+1$ (the "pigeons").
Let $X=\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \cdots \cup \mathcal{A}_{k}$ be a partition/coloring of A (the "pigeonholes").

Then $\exists i:\left|\mathcal{A}_{i}\right| \geq n+1$.

The pigeonhole principle

More formally:
Let X be a finite set $|X| \geq k n+1$ (the "pigeons").
Let $X=\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \cdots \cup \mathcal{A}_{k}$ be a partition/coloring of A
(the "pigeonholes").
Then $\exists i:\left|\mathcal{A}_{i}\right| \geq n+1$.

An example

- $X \ldots$ inhabitants of Prague $|X| \geq 1.200 .000$
- $k \ldots$ maximum number of hair on a human head $k=250.000$
- $\mathcal{A}_{i} \ldots$ Praguer with i many hairs on their head

By pigeonhole principle there are at least 4 people in Prague with the same number of hair on their head!

A fact about scientific talks

Suppose you give a talk and more than 6 people are in the audience X.

A fact about scientific talks

Suppose you give a talk and more than 6 people are in the audience X.
Claim: Then there are at least 3 people X that are mutual acquaintances or three guests will be mutual strangers.

A fact about scientific talks

Suppose you give a talk and more than 6 people are in the audience X.
Claim: Then there are at least 3 people X that are mutual acquaintances or three guests will be mutual strangers.

Color pairs of people $[X]^{2}$ red if they know each other; blue otherwise.
Proof: on board.

A fact about scientific talks

However, the statement is not true, if $|X|=5$:

A fact about scientific talks

However, the statement is not true, if $|X|=5$:

Generalisations:

A fact about scientific talks

However, the statement is not true, if $|X|=5$:

Generalisations:

- Is there a big enough X, such that we find n mutual acquaintances/strangers for $n=4,5,6, \ldots$?

By Ramsey's theorem the answer is always YES.

A fact about scientific talks

However, the statement is not true, if $|X|=5$:

Generalisations:

- Is there a big enough X, such that we find n mutual acquaintances/strangers for $n=4,5,6, \ldots$?
- What if we color the edges with more than 2 colors?

By Ramsey's theorem the answer is always YES.

A fact about scientific talks

However, the statement is not true, if $|X|=5$:

Generalisations:

- Is there a big enough X, such that we find n mutual acquaintances/strangers for $n=4,5,6, \ldots$?
- What if we color the edges with more than 2 colors?
- What if we color 3-sets, 4-sets, p-sets instead?

By Ramsey's theorem the answer is always YES.

Ramsey's theorem for pairs

We only show the statement for 2-colorings of pairs:

Ramsey's theorem for pairs

We only show the statement for 2-colorings of pairs:
Finite Ramsey theorem
$\forall n \in \mathbb{N}, \exists N \in \mathbb{N}$ such that for every partition $[N]^{2}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$, there is an $i \in\{0,1\}$ and an n-subset $B \subseteq N$ with $[B]^{2} \subseteq \mathcal{A}_{i}$.

Ramsey's theorem for pairs

We only show the statement for 2-colorings of pairs:

Finite Ramsey theorem

$\forall n \in \mathbb{N}, \exists N \in \mathbb{N}$ such that for every partition $[N]^{2}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$, there is an $i \in\{0,1\}$ and an n-subset $B \subseteq N$ with $[B]^{2} \subseteq \mathcal{A}_{i}$.

Proof: $N=2^{2 n} \ldots$ proof on board

Ramsey's theorem for pairs

We only show the statement for 2-colorings of pairs:

Finite Ramsey theorem

$\forall n \in \mathbb{N}, \exists N \in \mathbb{N}$ such that for every partition $[N]^{2}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$, there is an $i \in\{0,1\}$ and an n-subset $B \subseteq N$ with $[B]^{2} \subseteq \mathcal{A}_{i}$.

Proof: $N=2^{2 n} \ldots$ proof on board
Note that N is not optimal; finding the optimal Ramsey number for n is a difficult task and unknown for $n=5$.

Ramsey's theorem for pairs

We only show the statement for 2-colorings of pairs:
Finite Ramsey theorem
$\forall n \in \mathbb{N}, \exists N \in \mathbb{N}$ such that for every partition $[N]^{2}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$, there is an $i \in\{0,1\}$ and an n-subset $B \subseteq N$ with $[B]^{2} \subseteq \mathcal{A}_{i}$.

Proof: $N=2^{2 n} \ldots$ proof on board
Note that N is not optimal; finding the optimal Ramsey number for n is a difficult task and unknown for $n=5$.

Infinite Ramsey theorem

For every partition of pairs of the natural numbers $[\mathbb{N}]^{2}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$, there is an $i \in\{0,1\}$ and an infinite subset $X \subseteq \mathbb{N}$ with $[X]^{2} \subseteq \mathcal{A}_{i}$.

Applications of Ramsey's theorem

Why did Ramsey prove his theorem?

Applications of Ramsey's theorem

Why did Ramsey prove his theorem?
Ramsey was interested in Hilbert's Entscheidungsproblem: Is there an algorithm, telling us if a given first-order formula is provable?

Applications of Ramsey's theorem

Why did Ramsey prove his theorem?
Ramsey was interested in Hilbert's Entscheidungsproblem: Is there an algorithm, telling us if a given first-order formula is provable?

He used the theorem to show that there is such an algorithm for formulas of the form

$$
\exists x_{1}, \ldots, x_{n} \forall y_{1}, \ldots, y_{k} \phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)
$$

(In general Entscheidungsproblem is undecidable!)

The happy ending theorem

The happy ending theorem (Erdös, Szekeres '35)

For any positive integer n there is an N, such that every set of N points $X \subset \mathbb{R}^{2}$ in general position has n points that form the vertices of a convex polygon.

fail for $n=5, N=8$

Results before Ramsey

Schur's theorem (1919)
For every k and any partition

$$
\mathbb{N}=\mathcal{A}_{1} \cup \cdots \cup A_{k},
$$

one of the partition classes A_{i} contain a set $\{x, y, z\}$ with $x+y=z$.

Results before Ramsey

Schur's theorem (1919)

For every k and any partition

$$
\mathbb{N}=\mathcal{A}_{1} \cup \cdots \cup A_{k},
$$

one of the partition classes A_{i} contain a set $\{x, y, z\}$ with $x+y=z$.

Schur used this result to make statements about Fermat's last theorem for finite fields:

Results before Ramsey

Schur's theorem (1919)

For every k and any partition

$$
\mathbb{N}=\mathcal{A}_{1} \cup \cdots \cup A_{k},
$$

one of the partition classes A_{i} contain a set $\{x, y, z\}$ with $x+y=z$.

Schur used this result to make statements about Fermat's last theorem for finite fields:

There is no solution of

$$
x^{n}+y^{n}=z^{n} \quad \bmod p
$$

for every p large enough.

Results before Ramsey

Van der Waerden's theorem (1927)

For all $k, n \in \mathbb{N}$ there is an $N \in \mathbb{N}$ such that for every partition $N=\mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{k}$ there is an index i_{0}, such $\mathcal{A}_{i_{0}}$ contains an arithmetic progression of length n, i.e. a set of the form

$$
\left\{a_{0}, a_{0}+d, a_{0}+2 d, \ldots, a_{0}+(n-1) d\right\},
$$

where $a_{0}, d \in \mathbb{N}$.
The best known upper bound for N are very bad...

$$
N(n, k) \leq 2^{2^{n^{2^{2}}}}
$$

\ldots and there is a prize of $1000 \$$ for showing $W(2, k)<2^{k^{2}}$.

Structural Ramsey theory

What if, instead of subsets, we color

- edges of (non-complete) graphs?
- subgraphs of graphs?
- subspaces of vector spaces?
- subalgebras of Boolean algebras?
- ...

Results for all of the above are known and discussed in Structural Ramsey theory.

Ramsey DocCourse 2016

http://iuuk.mff.cuni.cz/events/doccourse/

Mike Pawliuk's Blog provides good notes of the program: https://boolesrings.org/mpawliuk/

Thank you!

