An introduction to Ramsey theory

Michael Kompatscher

michael@logic.at

Theory and Logic group TU Wien

Podzimní škola, 26.11.2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is Ramsey theory?

The philosophy of Ramsey theory:

In every *large enough* system there are regular subsystems.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is Ramsey theory?

The philosophy of Ramsey theory:

In every *large enough* system there are regular subsystems.

Most basic example: the pigeonhole principle

k holes but $\geq k + 1$ pigeons \rightarrow One hole contains more than 1 pigeon.

What is Ramsey theory?

The philosophy of Ramsey theory:

In every *large enough* system there are regular subsystems.

Most basic example: the pigeonhole principle

k holes but $\geq 2k + 1$ pigeons \rightarrow One hole contains more than 2 pigeons.

More formally: Let X be a finite set $|X| \ge kn + 1$ (the "pigeons"). Let $X = A_1 \cup A_2 \cup \cdots \cup A_k$ be a partition/coloring of A (the "pigeonholes").

Then $\exists i : |\mathcal{A}_i| \ge n+1$.

More formally: Let X be a finite set $|X| \ge kn + 1$ (the "pigeons"). Let $X = A_1 \cup A_2 \cup \cdots \cup A_k$ be a partition/coloring of A (the "pigeonholes").

Then
$$\exists i : |\mathcal{A}_i| \ge n+1$$
.

An example

- X... inhabitants of Prague $|X| \ge 1.200.000$
- k... maximum number of hair on a human head k = 250.000
- $A_{i...}$ Praguer with *i* many hairs on their head

By pigeonhole principle there are at least 4 people in Prague with the same number of hair on their head!

Suppose you give a talk and more than 6 people are in the audience X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose you give a talk and more than 6 people are in the audience X.

Claim: Then there are at least 3 people X that are mutual acquaintances or three guests will be mutual strangers.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose you give a talk and more than 6 people are in the audience X.

Claim: Then there are at least 3 people X that are mutual acquaintances or three guests will be mutual strangers.

Color pairs of people $[X]^2$ red if they know each other; blue otherwise.

Proof: on board.

However, the statement is not true, if |X| = 5:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

However, the statement is not true, if |X| = 5:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Generalisations:

However, the statement is not true, if |X| = 5:

Generalisations:

Is there a big enough X, such that we find n mutual acquaintances/strangers for n = 4,5,6,...?

By Ramsey's theorem the answer is always YES, and the second seco

However, the statement is not true, if |X| = 5:

Generalisations:

- Is there a big enough X, such that we find n mutual acquaintances/strangers for n = 4,5,6,...?
- What if we color the edges with more than 2 colors?

By Ramsey's theorem the answer is always YES, and the second seco

However, the statement is not true, if |X| = 5:

Generalisations:

- Is there a big enough X, such that we find n mutual acquaintances/strangers for n = 4,5,6,...?
- What if we color the edges with more than 2 colors?
- What if we color 3-sets, 4-sets, *p*-sets instead?

By Ramsey's theorem the answer is always **YES**, \mathcal{A} , \mathcal{A}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Finite Ramsey theorem

 $\forall n \in \mathbb{N}, \exists N \in \mathbb{N} \text{ such that for every partition } [N]^2 = \mathcal{A}_1 \cup \mathcal{A}_2,$ there is an $i \in \{0, 1\}$ and an *n*-subset $B \subseteq N$ with $[B]^2 \subseteq \mathcal{A}_i$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite Ramsey theorem

 $\forall n \in \mathbb{N}, \exists N \in \mathbb{N} \text{ such that for every partition } [N]^2 = \mathcal{A}_1 \cup \mathcal{A}_2,$ there is an $i \in \{0, 1\}$ and an *n*-subset $B \subseteq N$ with $[B]^2 \subseteq \mathcal{A}_i$.

Proof: $N = 2^{2n}$... proof on board

Finite Ramsey theorem

 $\forall n \in \mathbb{N}, \exists N \in \mathbb{N} \text{ such that for every partition } [N]^2 = \mathcal{A}_1 \cup \mathcal{A}_2,$ there is an $i \in \{0, 1\}$ and an *n*-subset $B \subseteq N$ with $[B]^2 \subseteq \mathcal{A}_i$.

Proof: $N = 2^{2n}$... proof on board

Note that N is not optimal; finding the optimal Ramsey number for n is a difficult task and unknown for n = 5.

Finite Ramsey theorem

 $\forall n \in \mathbb{N}, \exists N \in \mathbb{N} \text{ such that for every partition } [N]^2 = \mathcal{A}_1 \cup \mathcal{A}_2,$ there is an $i \in \{0, 1\}$ and an *n*-subset $B \subseteq N$ with $[B]^2 \subseteq \mathcal{A}_i$.

Proof: $N = 2^{2n}$... proof on board

Note that N is not optimal; finding the optimal Ramsey number for n is a difficult task and unknown for n = 5.

Infinite Ramsey theorem

For every partition of pairs of the natural numbers $[\mathbb{N}]^2 = \mathcal{A}_1 \cup \mathcal{A}_2$, there is an $i \in \{0, 1\}$ and an infinite subset $X \subseteq \mathbb{N}$ with $[X]^2 \subseteq \mathcal{A}_i$.

Why did Ramsey prove his theorem?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Why did Ramsey prove his theorem?

Ramsey was interested in Hilbert's *Entscheidungsproblem*: Is there an algorithm, telling us if a given first-order formula is provable?

Why did Ramsey prove his theorem?

Ramsey was interested in Hilbert's *Entscheidungsproblem*: Is there an algorithm, telling us if a given first-order formula is provable?

He used the theorem to show that there is such an algorithm for formulas of the form

 $\exists x_1,\ldots,x_n \forall y_1,\ldots,y_k \phi(x_1,\ldots,x_n,y_1,\ldots,y_k).$

(日) (同) (三) (三) (三) (○) (○)

(In general Entscheidungsproblem is undecidable!)

The happy ending theorem (Erdös, Szekeres '35)

For any positive integer *n* there is an *N*, such that every set of *N* points $X \subset \mathbb{R}^2$ in general position has *n* points that form the vertices of a convex polygon.

fail for n = 5, N = 8

Schur's theorem (1919)

For every k and any partition

$$\mathbb{N} = \mathcal{A}_1 \cup \cdots \cup \mathcal{A}_k,$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

one of the partition classes A_i contain a set $\{x, y, z\}$ with x + y = z.

Schur's theorem (1919)

For every k and any partition

$$\mathbb{N} = \mathcal{A}_1 \cup \cdots \cup \mathcal{A}_k,$$

one of the partition classes A_i contain a set $\{x, y, z\}$ with x + y = z.

Schur used this result to make statements about Fermat's last theorem for finite fields:

Schur's theorem (1919)

For every k and any partition

$$\mathbb{N}=\mathcal{A}_1\cup\cdots\cup\mathcal{A}_k,$$

one of the partition classes A_i contain a set $\{x, y, z\}$ with x + y = z.

Schur used this result to make statements about Fermat's last theorem for finite fields:

There is no solution of

$$x^n + y^n = z^n \mod p$$

for every p large enough.

Van der Waerden's theorem (1927)

For all $k, n \in \mathbb{N}$ there is an $N \in \mathbb{N}$ such that for every partition $N = A_1 \cup \cdots \cup A_k$ there is an index i_0 , such A_{i_0} contains an *arithmetic progression* of length n, i.e. a set of the form

$$\{a_0, a_0 + d, a_0 + 2d, \dots, a_0 + (n-1)d\},\$$

where $a_0, d \in \mathbb{N}$.

The best known upper bound for N are very bad...

$$N(n,k) \leq 2^{2^{n^{2^{k+9}}}}$$

... and there is a prize of 1000\$ for showing $W(2, k) < 2^{k^2}$.

What if, instead of subsets, we color

- edges of (non-complete) graphs?
- subgraphs of graphs?
- subspaces of vector spaces?
- subalgebras of Boolean algebras?

• ...

Results for all of the above are known and discussed in *Structural Ramsey theory.*

Ramsey DocCourse 2016

http://iuuk.mff.cuni.cz/events/doccourse/

Mike Pawliuk's Blog provides good notes of the program: https://boolesrings.org/mpawliuk/

Thank you!