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ω-categorical structures

A structure A is ω-categorical if its theory has up to isomorphism
one countable model.

The rational order (Q, <)

< is a linear order,

dense: ∀x < y ∃z : x < z ∧ z < y

unbounded: ∀x ∃y , z : y < x ∧ x < z



ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones

ω-categorical structures

A structure A is ω-categorical if its theory has up to isomorphism
one countable model.

The rational order (Q, <)

< is a linear order,

dense: ∀x < y ∃z : x < z ∧ z < y

unbounded: ∀x ∃y , z : y < x ∧ x < z



ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones

ω-categorical structures

A structure A is ω-categorical if its theory has up to isomorphism
one countable model.

The rational order (Q, <)

< is a linear order,

dense: ∀x < y ∃z : x < z ∧ z < y

unbounded: ∀x ∃y , z : y < x ∧ x < z



ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones

ω-categorical structures

A structure A is ω-categorical if its theory has up to isomorphism
one countable model.

The rational order (Q, <)

< is a linear order,

dense: ∀x < y ∃z : x < z ∧ z < y

unbounded: ∀x ∃y , z : y < x ∧ x < z



ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones

ω-categorical structures

A structure A is ω-categorical if its theory has up to isomorphism
one countable model.

The rational order (Q, <)

< is a linear order,

dense: ∀x < y ∃z : x < z ∧ z < y

unbounded: ∀x ∃y , z : y < x ∧ x < z

(Q,<) (A,<)



ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones

ω-categorical structures

A structure A is ω-categorical if its theory has up to isomorphism
one countable model.

The rational order (Q, <)

< is a linear order,

dense: ∀x < y ∃z : x < z ∧ z < y

unbounded: ∀x ∃y , z : y < x ∧ x < z

(Q,<) (A,<)



ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones

ω-categorical structures

A structure A is ω-categorical if its theory has up to isomorphism
one countable model.

The rational order (Q, <)

< is a linear order,

dense: ∀x < y ∃z : x < z ∧ z < y

unbounded: ∀x ∃y , z : y < x ∧ x < z

(Q,<) (A,<)



ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones

ω-categorical structures

A structure A is ω-categorical if its theory has up to isomorphism
one countable model.

The rational order (Q, <)

< is a linear order,

dense: ∀x < y ∃z : x < z ∧ z < y

unbounded: ∀x ∃y , z : y < x ∧ x < z

(Q,<) (A,<)



ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones

ω-categorical structures

A structure A is ω-categorical if its theory has up to isomorphism
one countable model.

The rational order (Q, <)

< is a linear order,

dense: ∀x < y ∃z : x < z ∧ z < y

unbounded: ∀x ∃y , z : y < x ∧ x < z

(Q,<) (A,<)



ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones

ω-categorical structures

A structure A is ω-categorical if its theory has up to isomorphism
one countable model.

The rational order (Q, <)

< is a linear order,

dense: ∀x < y ∃z : x < z ∧ z < y

unbounded: ∀x ∃y , z : y < x ∧ x < z

(Q,<) (A,<)



ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones

First-order interdefinability

A countable structure A is ω-categorical iff its automorphism
group is an oligomorphic permutation group:
Aut(A) has finitely many orbits on An, for all n ∈ N.

Union of orbits = definable relations in A

Theorem (Ryll-Nardzewski)

Let A and B be two ω-categorical structures on the same domain.
Then Aut(A) = Aut(B) as permutation groups iff A and B are
first-order interdefinable.
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Interpretation

How to compare structures A, B with different domains?

An interpretation is a function I : An → B, s.t. every relation in B
has a definable preimage.

Z and Q
Let Z = (Z,+, 0,−, 1, ·) and Q = (Q,+, 0,−, 1, ·,−1 ).

The partial map:

I : Z× Z→ Q

(x , y) 7→ x

y

is an interpretation.
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Bi-interpretability

Permutation groups are topological groups with the topology of
pointwise convergence:

gn → g in Sym(A)⇔ ∀ā ∈ A : gk(ā) = g(ā)

for sufficiently large k.

Theorem (Ahlbrandt+Ziegler)

Let A and B be two ω-categorical structures. Then
Aut(A) ∼=T Aut(B) iff A and B are first-order bi-interpretable.
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Questions

Questions

How much information about A lies in the algebraic structure
of Aut(A)?

Can we
”
reconstruct“ A from the algebraic structure of

Aut(A)?

Can we reconstruct the topology of a closed oligomorphic
permutation group from its algebraic structure?
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Versions of interdefinability

More refined notion of interdefinability with:

End(A): The monoid of endomorphisms

Pol(A): The polymorphism clone

acting on A topologically

algebraically

Aut(A) first-order first-order

?

interdefinable bi-interpretable

End(A) positive existentially positive existentially

?

interdefinable bi-interpretable

Pol(A) primitive positive primitive positive

?

interdefinable bi-interpretable
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Questions

Can we reconstruct the topology of

an oligomorphic permutation group

an oligomorphic transformation monoid

an oligomorphic function clone

from its algebraic structure?

No!
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Reconstruction

A structure A has reconstruction if

Aut(A) ∼= Aut(B)⇒ Aut(A) ∼=T Aut(B).

A structure A has the small index property if every subgroup in
Aut(A) with countable index is open.

If A has the small index property, then every isomorphism

I : Aut(A)→ Aut(B)

is a homeomorphism.
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The small index property

Example (Hrushovski)

There is an ω-categorical structure without the small index
property.

Proof idea: We look at all finite sets with n-ary relations Rn
1 (x̄),

Rn
2 (x̄) that partition the n-tuples, for all n ∈ N. This gives us a

Fräıssé-class.

Let F′ = (F , (Rn
i )i ,n) be the Fräıssé-limit of this class.

Let En(x̄ , ȳ) :⇔ Rn
1 (x̄)↔ Rn

1 (ȳ), and F = (F , (En)n∈N).
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The small index property

We can think of Aut(F) acting on the equivalence classes of F.

This gives us Aut(F)/Aut(F′) ∼=T
∏

n∈N C2.

Thus Aut(F) has 22
ω

subgroups of index ≤ 2 but at most 2ω open
subgroups.

Hence F has not the small index property. �
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The small index property

Variant (Hrushovski)

For every separable profinite group H there are oligomorphic
permutation groups Φ and Σ, such that Σ/Φ ∼=T H.

Proof idea: Every profinite group can be embedded into∏
n∈N Sym(n).

Repeat the proof partitioning the n-tuples into n classes. �

Strategy:

Find two profinite groups that are isomorphic, but not topologically
isomorphic.
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A pathological profinite group

There is a separable profinite
group G with a finite F / G , such
that there is a complement E :

G = F × E

and every such E is dense in G .

H=G/F

F

E

π σ

G
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A pathological profinite group

The quotient homomorphism

π : G → H = G/F

has a left-inverse function σ, and
every such function is
non-continuous.

Thus G and F × H are
isomorphic, but not topologically
isomorphic.

H=G/F

F

E

π σ

G
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The example of Evans+Hewitt

Idea:

Reproduce the topological properties of G and F × H with
oligomorphic groups.

H and E are permutation groups H y X and H y X ∪ C

Take closed oligomorphic groups Σ, Φ on a set A, such that
Σ/Φ ∼=T H

Expand A with C :

The action of Σ on A ∪ C is not continuous.
The closure of Σ in Sym(A ∪ C ) gives us an oligomorphic Γ
with

Γ ∼= Σ× F

but not as topological groups!
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The example of Evans+Hewitt

Theorem (Evans+Hewitt)

Γ and Σ× F are isomorphic as abstract groups, but not as
topological groups.
Thus their canonical structures don’t have reconstruction!

We can adapt the proof for the endomorphism monoids.
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Endomorphism monoids

Let A be the canonical structure of Σ and Λ := End(A) = Emb(A).

Then the continuous homomorphism

I : Σ→ H

naturally extends to a continuous monoid-homomorphism

Ĩ : Λ→ H.

Again let Λ act on A ∪ C and let Ω be its closure.
Then Ω is oligomorphic and

Ω ∼= Λ× F

as monoids, but not as topological monoids!
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Then the continuous homomorphism

I : Σ→ H

naturally extends to a continuous monoid-homomorphism

Ĩ : Λ→ H.

Again let Λ act on A ∪ C and let Ω be its closure.
Then Ω is oligomorphic and

Ω ∼= Λ× F

as monoids, but not as topological monoids!
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Polymorphism clones

Transformation monoids can be viewed as function clones, by
adding projections and closing under composition.

The isomorphism Ω→ Λ× F naturally extends to a clone
isomorphism

Clo(Ω)→ Clo(Λ× F ).

But these clones are not topologically isomorphic, since Ω and
Λ× F are not.
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Polymorphism clones

Transformation monoids can be viewed as function clones, by
adding projections and closing under composition.

The isomorphism Ω→ Λ× F naturally extends to a clone
isomorphism

Clo(Ω)→ Clo(Λ× F ).

But these clones are not topologically isomorphic, since Ω and
Λ× F are not.
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Polymorphism clones

Transformation monoids can be viewed as function clones, by
adding projections and closing under composition.

The isomorphism Ω→ Λ× F naturally extends to a clone
isomorphism

Clo(Ω)→ Clo(Λ× F ).

But these clones are not topologically isomorphic, since Ω and
Λ× F are not.
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Thank you!


	-categorical structures
	Reconstruction
	A structure without reconstruction
	Endomorphism monoids
	Polymorphism clones

