ω -categorical structures	Reconstruction	A structure without reconstruction	Endomorphism monoids	Polymorphism clones

Endomorphisms of ω -categorical structures

Michael Kompatscher

Technische Universität Wien

17.04.2015

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

ω -categorical structures	Reconstruction	A structure without reconstruction	Endomorphism monoids O	OO
Content				

- 3 A structure without reconstruction
- Endomorphism monoids

ω -categorical structures	Reconstruction	A structure without reconstruction	Endomorphism monoids	Polymorphism clones
	1			

ω -categorical structures

A structure **A** is ω -categorical if its theory has up to isomorphism one countable model.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- The rational order $(\mathbb{Q}, <)$
 - \bullet < is a linear order,

ω -categoric	al struct	ures		
ω-categorical structures	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones

The rational order $(\mathbb{Q}, <)$

- \bullet < is a linear order,
- dense: $\forall x < y \ \exists z : x < z \land z < y$

ω -categorical structures	Reconstruction	A structure without reconstruction	Endomorphism monoids	Polymorphism clones
	1			

ω -categorical structures

A structure **A** is ω -categorical if its theory has up to isomorphism one countable model.

The rational order $(\mathbb{Q}, <)$

- < is a linear order,
- dense: $\forall x < y \ \exists z : x < z \land z < y$
- unbounded: $\forall x \exists y, z : y < x \land x < z$

(A.<)

(日)、

э

- The rational order $(\mathbb{Q}, <)$
 - < is a linear order,
 - dense: $\forall x < y \ \exists z : x < z \land z < y$

(0,<)

• unbounded: $\forall x \exists y, z : y < x \land x < z$

The rational order $(\mathbb{Q}, <)$

- < is a linear order,
- dense: $\forall x < y \ \exists z : x < z \land z < y$
- unbounded: $\forall x \exists y, z : y < x \land x < z$

(日)、

э

- The rational order $(\mathbb{Q}, <)$
 - < is a linear order,
 - dense: $\forall x < y \ \exists z : x < z \land z < y$

(0,<)

• unbounded: $\forall x \exists y, z : y < x \land x < z$

The rational order $(\mathbb{Q}, <)$

- < is a linear order,
- dense: $\forall x < y \ \exists z : x < z \land z < y$
- unbounded: $\forall x \exists y, z : y < x \land x < z$

- The rational order $(\mathbb{Q}, <)$
 - < is a linear order,
 - dense: $\forall x < y \ \exists z : x < z \land z < y$
 - unbounded: $\forall x \exists y, z : y < x \land x < z$

The rational order $(\mathbb{Q}, <)$

- < is a linear order,
- dense: $\forall x < y \ \exists z : x < z \land z < y$
- unbounded: $\forall x \exists y, z : y < x \land x < z$

A countable structure **A** is ω -categorical iff its automorphism group is an oligomorphic permutation group: Aut(**A**) has finitely many orbits on A^n , for all $n \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A countable structure **A** is ω -categorical iff its automorphism group is an oligomorphic permutation group: Aut(**A**) has finitely many orbits on A^n , for all $n \in \mathbb{N}$.

Union of orbits = definable relations in A

A countable structure **A** is ω -categorical iff its automorphism group is an oligomorphic permutation group: Aut(**A**) has finitely many orbits on A^n , for all $n \in \mathbb{N}$.

Union of orbits = definable relations in A

Theorem (Ryll-Nardzewski)

Let **A** and **B** be two ω -categorical structures on the same domain. Then Aut(**A**) = Aut(**B**) as permutation groups iff **A** and **B** are first-order interdefinable.

ω-categorical structures 0●0000	Reconstruction	A structure without reconstruction	Endomorphism monoids O	Polymorphism clones
Interpretation	on			

How to compare structures A, B with different domains?

How to compare structures A, B with different domains?

An interpretation is a function $I : \mathbf{A}^n \to \mathbf{B}$, s.t. every relation in **B** has a definable preimage.

Interpretati	on			
ω-categorical structures 0●0000	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones

How to compare structures A, B with different domains?

An interpretation is a function $I : \mathbf{A}^n \to \mathbf{B}$, s.t. every relation in **B** has a definable preimage.

$\mathbb Z$ and $\mathbb Q$

Let
$$\mathbb{Z} = (\mathbb{Z}, +, 0, -, 1, \cdot)$$
 and $\mathbb{Q} = (\mathbb{Q}, +, 0, -, 1, \cdot, ^{-1})$.

Interpretati	on			
ω-categorical structures 0●0000	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones

How to compare structures A, B with different domains?

An interpretation is a function $I : \mathbf{A}^n \to \mathbf{B}$, s.t. every relation in **B** has a definable preimage.

$\mathbb Z$ and $\mathbb Q$

Let
$$\mathbb{Z} = (\mathbb{Z}, +, 0, -, 1, \cdot)$$
 and $\mathbb{Q} = (\mathbb{Q}, +, 0, -, 1, \cdot, ^{-1})$
The partial map:

$$I: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$$
$$(x, y) \mapsto \frac{x}{y}$$

is an interpretation.

Permutation groups are topological groups with the topology of pointwise convergence:

Permutation groups are topological groups with the topology of pointwise convergence:

$$g_n \rightarrow g \text{ in Sym}(A) \Leftrightarrow \forall \bar{a} \in A : g_k(\bar{a}) = g(\bar{a})$$

for sufficiently large k.

Permutation groups are topological groups with the topology of pointwise convergence:

$$g_n \rightarrow g$$
 in Sym $(A) \Leftrightarrow \forall \bar{a} \in A : g_k(\bar{a}) = g(\bar{a})$

for sufficiently large k.

Theorem (Ahlbrandt+Ziegler)

Let **A** and **B** be two ω -categorical structures. Then Aut(**A**) \cong^{T} Aut(**B**) iff **A** and **B** are first-order bi-interpretable.

ω-categorical structures 000●00	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones
Questions				

• How much information about **A** lies in the *algebraic* structure of Aut(**A**)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ω -categorical structures 000000	Reconstruction	A structure without reconstruction	Endomorphism monoids O	Polymorphism clones
Questions				

• How much information about **A** lies in the *algebraic* structure of Aut(**A**)?

• Can we "reconstruct" **A** from the algebraic structure of Aut(**A**)?

ω-categorical structures 000●00	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones
Questions				

- How much information about **A** lies in the *algebraic* structure of Aut(**A**)?
- Can we "reconstruct" **A** from the algebraic structure of Aut(**A**)?
- Can we reconstruct the topology of a closed oligomorphic permutation group from its algebraic structure?

	····		0	00
versions of	Interden	nadility		

More refined notion of interdefinability with:

More refined notion of interdefinability with:

• End(A): The monoid of endomorphisms

More refined notion of interdefinability with:

- End(A): The monoid of endomorphisms
- Pol(A): The polymorphism clone

Versions of	interdefi	nability		
ω-categorical structures 0000●0	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones

More refined notion of interdefinability with:

- End(A): The monoid of endomorphisms
- Pol(A): The polymorphism clone

	acting on A	topologically
Aut(A)	first-order	first-order
	interdefinable	bi-interpretable
$End(\mathbf{A})$	positive existentially	positive existentially
	interdefinable	bi-interpretable
Pol(A)	primitive positive	primitive positive
	interdefinable	bi-interpretable

Versions of	interdefi			
ω-categorical structures 0000€0	Reconstruction	A structure without reconstruction	O O	Polymorphism clones

More refined notion of interdefinability with:

- End(A): The monoid of endomorphisms
- Pol(A): The polymorphism clone

	acting on A	topologically	algebraically
Aut(A)	first-order	first-order	?
	interdefinable	bi-interpretable	
End(A)	positive existentially	positive existentially	?
	interdefinable	bi-interpretable	
Pol(A)	primitive positive	primitive positive	?
	interdefinable	bi-interpretable	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ω -categorical structures	Reconstruction	A structure without reconstruction	Endomorphism monoids	Polymorphism clones
00000				

Questions

Can we reconstruct the topology of

- an oligomorphic permutation group
- an oligomorphic transformation monoid
- an oligomorphic function clone

from its algebraic structure?

ω -categorical structures	Reconstruction	A structure without reconstruction	Endomorphism monoids	Polymorphism clones
00000				

Can we reconstruct the topology of

- an oligomorphic permutation group
- an oligomorphic transformation monoid
- an oligomorphic function clone

from its algebraic structure?

No!

ω -categorical structures 000000	Reconstruction ●00	A structure without reconstruction	Endomorphism monoids O	Polymorphism clones
Reconstruct	ion			

A structure **A** has reconstruction if

ω-categorical structures 000000	Reconstruction ●00	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones
Reconstruct	tion			

A structure $\boldsymbol{\mathsf{A}}$ has reconstruction if

$$\operatorname{Aut}(\mathbf{A}) \cong \operatorname{Aut}(\mathbf{B}) \Rightarrow \operatorname{Aut}(\mathbf{A}) \cong^T \operatorname{Aut}(\mathbf{B}).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

ω -categorical structures 000000	Reconstruction ●00	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones
Reconstruct	tion			

A structure **A** has reconstruction if

$$\operatorname{Aut}(\mathbf{A}) \cong \operatorname{Aut}(\mathbf{B}) \Rightarrow \operatorname{Aut}(\mathbf{A}) \cong^{T} \operatorname{Aut}(\mathbf{B}).$$

A structure \mathbf{A} has the small index property if every subgroup in Aut(\mathbf{A}) with countable index is open.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ω-categorical structures 000000	Reconstruction ●00	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones
Reconstruct	tion			

A structure **A** has reconstruction if

$$\operatorname{Aut}(\mathbf{A}) \cong \operatorname{Aut}(\mathbf{B}) \Rightarrow \operatorname{Aut}(\mathbf{A}) \cong^T \operatorname{Aut}(\mathbf{B}).$$

A structure \mathbf{A} has the small index property if every subgroup in Aut(\mathbf{A}) with countable index is open.

If A has the small index property, then every isomorphism

$$I : Aut(\mathbf{A}) \rightarrow Aut(\mathbf{B})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is a homeomorphism.

The small index property

Example (Hrushovski)

There is an ω -categorical structure without the small index property.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ω-categorical structures Reconstruction A structure without reconstruction Endomorphism monoids Polymorphism clones 00000 00 00 00 00 00

The small index property

Example (Hrushovski)

There is an ω -categorical structure without the small index property.

Proof idea: We look at all finite sets with *n*-ary relations $R_1^n(\bar{x})$, $R_2^n(\bar{x})$ that partition the *n*-tuples, for all $n \in \mathbb{N}$. This gives us a Fraïssé-class.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The small index property

Example (Hrushovski)

There is an ω -categorical structure without the small index property.

Proof idea: We look at all finite sets with *n*-ary relations $R_1^n(\bar{x})$, $R_2^n(\bar{x})$ that partition the *n*-tuples, for all $n \in \mathbb{N}$. This gives us a Fraïssé-class.

Let $\mathbf{F}' = (F, (R_i^n)_{i,n})$ be the Fraissé-limit of this class.

The small index property

Example (Hrushovski)

There is an ω -categorical structure without the small index property.

Proof idea: We look at all finite sets with *n*-ary relations $R_1^n(\bar{x})$, $R_2^n(\bar{x})$ that partition the *n*-tuples, for all $n \in \mathbb{N}$. This gives us a Fraïssé-class.

Let $\mathbf{F}' = (F, (R_i^n)_{i,n})$ be the Fraïssé-limit of this class.

Let $E^n(\bar{x}, \bar{y}) :\Leftrightarrow R_1^n(\bar{x}) \leftrightarrow R_1^n(\bar{y})$, and $\mathbf{F} = (F, (E_n)_{n \in \mathbb{N}})$.

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This gives us $\operatorname{Aut}(\mathbf{F})/\operatorname{Aut}(\mathbf{F}') \cong^{\mathcal{T}} \prod_{n \in \mathbb{N}} C_2$.

This gives us $\operatorname{Aut}(\mathbf{F})/\operatorname{Aut}(\mathbf{F}') \cong^{\mathcal{T}} \prod_{n \in \mathbb{N}} C_2$.

Thus Aut(**F**) has $2^{2^{\omega}}$ subgroups of index ≤ 2 but at most 2^{ω} open subgroups.

This gives us $\operatorname{Aut}(\mathbf{F})/\operatorname{Aut}(\mathbf{F}') \cong^{\mathcal{T}} \prod_{n \in \mathbb{N}} C_2$.

Thus Aut(**F**) has $2^{2^{\omega}}$ subgroups of index ≤ 2 but at most 2^{ω} open subgroups.

Hence F has not the small index property.

ω-categorical structures 000000	Reconstruction	A structure without reconstruction •0000	Endomorphism monoids 0	Polymorphism clones
The small i	ndex pro	perty		

Variant (Hrushovski)

For every separable profinite group H there are oligomorphic permutation groups Φ and Σ , such that $\Sigma/\Phi \cong^{T} H$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ω-categorical structures 000000	Reconstruction	A structure without reconstruction	Endomorphism monoids O	Polymorphism clones
The small in	ndex pro	perty		

Variant (Hrushovski)

For every separable profinite group H there are oligomorphic permutation groups Φ and Σ , such that $\Sigma/\Phi \cong^{T} H$.

Proof idea: Every profinite group can be embedded into $\prod_{n \in \mathbb{N}} \text{Sym}(n)$.

Repeat the proof partitioning the n-tuples into n classes.

ω -categorical structures	Reconstruction	A structure without reconstruction •0000	Endomorphism monoids 0	Polymorphism clones
The small in	ndex pro	perty		

Variant (Hrushovski)

For every separable profinite group H there are oligomorphic permutation groups Φ and Σ , such that $\Sigma/\Phi \cong^T H$.

Proof idea: Every profinite group can be embedded into $\prod_{n \in \mathbb{N}} \text{Sym}(n)$.

Repeat the proof partitioning the n-tuples into n classes.

Strategy:

Find two profinite groups that are isomorphic, but not topologically isomorphic.

 ω-categorical structures
 Reconstruction
 A structure without reconstruction
 Endomorphism monoids
 Polymorphism clones

 00000
 000
 0
 0
 0
 0

A pathological profinite group

There is a separable profinite group G with a finite $F \triangleleft G$, such that there is a complement E:

$$G = F \times E$$

and every such E is dense in G.

 ω-categorical structures
 Reconstruction
 A structure without reconstruction
 Endomorphism monoids
 Polymorphism clones

 A pathological profinite group

There is a separable profinite group G with a finite $F \triangleleft G$, such that there is a complement E:

$$G = F \times E$$

and every such E is dense in G.

 ω -categorical structures Reconstruction 0 Δ structure without reconstruction 0 Endomorphism monoids 0 Polymorphism clones 0

A pathological profinite group

H=G/F

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ 目 ▼ の < ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

ω -categorical structures	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones
The exampl	e of Eva	ns+Hewitt		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea:

Reproduce the topological properties of G and $F \times H$ with oligomorphic groups.

ω -categorical structures 000000	Reconstruction	A structure without reconstruction	Endomorphism monoids O	Polymorphism clones			
The exampl	The example of Evans+Hewitt						

Reproduce the topological properties of G and $F \times H$ with oligomorphic groups.

• *H* and *E* are permutation groups $H \curvearrowright X$ and $H \curvearrowright X \cup C$

ω-categorical structures 000000	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones
The exampl	le of Eva	ns+Hewitt		

Reproduce the topological properties of G and $F \times H$ with oligomorphic groups.

- H and E are permutation groups $H \curvearrowright X$ and $H \curvearrowright X \cup C$
- Take closed oligomorphic groups Σ , Φ on a set A, such that $\Sigma/\Phi \cong^T H$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ω-categorical structures 000000	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones
The exampl	e of Eva	ns+Hewitt		

Reproduce the topological properties of G and $F \times H$ with oligomorphic groups.

- H and E are permutation groups $H \curvearrowright X$ and $H \curvearrowright X \cup C$
- Take closed oligomorphic groups Σ , Φ on a set A, such that $\Sigma/\Phi \cong^T H$

• Expand A with C:

ω-categorical structures 000000	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones
The examp	le of Eva	ns+Hewitt		

Reproduce the topological properties of G and $F \times H$ with oligomorphic groups.

- H and E are permutation groups $H \curvearrowright X$ and $H \curvearrowright X \cup C$
- Take closed oligomorphic groups Σ , Φ on a set A, such that $\Sigma/\Phi \cong^T H$

- Expand A with C:
 - The action of Σ on $A \cup C$ is not continuous.

ω-categorical structures 000000	Reconstruction	A structure without reconstruction	Endomorphism monoids 0	Polymorphism clones
The examp	e of Eva	ns+Hewitt		

Reproduce the topological properties of G and $F \times H$ with oligomorphic groups.

- H and E are permutation groups $H \curvearrowright X$ and $H \curvearrowright X \cup C$
- Take closed oligomorphic groups Σ , Φ on a set A, such that $\Sigma/\Phi \cong^T H$
- Expand A with C:
 - The action of Σ on $A \cup C$ is not continuous.
 - The closure of Σ in $\mathsf{Sym}(A\cup C)$ gives us an oligomorphic Γ with

$$\Gamma\cong\Sigma\times F$$

but not as topological groups!

 ω-categorical structures
 Reconstruction
 A structure without reconstruction
 Endomorphism monoids
 F

 000000
 000
 0000
 0
 0
 0
 0

The example of Evans+Hewitt

Theorem (Evans+Hewitt)

 Γ and $\Sigma \times F$ are isomorphic as abstract groups, but not as topological groups. Thus their canonical structures don't have reconstruction!

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 ω-categorical structures
 Reconstruction
 A structure without reconstruction
 Endomorphism monoids
 P

 000000
 000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t

The example of Evans+Hewitt

Theorem (Evans+Hewitt)

 Γ and $\Sigma \times F$ are isomorphic as abstract groups, but not as topological groups. Thus their canonical structures don't have reconstruction!

We can adapt the proof for the endomorphism monoids.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let **A** be the canonical structure of Σ and $\Lambda := \text{End}(\mathbf{A}) = \text{Emb}(\mathbf{A})$.

Let **A** be the canonical structure of Σ and $\Lambda := End(\mathbf{A}) = Emb(\mathbf{A})$. Then the continuous homomorphism

$$I:\Sigma \to H$$

naturally extends to a continuous monoid-homomorphism

$$\tilde{I}: \Lambda \to H.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let **A** be the canonical structure of Σ and $\Lambda := \text{End}(\mathbf{A}) = \text{Emb}(\mathbf{A})$. Then the continuous homomorphism

$$I:\Sigma \to H$$

naturally extends to a continuous monoid-homomorphism

 $\tilde{I}: \Lambda \to H.$

Again let Λ act on $A \cup C$ and let Ω be its closure.

Let **A** be the canonical structure of Σ and $\Lambda := End(\mathbf{A}) = Emb(\mathbf{A})$. Then the continuous homomorphism

$$I:\Sigma \to H$$

naturally extends to a continuous monoid-homomorphism

 $\tilde{I}: \Lambda \to H.$

Again let Λ act on $A \cup C$ and let Ω be its closure. Then Ω is oligomorphic and

$$\Omega \cong \Lambda \times F$$

as monoids, but not as topological monoids!

Transformation monoids can be viewed as function clones, by adding projections and closing under composition.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Transformation monoids can be viewed as function clones, by adding projections and closing under composition.

The isomorphism $\Omega \to \Lambda \times F$ naturally extends to a clone isomorphism

 $Clo(\Omega) \rightarrow Clo(\Lambda \times F).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Transformation monoids can be viewed as function clones, by adding projections and closing under composition.

The isomorphism $\Omega \to \Lambda \times F$ naturally extends to a clone isomorphism

 $Clo(\Omega) \rightarrow Clo(\Lambda \times F).$

But these clones are not topologically isomorphic, since Ω and $\Lambda \times F$ are not.

ω -categorical structures	Reconstruction	A structure without reconstruction	Endomorphism monoids	Polymorphism clones
				0•

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you!