CC-circuits and the expressive power of nilpotent algebras

Michael Kompatscher
CU Prague

01/19/2020
Birkhoff seminar, CU Boulder

Circuits in Universal Algebra:

Why?

Circuits

Definition

A circuit is finite directed acyclic graph, where every vertex ('gate') is labelled by an operation of arity corresponding to its in-degree ('fan-in').

- natural model of computation
- usually studied for Boolean values
- Circuit over an algebra $\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right)$: labelled by basic operations f_{i}

Circuits over algebras

Circuits over an algebra $\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right)$ encode the term operations over A

Circuits over algebras

Circuits over an algebra $\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right)$ encode the term operations over A - and they are good at it!

Circuits over algebras

Circuits over an algebra $\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right)$ encode the term operations over A - and they are good at it!

Example

$\ln \left(A_{4}, \cdot,{ }^{-1}\right)$, the operations
$t_{n}\left(x_{1}, \ldots, x_{n}\right)=\left[\cdots\left[\left[x_{1}, x_{2}\right], x_{3}\right], \ldots, x_{n}\right]$ can be represented by circuits linear in n, corresponds to terms exponential in n.

© Idziak, Krzaczkowski

Circuits over algebras

Circuits over an algebra $\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right)$ encode the term operations over A - and they are good at it!

Example

In $\left(A_{4}, \cdot,{ }^{-1}\right)$, the operations
$t_{n}\left(x_{1}, \ldots, x_{n}\right)=\left[\cdots\left[\left[x_{1}, x_{2}\right], x_{3}\right], \ldots, x_{n}\right]$ can be represented by circuits linear in n, corresponds to terms exponential in n.

Encoding by circuits is

- more compact than encoding by terms
- stable under term equivalence

\rightsquigarrow use in algorithmic problems.
(c) Idziak, Krzaczkowski

Outline of this talk:

1. Circuit complexity and CC-circuits
2. Circuits over $\mathbf{A} \leftrightarrow C$ C-circuits for finite nilpotent \mathbf{A} from CM varieties
3. Consequences in circuit complexity
4. Consequences for solving equations and checking identities in nilpotent algebras.
1) CC-circuits

Circuit complexity

Boolean circuits can be used to measure the complexity of $L \subseteq\{0,1\}^{*}$.

Basic idea

We say a family $\left(C_{n}\right)_{n \in \mathbb{N}}$ computes $L \subseteq\{0,1\}^{*}$ if $C_{n}\left(x_{1}, \ldots, x_{n}\right)=1 \leftrightarrow\left(x_{1}, \ldots, x_{n}\right) \in L \cap\{0,1\}^{n}$. The complexity is measured by the size/depth of C_{n}.

Circuit complexity

Boolean circuits can be used to measure the complexity of $L \subseteq\{0,1\}^{*}$.

Basic idea

We say a family $\left(C_{n}\right)_{n \in \mathbb{N}}$ computes $L \subseteq\{0,1\}^{*}$ if $C_{n}\left(x_{1}, \ldots, x_{n}\right)=1 \leftrightarrow\left(x_{1}, \ldots, x_{n}\right) \in L \cap\{0,1\}^{n}$. The complexity is measured by the size/depth of C_{n}.

Examples

Circuit complexity

Boolean circuits can be used to measure the complexity of $L \subseteq\{0,1\}^{*}$.

Basic idea

We say a family $\left(C_{n}\right)_{n \in \mathbb{N}}$ computes $L \subseteq\{0,1\}^{*}$ if $C_{n}\left(x_{1}, \ldots, x_{n}\right)=1 \leftrightarrow\left(x_{1}, \ldots, x_{n}\right) \in L \cap\{0,1\}^{n}$. The complexity is measured by the size/depth of C_{n}.

Examples

- P/poly: Circuits over
$(\{0,1\}, \wedge, \vee, \neg)$ of polynomial
size

Circuit complexity

Boolean circuits can be used to measure the complexity of $L \subseteq\{0,1\}^{*}$.

Basic idea

We say a family $\left(C_{n}\right)_{n \in \mathbb{N}}$ computes $L \subseteq\{0,1\}^{*}$ if $C_{n}\left(x_{1}, \ldots, x_{n}\right)=1 \leftrightarrow\left(x_{1}, \ldots, x_{n}\right) \in L \cap\{0,1\}^{n}$. The complexity is measured by the size/depth of C_{n}.

Examples

- P/poly: Circuits over
$(\{0,1\}, \wedge, \vee, \neg)$ of polynomial
size
- NC: Circuits over
$(\{0,1\}, \wedge, \vee, \neg)$ of polynomial
size and depth $\leq \mathcal{O}\left(\log ^{k}(n)\right)$

Circuit complexity

Boolean circuits can be used to measure the complexity of $L \subseteq\{0,1\}^{*}$.

Basic idea

We say a family $\left(C_{n}\right)_{n \in \mathbb{N}}$ computes $L \subseteq\{0,1\}^{*}$ if $C_{n}\left(x_{1}, \ldots, x_{n}\right)=1 \leftrightarrow\left(x_{1}, \ldots, x_{n}\right) \in L \cap\{0,1\}^{n}$. The complexity is measured by the size/depth of C_{n}.

Examples

- P/poly: Circuits over $(\{0,1\}, \wedge, \vee, \neg)$ of polynomial size
- NC: Circuits over ($\{0,1\}, \wedge, \vee, \neg$) of polynomial size and depth $\leq \mathcal{O}\left(\log ^{k}(n)\right)$
- $A C^{0}$: polynomial size, constant depth, but arbitrary fan-in

A result about $A C^{0}$-circuits

Theorem (Furst, Saxe, Sipser '84)
The parity language $\left\{x \in\{0,1\}^{*}: \sum_{i=1}^{n} x_{i}=0 \bmod 2\right\}$ is not in $A C^{0}$.

A result about $A C^{0}$-circuits

Theorem (Furst, Saxe, Sipser '84)
The parity language $\left\{x \in\{0,1\}^{*}: \sum_{i=1}^{n} x_{i}=0 \bmod 2\right\}$ is not in $A C^{0}$.
There exists even a strict lower bound!
Theorem (Håstad '87)
Circuits of depth d with \{AND, OR, NEG\}-gates need size $\Omega\left(e^{n^{\frac{1}{d-1}}}\right)$ to compute parity.

A result about $A C^{0}$-circuits

Theorem (Furst, Saxe, Sipser '84)
The parity language $\left\{x \in\{0,1\}^{*}: \sum_{i=1}^{n} x_{i}=0 \bmod 2\right\}$ is not in $A C^{0}$.
There exists even a strict lower bound!
Theorem (Håstad '87)
Circuits of depth d with \{AND, OR, NEG\}-gates need size $\Omega\left(e^{n^{\frac{1}{d-1}}}\right)$ to compute parity.

In essence: Logical gates are bad at counting.

A result about $A C^{0}$-circuits

Theorem (Furst, Saxe, Sipser '84)
The parity language $\left\{x \in\{0,1\}^{*}: \sum_{i=1}^{n} x_{i}=0 \bmod 2\right\}$ is not in $A C^{0}$.
There exists even a strict lower bound!
Theorem (Håstad '87)
Circuits of depth d with \{AND, OR, NEG\}-gates need size $\Omega\left(e^{n^{\frac{1}{d-1}}}\right)$ to compute parity.

In essence: Logical gates are bad at counting.
Question:

- Are vice-versa counting gates bad at logic?
- What are circuits with 'counting gates'?

CC-circuits

A CC[m]-circuit is a (Boolean) circuit, whose gates are MOD_{m}-gates:

$$
\operatorname{MOD}_{m}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } \sum_{i} x_{i} \equiv 0 \quad \bmod m \\
0 \text { else } .
\end{array}\right.
$$

CC-circuits

A $C C[m]$-circuit is a (Boolean) circuit, whose gates are MOD_{m}-gates:

$$
\operatorname{MOD}_{m}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } \sum_{i} x_{i} \equiv 0 \bmod m \\
0 \text { else } .
\end{array}\right.
$$

CC-circuits

A CC[m]-circuit is a (Boolean) circuit, whose gates are MOD_{m}-gates:

$$
\operatorname{MOD}_{m}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } \sum_{i} x_{i} \equiv 0 \quad \bmod m \\
0 \text { else } .
\end{array}\right.
$$

CC-circuits

A $C C[m]$-circuit is a (Boolean) circuit, whose gates are MOD_{m}-gates:

$$
\operatorname{MOD}_{m}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } \sum_{i} x_{i} \equiv 0 \bmod m \\
0 \text { else. }
\end{array}\right.
$$

- Gates are of arbitrary fan-in

CC-circuits

A $C C[m]$-circuit is a (Boolean) circuit, whose gates are MOD_{m}-gates:

$$
\operatorname{MOD}_{m}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } \sum_{i} x_{i} \equiv 0 \bmod m \\
0 \text { else } .
\end{array}\right.
$$

- Gates are of arbitrary fan-in
- Depth $=$ longest path

CC-circuits

A $C C[m]$-circuit is a (Boolean) circuit, whose gates are MOD_{m}-gates:

$$
\operatorname{MOD}_{m}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } \sum_{i} x_{i} \equiv 0 \bmod m \\
0 \text { else } .
\end{array}\right.
$$

- Gates are of arbitrary fan-in
- Depth $=$ longest path
- $C C^{0}[m]$: languages accepted by constant depth polynomial size $C C[m]$-circuits.

CC-circuits

A $C C[m]$-circuit is a (Boolean) circuit, whose gates are MOD_{m}-gates:

$$
\operatorname{MOD}_{m}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } \sum_{i} x_{i} \equiv 0 \bmod m \\
0 \text { else } .
\end{array}\right.
$$

- Gates are of arbitrary fan-in
- Depth $=$ longest path
- $C C^{0}[m]$: languages accepted by constant depth polynomial size $C C[m]$-circuits.
- $C C^{0}=\bigcup_{m} C C^{0}[m]$

A conjecture about CC-circuits

Conjecture (McKenzie*, Péladeau, Therién...)
$\forall m, d$: $C C[m]$-circuits of depth d need size $\Omega\left(e^{n}\right)$ to compute $\operatorname{AND}\left(x_{1}, \ldots, x_{n}\right)$.
*not the one you are thinking of!

A conjecture about CC-circuits

Conjecture (McKenzie*, Péladeau, Therién...)
$\forall m, d$: $C C[m]$-circuits of depth d need size $\Omega\left(e^{n}\right)$ to compute $\operatorname{AND}\left(x_{1}, \ldots, x_{n}\right)$.

Weak version of conjecture: AND is not in $C C^{0}$.
*not the one you are thinking of!

A conjecture about CC-circuits

Conjecture (McKenzie*, Péladeau, Therién...)
$\forall m, d$: $C C[m]$-circuits of depth d need size $\Omega\left(e^{n}\right)$ to compute $\operatorname{AND}\left(x_{1}, \ldots, x_{n}\right)$.

Weak version of conjecture: AND is not in $C C^{0}$.

What is known?

- For p prime, $C C\left[p^{k}\right]$-circuits of depth d cannot compute AND of big arity (BST '90)
*not the one you are thinking of!

A conjecture about CC-circuits

Conjecture (McKenzie*, Péladeau, Therién...)

$\forall m, d: C C[m]$-circuits of depth d need size $\Omega\left(e^{n}\right)$ to compute $\operatorname{AND}\left(x_{1}, \ldots, x_{n}\right)$.

Weak version of conjecture: AND is not in $C C^{0}$.

What is known?

- For p prime, $C C\left[p^{k}\right]$-circuits of depth d cannot compute AND of big arity (BST '90)
- Otherwise they compute all functions (for $d \geq 2$),
*not the one you are thinking of!

A conjecture about CC-circuits

Conjecture (McKenzie*, Péladeau, Therién...)

$\forall m, d$: $C C[m]$-circuits of depth d need size $\Omega\left(e^{n}\right)$ to compute $\operatorname{AND}\left(x_{1}, \ldots, x_{n}\right)$.

Weak version of conjecture: AND is not in $C C^{0}$.

What is known?

- For p prime, $C C\left[p^{k}\right]$-circuits of depth d cannot compute AND of big arity (BST '90)
- Otherwise they compute all functions (for $d \geq 2$),
- true for $m=p q, d=2$ (BST '90)
*not the one you are thinking of!

A conjecture about CC-circuits

Conjecture (McKenzie*, Péladeau, Therién...)

$\forall m, d: C C[m]$-circuits of depth d need size $\Omega\left(e^{n}\right)$ to compute $\operatorname{AND}\left(x_{1}, \ldots, x_{n}\right)$.

Weak version of conjecture: AND is not in $C C^{0}$.

What is known?

- For p prime, $C C\left[p^{k}\right]$-circuits of depth d cannot compute AND of big arity (BST '90)
- Otherwise they compute all functions (for $d \geq 2$),
- true for $m=p q, d=2$ (BST '90)
- open for $m=6, d=3$
*not the one you are thinking of!

A conjecture about CC-circuits

Conjecture (McKenzie*, Péladeau, Therién...)

$\forall m, d$: $C C[m]$-circuits of depth d need size $\Omega\left(e^{n}\right)$ to compute $\operatorname{AND}\left(x_{1}, \ldots, x_{n}\right)$.

Weak version of conjecture: AND is not in $C C^{0}$.

What is known?

- For p prime, $C C\left[p^{k}\right]$-circuits of depth d cannot compute AND of big arity (BST '90)
- Otherwise they compute all functions (for $d \geq 2$),
- true for $m=p q, d=2$ (BST '90)
- open for $m=6, d=3$
- best known lower bounds in general are super-linear (CGPT '06)
*not the one you are thinking of!

Beyond Boolean

How about \mathbb{Z}_{m}-valued variants of $C C[m]$-circuits?

Beyond Boolean

How about \mathbb{Z}_{m}-valued variants of $C C[m]$-circuits?
Definition $\mathrm{CC}^{+}[\mathrm{m}]$-circuits:

- consist of MOD_{m}-gates and +-gates
- evaluated over \mathbb{Z}_{m}, not $\{0,1\}$

Beyond Boolean

How about \mathbb{Z}_{m}-valued variants of $C C[m]$-circuits?
Definition $\mathrm{CC}^{+}[m]$-circuits:

- consist of MOD_{m}-gates and +-gates
- evaluated over \mathbb{Z}_{m}, not $\{0,1\}$

Definition

An operation f is called (0 -) absorbing if $f\left(0, x_{2}, \ldots, x_{n}\right) \approx f\left(x_{1}, 0, x_{2}, \ldots, x_{n}\right) \approx \cdots \approx f\left(x_{1}, \ldots, x_{n-1}, 0\right) \approx 0$.

Beyond Boolean

How about \mathbb{Z}_{m}-valued variants of $C C[m]$-circuits?
Definition $\mathrm{CC}^{+}[m]$-circuits:

- consist of MOD_{m}-gates and +-gates
- evaluated over \mathbb{Z}_{m}, not $\{0,1\}$

Definition

An operation f is called (0 -) absorbing if
$f\left(0, x_{2}, \ldots, x_{n}\right) \approx f\left(x_{1}, 0, x_{2}, \ldots, x_{n}\right) \approx \cdots \approx f\left(x_{1}, \ldots, x_{n-1}, 0\right) \approx 0$.
Lemma (MK '19)

$C C^{+}[m]$-circuit		$C C[m]$-circuit
non-trivial absorbing, depth d	\rightarrow	computing AND, depth d
non-trivial absorbing, depth $d+1$	\leftarrow	computing AND, depth d

\rightarrow.. linear time computation
2) Nilpotent algebras

The structure of nilpotent algebras

$\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$ finite algebra

The structure of nilpotent algebras

$\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$ finite algebra
Nilpotency of \mathbf{A} is

The structure of nilpotent algebras

$\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$ finite algebra
Nilpotency of \mathbf{A} is

- in general defined by the term condition commutator
$\left[\cdots\left[1_{A}, 1_{A}\right], \ldots 1_{A}\right]=0_{A}$

The structure of nilpotent algebras

$\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$ finite algebra
Nilpotency of \mathbf{A} is

- in general defined by the term condition commutator $\left[\cdots\left[1_{A}, 1_{A}\right], \ldots 1_{A}\right]=0_{A}$
in congruence modular varieties (Freese, McKenzie*):
*Yes, that's him!

The structure of nilpotent algebras

$\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$ finite algebra
Nilpotency of \mathbf{A} is

- in general defined by the term condition commutator $\left[\cdots\left[1_{A}, 1_{A}\right], \ldots 1_{A}\right]=0_{A}$
in congruence modular varieties (Freese, McKenzie*):
- A is Abelian \Leftrightarrow polynomially equivalent to a module
*Yes, that's him!

The structure of nilpotent algebras

$\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$ finite algebra
Nilpotency of \mathbf{A} is

- in general defined by the term condition commutator
$\left[\cdots\left[1_{A}, 1_{A}\right], \ldots 1_{A}\right]=0_{A}$
in congruence modular varieties (Freese, McKenzie*):
- \mathbf{A} is \mathbf{A} belian \Leftrightarrow polynomially equivalent to a module
- A is n-nilpotent $\Leftrightarrow \exists \mathbf{L}$ Abelian, \mathbf{U} is $(n-1)$-nilpotent, $A=L \times U$:
*Yes, that's him!

The structure of nilpotent algebras

$\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$ finite algebra
Nilpotency of \mathbf{A} is

- in general defined by the term condition commutator

$$
\left[\cdots\left[1_{A}, 1_{A}\right], \ldots 1_{A}\right]=0_{A}
$$

in congruence modular varieties (Freese, McKenzie*):

- A is Abelian \Leftrightarrow polynomially equivalent to a module
- A is n-nilpotent $\Leftrightarrow \exists \mathbf{L}$ Abelian, \mathbf{U} is ($n-1$)-nilpotent, $A=L \times U$:
$f^{\mathbf{A}}\left(\left(I_{1}, u_{1}\right), \ldots,\left(I_{n}, u_{n}\right)\right)=\left(f^{\mathbf{L}}\left(I_{1}, \ldots, I_{n}\right)+\hat{f}\left(u_{1}, \ldots, u_{n}\right), f^{\mathbf{U}}\left(u_{1}, \ldots, u_{n}\right)\right)$, for all basic operations.
*Yes, that's him!

The structure of nilpotent algebras

$\mathbf{A}=\left(A ; f_{1}, \ldots, f_{k}\right)$ finite algebra
Nilpotency of \mathbf{A} is

- in general defined by the term condition commutator

$$
\left[\cdots\left[1_{A}, 1_{A}\right], \ldots 1_{A}\right]=0_{A}
$$

in congruence modular varieties (Freese, McKenzie*):

- A is Abelian \Leftrightarrow polynomially equivalent to a module
- A is n-nilpotent $\Leftrightarrow \exists \mathbf{L}$ Abelian, \mathbf{U} is $(n-1)$-nilpotent, $A=L \times U$:
$f^{\mathbf{A}}\left(\left(I_{1}, u_{1}\right), \ldots,\left(I_{n}, u_{n}\right)\right)=\left(f^{\mathrm{L}}\left(I_{1}, \ldots, I_{n}\right)+\hat{f}\left(u_{1}, \ldots, u_{n}\right), f^{\mathbf{U}}\left(u_{1}, \ldots, u_{n}\right)\right)$, for all basic operations.

Also true for polynomial operations of \mathbf{A}
*Yes, that's him!

Encoding CC^{+}-circuits in nilpotent algebras

$C C^{+}[m]$-circuits of bounded depth can be encoded in a nilpotent algebra in the following sense:

Encoding CC^{+}-circuits in nilpotent algebras

$C C^{+}[m]$-circuits of bounded depth can be encoded in a nilpotent algebra in the following sense:

Proposition (MK '19)

$\forall m, d \in \mathbb{N} \exists(d+1)$-nilpotent algebra \mathbf{B}, s.t.

- B contains the group $(B,+)=\mathbb{Z}_{m}^{d+1}$
- for every $C C[m]^{+}$-circuit C of depth d,
\exists circuit C^{\prime} over \mathbf{B} with

$$
C^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\left(C\left(\pi_{d+1}\left(x_{1}\right), \ldots, \pi_{d+1}\left(x_{n}\right)\right), 0, \ldots, 0\right)
$$

Encoding CC^{+}-circuits in nilpotent algebras

$C C^{+}[m]$-circuits of bounded depth can be encoded in a nilpotent algebra in the following sense:

Proposition (MK '19)

$\forall m, d \in \mathbb{N} \exists(d+1)$-nilpotent algebra \mathbf{B}, s.t.

- B contains the group $(B,+)=\mathbb{Z}_{m}^{d+1}$
- for every $C C[m]^{+}$-circuit C of depth d,
\exists circuit C^{\prime} over \mathbf{B} with

$$
C^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\left(C\left(\pi_{d+1}\left(x_{1}\right), \ldots, \pi_{d+1}\left(x_{n}\right)\right), 0, \ldots, 0\right)
$$

(Proof sketch on blackboard.)

Encoding CC^{+}-circuits in nilpotent algebras

$C C^{+}[m]$-circuits of bounded depth can be encoded in a nilpotent algebra in the following sense:

Proposition (MK '19)

$\forall m, d \in \mathbb{N} \exists(d+1)$-nilpotent algebra \mathbf{B}, s.t.

- B contains the group $(B,+)=\mathbb{Z}_{m}^{d+1}$
- for every $C C[m]^{+}$-circuit C of depth d,
\exists circuit C^{\prime} over \mathbf{B} with

$$
C^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\left(C\left(\pi_{d+1}\left(x_{1}\right), \ldots, \pi_{d+1}\left(x_{n}\right)\right), 0, \ldots, 0\right)
$$

(Proof sketch on blackboard.)

Question

What about the opposite direction?

Example: Extended abelian groups

$$
\mathbf{A}=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3},+, f(x, y)\right) \text { with }
$$

Example: Extended abelian groups

$$
\begin{aligned}
& \mathbf{A}=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3},+, f(x, y)\right) \text { with } \\
& f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left(\hat{f}\left(x_{2}, y_{2}\right), 0\right)=\left\{\begin{array}{l}
(1,0) \text { if } x_{2}=y_{2}=1 \\
(0,0) \text { else }
\end{array}\right.
\end{aligned}
$$

Example: Extended abelian groups

$\mathbf{A}=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3},+, f(x, y)\right)$ with
$f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left(\hat{f}\left(x_{2}, y_{2}\right), 0\right)=\left\{\begin{array}{l}(1,0) \text { if } x_{2}=y_{2}=1 \\ (0,0) \text { else }\end{array}\right.$
A is 2-nilpotent. Polynomial e.g.:

Example: Extended abelian groups

$\mathbf{A}=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3},+, f(x, y)\right)$ with
$f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left(\hat{f}\left(x_{2}, y_{2}\right), 0\right)=\left\{\begin{array}{l}(1,0) \text { if } x_{2}=y_{2}=1 \\ (0,0) \text { else }\end{array}\right.$
A is 2-nilpotent. Polynomial e.g.:
$x+f(x, y+z)=\left(x_{1}+\hat{f}\left(x_{2}, y_{2}+z_{2}\right), x_{2}\right)$

Example: Extended abelian groups

$\mathbf{A}=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3},+, f(x, y)\right)$ with
$f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left(\hat{f}\left(x_{2}, y_{2}\right), 0\right)=\left\{\begin{array}{l}(1,0) \text { if } x_{2}=y_{2}=1 \\ (0,0) \text { else }\end{array}\right.$
A is 2-nilpotent. Polynomial e.g.:
$x+f(x, y+z)=\left(x_{1}+\hat{f}\left(x_{2}, y_{2}+z_{2}\right), x_{2}\right)$ corresponds to the circuit

Example: Extended abelian groups

$\mathbf{A}=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3},+, f(x, y)\right)$ with
$f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left(\hat{f}\left(x_{2}, y_{2}\right), 0\right)=\left\{\begin{array}{l}(1,0) \text { if } x_{2}=y_{2}=1 \\ (0,0) \text { else }\end{array}\right.$
A is 2-nilpotent. Polynomial e.g.:
$x+f(x, y+z)=\left(x_{1}+\hat{f}\left(x_{2}, y_{2}+z_{2}\right), x_{2}\right)$ corresponds to the circuit

Example: Extended abelian groups

$\mathbf{A}=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3},+, f(x, y)\right)$ with
$f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left(\hat{f}\left(x_{2}, y_{2}\right), 0\right)=\left\{\begin{array}{l}(1,0) \text { if } x_{2}=y_{2}=1 \\ (0,0) \text { else }\end{array}\right.$
A is 2-nilpotent. Polynomial e.g.:
$x+f(x, y+z)=\left(x_{1}+\hat{f}\left(x_{2}, y_{2}+z_{2}\right), x_{2}\right)$ corresponds to the circuit

Example: Extended abelian groups

$\mathbf{A}=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3},+, f(x, y)\right)$ with
$f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left(\hat{f}\left(x_{2}, y_{2}\right), 0\right)=\left\{\begin{array}{l}(1,0) \text { if } x_{2}=y_{2}=1 \\ (0,0) \text { else }\end{array}\right.$
A is 2-nilpotent. Polynomial e.g.:
$x+f(x, y+z)=\left(x_{1}+\hat{f}\left(x_{2}, y_{2}+z_{2}\right), x_{2}\right)$ corresponds to the circuit

Example: Extended abelian groups

$\mathbf{A}=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3},+, f(x, y)\right)$ with
$f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left(\hat{f}\left(x_{2}, y_{2}\right), 0\right)=\left\{\begin{array}{l}(1,0) \text { if } x_{2}=y_{2}=1 \\ (0,0) \text { else }\end{array}\right.$
A is 2-nilpotent. Polynomial e.g.:
$x+f(x, y+z)=\left(x_{1}+\hat{f}\left(x_{2}, y_{2}+z_{2}\right), x_{2}\right)$ corresponds to the circuit

\Rightarrow similarly all polynomials of \mathbf{A} can be rewritten in polynomial time to CC[3] ${ }^{+}$-circuits of depth 3

Coordinatisation of nilpotent algebras

Example works because of abelian group operations.

Coordinatisation of nilpotent algebras

Example works because of abelian group operations.
Theorem (Aichinger '18)
Let \mathbf{A} be nilpotent, $|A|=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdots p_{m}^{i_{m}}$. Then there are operations $+, 0,-$ such that

- $(A,+, 0,-) \cong \mathbb{Z}_{p_{1}}^{i_{1}} \times \cdots \times \mathbb{Z}_{p_{m}}^{i_{m}}$
- $(\mathbf{A},+, 0,-)$ is still nilpotent.

Coordinatisation of nilpotent algebras

Example works because of abelian group operations.
Theorem (Aichinger '18)
Let \mathbf{A} be nilpotent, $|A|=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdots p_{m}^{i_{m}}$. Then there are operations $+, 0,-$ such that

- $(A,+, 0,-) \cong \mathbb{Z}_{p_{1}}^{i_{1}} \times \cdots \times \mathbb{Z}_{p_{m}}^{i_{m}}$
- $(\mathbf{A},+, 0,-)$ is still nilpotent.
\rightarrow wlog work only in Aichinger's extended groups

Coordinatisation of nilpotent algebras

Example works because of abelian group operations.

Theorem (Aichinger '18)

Let \mathbf{A} be nilpotent, $|A|=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdots p_{m}^{i_{m}}$. Then there are operations $+, 0,-$ such that

- $(A,+, 0,-) \cong \mathbb{Z}_{p_{1}}^{i_{1}} \times \cdots \times \mathbb{Z}_{p_{m}}^{i_{m}}$
- $(\mathbf{A},+, 0,-)$ is still nilpotent.
\rightarrow wlog work only in Aichinger's extended groups

Remark

The degree of nilpotency might increase (but $\leq \log _{2}(|A|)$).
E.g. $\left(\mathbb{Z}_{4},+\right)$ Abelian, but $\left(\mathbb{Z}_{4},+,+v\right)$ is 2-nilpotent.

Main result

A... finite nilpotent algebra (from CM variety)

Main result

A... finite nilpotent algebra (from CM variety)
$|A|=\prod_{i=1}^{k} p_{i}^{j_{i}}$

Main result

A... finite nilpotent algebra (from CM variety)
$|A|=\prod_{i=1}^{k} p_{i}^{j_{i}}$
$m:=\prod_{i=1}^{k} p_{i}$

Main result

A... finite nilpotent algebra (from CM variety)

$$
\begin{aligned}
|A| & =\prod_{i=1}^{k} p_{i}^{j_{i}} \\
m & :=\prod_{i=1}^{k} p_{i}
\end{aligned}
$$

Theorem (MK '19)

- $\forall d, m$: $\exists(d+1)$ nilpotent \mathbf{B}, such that $C C[m]^{+}$-circuits of depth d can be encoded as polynomials over \mathbf{B} in polynomial time.

Main result

A... finite nilpotent algebra (from CM variety)

$$
\begin{aligned}
|A| & =\prod_{i=1}^{k} p_{i}^{j_{i}} \\
m & :=\prod_{i=1}^{k} p_{i}
\end{aligned}
$$

Theorem (MK '19)

- $\forall d, m$: $\exists(d+1)$ nilpotent \mathbf{B}, such that $C C[m]^{+}$-circuits of depth d can be encoded as polynomials over \mathbf{B} in polynomial time.
- Every polynomial over \mathbf{A} can be rewritten in polynomial time to a $C C[m]^{+}$-circuit of depth $\leq C(\mathbf{A})$.

Main result

A... finite nilpotent algebra (from CM variety)

$$
\begin{aligned}
|A| & =\prod_{i=1}^{k} p_{i}^{j_{i}} \\
m & :=\prod_{i=1}^{k} p_{i}
\end{aligned}
$$

Theorem (MK '19)

- $\forall d, m$: $\exists(d+1)$ nilpotent \mathbf{B}, such that $C C[m]^{+}$-circuits of depth d can be encoded as polynomials over \mathbf{B} in polynomial time.
- Every polynomial over \mathbf{A} can be rewritten in polynomial time to a $C C[m]^{+}$-circuit of depth $\leq C(\mathbf{A})$.
- If m is not prime power, then $C(\mathbf{A})$ is linear in $\log _{2}|A|$.

3) Consequences on CC-circuits

Conjecture (*) in nilpotent algebras

An operation $f: A^{n} \rightarrow A$ is called 0 -absorbing iff $f\left(0, x_{2}, \ldots, x_{n}\right) \approx f\left(x_{1}, 0, x_{2}, \ldots, x_{n}\right) \approx \ldots \approx f\left(x_{1}, \ldots, x_{n-1}, 0\right) \approx 0$.
CC-circuits \quad in nilpotent algebra \mathbf{A}

Theorem (BST '90)
Bounded depth $C C\left[p^{k}\right]$-circuits cannot compute AND of arity $\geq C(d)$

Theorem (BST '90)

Conjecture (*) is true for $m=p q$ and depth 2

Conjecture (*) in nilpotent algebras

An operation $f: A^{n} \rightarrow A$ is called 0 -absorbing iff $f\left(0, x_{2}, \ldots, x_{n}\right) \approx f\left(x_{1}, 0, x_{2}, \ldots, x_{n}\right) \approx \ldots \approx f\left(x_{1}, \ldots, x_{n-1}, 0\right) \approx 0$.
CC-circuits \quad in nilpotent algebra \mathbf{A}

Theorem (BST '90)
Bounded depth $C C\left[p^{k}\right]$-circuits cannot compute AND of arity $\geq C(d)$

Theorem (BST '90)

Conjecture (*) is true for $m=p q$ and depth 2

Conjecture (*) in nilpotent algebras

An operation $f: A^{n} \rightarrow A$ is called 0 -absorbing iff $f\left(0, x_{2}, \ldots, x_{n}\right) \approx f\left(x_{1}, 0, x_{2}, \ldots, x_{n}\right) \approx \ldots \approx f\left(x_{1}, \ldots, x_{n-1}, 0\right) \approx 0$.

CC-circuits	in nilpotent algebra \mathbf{A}
Conjecture (*)	Conjecture (**) (Aichinger '19)
Bounded depth CC[m]-circuits need size $\Omega\left(e^{n}\right)$ to compute AND.	Non-trivial absorbing circuits over \mathbf{A} of arity n have size $\Omega\left(e^{n}\right)$.
Theorem (BST '90)	
Bounded depth $C C\left[p^{k}\right]$-circuits cannot compute AND of arity $\geq C(d)$	
Theorem (BST '90)	
Conjecture (${ }^{*}$) is true for $m=p q$ and depth 2	

Conjecture (*) in nilpotent algebras

An operation $f: A^{n} \rightarrow A$ is called 0 -absorbing iff $f\left(0, x_{2}, \ldots, x_{n}\right) \approx f\left(x_{1}, 0, x_{2}, \ldots, x_{n}\right) \approx \ldots \approx f\left(x_{1}, \ldots, x_{n-1}, 0\right) \approx 0$.

CC-circuits	in nilpotent algebra \mathbf{A}
Conjecture (*)	Conjecture (**) (Aichinger '19)
Bounded depth $C C[m]$-circuits need size $\Omega\left(e^{n}\right)$ to compute AND.	Non-trivial absorbing circuits over A of arity n have size $\Omega\left(e^{n}\right)$.
Theorem (BST '90)	Theorem (Aichinger, Mudrinski '10)
Bounded depth $C C\left[p^{k}\right]$-circuits cannot compute AND of arity $\geq C(d)$	A with $\|A\|=p^{k}$ has only trivial absorbing circuits of arity $\geq C(\mathbf{A})$
Theorem (BST '90)	
Conjecture (*) is true for $m=p q$ and depth 2	

Conjecture (*) in nilpotent algebras

An operation $f: A^{n} \rightarrow A$ is called 0 -absorbing iff $f\left(0, x_{2}, \ldots, x_{n}\right) \approx f\left(x_{1}, 0, x_{2}, \ldots, x_{n}\right) \approx \ldots \approx f\left(x_{1}, \ldots, x_{n-1}, 0\right) \approx 0$.

CC-circuits
Conjecture (*)
Bounded depth CC[m]-circuits need

in nilpotent algebra \mathbf{A}
Conjecture (${ }^{* *}$) (Aichinger '19)
Non-trivial absorbing circuits over \mathbf{A} of arity n have size $\Omega\left(e^{n}\right)$.

Theorem (Aichinger, Mudrinski '10)
A with $|A|=p^{k}$ has only trivial absorbing circuits of arity $\geq C(\mathbf{A})$
(Idziak, Kawatek, Krzaczkowski '18)
$(* *)$ is true for certain 2-nilpotent \mathbf{A} with
$|A|=p^{k} q^{\prime}$

Remark

There exists another algebraic characterization of $C C^{0}$ by NUDFA (non-uniform deterministic finite automata) over monoids.

Theorem (Barrington, Straubing, Therien '90)

$L \in$ complexity class	\leftrightarrow	L accepted by a NUDFA over M
$A C^{0}$	\leftrightarrow	M aperiodic monoid
$C C^{0}$	\leftrightarrow	M solvable group
$A C C^{0}$	\leftrightarrow	M solvable monoid
$N C^{1}$	\leftrightarrow	M non-solvable group

4) Consequences on CSAT and CEQV

The equivalence problem for finite algebras

$\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right) \ldots$ finite algebra

The equivalence problem for finite algebras

$\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right) \ldots$ finite algebra
Circuit Equivalence Problem CEQV(A)
InPut: $p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)$ circuits over \mathbf{A}
Question: Does $\mathbf{A} \models p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right)$?

The equivalence problem for finite algebras

$\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right) \ldots$ finite algebra
Circuit Equivalence Problem $\operatorname{CEQV}(\mathbf{A})$
InPUT: $p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)$ circuits over \mathbf{A}
Question: Does $\mathbf{A} \models p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right)$?
Circuit Satisfaction Problem $\operatorname{CSAT}(\mathbf{A})$
InPut: $p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)$ circuits over \mathbf{A}
Question: Does $p\left(x_{1}, \ldots, x_{n}\right)=q\left(x_{1}, \ldots, x_{n}\right)$ have a solution in \mathbf{A} ?

The equivalence problem for finite algebras

$\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right) \ldots$ finite algebra
Circuit Equivalence Problem CEQV(A)
InPut: $p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)$ circuits over \mathbf{A}
Question: Does $\mathbf{A} \vDash p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right)$?
Circuit Satisfaction Problem $\operatorname{CSAT}(\mathbf{A})$
InPut: $p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)$ circuits over \mathbf{A}
Question: Does $p\left(x_{1}, \ldots, x_{n}\right)=q\left(x_{1}, \ldots, x_{n}\right)$ have a solution in \mathbf{A} ?
$\operatorname{CEQV}(\mathbf{A}) \in \operatorname{coNP}, \operatorname{CSAT}(\mathbf{A}) \in \operatorname{NP}$
In general the complexity is widely unclassified.

The equivalence problem for finite algebras

$\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right) \ldots$ finite algebra
Circuit Equivalence Problem CEQV(A)
InPUT: $p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)$ circuits over \mathbf{A}
Question: Does $\mathbf{A} \vDash p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right)$?
Circuit Satisfaction Problem $\operatorname{CSAT}(\mathbf{A})$
InPut: $p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)$ circuits over \mathbf{A}
Question: Does $p\left(x_{1}, \ldots, x_{n}\right)=q\left(x_{1}, \ldots, x_{n}\right)$ have a solution in \mathbf{A} ?
$\operatorname{CEQV}(\mathbf{A}) \in \operatorname{coNP}, \operatorname{CSAT}(\mathbf{A}) \in \operatorname{NP}$
In general the complexity is widely unclassified.

Question

What is the complexity for nilpotent \mathbf{A} from CM varieties?

In congruence modular varieties

A... from congruence modular variety:

- A Abelian \leftrightarrow module. $\operatorname{CEQV}(\mathbf{A}) \in \mathrm{P}$
- A k-supernilpotent. $\operatorname{CEQV}(\mathbf{A}) \in \mathrm{P}$: (Aichinger, Mudrinski '10)
- A nilpotent, not supernilpotent...?
- A solvable, non-nilpotent:
$\exists \theta: \operatorname{CEQV}(\mathbf{A} / \theta) \in \operatorname{coNP-c}$ (Idziak, Krzaczkowski '18)
- A non-solvable: $\operatorname{CEQV}(\mathbf{A}) \in$ coNP-c (Idziak, Krzaczkowski '18)

For CSAT the picture is similar (modulo products with DL algebras).

Circuit equivalence

Observation 1 (MK '19)
Assume Conjecture (**) holds for A nilpotent.
Then $\operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ can be solved in quasipolynomial time.
Proof idea:

Circuit equivalence

Observation 1 (MK '19)

Assume Conjecture (${ }^{* *}$) holds for A nilpotent.
Then $\operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ can be solved in quasipolynomial time.
Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to $\operatorname{CEQV}(\mathbf{A})$.

Circuit equivalence

Observation 1 (MK '19)

Assume Conjecture (${ }^{* *}$) holds for A nilpotent.
Then $\operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to $\operatorname{CEQV}(\mathbf{A})$.
- Assume $\exists \bar{a}: C(\bar{a}) \neq 0$.

Circuit equivalence

Observation 1 (MK '19)

Assume Conjecture (${ }^{* *}$) holds for A nilpotent.
Then $\operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to $\operatorname{CEQV}(\mathbf{A})$.
- Assume $\exists \bar{a}: C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_{i} \neq 0$, wlog.

$$
\bar{a}=\left(a_{1}, \ldots, a_{k}, 0, \ldots, 0\right)
$$

Circuit equivalence

Observation 1 (MK '19)

Assume Conjecture (${ }^{* *}$) holds for A nilpotent.
Then $\operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to $\operatorname{CEQV}(\mathbf{A})$.
- Assume $\exists \bar{a}: C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_{i} \neq 0$, wlog. $\bar{a}=\left(a_{1}, \ldots, a_{k}, 0, \ldots, 0\right)$
- Then $C^{\prime}\left(x_{1}, \ldots, x_{k}\right)=C\left(x_{1}, \ldots, x_{k}, 0,0, \ldots, 0\right)$ is 0 -absorbing.

Circuit equivalence

Observation 1 (MK '19)

Assume Conjecture (**) holds for A nilpotent.
Then $\operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to $\operatorname{CEQV}(\mathbf{A})$.
- Assume $\exists \bar{a}: C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_{i} \neq 0$, wlog. $\bar{a}=\left(a_{1}, \ldots, a_{k}, 0, \ldots, 0\right)$
- Then $C^{\prime}\left(x_{1}, \ldots, x_{k}\right)=C\left(x_{1}, \ldots, x_{k}, 0,0, \ldots, 0\right)$ is 0 -absorbing.
- Conjecture $(* *) \Rightarrow k \leq \log (|C|)$

Circuit equivalence

Observation 1 (MK '19)

Assume Conjecture (${ }^{* *}$) holds for A nilpotent.
Then $\operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to $\operatorname{CEQV}(\mathbf{A})$.
- Assume $\exists a \mathfrak{a}: C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_{i} \neq 0$, wlog. $\bar{a}=\left(a_{1}, \ldots, a_{k}, 0, \ldots, 0\right)$
- Then $C^{\prime}\left(x_{1}, \ldots, x_{k}\right)=C\left(x_{1}, \ldots, x_{k}, 0,0, \ldots, 0\right)$ is 0 -absorbing.
- Conjecture $(* *) \Rightarrow k \leq \log (|C|)$
- evaluate q at all tuples with 'support' $\log (|C|)$ in time $\mathcal{O}\left(|C|^{\log (|C|)}\right)$

Circuit equivalence

Observation 1 (MK '19)

Assume Conjecture (${ }^{* *}$) holds for A nilpotent.
Then $\operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to $\operatorname{CEQV}(\mathbf{A})$.
- Assume $\exists a \mathfrak{a}: C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_{i} \neq 0$, wlog. $\bar{a}=\left(a_{1}, \ldots, a_{k}, 0, \ldots, 0\right)$
- Then $C^{\prime}\left(x_{1}, \ldots, x_{k}\right)=C\left(x_{1}, \ldots, x_{k}, 0,0, \ldots, 0\right)$ is 0 -absorbing.
- Conjecture $(* *) \Rightarrow k \leq \log (|C|)$
- evaluate q at all tuples with 'support' $\log (|C|)$ in time $\mathcal{O}\left(|C|^{\log (|C|)}\right)$

Note that for $|A|=p^{j}: k \leq$ const
\Rightarrow polynomial time algorithm for prime powers / supernilpotent.
(Aichinger, Mudrinski '10)

On the contrary

Assume $\exists\left(C_{n}\right)_{n \in \mathbb{N}}$

- $C C[m]$-circuits of depth d,

On the contrary

Assume $\exists\left(C_{n}\right)_{n \in \mathbb{N}}$

- $C C[m]$-circuits of depth d,
- enumerable in polynomial time,

On the contrary

Assume $\exists\left(C_{n}\right)_{n \in \mathbb{N}}$

- CC[m]-circuits of depth d,
- enumerable in polynomial time,
- computing AND (AND is in 'uniform $C C^{0}$).

On the contrary

Assume $\exists\left(C_{n}\right)_{n \in \mathbb{N}}$

- CC[m]-circuits of depth d,
- enumerable in polynomial time,
- computing AND (AND is in 'uniform $C C^{0}$).

Observation 2 (MK '19)
Then $\exists \mathbf{B}$ nilpotent $\operatorname{CEQV}(\mathbf{B}) \in$ coNP-c and $\operatorname{CSAT}(\mathbf{B}) \in$ NP-c.

On the contrary

Assume $\exists\left(C_{n}\right)_{n \in \mathbb{N}}$

- CC[m]-circuits of depth d,
- enumerable in polynomial time,
- computing AND (AND is in 'uniform $C C^{0}$).

Observation 2 (MK '19)
Then $\exists \mathbf{B}$ nilpotent $\operatorname{CEQV}(\mathbf{B}) \in$ coNP-c and $\operatorname{CSAT}(\mathbf{B}) \in$ NP-c.

Conclusion

Complexity of $\operatorname{CEQV}(\mathbf{A}), \operatorname{CSAT}(\mathbf{A})$ for nilpotent \mathbf{A} is correlated to the expressive power of CC-circuits.

Caution!

Caution!

- Falsehood of the conjecture does not implies hardness (non-uniform vs. uniform circuits).
- There can be better algorithms (semantic vs. syntactic approach):

Caution!

Caution!

- Falsehood of the conjecture does not implies hardness (non-uniform vs. uniform circuits).
- There can be better algorithms (semantic vs. syntactic approach):

Theorem (Idziak, Kawałek, Krzaczkowski '18)
For every $\mathbf{A}=\mathbf{L} \otimes^{\top} \mathbf{U}$ such that \mathbf{L} and \mathbf{U} are polynomially equivalent to finite vector spaces $\operatorname{CEQV}(\mathbf{A}) \in P$ and $\operatorname{CSAT}(\mathbf{A}) \in P$.

Caution!

Caution!

- Falsehood of the conjecture does not implies hardness (non-uniform vs. uniform circuits).
- There can be better algorithms (semantic vs. syntactic approach):

Theorem (Idziak, Kawałek, Krzaczkowski '18)
For every $\mathbf{A}=\mathbf{L} \otimes^{T} \mathbf{U}$ such that \mathbf{L} and \mathbf{U} are polynomially equivalent to finite vector spaces $\operatorname{CEQV}(\mathbf{A}) \in P$ and $\operatorname{CSAT}(\mathbf{A}) \in P$.

Theorem (Kawałek, Kompatscher, Krzaczkowski ~'19)
For every A finite 2-nilpotent from a CM variety $\operatorname{CEQV}(\mathbf{A}) \in P$.

Caution!

Caution!

- Falsehood of the conjecture does not implies hardness (non-uniform vs. uniform circuits).
- There can be better algorithms (semantic vs. syntactic approach):

Theorem (Idziak, Kawałek, Krzaczkowski '18)
For every $\mathbf{A}=\mathbf{L} \otimes^{T} \mathbf{U}$ such that \mathbf{L} and \mathbf{U} are polynomially equivalent to finite vector spaces $\operatorname{CEQV}(\mathbf{A}) \in P$ and $\operatorname{CSAT}(\mathbf{A}) \in P$.

Theorem (Kawałek, Kompatscher, Krzaczkowski ~'19)
For every \mathbf{A} finite 2-nilpotent from a CM variety $\operatorname{CEQV}(\mathbf{A}) \in P$.
(This is all we know, despite bold claims made at BLAST'19)

Thank you!

