A complexity dichotomy for Poset-SAT

Michael Kompatscher, Trung Van Pham

michael@logic.at

Institute of Computer Languages
TU Wien

Algebra Seminar, TU Wien, 08/04/2016

@ Poset-SAT problems

@ Poset-SAT as CSP over the random partial order
@ Preclassification by homomorphic equivalence

© The universal algebraic approach

© Summary

@ Poset-SAT problems

@ Poset-SAT as CSP over the random partial order
@ Preclassification by homomorphic equivalence

© The universal algebraic approach

© Summary

Poset-SAT
®000

Poset-SAT

®... finite set of quantifier-free {<}-formulas

Poset-SAT ()

Instance:
e Variables {x1,...,x,} and
o finitely many formulas ¢;(xj,, ..., X;), where each ¢; € ®.
Question:
Is A\ ¢i(xi, .. .,xi) satisfiable in a partial order (poset)?

Complexity of Poset-SAT(®) is always in NP.

For which ® is Poset-SAT(®) in P?

Poset-SAT
ce00

Example 1

x<y:=x<yA-(y <x).

Poset-SAT
ce00

Example 1

x<y:=x<yA-(y <x).
Poset-SAT (<)

Instance: Variables {x1,...,xp} and formulas x;, < x;,.
Question: Is \(x;, < xj,) satisfiable in a partial order?

Poset-SAT
ce00

Example 1

x<y:=x<yA-(y <x).
Poset-SAT (<)

Instance: Variables {x1,...,xp} and formulas x;, < x;,.
Question: Is \(x;, < xj,) satisfiable in a partial order?

Example: x; < x0, x1 < X3, X3 < X4

Poset-SAT

O0e00

Example 1

x<y:=x<yA-(y <x).
Poset-SAT (<)

Instance: Variables {x1,...,xp} and formulas x;, < x;,.
Question: Is \(x;, < xj,) satisfiable in a partial order?

Example: x; < x0, x1 < X3, X3 < X4

Poset-SAT
ce00

Example 1

x<y:=x<yA-(y <x).
Poset-SAT (<)

Instance: Variables {x1,...,xp} and formulas x;, < x;,.
Question: Is \(x;, < xj,) satisfiable in a partial order?

Example: x; < x0, x1 < X3, X3 < X4

X2
. X
X1* L, X1 '/4\,//74

Poset-SAT
ce00

Example 1

x<y:=x<yA-(y <x).

Poset-SAT (<)

Instance: Variables {x1,...,xp} and formulas x;, < x;,.
Question: Is \(x;, < xj,) satisfiable in a partial order?

Example: x; < x0, x1 < X3, X3 < X4

X2
/ /’/r.x3
Xl \ Xl .\./
X4 X4

Poset-SAT(<) is in P.

Poset-SAT
coeo

Example 1

x<y:=x<yA-(y <x).

Instance: Variables {x1,...,xp} and formulas x;, < x;,.
Question: Is \(xi, < x;,) satisfiable in a linear order?

Example: x; < x0, x1 < X3, X3 < X4

X3 X3
|] |]
/ o X3 /’};- X3
Xl .\./ Xl .\./
X4 X4

Temp-SAT(<) = Poset-SAT(<)

Poset-SAT
ocooe

Examples

In general Poset-SAT(®) # Temp-SAT(®)!

Poset-SAT
ocooe

Examples

In general Poset-SAT(®) # Temp-SAT(®)!

x_Ly := incomparability relation
Q(x,y,z) = (x<yVx<z)

Poset-SAT(L, Q) is NP-complete
Temp-SAT(L, Q) is in P.

Poset-SAT
ocooe

Examples

In general Poset-SAT(®) # Temp-SAT(®)!

x_Ly := incomparability relation
Q(x,y,z) = (x<yVx<z)

Poset-SAT(L, Q) is NP-complete
Temp-SAT(L, Q) is in P.

T(x,y,a,b) =(x<yANa<b)V(y <xAb<a)V(xLyAalb).

Poset-SAT(T) is trivial;
Temp-SAT(T) is NP-complete.

Poset-SAT
[eleleTe)

Outline

@ Poset-SAT problems

@ Poset-SAT as CSP over the random partial order

@ Preclassification by homomorphic equivalence

© The universal algebraic approach

© Summary

Poset-SAT as CSP
[1)

The random poset

The random poset P := (P; <) is the unique countable poset that:

Poset-SAT as CSP
[1)

The random poset

The random poset P := (P; <) is the unique countable poset that:

@ is universal, i.e., contains all finite posets

Poset-SAT as CSP
[1)

The random poset

The random poset P := (P; <) is the unique countable poset that:
@ is universal, i.e., contains all finite posets

@ is homogeneous, i.e. for finite A, B C P, every isomorphism
| : A — B extends to an automorphism o € Aut(P).

Poset-SAT as CSP
[1)

The random poset

The random poset P := (P; <) is the unique countable poset that:
@ is universal, i.e., contains all finite posets

@ is homogeneous, i.e. for finite A, B C P, every isomorphism
| : A — B extends to an automorphism o € Aut(P).

For every {<}-formula ¢(x1, ..., x,) we define the relation

R¢ = {(31,...,8,,) e pP": (b(al,...,a,,)}.

For a set ® of formulas we define the structure:

Fo = (P; (Ry)peo)

Poset-SAT as CSP
[1)

The random poset

The random poset P := (P; <) is the unique countable poset that:
@ is universal, i.e., contains all finite posets

@ is homogeneous, i.e. for finite A, B C P, every isomorphism
| : A — B extends to an automorphism o € Aut(P).

For every {<}-formula ¢(x1, ..., x,) we define the relation
Ry = {(a1,-..,an) € P": ¢(a1,...,an)}
For a set ® of formulas we define the structure:
Fo = (P; (Ry)peo)

[¢ is called a reduct of P, i.e. a structure that is first-order
definable in IP.

Poset-SAT as CSP
oe

Poset-SAT as CSP

An instance of Poset-SAT(®) with
e variables {xi,...,x,} and
e formulas ¢1, ..., ¢k with ¢; € O.
has a solution if and only if 3x1,...,xn (1 A+ A dk) holds in INe.

Poset-SAT as CSP
oe

Poset-SAT as CSP

An instance of Poset-SAT(®) with
e variables {xi,...,x,} and
e formulas ¢1, ..., ¢k with ¢; € O.
has a solution if and only if 3x1,...,xn (1 A+ A dk) holds in INe.

The problem of deciding if a primitive positive sentence holds in g
is called the constraint satisfaction problem of Iy, short CSP(I's).

Poset-SAT as CSP
oe

Poset-SAT as CSP

An instance of Poset-SAT(®) with
e variables {xi,...,x,} and
e formulas ¢1, ..., ¢k with ¢; € O.
has a solution if and only if 3x1,...,xn (1 A+ A dk) holds in INe.

The problem of deciding if a primitive positive sentence holds in g
is called the constraint satisfaction problem of Iy, short CSP(I's).

New Question
For which reducts I of P is CSP(I") in P? For which NP-complete?

Poset-SAT as CSP
oe

Poset-SAT as CSP

An instance of Poset-SAT(®) with
e variables {xi,...,x,} and
e formulas ¢1, ..., ¢k with ¢; € O.
has a solution if and only if 3x1,...,xn (1 A+ A dk) holds in INe.

The problem of deciding if a primitive positive sentence holds in g
is called the constraint satisfaction problem of Iy, short CSP(I's).

New Question
For which reducts I of P is CSP(I") in P? For which NP-complete?

— Use nice properties of P for complexity classification.

Poset-SAT as CSP
oo

Outline

@ Poset-SAT problems

@ Poset-SAT as CSP over the random partial order

@ Preclassification by homomorphic equivalence

© The universal algebraic approach

© Summary

Preclassification
®00

Homomorphic equivalence

Two structures '} A are called homomorphically equivalent if there
are homomorphisms A — T and I — A.

Preclassification
®00

Homomorphic equivalence

Two structures '} A are called homomorphically equivalent if there
are homomorphisms A — T and I — A.

Homomorphisms preserve pp-formulas. So CSP(A) = CSP(I').

Preclassification
®00

Homomorphic equivalence

Two structures '} A are called homomorphically equivalent if there
are homomorphisms A — T and I — A.

Homomorphisms preserve pp-formulas. So CSP(A) = CSP(I').

Example 1: CSP(P; <)

There is an endomorphism g< € End(P; <) with g-(P, <) = Q.
So CSP(P; <) = CSP(Q; <).

Preclassification
®00

Homomorphic equivalence

Two structures '} A are called homomorphically equivalent if there
are homomorphisms A — T and I — A.

Homomorphisms preserve pp-formulas. So CSP(A) = CSP(I').

Example 1: CSP(P; <)

There is an endomorphism g< € End(P; <) with g-(P, <) = Q.
So CSP(P; <) = CSP(Q; <).

Example 3: CSP(P; T)

T(x,y,a,b)=(x<yANa<b)V(y<xAb<a)V(xLlyAalb)

There is an g, € End(P; T) with g, (T) is countable antichain.
So CSP(P; T) = CSP(N; x # y A a # b).

Preclassification
oeo

Homomorphic equivalence

Proposition (MK, Van Pham '16)
Let I be reduct of P. Then:
@ End(l') contains a constant,
@ End(IN) contains g that maps P to a chain = Q,
© End(N) contains g, that maps P to a countable antichain,
Q or Aut(lN) = End(IN).

Preclassification
oeo

Homomorphic equivalence

Proposition (MK, Van Pham '16)
Let I be reduct of P. Then:
@ End(l') contains a constant,
@ End(IN) contains g that maps P to a chain = Q,
© End(N) contains g, that maps P to a countable antichain,
Q or Aut(lN) = End(IN).

@ 1-element structures induces trivial CSPs.

Preclassification
oeo

Homomorphic equivalence

Proposition (MK, Van Pham '16)
Let I be reduct of P. Then:
@ End(l') contains a constant,
@ End(IN) contains g that maps P to a chain = Q,
© End(N) contains g, that maps P to a countable antichain,
Q or Aut(lN) = End(IN).

@ 1-element structures induces trivial CSPs.
@ CSPs over (Q, <) in P or NP-c (Bodirsky, Kara '10)

Preclassification
oeo

Homomorphic equivalence

Proposition (MK, Van Pham '16)
Let I be reduct of P. Then:
@ End(l') contains a constant,
@ End(IN) contains g that maps P to a chain = Q,
© End(N) contains g, that maps P to a countable antichain,
Q or Aut(lN) = End(IN).

© 1l-element structures induces trivial CSPs.
@ CSPs over (Q, <) in P or NP-c (Bodirsky, Kara '10)
© CSPs over (N, #) in P or NP-c (Bodirsky, Kéra '08)

Preclassification
oeo

Homomorphic equivalence

Proposition (MK, Van Pham '16)
Let I be reduct of P. Then:
@ End(l') contains a constant,
@ End(IN) contains g that maps P to a chain = Q,

© End(N) contains g, that maps P to a countable antichain,
Q or Aut(lN) = End(IN).

© 1l-element structures induces trivial CSPs.
@ CSPs over (Q, <) in P or NP-c (Bodirsky, Kara '10)
© CSPs over (N, #) in P or NP-c (Bodirsky, Kéra '08)

— We only need to study CSP(I'), where Aut(l') = End(I).

Preclassification
ooe

Automorphism groups

Theorem (Pach, Pinsker, Pongracz, Szabé '14)

Let I be a reduct of P. Then Aut(I') is equal to one of the
following:
() 1: bijection with
x<y<+ x>y
(,0)
/ AN @ o .
O: “rotation” at a generic
@ (o) ration’
N upwards-closed set
Aut(P)

Preclassification
000

Outline

@ Poset-SAT problems

@ Poset-SAT as CSP over the random partial order

@ Preclassification by homomorphic equivalence

© The universal algebraic approach

© Summary

The universal algebraic approach
®000

Polymorphism clones and pp-definability

For structures ', A write [' <, A if every relation in ' has a
definition with primitive positive formulas in A.

The universal algebraic approach
®000

Polymorphism clones and pp-definability

For structures ', A write [' <, A if every relation in ' has a
definition with primitive positive formulas in A.

Easy observation: I' <,, A — CSP(I') <ptime CSP(A).

The universal algebraic approach
®000

Polymorphism clones and pp-definability

For structures ', A write [' <, A if every relation in ' has a
definition with primitive positive formulas in A.

Easy observation: I' <,, A — CSP(I') <ptime CSP(A).

For f : " — I we say f is a polymorphism of I if for all relations
Rofln,...,mme R—f(n,...,m) € R.

Polymorphism clone Pol(I)... the set of all polymorphisms

The universal algebraic approach
®000

Polymorphism clones and pp-definability

For structures ', A write [' <, A if every relation in ' has a
definition with primitive positive formulas in A.

Easy observation: I' <,, A — CSP(I') <ptime CSP(A).

For f : " — I we say f is a polymorphism of I if for all relations
Rofln,...,mme R—f(n,...,m) € R.

Polymorphism clone Pol(I)... the set of all polymorphisms

Bodirsky, Nesettil '06

For w-categorical structures: I <,, A <> Pol(I') D Pol(A)

The universal algebraic approach
®000

Polymorphism clones and pp-definability

For structures ', A write [' <, A if every relation in ' has a
definition with primitive positive formulas in A.

Easy observation: I' <,, A — CSP(I') <ptime CSP(A).

For f : " — I we say f is a polymorphism of I if for all relations
Rofln,...,mme R—f(n,...,m) € R.

Polymorphism clone Pol(I)... the set of all polymorphisms

Bodirsky, Nesettil '06

For w-categorical structures: I <,, A <> Pol(I') D Pol(A)

— Polymorphisms determine the complexity

The universal algebraic approach
0®00

Example

Let e< : (P; <)? — (P; <) be an embedding:

e<(x,y) Se<(X,y) e x <X Ny <y

The universal algebraic approach

[o] lele]

Example

Let e< : (P; <)? — (P; <) be an embedding:
e<(x,y) Se<(X,y) e x <X Ny <y

Bodirsky, Chen, Kdra, von Oertzen '09

If e< € Pol(I') every relation in [has a <-Horn definition, i.e., a
conjunction of formulas

(X < x3) A (X5 < %35) - A (X5, < XG,) = (X < X,yy) and
(Xi1 < Xj1) A (Xi2 < Xj2) AN (Xin < Xjn) — F.

In this case CSP(I') is in P.

The universal algebraic approach
0®00

Example

Let e< : (P; <)? — (P; <) be an embedding:
e<(x,y) Se<(X,y) e x <X Ny <y

Bodirsky, Chen, Kdra, von Oertzen '09

If e< € Pol(I') every relation in [has a <-Horn definition, i.e., a
conjunction of formulas

(X < x3) A (X5 < %35) - A (X5, < XG,) = (X < X,yy) and
(Xi1 < Xj1) A (Xi2 < Xj2) AN (Xin < Xjn) — F.

In this case CSP(I') is in P.

Similarly: e< : (P; <)? = (P; <)

The universal algebraic approach
0®00

Example

Let e< : (P; <)? — (P; <) be an embedding:

e<(x,y) Se<(X,y) e x <X Ny <y

Bodirsky, Chen, Kdra, von Oertzen '09

If e< € Pol(I') every relation in [has a <-Horn definition, i.e., a
conjunction of formulas

(X < x3) A (X5 < %35) - A (X5, < XG,) = (X < X,yy) and
(Xi1 < Xj1) A (Xi2 < Xj2) AN (Xin < Xjn) — F.

In this case CSP(I') is in P.

Similarly: e< : (P; <)? = (P; <)

Problem: How does Pol(I") look like? When is e< € Pol(I')?

The universal algebraic approach
fe1eX Yol

Canonical functions

A function f : A — I is called canonical, if and only if it maps
tuples of the same type in A to tuples of the same type in .

The universal algebraic approach
fe1eX Yol

Canonical functions

A function f : A — I is called canonical, if and only if it maps
tuples of the same type in A to tuples of the same type in .

o All @ € Aut(P) are canonical from P — P

The universal algebraic approach
fe1eX Yol

Canonical functions

A function f : A — I is called canonical, if and only if it maps
tuples of the same type in A to tuples of the same type in .

o All @ € Aut(P) are canonical from P — P
o P—>Pwithx<y<+ x>y

The universal algebraic approach
fe1eX Yol

Canonical functions

A function f : A — I is called canonical, if and only if it maps
tuples of the same type in A to tuples of the same type in .

o All @ € Aut(P) are canonical from P — P
o P—>Pwithx<y<+ x>y
o ec : (P;<)? — (P; <) is canonical

The universal algebraic approach
fe1eX Yol

Canonical functions

A function f : A — I is called canonical, if and only if it maps
tuples of the same type in A to tuples of the same type in .

o All @ € Aut(P) are canonical from P — P
o P—>Pwithx<y<+ x>y
o ec : (P;<)? — (P; <) is canonical

(P; <, <) is a Ramsey structure.

The universal algebraic approach
fe1eX Yol

Canonical functions

A function f : A — I is called canonical, if and only if it maps
tuples of the same type in A to tuples of the same type in .

o All @ € Aut(P) are canonical from P — P
o P—>Pwithx<y<+ x>y
o ec : (P;<)? — (P; <) is canonical

(P; <, <) is a Ramsey structure.

Proof idea (very roughly):

If R not pp-definable in I there is a f € Pol(I") violating R.
Ramsey properties of P imply that there is a canonical function
g € Pol(I') violating R.

The universal algebraic approach
fe1eX Yol

Canonical functions

A function f : A — I is called canonical, if and only if it maps
tuples of the same type in A to tuples of the same type in .

o All @ € Aut(P) are canonical from P — P
o P—>Pwithx<y<+ x>y
o ec : (P;<)? — (P; <) is canonical

(P; <, <) is a Ramsey structure.

Proof idea (very roughly):

If R not pp-definable in I there is a f € Pol(I") violating R.
Ramsey properties of P imply that there is a canonical function
g € Pol(I') violating R.

— Look for relations that imply NP-hardness.
— Use canonical functions for P.

The universal algebraic approach
oooe

Canonical functions

Low(x,y,z) == (x <y Azlxy)V(x < zAylxz).

The universal algebraic approach

[eJele])

Canonical functions

Low(x,y,z) == (x <y Azlxy)V(x < zAylxz).

Proposition

Let I' be s.t. End(I') = Aut(PP). Then either
e Low is pp-definable in I' (and CSP(I') is NP-c)
@ or Pol(I') contains e< or e< (and CSP(I') is in P)

The universal algebraic approach

[eJele])

Canonical functions

Low(x,y,z) == (x <y Azlxy)V(x < zAylxz).

Proposition

Let I' be s.t. End(I') = Aut(PP). Then either
e Low is pp-definable in I' (and CSP(I') is NP-c)
@ or Pol(I') contains e< or e< (and CSP(I') is in P)

Proof idea.

The universal algebraic approach

[eJele])

Canonical functions

Low(x,y,z) == (x <y Azlxy)V(x < zAylxz).

Proposition

Let I' be s.t. End(I') = Aut(PP). Then either

e Low is pp-definable in I' (and CSP(I") is NP-c)
@ or Pol(I') contains e< or e< (and CSP(I') is in P)

Proof idea.
Assume Pol(T") preserves <, L, but violates Low.

The universal algebraic approach

[eJele])

Canonical functions

Low(x,y,z) == (x <y Azlxy)V(x < zAylxz).

Proposition

Let I' be s.t. End(I') = Aut(PP). Then either
e Low is pp-definable in I' (and CSP(I") is NP-c)
@ or Pol(I') contains e< or e< (and CSP(I') is in P)

Proof idea.
Assume Pol(I") preserves <, L, but violates Low.
There is a f € Pol(I') with ¢,d € Low but f(Z,d) ¢ Low.

The universal algebraic approach
oooe

Canonical functions

Low(x,y,z) == (x <y Azlxy)V(x < zAylxz).

Proposition

Let I' be s.t. End(I') = Aut(PP). Then either
e Low is pp-definable in I' (and CSP(I") is NP-c)
@ or Pol(I') contains e< or e< (and CSP(I') is in P)

Proof idea.
Assume Pol(I") preserves <, L, but violates Low.
There is a f € Pol(I') with ¢,d € Low but f(Z,d) ¢ Low.

We can assume that f : (P; <, <, ¢,d)? — (P; <) is canonical.

The universal algebraic approach

[eJele])

Canonical functions

Low(x,y,z) == (x <y Azlxy)V(x < zAylxz).

Proposition

Let I' be s.t. End(I') = Aut(PP). Then either
e Low is pp-definable in I' (and CSP(I") is NP-c)
@ or Pol(I') contains e< or e< (and CSP(I') is in P)

Proof idea.

Assume Pol(I") preserves <, L, but violates Low.

There is a f € Pol(I') with ¢,d € Low but f(Z,d) ¢ Low.
We can assume that f : (P; <, <, ¢,d)? — (P; <) is canonical.

To do: show that such f generates e or e<. O

The universal algebraic approach
0000

Outline

@ Poset-SAT problems

@ Poset-SAT as CSP over the random partial order

@ Preclassification by homomorphic equivalence

© The universal algebraic approach

@ Summary

Results
®00

Complexity dichotomy

Theorem (MK, Van Pham '16)

Let I' be reduct of P with Aut(I') = End(I'). Then one of the
following cases holds:

Results
®00

Complexity dichotomy

Theorem (MK, Van Pham '16)

Let I' be reduct of P with Aut(I') = End(I'). Then one of the
following cases holds:

e Low, Betw, Cycl or Sep is pp-definable in [and
CSP(I) is NP-complete.

Results
®00

Complexity dichotomy

Theorem (MK, Van Pham '16)

Let I' be reduct of P with Aut(I') = End(I'). Then one of the
following cases holds:

e Low, Betw, Cycl or Sep is pp-definable in [and
CSP(I) is NP-complete.

@ Pol(I) contains e< or e< and
CSP(I) is in P.

Results
®00

Complexity dichotomy

Theorem (MK, Van Pham '16)

Let I' be reduct of P with Aut(I') = End(I'). Then one of the
following cases holds:

e Low, Betw, Cycl or Sep is pp-definable in [and
CSP(I) is NP-complete.

@ Pol(I) contains e< or e< and
CSP(I) is in P.

Consequence:
Poset-SAT(®) is in P or NP-complete.

| 5\

\

Results
®00

Complexity dichotomy

Theorem (MK, Van Pham '16)

Let I' be reduct of P with Aut(I') = End(I'). Then one of the
following cases holds:

e Low, Betw, Cycl or Sep is pp-definable in [and
CSP(I) is NP-complete.

@ Pol(I) contains e< or e< and
CSP(I) is in P.

| 5\

Consequence:

Poset-SAT(®) is in P or NP-complete.
Given @, it is decidable to tell if Poset-SAT(®) is in P.

\

Results
oeo

Lattice of polymorphism clones

Results
ooe

Algebraic dichotomy

Theorem (MK, Van Pham '16)
Let I be reduct of P. Then either

Results
ooe

Algebraic dichotomy

Theorem (MK, Van Pham '16)
Let I be reduct of P. Then either

@ one of the equations
g1(f(x,y)) = &(f(y,x))

gi(f(x,x,y)) = &(f(x, v, x)) = g3(f(y, x,x))
holds for f € Pol(I'), gi € End(I') and CSP(I') is in P,

Results
ooe

Algebraic dichotomy

Theorem (MK, Van Pham '16)
Let I be reduct of P. Then either

@ one of the equations
g1(f(x,y)) = &(f(y,x))

gi(f(x,x,y)) = &(f(x, v, x)) = g3(f(y, x,x))
holds for f € Pol(I'), gi € End(I') and CSP(I') is in P,

@ or [is homomorphic equivalent to a A, such that:

¢ :Pol(A,cry...,cn) > 1

and CSP(I) is NP-complete.

Thank you!

	Poset-SAT
	as

	Poset-SAT as CSP
	Preclassification
	The universal algebraic approach
	Results

