# A complexity dichotomy for Poset-SAT

Michael Kompatscher, Trung Van Pham

michael@logic.at

Institute of Computer Languages TU Wien

Algebra Seminar, TU Wien, 08/04/2016

### Outline

- Poset-SAT problems
- Poset-SAT as CSP over the random partial order
- Preclassification by homomorphic equivalence
- The universal algebraic approach
- Summary

### Outline

- Poset-SAT problems
- Poset-SAT as CSP over the random partial order
- Preclassification by homomorphic equivalence
- The universal algebraic approach
- Summary

## Poset-SAT

Poset-SAT

 $\Phi$ ... finite set of quantifier-free  $\{\leq\}$ -formulas

#### Poset-SAT( $\Phi$ )

#### Instance:

- Variables  $\{x_1, \ldots, x_n\}$  and
- finitely many formulas  $\phi_i(x_{i_1}, \dots, x_{i_k})$ , where each  $\phi_i \in \Phi$ .

#### Question:

Is  $\bigwedge \phi_i(x_{i_1}, \dots, x_{i_k})$  satisfiable in a partial order (poset)?

Complexity of Poset-SAT( $\Phi$ ) is always in NP.

#### Question

For which  $\Phi$  is Poset-SAT( $\Phi$ ) in P?



Poset-SAT

0000

$$x < y := x \le y \land \neg (y \le x).$$

$$x < y := x \le y \land \neg (y \le x).$$

#### Poset-SAT(<)

Instance: Variables  $\{x_1, \ldots, x_n\}$  and formulas  $x_{i_1} < x_{i_2}$ . Question: Is  $\bigwedge (x_{i_1} < x_{i_2})$  satisfiable in a partial order?

$$x < y := x \le y \land \neg (y \le x).$$

#### Poset-SAT(<)

Instance: Variables  $\{x_1, \ldots, x_n\}$  and formulas  $x_{i_1} < x_{i_2}$ . Question: Is  $\bigwedge (x_{i_1} < x_{i_2})$  satisfiable in a partial order?

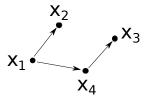
Example:  $x_1 < x_2$ ,  $x_1 < x_3$ ,  $x_3 < x_4$ 

$$x < y := x \le y \land \neg (y \le x).$$

#### Poset-SAT(<)

Instance: Variables  $\{x_1, \ldots, x_n\}$  and formulas  $x_{i_1} < x_{i_2}$ . Question: Is  $\bigwedge (x_{i_1} < x_{i_2})$  satisfiable in a partial order?

Example:  $x_1 < x_2$ ,  $x_1 < x_3$ ,  $x_3 < x_4$ 

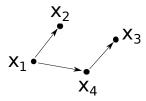


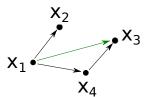
$$x < y := x \le y \land \neg (y \le x).$$

#### Poset-SAT(<)

Instance: Variables  $\{x_1, \dots, x_n\}$  and formulas  $x_i, < x_i$ . Question: Is  $\bigwedge (x_{i_1} < x_{i_2})$  satisfiable in a partial order?

Example:  $x_1 < x_2, x_1 < x_3, x_3 < x_4$ 



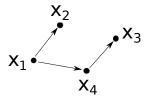


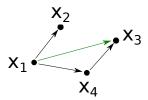
$$x < y := x \le y \land \neg (y \le x).$$

#### Poset-SAT(<)

Instance: Variables  $\{x_1, \ldots, x_n\}$  and formulas  $x_{i_1} < x_{i_2}$ . Question: Is  $\bigwedge (x_{i_1} < x_{i_2})$  satisfiable in a partial order?

Example:  $x_1 < x_2$ ,  $x_1 < x_3$ ,  $x_3 < x_4$ 





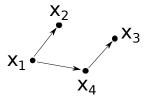
Poset-SAT(<) is in P.

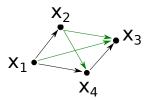
$$x < y := x \le y \land \neg (y \le x).$$

#### **Temp**-SAT(<)

Instance: Variables  $\{x_1, \ldots, x_n\}$  and formulas  $x_{i_1} < x_{i_2}$ . Question: Is  $\bigwedge (x_{i_1} < x_{i_2})$  satisfiable in a **linear** order?

Example:  $x_1 < x_2$ ,  $x_1 < x_3$ ,  $x_3 < x_4$ 





Temp-SAT(<) = Poset-SAT(<)

In general Poset-SAT( $\Phi$ )  $\neq$  Temp-SAT( $\Phi$ )!

In general Poset-SAT( $\Phi$ )  $\neq$  Temp-SAT( $\Phi$ )!

#### Example 2

 $x \perp y :=$  incomparability relation

$$Q(x, y, z) := (x < y \lor x < z)$$

Poset-SAT( $\perp$ , Q) is NP-complete Temp-SAT( $\perp$ , Q) is in P.

# In general Poset-SAT( $\Phi$ ) $\neq$ Temp-SAT( $\Phi$ )!

#### Example 2

 $x \bot y := incomparability relation$ 

$$Q(x, y, z) := (x < y \lor x < z)$$

Poset-SAT( $\perp$ , Q) is NP-complete

Temp-SAT( $\perp$ , Q) is in P.

#### Example 3

$$T(x, y, a, b) := (x < y \land a < b) \lor (y < x \land b < a) \lor (x \bot y \land a \bot b).$$

Poset-SAT(T) is trivial;

Temp-SAT(T) is NP-complete.

#### Outline

- Poset-SAT problems
- Poset-SAT as CSP over the random partial order
- Preclassification by homomorphic equivalence
- The universal algebraic approach
- Summary

The random poset  $\mathbb{P} := (P; \leq)$  is the unique countable poset that:

The random poset  $\mathbb{P} := (P; \leq)$  is the unique countable poset that:

• is universal, i.e., contains all finite posets

The random poset  $\mathbb{P} := (P; \leq)$  is the unique countable poset that:

- is *universal*, i.e., contains all finite posets
- is homogeneous, i.e. for finite  $A, B \subseteq P$ , every isomorphism  $I: A \to B$  extends to an automorphism  $\alpha \in \operatorname{Aut}(\mathbb{P})$ .

The random poset  $\mathbb{P} := (P; \leq)$  is the unique countable poset that:

- is universal, i.e., contains all finite posets
- is homogeneous, i.e. for finite  $A, B \subseteq P$ , every isomorphism  $I: A \to B$  extends to an automorphism  $\alpha \in \operatorname{Aut}(\mathbb{P})$ .

For every  $\{\leq\}$ -formula  $\phi(x_1,\ldots,x_n)$  we define the relation

$$R_{\phi} := \{(a_1, \ldots, a_n) \in P^n : \phi(a_1, \ldots, a_n)\}.$$

For a set  $\Phi$  of formulas we define the structure:

$$\Gamma_{\Phi} := (P; (R_{\phi})_{\phi \in \Phi})$$

The random poset  $\mathbb{P} := (P; \leq)$  is the unique countable poset that:

- is universal, i.e., contains all finite posets
- is homogeneous, i.e. for finite  $A, B \subseteq P$ , every isomorphism  $I: A \to B$  extends to an automorphism  $\alpha \in \operatorname{Aut}(\mathbb{P})$ .

For every  $\{\leq\}$ -formula  $\phi(x_1,\ldots,x_n)$  we define the relation

$$R_{\phi} := \{(a_1, \ldots, a_n) \in P^n : \phi(a_1, \ldots, a_n)\}.$$

For a set  $\Phi$  of formulas we define the structure:

$$\Gamma_{\Phi} := (P; (R_{\phi})_{\phi \in \Phi})$$

 $\Gamma_{\Phi}$  is called a reduct of  $\mathbb{P}$ , i.e. a structure that is first-order definable in  $\mathbb{P}$ .

An instance of Poset-SAT( $\Phi$ ) with

- variables  $\{x_1, \ldots, x_n\}$  and
- formulas  $\phi_1, \ldots, \phi_k$  with  $\phi_i \in \Phi$ .

has a solution if and only if  $\exists x_1, \ldots, x_n \ (\phi_1 \wedge \cdots \wedge \phi_k)$  holds in  $\Gamma_{\Phi}$ .

An instance of Poset-SAT( $\Phi$ ) with

- variables  $\{x_1, \ldots, x_n\}$  and
- formulas  $\phi_1, \ldots, \phi_k$  with  $\phi_i \in \Phi$ .

has a solution if and only if  $\exists x_1, \ldots, x_n \ (\phi_1 \wedge \cdots \wedge \phi_k)$  holds in  $\Gamma_{\Phi}$ .

The problem of deciding if a primitive positive sentence holds in  $\Gamma_{\Phi}$  is called the constraint satisfaction problem of  $\Gamma_{\Phi}$ , short  $\mathrm{CSP}(\Gamma_{\Phi})$ .

An instance of Poset-SAT( $\Phi$ ) with

- variables  $\{x_1, \ldots, x_n\}$  and
- formulas  $\phi_1, \ldots, \phi_k$  with  $\phi_i \in \Phi$ .

has a solution if and only if  $\exists x_1, \ldots, x_n \ (\phi_1 \wedge \cdots \wedge \phi_k)$  holds in  $\Gamma_{\Phi}$ .

The problem of deciding if a primitive positive sentence holds in  $\Gamma_{\Phi}$  is called the constraint satisfaction problem of  $\Gamma_{\Phi}$ , short  $\mathrm{CSP}(\Gamma_{\Phi})$ .

#### **New Question**

For which reducts  $\Gamma$  of  $\mathbb{P}$  is  $CSP(\Gamma)$  in P? For which NP-complete?

An instance of Poset-SAT( $\Phi$ ) with

- ullet variables  $\{x_1,\ldots,x_n\}$  and
- formulas  $\phi_1, \ldots, \phi_k$  with  $\phi_i \in \Phi$ .

has a solution if and only if  $\exists x_1, \ldots, x_n \ (\phi_1 \wedge \cdots \wedge \phi_k)$  holds in  $\Gamma_{\Phi}$ .

The problem of deciding if a primitive positive sentence holds in  $\Gamma_{\Phi}$  is called the constraint satisfaction problem of  $\Gamma_{\Phi}$ , short  $\mathrm{CSP}(\Gamma_{\Phi})$ .

#### **New Question**

For which reducts  $\Gamma$  of  $\mathbb P$  is  $\mathrm{CSP}(\Gamma)$  in P? For which NP-complete?

 $\rightarrow$  Use nice properties of  $\mathbb{P}$  for complexity classification.

### Outline

- Poset-SAT problems
- Poset-SAT as CSP over the random partial order
- Preclassification by homomorphic equivalence
- The universal algebraic approach
- Summary

Two structures  $\Gamma, \Delta$  are called homomorphically equivalent if there are homomorphisms  $\Delta \to \Gamma$  and  $\Gamma \to \Delta$ .

Two structures  $\Gamma, \Delta$  are called homomorphically equivalent if there are homomorphisms  $\Delta \to \Gamma$  and  $\Gamma \to \Delta$ .

Homomorphisms preserve pp-formulas. So  $\mathrm{CSP}(\Delta) = \mathrm{CSP}(\Gamma)$ .

Two structures  $\Gamma, \Delta$  are called homomorphically equivalent if there are homomorphisms  $\Delta \to \Gamma$  and  $\Gamma \to \Delta$ .

Homomorphisms preserve pp-formulas. So  $\mathrm{CSP}(\Delta) = \mathrm{CSP}(\Gamma)$ .

#### Example 1: CSP(P; <)

There is an endomorphism  $g_{<} \in \operatorname{End}(P;<)$  with  $g_{<}(P,<) \cong \mathbb{Q}$ . So  $\operatorname{CSP}(P;<) = \operatorname{CSP}(\mathbb{Q};<)$ .

Two structures  $\Gamma, \Delta$  are called homomorphically equivalent if there are homomorphisms  $\Delta \to \Gamma$  and  $\Gamma \to \Delta$ .

Homomorphisms preserve pp-formulas. So  $CSP(\Delta) = CSP(\Gamma)$ .

### Example 1: CSP(P; <)

There is an endomorphism  $g_{<} \in \operatorname{End}(P;<)$  with  $g_{<}(P,<) \cong \mathbb{Q}$ . So  $CSP(P; <) = CSP(\mathbb{Q}; <)$ .

#### Example 3: CSP(P; T)

$$T(x, y, a, b) = (x < y \land a < b) \lor (y < x \land b < a) \lor (x \bot y \land a \bot b)$$

There is an  $g_{\perp} \in \text{End}(P; T)$  with  $g_{\perp}(T)$  is countable antichain. So  $CSP(P; T) = CSP(\mathbb{N}; x \neq y \land a \neq b)$ .

## Proposition (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$ . Then:

- **1** End( $\Gamma$ ) contains a constant,
- **2** End( $\Gamma$ ) contains  $g_{<}$  that maps P to a chain  $\cong \mathbb{Q}$ ,
- **3** End( $\Gamma$ ) contains  $g_{\perp}$  that maps P to a countable antichain,
- $\bullet$  or  $\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$ .

## Proposition (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$ . Then:

- End( $\Gamma$ ) contains a constant,
- **2** End( $\Gamma$ ) contains  $g_{<}$  that maps P to a chain  $\cong \mathbb{Q}$ ,
- **3** End( $\Gamma$ ) contains  $g_{\perp}$  that maps P to a countable antichain,
- $\bullet$  or  $\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$ .
- 1-element structures induces trivial CSPs.

#### Proposition (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$ . Then:

- **1** End( $\Gamma$ ) contains a constant,
- **2** End( $\Gamma$ ) contains  $g_{<}$  that maps P to a chain  $\cong \mathbb{Q}$ ,
- **3** End( $\Gamma$ ) contains  $g_{\perp}$  that maps P to a countable antichain,
- $\bullet$  or  $\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$ .
- 1-element structures induces trivial CSPs.
- **②** CSPs over  $(\mathbb{Q}, <)$  in P or NP-c (Bodirsky, Kára '10)

#### Proposition (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$ . Then:

- **1** End( $\Gamma$ ) contains a constant,
- **2** End( $\Gamma$ ) contains  $g_{<}$  that maps P to a chain  $\cong \mathbb{Q}$ ,
- **3** End( $\Gamma$ ) contains  $g_{\perp}$  that maps P to a countable antichain,
- $\bullet$  or  $\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$ .
- 1-element structures induces trivial CSPs.
- ② CSPs over  $(\mathbb{Q}, <)$  in P or NP-c (Bodirsky, Kára '10)
- **3** CSPs over  $(\mathbb{N}, \neq)$  in P or NP-c (Bodirsky, Kára '08)

#### Proposition (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$ . Then:

- **1** End( $\Gamma$ ) contains a constant,
- **2** End( $\Gamma$ ) contains  $g_{<}$  that maps P to a chain  $\cong \mathbb{Q}$ ,
- **3** End( $\Gamma$ ) contains  $g_{\perp}$  that maps P to a countable antichain,
- $\bullet$  or  $\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$ .
- 1-element structures induces trivial CSPs.
- ② CSPs over  $(\mathbb{Q}, <)$  in P or NP-c (Bodirsky, Kára '10)
- **3** CSPs over  $(\mathbb{N}, \neq)$  in P or NP-c (Bodirsky, Kára '08)
- $\rightarrow$  We only need to study  $\mathrm{CSP}(\Gamma)$ , where  $\overline{\mathrm{Aut}(\Gamma)} = \mathrm{End}(\Gamma)$ .



#### Theorem (Pach, Pinsker, Pongrácz, Szabó '14)

Let  $\Gamma$  be a reduct of  $\mathbb{P}$ . Then  $\operatorname{Aut}(\Gamma)$  is equal to one of the following:



 $\updownarrow$ : bijection with  $x < y \leftrightarrow \updownarrow x > \updownarrow y$ 

○: "rotation" at a generic upwards-closed set

### Outline

- Poset-SAT problems
- Poset-SAT as CSP over the random partial order
- Preclassification by homomorphic equivalence
- The universal algebraic approach
- Summary

For structures  $\Gamma$ ,  $\Delta$  write  $\Gamma \leq_{pp} \Delta$  if every relation in  $\Gamma$  has a definition with primitive positive formulas in  $\Delta$ .

For structures  $\Gamma$ ,  $\Delta$  write  $\Gamma \leq_{pp} \Delta$  if every relation in  $\Gamma$  has a definition with primitive positive formulas in  $\Delta$ .

Easy observation:  $\Gamma \leq_{pp} \Delta \to \mathrm{CSP}(\Gamma) \leq_{ptime} \mathrm{CSP}(\Delta)$ .

For structures  $\Gamma$ ,  $\Delta$  write  $\Gamma \leq_{pp} \Delta$  if every relation in  $\Gamma$  has a definition with primitive positive formulas in  $\Delta$ .

Easy observation:  $\Gamma \leq_{pp} \Delta \to \mathrm{CSP}(\Gamma) \leq_{ptime} \mathrm{CSP}(\Delta)$ .

For  $f: \Gamma^n \to \Gamma$  we say f is a polymorphism of  $\Gamma$  if for all relations R of  $\Gamma: r_1, \ldots, r_n \in R \to f(r_1, \ldots, r_n) \in R$ .

Polymorphism clone  $Pol(\Gamma)$ ... the set of all polymorphisms

For structures  $\Gamma$ ,  $\Delta$  write  $\Gamma \leq_{pp} \Delta$  if every relation in  $\Gamma$  has a definition with primitive positive formulas in  $\Delta$ .

Easy observation:  $\Gamma \leq_{pp} \Delta \to \mathrm{CSP}(\Gamma) \leq_{ptime} \mathrm{CSP}(\Delta)$ .

For  $f: \Gamma^n \to \Gamma$  we say f is a polymorphism of  $\Gamma$  if for all relations R of  $\Gamma: r_1, \ldots, r_n \in R \to f(r_1, \ldots, r_n) \in R$ .

Polymorphism clone  $Pol(\Gamma)$ ... the set of all polymorphisms

#### Bodirsky, Nešetřil '06

For  $\omega$ -categorical structures:  $\Gamma \leq_{pp} \Delta \leftrightarrow \operatorname{Pol}(\Gamma) \supseteq \operatorname{Pol}(\Delta)$ 

For structures  $\Gamma$ ,  $\Delta$  write  $\Gamma \leq_{pp} \Delta$  if every relation in  $\Gamma$  has a definition with primitive positive formulas in  $\Delta$ .

Easy observation:  $\Gamma \leq_{pp} \Delta \to \mathrm{CSP}(\Gamma) \leq_{ptime} \mathrm{CSP}(\Delta)$ .

For  $f: \Gamma^n \to \Gamma$  we say f is a polymorphism of  $\Gamma$  if for all relations R of  $\Gamma: r_1, \ldots, r_n \in R \to f(r_1, \ldots, r_n) \in R$ .

Polymorphism clone  $Pol(\Gamma)$ ... the set of all polymorphisms

#### Bodirsky, Nešetřil '06

For  $\omega$ -categorical structures:  $\Gamma \leq_{pp} \Delta \leftrightarrow \operatorname{Pol}(\Gamma) \supseteq \operatorname{Pol}(\Delta)$ 

→ Polymorphisms determine the complexity



Let  $e_{\leq}: (P; \leq)^2 \to (P; \leq)$  be an embedding:

$$e_{\leq}(x,y) \leq e_{\leq}(x',y') \Leftrightarrow x \leq x' \land y \leq y'$$

Let  $e_{\leq}: (P; \leq)^2 \to (P; \leq)$  be an embedding:

$$e_{\leq}(x,y) \leq e_{\leq}(x',y') \Leftrightarrow x \leq x' \land y \leq y'$$

### Bodirsky, Chen, Kára, von Oertzen '09

If  $e_{\leq} \in \operatorname{Pol}(\Gamma)$  every relation in  $\Gamma$  has a  $\leq$ -Horn definition, i.e., a conjunction of formulas

$$(x_{i_1} \le x_{j_1}) \land (x_{i_2} \le x_{j_2}) \cdots \land (x_{i_n} \le x_{j_n}) \to (x_{i_{n+1}} \le x_{j_{n+1}}) \text{ and } (x_{i_1} \le x_{j_1}) \land (x_{i_2} \le x_{j_2}) \cdots \land (x_{i_n} \le x_{j_n}) \to \mathsf{F}.$$

In this case  $CSP(\Gamma)$  is in P.

Let  $e_{\leq}: (P; \leq)^2 \to (P; \leq)$  be an embedding:

$$e_{\leq}(x,y) \leq e_{\leq}(x',y') \Leftrightarrow x \leq x' \land y \leq y'$$

### Bodirsky, Chen, Kára, von Oertzen '09

If  $e_{\leq} \in \operatorname{Pol}(\Gamma)$  every relation in  $\Gamma$  has a  $\leq$ -Horn definition, i.e., a conjunction of formulas

$$(x_{i_1} \le x_{j_1}) \land (x_{i_2} \le x_{j_2}) \cdots \land (x_{i_n} \le x_{j_n}) \to (x_{i_{n+1}} \le x_{j_{n+1}}) \text{ and } (x_{i_1} \le x_{j_1}) \land (x_{i_2} \le x_{j_2}) \cdots \land (x_{i_n} \le x_{j_n}) \to \mathsf{F}.$$

In this case  $CSP(\Gamma)$  is in P.

Similarly:  $e_{<}: (P; <)^{2} \to (P; <)$ 

Let  $e_{<}: (P; \leq)^2 \to (P; \leq)$  be an embedding:

$$e_{<}(x,y) \le e_{<}(x',y') \Leftrightarrow x \le x' \land y \le y'$$

### Bodirsky, Chen, Kára, von Oertzen '09

If  $e \in \operatorname{Pol}(\Gamma)$  every relation in  $\Gamma$  has a  $\leq$ -Horn definition, i.e., a conjunction of formulas

$$(x_{i_1} \le x_{j_1}) \land (x_{i_2} \le x_{j_2}) \cdots \land (x_{i_n} \le x_{j_n}) \to (x_{i_{n+1}} \le x_{j_{n+1}}) \text{ and } (x_{i_1} \le x_{j_1}) \land (x_{i_2} \le x_{j_2}) \cdots \land (x_{i_n} \le x_{j_n}) \to \mathsf{F}.$$

In this case  $CSP(\Gamma)$  is in P.

Similarly:  $e_{<}: (P;<)^2 \rightarrow (P;<)$ 

Problem: How does  $\operatorname{Pol}(\Gamma)$  look like? When is  $e_{\leq} \in \operatorname{Pol}(\Gamma)$ ?



A function  $f: \Delta \to \Gamma$  is called canonical, if and only if it maps tuples of the same type in  $\Delta$  to tuples of the same type in  $\Gamma$ .

A function  $f: \Delta \to \Gamma$  is called canonical, if and only if it maps tuples of the same type in  $\Delta$  to tuples of the same type in  $\Gamma$ .

• All  $\alpha \in \operatorname{Aut}(\mathbb{P})$  are canonical from  $\mathbb{P} \to \mathbb{P}$ 

A function  $f: \Delta \to \Gamma$  is called canonical, if and only if it maps tuples of the same type in  $\Delta$  to tuples of the same type in  $\Gamma$ .

- All  $\alpha \in \operatorname{Aut}(\mathbb{P})$  are canonical from  $\mathbb{P} \to \mathbb{P}$
- $\updownarrow$ :  $\mathbb{P} \to \mathbb{P}$  with  $x < y \leftrightarrow \updownarrow x > \updownarrow y$

A function  $f: \Delta \to \Gamma$  is called canonical, if and only if it maps tuples of the same type in  $\Delta$  to tuples of the same type in  $\Gamma$ .

- All  $\alpha \in \operatorname{Aut}(\mathbb{P})$  are canonical from  $\mathbb{P} \to \mathbb{P}$
- $\updownarrow$ :  $\mathbb{P} \to \mathbb{P}$  with  $x < y \leftrightarrow \updownarrow x > \updownarrow y$
- $e_{\leq}: (P; \leq)^2 \rightarrow (P; \leq)$  is canonical

A function  $f: \Delta \to \Gamma$  is called canonical, if and only if it maps tuples of the same type in  $\Delta$  to tuples of the same type in  $\Gamma$ .

- All  $\alpha \in \operatorname{Aut}(\mathbb{P})$  are canonical from  $\mathbb{P} \to \mathbb{P}$
- $\updownarrow$ :  $\mathbb{P} \to \mathbb{P}$  with  $x < y \leftrightarrow \updownarrow x > \updownarrow y$
- $e_{\leq}: (P; \leq)^2 \rightarrow (P; \leq)$  is canonical

 $(P; \leq, \prec)$  is a Ramsey structure.

A function  $f: \Delta \to \Gamma$  is called canonical, if and only if it maps tuples of the same type in  $\Delta$  to tuples of the same type in  $\Gamma$ .

- All  $\alpha \in \operatorname{Aut}(\mathbb{P})$  are canonical from  $\mathbb{P} \to \mathbb{P}$
- $\updownarrow$ :  $\mathbb{P} \to \mathbb{P}$  with  $x < y \leftrightarrow \updownarrow x > \updownarrow y$
- $e_{\leq}: (P; \leq)^2 \rightarrow (P; \leq)$  is canonical

 $(P; \leq, \prec)$  is a Ramsey structure.

### Proof idea (very roughly):

If R not pp-definable in  $\Gamma$  there is a  $f \in \operatorname{Pol}(\Gamma)$  violating R. Ramsey properties of  $\mathbb P$  imply that there is a *canonical* function  $g \in \operatorname{Pol}(\Gamma)$  violating R.

A function  $f: \Delta \to \Gamma$  is called canonical, if and only if it maps tuples of the same type in  $\Delta$  to tuples of the same type in  $\Gamma$ .

- All  $\alpha \in \operatorname{Aut}(\mathbb{P})$  are canonical from  $\mathbb{P} \to \mathbb{P}$
- $\updownarrow$ :  $\mathbb{P} \to \mathbb{P}$  with  $x < y \leftrightarrow \updownarrow x > \updownarrow y$
- $e_{\leq}: (P; \leq)^2 \rightarrow (P; \leq)$  is canonical

 $(P; \leq, \prec)$  is a Ramsey structure.

### Proof idea (very roughly):

If R not pp-definable in  $\Gamma$  there is a  $f \in \operatorname{Pol}(\Gamma)$  violating R. Ramsey properties of  $\mathbb P$  imply that there is a *canonical* function  $g \in \operatorname{Pol}(\Gamma)$  violating R.

- $\rightarrow$  Look for relations that imply NP-hardness.
- $\rightarrow$  Use canonical functions for P.

 $\mathrm{Low}\big(x,y,z\big) := \big(x < y \land z \bot xy\big) \lor \big(x < z \land y \bot xz\big).$ 

$$\mathrm{Low}(x, y, z) := (x < y \land z \bot xy) \lor (x < z \land y \bot xz).$$

### **Proposition**

Let  $\Gamma$  be s.t.  $\operatorname{End}(\Gamma) = \operatorname{Aut}(\mathbb{P})$ . Then either

- Low is pp-definable in  $\Gamma$  (and CSP( $\Gamma$ ) is NP-c)
- or  $Pol(\Gamma)$  contains  $e_{<}$  or  $e_{<}$  (and  $CSP(\Gamma)$  is in P)

$$Low(x, y, z) := (x < y \land z \bot xy) \lor (x < z \land y \bot xz).$$

### Proposition

Let  $\Gamma$  be s.t.  $\operatorname{End}(\Gamma) = \overline{\operatorname{Aut}(\mathbb{P})}$ . Then either

- Low is pp-definable in  $\Gamma$  (and  $CSP(\Gamma)$  is NP-c)
- or  $Pol(\Gamma)$  contains  $e_{<}$  or  $e_{\leq}$  (and  $CSP(\Gamma)$  is in P)

Proof idea.

 $Low(x, y, z) := (x < y \land z \bot xy) \lor (x < z \land y \bot xz).$ 

### **Proposition**

Let  $\Gamma$  be s.t.  $\operatorname{End}(\Gamma) = \operatorname{Aut}(\mathbb{P})$ . Then either

- Low is pp-definable in  $\Gamma$  (and CSP( $\Gamma$ ) is NP-c)
- or  $Pol(\Gamma)$  contains  $e_{<}$  or  $e_{<}$  (and  $CSP(\Gamma)$  is in P)

#### Proof idea.

Assume  $Pol(\Gamma)$  preserves <,  $\perp$ , but violates Low.

 $\mathrm{Low}\big(x,y,z\big) := \big(x < y \land z \bot xy\big) \lor \big(x < z \land y \bot xz\big).$ 

### Proposition

Let  $\Gamma$  be s.t.  $\operatorname{End}(\Gamma) = \overline{\operatorname{Aut}(\mathbb{P})}$ . Then either

- Low is pp-definable in  $\Gamma$  (and  $CSP(\Gamma)$  is NP-c)
- or  $Pol(\Gamma)$  contains  $e_{<}$  or  $e_{\leq}$  (and  $CSP(\Gamma)$  is in P)

#### Proof idea.

Assume  $Pol(\Gamma)$  preserves <,  $\bot$ , but violates Low.

There is a  $f \in \text{Pol}(\Gamma)$  with  $\bar{c}, \bar{d} \in \text{Low}$  but  $f(\bar{c}, \bar{d}) \notin \text{Low}$ .

 $\mathrm{Low}(x, y, z) := (x < y \land z \bot xy) \lor (x < z \land y \bot xz).$ 

### Proposition

Let  $\Gamma$  be s.t.  $\operatorname{End}(\Gamma) = \overline{\operatorname{Aut}(\mathbb{P})}$ . Then either

- Low is pp-definable in  $\Gamma$  (and  $CSP(\Gamma)$  is NP-c)
- or  $Pol(\Gamma)$  contains  $e_{<}$  or  $e_{\leq}$  (and  $CSP(\Gamma)$  is in P)

#### Proof idea.

Assume  $\operatorname{Pol}(\Gamma)$  preserves <,  $\perp$ , but violates  $\operatorname{Low}$ .

There is a  $f \in \text{Pol}(\Gamma)$  with  $\bar{c}, \bar{d} \in \text{Low}$  but  $f(\bar{c}, \bar{d}) \notin \text{Low}$ .

We can assume that  $f:(P;\leq,\prec,\bar{c},\bar{d})^2\to(P;\leq)$  is canonical.

 $\mathrm{Low}(x, y, z) := (x < y \land z \bot xy) \lor (x < z \land y \bot xz).$ 

### Proposition

Let  $\Gamma$  be s.t.  $\operatorname{End}(\Gamma) = \overline{\operatorname{Aut}(\mathbb{P})}$ . Then either

- Low is pp-definable in  $\Gamma$  (and  $CSP(\Gamma)$  is NP-c)
- or  $Pol(\Gamma)$  contains  $e_{<}$  or  $e_{\leq}$  (and  $CSP(\Gamma)$  is in P)

#### Proof idea.

Assume  $\operatorname{Pol}(\Gamma)$  preserves <,  $\bot$ , but violates  $\operatorname{Low}$ . There is a  $f \in \operatorname{Pol}(\Gamma)$  with  $\bar{c}, \bar{d} \in \operatorname{Low}$  but  $f(\bar{c}, \bar{d}) \notin \operatorname{Low}$ .

We can assume that  $f:(P;\leq,\prec,\bar{c},\bar{d})^2\to(P;\leq)$  is canonical.

To do: show that such f generates  $e_{<}$  or  $e_{<}$ .



## Outline

- Poset-SAT problems
- Poset-SAT as CSP over the random partial order
- Preclassification by homomorphic equivalence
- The universal algebraic approach
- Summary

## Theorem (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb P$  with  $\overline{\mathrm{Aut}(\Gamma)}=\mathrm{End}(\Gamma)$ . Then one of the following cases holds:

### Theorem (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$  with  $\overline{\mathrm{Aut}(\Gamma)}=\mathrm{End}(\Gamma)$ . Then one of the following cases holds:

• Low, Betw, Cycl or Sep is pp-definable in  $\Gamma$  and  $\mathrm{CSP}(\Gamma)$  is NP-complete.

## Theorem (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$  with  $\overline{\mathrm{Aut}(\Gamma)}=\mathrm{End}(\Gamma)$ . Then one of the following cases holds:

- Low, Betw, Cycl or Sep is pp-definable in  $\Gamma$  and  $\mathrm{CSP}(\Gamma)$  is NP-complete.
- $\operatorname{Pol}(\Gamma)$  contains  $e_{<}$  or  $e_{\leq}$  and  $\operatorname{CSP}(\Gamma)$  is in P.

## Theorem (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$  with  $\overline{\mathrm{Aut}(\Gamma)}=\mathrm{End}(\Gamma)$ . Then one of the following cases holds:

- Low, Betw, Cycl or Sep is pp-definable in  $\Gamma$  and  $\mathrm{CSP}(\Gamma)$  is NP-complete.
- $\operatorname{Pol}(\Gamma)$  contains  $e_{<}$  or  $e_{\leq}$  and  $\operatorname{CSP}(\Gamma)$  is in P.

#### Consequence:

Poset-SAT( $\Phi$ ) is in P or NP-complete.

### Theorem (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$  with  $\operatorname{Aut}(\Gamma) = \operatorname{End}(\Gamma)$ . Then one of the following cases holds:

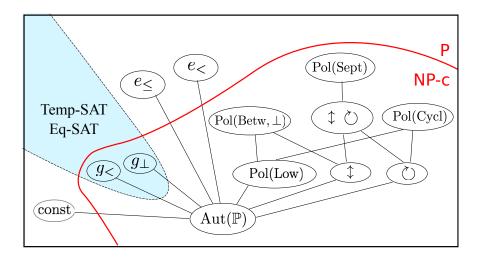
- Low, Betw, Cycl or Sep is pp-definable in Γ and  $CSP(\Gamma)$  is NP-complete.
- $Pol(\Gamma)$  contains  $e_{<}$  or  $e_{<}$  and  $CSP(\Gamma)$  is in P.

#### Consequence:

Poset-SAT( $\Phi$ ) is in P or NP-complete.

Given  $\Phi$ , it is decidable to tell if Poset-SAT( $\Phi$ ) is in P.

## Lattice of polymorphism clones



## Algebraic dichotomy

Theorem (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$ . Then either

## Algebraic dichotomy

### Theorem (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$ . Then either

• one of the equations

$$g_1(f(x,y)) = g_2(f(y,x))$$

$$g_1(f(x,x,y)) = g_2(f(x,y,x)) = g_3(f(y,x,x))$$

holds for  $f \in \text{Pol}(\Gamma)$ ,  $g_i \in \text{End}(\Gamma)$  and  $\text{CSP}(\Gamma)$  is in P,

## Algebraic dichotomy

#### Theorem (MK, Van Pham '16)

Let  $\Gamma$  be reduct of  $\mathbb{P}$ . Then either

one of the equations

$$g_1(f(x,y)) = g_2(f(y,x))$$

$$g_1(f(x,x,y)) = g_2(f(x,y,x)) = g_3(f(y,x,x))$$

holds for  $f \in \operatorname{Pol}(\Gamma), g_i \in \operatorname{End}(\Gamma)$  and  $\operatorname{CSP}(\Gamma)$  is in P,

• or  $\Gamma$  is homomorphic equivalent to a  $\Delta$ , such that:

$$\xi: \operatorname{Pol}(\Delta, c_1, \ldots, c_n) \to \mathbf{1}$$

and  $CSP(\Gamma)$  is NP-complete.

# Thank you!