Completing labelled graphs to metric spaces

Michael Kompatscher
May 30, 2017
Joint work with
Andrés Aranda, David Bradley-Williams, Jan Hubička, Miltiadis Karamanlis, Matěj Konečný, Micheal Pawliuk

Completing labelled graphs to metric spaces

Michael Kompatscher
May 30, 2017
Joint work with
Andrés Aranda, David Bradley-Williams, Jan Hubička, Miltiadis Karamanlis, Matěj Konečný, Micheal Pawliuk

Ramsey DocCourse 2016

Table of contents

1. Introduction
2. Cherlin's census of metrically homogeneous graphs
3. The extension property for partial automorphisms (EPPA)
4. Results

Introduction

Edge-labelled graphs

Every metric space can be regarded as an edge-labelled, complete graph:

(G, d)

a completion (G, \bar{d})

Questions

Given an edge-labelled graph (G, d) :

- Can (G, d) be completed to a metric space (G, \bar{d}) ?
- Is there an algorithm completing (G, d)?
- Are there completion algorithms that preserves nice properties of the graph?

We consider metric spaces with distances $1,2, \ldots, \delta$.

Non-metric cycles

By the triangle inequality, (G, \bar{d}) is not a metric space, if it contains a non-metric triangle.

More general, (G, \bar{d}) is not a metric space, if it contains a non-metric cycle.

Non-metric cycles are obstacles, i.e. as subgraphs of (G, d) they prevent completion. In our setting there are only finite non-metric cycles.

Path completion

For a given edge-labelled graph (G, d), and non-edge (x, y), let $d^{+}(x, y)$ be the minimal path length between x any y :

$d^{+}(x, y):=\min \left(\delta, \min \left\{\sum_{i=0}^{k} d\left(u_{i}, u_{i+1}\right): u_{0}=x, u_{k+1}=y\right\}\right)$
For all existing edges: $d^{+}(x, y)=d(x, y)$.

Let us call $\left(G, d^{+}\right)$the path completion of (G, d).

Path completion is correct

Lemma

The following are equivalent:

- $\left(G, d^{+}\right)$is a metric space
- (G, d) can be completed to a metric space
- (G, d) contains no non-metric cycles

Proof.

Assume that there is a non-metric triangle in $\left(G, d^{+}\right)$, i.e.
$d^{+}(u, v)+d^{+}(v, w)<d^{+}(u, w)$.

Then $d^{+}(u, w)=d(u, w)$ and there was already a non-metric cycle in (G,d).

Path completion is optimal

Lemma

The path completion maximizes distances: For (G, d), let (G, \bar{d}) be any completion to a metric space. Then

$$
\bar{d}(x, y) \leq d^{+}(x, y) \leq \delta
$$

Proof.

Assume $\bar{d}(x, y)>d^{+}(x, y)$. Then, $\bar{d}(x, y)$ and the path witnessing $d^{+}(x, y)$ form a non-metric cycle in (G, \bar{d}).

Path completion preserves automorphisms

Lemma

For all edge-labelled (G, d) we have $\operatorname{Aut}(G, d) \leq \operatorname{Aut}\left(G, d^{+}\right)$

Proof.

Let $f \in \operatorname{Aut}(G, d)$.
Note that $u_{0}, u_{1}, \ldots, u_{l}$ is a path from x to y, if and only if $f\left(u_{0}\right), f\left(u_{1}\right), \ldots, f\left(u_{l}\right)$ is a path from $f(x)$ to $f(y)$.
So $d^{+}(f(x), f(y))=d^{+}(x, y)$, thus $f \in \operatorname{Aut}\left(G, d^{+}\right)$.
In general, completions do not have to preserve automorphisms.

Path completion implies amalgamation

Definition

We say that a class \mathcal{C} of structures has the amalgamation property if

$\forall A, B_{1}, B_{2} \in \mathcal{C}, \forall \alpha_{i}: A \rightarrow B_{i} \exists C \in \mathcal{C}, \beta_{i}: B_{i} \rightarrow C: \beta_{2} \alpha_{2}=\beta_{1} \alpha_{1}$.
The class of metric spaces (distances $1,2, \ldots, \delta$) has a canonical amalgamation:

Take $C=B_{1} \cup B_{2}$ and form its path completions.

Summary

Summary

Let $\left(G, d^{+}\right)$be the path completion of (G, d) :

- $\left(G, d^{+}\right)$is metric if and only if (G, d) does not contain non-metric cycles
- $\operatorname{Aut}(G, d) \leq \operatorname{Aut}\left(G, d^{+}\right)$
- $d^{+}(x, y)$ is the maximal possible distance between x and y
- gives us a canonical amalgamation on metric spaces

Cherlin's census of metrically homogeneous graphs

Cherlin's census of metrically homogeneous graphs

Figure 1: Gregory Cherlin, likes to classify things

Cherlin's census of metrically homogeneous graphs

Figure 1: Gregory Cherlin, likes to classify things

In ongoing work, Cherlin gives a (probably) complete list of amalgamation classes of metric spaces that contain all geodesics, i.e. triangles $(a, b,|b-a|)$.

Cherlin's census of metrically homogeneous graphs

Cherlin '16

For parameters $\left(\delta, K_{1}, K_{2}, C_{0}, C_{1}\right)$ let $\mathcal{A}_{K_{1}, K_{2}, C_{0}, C_{1}}^{\delta}$ be the class of metric spaces of diameter δ such that for all triangles abc with $p=a+b+c$:

- $p<C_{0}$ if p is even
- $p<C_{1}$ if p is odd
- $2 K_{1}<p<2 K_{2}+\min (a, b, c)$ if p is odd

Then $\mathcal{A}_{K_{1}, K_{2}, C_{0}, C_{1}}^{\delta}$ is an amalgamation class if and only if [see T-shirt].

Question

Is there an algorithm that completes edge-labelled graphs to $\mathcal{A}_{K_{1}, K_{2}, C_{0}, C_{1}}^{\delta}$?

Cherlin's census of metrically homogeneous graphs

Cherlin light

For parameters (δ, K, C) let $\mathcal{A}_{K, C}^{\delta}$ be the class of metric spaces of diameter δ such that for all triangles $a b c$ with $p=a+b+c$:

- $p<C$
- $2 K<p$ if p is odd

If $C>2 \delta+K$, then $\mathcal{A}_{K, C}^{\delta}$ is an amalgamation class.

Question

Is there an algorithm that completes edge-labelled graphs to $\mathcal{A}_{K, c}^{\delta}$?

Path completion fails for $\mathcal{A}_{K, C}^{\delta}$

Adding big distances might introduce triangles of perimeter $>C$
Example: $\delta=3, K=1, C=8$

Path completion (green) is not in $\mathcal{A}_{1,8}^{3}$, while the red completion is!
\rightarrow Idea: optimize not towards δ, but to some $M<\delta$.

Only makes sense for $M \geq \frac{\delta}{2}, M \geq K$ and $M \leq \frac{C-\delta-1}{2}$.

Completing triangles

Optimizing distances towards $\max \left(K, \frac{\delta}{2}\right) \leq M \leq \frac{C-\delta-1}{2}$.
Triangles $M M a$ are not forbidden due to the choice of M.
How to complete forks, i.e. triangles missing one edge?

Generalized M-completion of (G, d)

Add all new edges of length $t(i)$ to (G, d) in step i.


```
for i = 0 ... delta - 1 {
    if t(i) > M then complete all forks ab with b-a = t(i)
    if t(i)<M then
    complete all forks ab with b+a = t(i)
    complete all forks ab with C-b-a-1 = t(i)
        }
label remaining pairs by M
```


Properties of the completion algorithm

Optimization lemma

Let (G, d) be an edge-labelled graph, let $(G, \bar{d}) \in \mathcal{A}_{K, C}^{\delta}$ be a completion and let $\left(G, d^{M}\right)$ be its M-completion. Then, for all $x, y \in G$:

$$
\bar{d}(x, y) \geq d^{M}(x, y) \geq M \text { or } \bar{d}(x, y) \leq d^{M}(x, y) \leq M .
$$

Properties of the completion algorithm

Optimization lemma

Let (G, d) be an edge-labelled graph, let $(G, \bar{d}) \in \mathcal{A}_{K, C}^{\delta}$ be a completion and let $\left(G, d^{M}\right)$ be its M-completion. Then, for all $x, y \in G$:

$$
\bar{d}(x, y) \geq d^{M}(x, y) \geq M \text { or } \bar{d}(x, y) \leq d^{M}(x, y) \leq M .
$$

Proposition

Let (G, d) be an edge-labelled graph, let $(G, \bar{d}) \in \mathcal{A}_{K, C}^{\delta}$ be a completion and let $\left(G, d^{M}\right)$ be its M-completion.

- $\left(G, d^{M}\right) \in \mathcal{A}_{K, C}^{\delta}$ and
- $\operatorname{Aut}(G, d) \leq \operatorname{Aut}\left(G, d^{M}\right)$.

Properties of the completion algorithm

Optimization lemma

Let (G, d) be an edge-labelled graph, let $(G, \bar{d}) \in \mathcal{A}_{K, C}^{\delta}$ be a completion and let $\left(G, d^{M}\right)$ be its M-completion. Then, for all $x, y \in G$:

$$
\bar{d}(x, y) \geq d^{M}(x, y) \geq M \text { or } \bar{d}(x, y) \leq d^{M}(x, y) \leq M .
$$

Proposition

Let (G, d) be an edge-labelled graph, let $(G, \bar{d}) \in \mathcal{A}_{K, C}^{\delta}$ be a completion and let $\left(G, d^{M}\right)$ be its M-completion.

- $\left(G, d^{M}\right) \in \mathcal{A}_{K, C}^{\delta}$ and
- $\operatorname{Aut}(G, d) \leq \operatorname{Aut}\left(G, d^{M}\right)$.
\rightarrow there is a finite set \mathcal{O} of cycles that are obstacles to the completion.

Summary

Summary

Let $\left(G, d^{M}\right)$ be the M-completion of (G, d) :

- $\left(G, d^{M}\right) \in \mathcal{A}_{K, C}^{\delta}$
$\Leftrightarrow(G, d)$ has a completion in $\mathcal{A}_{K, C}^{\delta}$
$\Leftrightarrow(G, d)$ does not contain a cycle $\in \mathcal{O}$
- $\operatorname{Aut}(G, d) \leq \operatorname{Aut}\left(G, d^{M}\right)$
- The distance $d^{M}(x, y)$ is the closest possible to M
- M-completion gives us a canonical amalgamation on $\mathcal{A}_{K, C}^{\delta}$

The extension property for partial automorphisms (EPPA)

The extension property for partial automorphisms (EPPA)

Question

Let \mathcal{C} be a class of finite structures. Given a $\mathbf{A} \in \mathcal{C}$ and a set I of partial automorphisms of \mathbf{A}. Is there a structure $\mathbf{A} \leq \mathbf{B} \in \mathcal{C}$ such that $p \in I$ extends to an automorphism $f \in \operatorname{Aut}(\mathbf{B})$?

We say \mathcal{C} has the extension property for partial automorphisms (EPPA) (or Hrushovski property) if the above is true for all $\mathbf{A} \in \mathcal{C}$.

The extension property for partial automorphisms (EPPA)

Examples

The following classes have EPPA:

- Sets
- Graphs - Hrushovski 1992
- K_{n}-free graphs - Herwig 1998
- Generalized to model-theoretic constructions - Herwig, Lascar 2000
- Metric spaces with rational distances - Solecki 2005

Linear orders and partial orders do not have EPPA.

Motivation for EPPA

$$
\begin{aligned}
& \text { Let }(A, d) \in \mathcal{A}_{K, C}^{\delta} \text { and } p \text { be } \\
& \text { a partial isomorphism }
\end{aligned}
$$

Motivation for EPPA

Let $(A, d) \in \mathcal{A}_{K, C}^{\delta}$ and p be a partial isomorphism

We can form the infinte extension $\bigcup_{i \in \mathbb{Z}} A_{i}$

Motivation for EPPA

Let $(A, d) \in \mathcal{A}_{K, C}^{\delta}$ and p be a partial isomorphism

We can form the infinte extension $\bigcup_{i \in \mathbb{Z}} A_{i}$

For a finite extension, we have to identify $A_{n}=A_{0}$

Motivation for EPPA

Let $(A, d) \in \mathcal{A}_{K, C}^{\delta}$ and p be a partial isomorphism

We can form the infinte extension $\bigcup_{i \in \mathbb{Z}} A_{i}$

For a finite extension, we have to identify $A_{n}=A_{0}$

If n big enough, we can complete to $(B, d) \in \mathcal{A}_{K, C}^{\delta}$

EPPA by a result of Herwig, Lascar

Theorem (Herwig, Lascar '00)

Let \mathcal{O} be a finite set of relational structures, and let $\operatorname{Forb}(\mathcal{O})$ be the class of all structures that contain no homomorphic images of structures in \mathcal{O}. Then $\operatorname{Forb}(\mathcal{O})$ has EPPA.

EPPA by a result of Herwig, Lascar

Theorem (Herwig, Lascar '00)

Let \mathcal{O} be a finite set of relational structures, and let $\operatorname{Forb}(\mathcal{O})$ be the class of all structures that contain no homomorphic images of structures in \mathcal{O}. Then Forb (\mathcal{O}) has EPPA.

Consequently $\mathcal{A}_{K, C}^{\delta}$ has EPPA:
Let \mathcal{O} be set of obstacles (finitely many cycles) for completion $\mathcal{A}_{K, C}^{\delta}$. For $(A, d) \in \mathcal{A}_{K, c}^{\delta}$, form an EPPA-witness $(B, d) \in \operatorname{Forb}(\mathcal{O})$. Then:
$\left(B, d^{M}\right) \in \mathcal{A}_{K, C}^{\delta}$ and $\operatorname{Aut}(B, d) \leq \operatorname{Aut}\left(B, d^{M}\right)$.

Results

Results

Theorem AB-WHKKKP '17

Let $\mathcal{A}_{K_{1}, K_{2}, C_{0}, C_{1}, \mathcal{S}}^{\delta}$ be an amalgamation class in Cherlin's catalogue.
Then

1. $\mathcal{A}_{K_{1}, K_{2}, C_{0}, C_{1}, \mathcal{S}}^{\delta}$ has EPPA, canonical amalgamation and its expansion by linear orders has the Ramsey property,
2. or we are in one of two extremal cases.

Results

Theorem AB-WHKKKP '17

Let $\mathcal{A}_{K_{1}, K_{2}, C_{0}, C_{1}, \mathcal{S}}^{\delta}$ be an amalgamation class in Cherlin's catalogue.
Then

1. $\mathcal{A}_{K_{1}, K_{2}, C_{0}, C_{1}, \mathcal{S}}^{\delta}$ has EPPA, canonical amalgamation and its expansion by linear orders has the Ramsey property,
2. or we are in one of two extremal cases.

Remark

These properties imply several facts about the Fraïssé limits of $\mathcal{A}_{K_{1}, K_{2}, C_{0}, C_{1}, \mathcal{S}}^{\delta}$ and their automorphism groups.

Thank you!

