Completing labelled graphs to metric spaces

Michael Kompatscher

May 30, 2017

Joint work with

Andrés Aranda, David Bradley-Williams, Jan Hubička, Miltiadis Karamanlis, Matěj Konečný, Micheal Pawliuk

Completing labelled graphs to metric spaces

Michael Kompatscher

May 30, 2017

Joint work with

Andrés Aranda, David Bradley-Williams, Jan Hubička, Miltiadis Karamanlis, Matěj Konečný, Micheal Pawliuk

Ramsey DocCourse 2016

- 1. Introduction
- 2. Cherlin's census of metrically homogeneous graphs
- 3. The extension property for partial automorphisms (EPPA)
- 4. Results

Introduction

Edge-labelled graphs

Every metric space can be regarded as an edge-labelled, complete graph:

Questions

Given an edge-labelled graph (G, d):

- Can (G, d) be completed to a metric space (G, \overline{d}) ?
- Is there an algorithm completing (G, d)?
- Are there completion algorithms that preserves nice properties of the graph?

We consider metric spaces with distances $1, 2, \ldots, \delta$.

Non-metric cycles

By the triangle inequality, (G, \overline{d}) is not a metric space, if it contains a non-metric triangle.

More general, (G, \overline{d}) is not a metric space, if it contains a non-metric cycle.

Non-metric cycles are obstacles, i.e. as subgraphs of (G, d) they prevent completion. In our setting there are only finite non-metric cycles.

For a given edge-labelled graph (G, d), and non-edge (x, y), let $d^+(x, y)$ be the minimal path length between x any y:

 $d^{+}(x, y) := \min(\delta, \min\{\sum_{i=0}^{k} d(u_i, u_{i+1}) : u_0 = x, u_{k+1} = y\})$ For all existing edges: $d^{+}(x, y) = d(x, y)$.

Let us call (G, d^+) the path completion of (G, d).

Lemma

The following are equivalent:

- (G, d^+) is a metric space
- (G, d) can be completed to a metric space
- (G, d) contains no non-metric cycles

Proof.

Assume that there is a non-metric triangle in (G, d^+) , i.e. $d^+(u, v) + d^+(v, w) < d^+(u, w)$.

Then $d^+(u, w) = d(u, w)$ and there was already a non-metric cycle in (G, d).

Lemma

The path completion maximizes distances: For (G, d), let (G, \overline{d}) be any completion to a metric space. Then

$$\bar{d}(x,y) \leq d^+(x,y) \leq \delta$$

Proof.

Assume $\bar{d}(x, y) > d^+(x, y)$. Then, $\bar{d}(x, y)$ and the path witnessing $d^+(x, y)$ form a non-metric cycle in (G, \bar{d}) .

Lemma

For all edge-labelled (G, d) we have $Aut(G, d) \leq Aut(G, d^+)$

Proof.

Let $f \in Aut(G, d)$. Note that u_0, u_1, \ldots, u_l is a path from x to y, if and only if $f(u_0), f(u_1), \ldots, f(u_l)$ is a path from f(x) to f(y). So $d^+(f(x), f(y)) = d^+(x, y)$, thus $f \in Aut(G, d^+)$.

In general, completions do not have to preserve automorphisms.

Definition

We say that a class ${\mathcal C}$ of structures has the amalgamation property if

 $\forall A, B_1, B_2 \in \mathcal{C}, \forall \alpha_i : A \to B_i \exists C \in \mathcal{C}, \beta_i : B_i \to C \colon \beta_2 \alpha_2 = \beta_1 \alpha_1.$

The class of metric spaces (distances $1, 2, \ldots, \delta$) has a canonical amalgamation:

Take $C = B_1 \cup B_2$ and form its path completions.

Summary

Let (G, d^+) be the path completion of (G, d):

- (G, d⁺) is metric if and only if (G, d) does not contain non-metric cycles
- $Aut(G, d) \leq Aut(G, d^+)$
- $d^+(x, y)$ is the maximal possible distance between x and y
- gives us a canonical amalgamation on metric spaces

Cherlin's census of metrically homogeneous graphs

Cherlin's census of metrically homogeneous graphs

Figure 1: Gregory Cherlin, likes to classify things

Cherlin's census of metrically homogeneous graphs

Figure 1: Gregory Cherlin, likes to classify things

In ongoing work, Cherlin gives a (probably) complete list of amalgamation classes of metric spaces that contain all geodesics, i.e. triangles (a, b, |b - a|).

Cherlin '16

For parameters $(\delta, K_1, K_2, C_0, C_1)$ let $\mathcal{A}_{K_1, K_2, C_0, C_1}^{\delta}$ be the class of metric spaces of diameter δ such that for all triangles *abc* with p = a + b + c:

- $p < C_0$ if p is even
- $p < C_1$ if p is odd
- $2K_1 if p is odd$

Then $\mathcal{A}^{\delta}_{\mathcal{K}_1,\mathcal{K}_2,\mathcal{C}_0,\mathcal{C}_1}$ is an amalgamation class if and only if [see T-shirt]. Question

Is there an algorithm that completes edge-labelled graphs to $\mathcal{A}^{\delta}_{K_1,K_2,C_0,C_1}$?

Cherlin light

For parameters (δ, K, C) let $\mathcal{A}_{K,C}^{\delta}$ be the class of metric spaces of diameter δ such that for all triangles *abc* with p = a + b + c:

- *p* < *C*
- 2K < p if p is odd

If $C > 2\delta + K$, then $\mathcal{A}_{K,C}^{\delta}$ is an amalgamation class.

Question

Is there an algorithm that completes edge-labelled graphs to $\mathcal{A}_{K,C}^{\delta}$?

Adding big distances might introduce triangles of perimeter > C

Example: $\delta = 3$, K = 1, C = 8

Path completion (green) is not in $\mathcal{A}_{1,8}^3$, while the red completion is!

 \rightarrow Idea: optimize not towards δ , but to some $M < \delta$.

Only makes sense for $M \geq \frac{\delta}{2}$, $M \geq K$ and $M \leq \frac{C-\delta-1}{2}$.

Optimizing distances towards $\max(K, \frac{\delta}{2}) \le M \le \frac{C-\delta-1}{2}$. Triangles *MMa* are not forbidden due to the choice of *M*. How to complete *forks*, i.e. triangles missing one edge?

Generalized *M*-completion of (G, d)

Add all new edges of length t(i) to (G, d) in step i.

Optimization lemma

Let (G, d) be an edge-labelled graph, let $(G, \overline{d}) \in \mathcal{A}_{K,C}^{\delta}$ be a completion and let (G, d^M) be its *M*-completion. Then, for all $x, y \in G$:

$$ar{d}(x,y) \geq d^M(x,y) \geq M ext{ or } ar{d}(x,y) \leq d^M(x,y) \leq M.$$

Optimization lemma

Let (G, d) be an edge-labelled graph, let $(G, \overline{d}) \in \mathcal{A}_{K,C}^{\delta}$ be a completion and let (G, d^M) be its *M*-completion. Then, for all $x, y \in G$:

$$ar{d}(x,y) \geq d^{M}(x,y) \geq M ext{ or } ar{d}(x,y) \leq d^{M}(x,y) \leq M.$$

Proposition

Let (G, d) be an edge-labelled graph, let $(G, \overline{d}) \in \mathcal{A}_{K,C}^{\delta}$ be a completion and let (G, d^M) be its *M*-completion.

- $(G, d^M) \in \mathcal{A}_{K,C}^{\delta}$ and
- $\operatorname{Aut}(G, d) \leq \operatorname{Aut}(G, d^M)$.

Optimization lemma

Let (G, d) be an edge-labelled graph, let $(G, \overline{d}) \in \mathcal{A}_{K,C}^{\delta}$ be a completion and let (G, d^M) be its *M*-completion. Then, for all $x, y \in G$:

$$ar{d}(x,y) \geq d^{M}(x,y) \geq M ext{ or } ar{d}(x,y) \leq d^{M}(x,y) \leq M.$$

Proposition

Let (G, d) be an edge-labelled graph, let $(G, \overline{d}) \in \mathcal{A}_{K,C}^{\delta}$ be a completion and let (G, d^M) be its *M*-completion.

- $(G, d^M) \in \mathcal{A}_{K,C}^{\delta}$ and
- $\operatorname{Aut}(G, d) \leq \operatorname{Aut}(G, d^M)$.

 \rightarrow there is a finite set ${\cal O}$ of cycles that are obstacles to the completion.

Summary

Let (G, d^M) be the *M*-completion of (G, d):

- $(G, d^M) \in \mathcal{A}_{K,C}^{\delta}$ $\Leftrightarrow (G, d)$ has a completion in $\mathcal{A}_{K,C}^{\delta}$ $\Leftrightarrow (G, d)$ does not contain a cycle $\in \mathcal{O}$
- $Aut(G, d) \leq Aut(G, d^M)$
- The distance $d^M(x, y)$ is the closest possible to M
- *M*-completion gives us a canonical amalgamation on $\mathcal{A}^{\delta}_{K,C}$

The extension property for partial automorphisms (EPPA)

Question

Let C be a class of finite structures. Given a $\mathbf{A} \in C$ and a set I of partial automorphisms of \mathbf{A} . Is there a structure $\mathbf{A} \leq \mathbf{B} \in C$ such that $p \in I$ extends to an automorphism $f \in \operatorname{Aut}(\mathbf{B})$?

We say C has the extension property for partial automorphisms (EPPA) (or Hrushovski property) if the above is true for all $\mathbf{A} \in C$.

Examples

The following classes have EPPA:

- Sets
- Graphs Hrushovski 1992
- K_n-free graphs Herwig 1998
- Generalized to model-theoretic constructions Herwig, Lascar 2000
- Metric spaces with rational distances Solecki 2005

Linear orders and partial orders do not have EPPA.

Let $(A, d) \in \mathcal{A}_{K,C}^{\delta}$ and p be a partial isomorphism

Let $(A, d) \in \mathcal{A}_{K,C}^{\delta}$ and p be a partial isomorphism

We can form the infinte extension $\bigcup_{i \in \mathbb{Z}} A_i$

Let $(A, d) \in \mathcal{A}_{K,C}^{\delta}$ and p be a partial isomorphism

We can form the infinte extension $\bigcup_{i \in \mathbb{Z}} A_i$

For a finite extension, we have to identify $A_n = A_0$

Let $(A, d) \in \mathcal{A}_{K,C}^{\delta}$ and p be a partial isomorphism

We can form the infinte extension $\bigcup_{i \in \mathbb{Z}} A_i$

For a finite extension, we have to identify $A_n = A_0$

If *n* big enough, we can complete to $(B, d) \in \mathcal{A}_{K,C}^{\delta}$

Theorem (Herwig, Lascar '00)

Let \mathcal{O} be a finite set of relational structures, and let $Forb(\mathcal{O})$ be the class of all structures that contain no homomorphic images of structures in \mathcal{O} . Then $Forb(\mathcal{O})$ has EPPA.

Theorem (Herwig, Lascar '00)

Let \mathcal{O} be a finite set of relational structures, and let $Forb(\mathcal{O})$ be the class of all structures that contain no homomorphic images of structures in \mathcal{O} . Then $Forb(\mathcal{O})$ has EPPA.

Consequently $\mathcal{A}_{K,C}^{\delta}$ has EPPA:

Let \mathcal{O} be set of obstacles (finitely many cycles) for completion $\mathcal{A}_{K,C}^{\delta}$. For $(A, d) \in \mathcal{A}_{K,C}^{\delta}$, form an EPPA-witness $(B, d) \in \text{Forb}(\mathcal{O})$. Then: $(B, d^M) \in \mathcal{A}_{K,C}^{\delta}$ and $\text{Aut}(B, d) \leq \text{Aut}(B, d^M)$.

Results

Theorem AB-WHKKKP '17

Let $\mathcal{A}_{K_1,K_2,C_0,C_1,\mathcal{S}}^{\delta}$ be an amalgamation class in Cherlin's catalogue. Then

- 1. $\mathcal{A}_{K_1,K_2,C_0,C_1,S}^{\delta}$ has EPPA, canonical amalgamation and its expansion by linear orders has the Ramsey property,
- 2. or we are in one of two extremal cases.

Theorem AB-WHKKKP '17

Let $\mathcal{A}_{K_1,K_2,C_0,C_1,\mathcal{S}}^{\delta}$ be an amalgamation class in Cherlin's catalogue. Then

- 1. $\mathcal{A}_{K_1,K_2,C_0,C_1,S}^{\delta}$ has EPPA, canonical amalgamation and its expansion by linear orders has the Ramsey property,
- 2. or we are in one of two extremal cases.

Remark

These properties imply several facts about the Fraïssé limits of $\mathcal{A}^{\delta}_{K_1,K_2,C_0,C_1,\mathcal{S}}$ and their automorphism groups.

Thank you!